Kyushu Institute of Technology Academic Repository
Kyutacarは九州工業大学で生産された研究成果を オープンアクセスで提供する機関リポジトリシステムです。 Kyutacar is open-access repository of research by members of the Kyushu Institute of Technology.
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
Frontier Research Academy for Young Researchers, Kyushu Institute of Technology
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
抄録
Apatite-polymer composites have been evaluated in terms of its potential application as bone substitutes. Biomimetic processes using simulated body fluid (SBF) are well-known methods for preparation of such composites. They are reliant on specific functional groups to induce the heterogeneous apatite nucleation and phosphate groups possess good apatite-forming ability in SBF. Improving the degree of polymerization is important for obtaining phosphate-containing polymers, because the release of significant quantities of monomer or low molecular weight polymers can lead to suppression of the apatite formation. To date, there have been very few studies pertaining to the effect of adding a polymerization accelerator to the polymerization reaction involved in the formation of these composite materials under physiological conditions. In this study, we have prepared a copolymer from triethylene glycol dimethacrylate and vinylphosphonic acid (VPA) in the presence of different amounts of sodium p-toluenesulfinate (p-TSS) as a polymerization accelerator. The effects of p-TSS on the chemical durability and apatite formation of the copolymers were investigated in SBF. The addition of 0.1–1.0 wt% of p-TSS was effective for suppressing the dissolution of the copolymers in SBF, whereas larger amount had a detrimental effect. A calcium polyvinylphosphate instead of the apatite was precipitated in SBF.
雑誌名
Journal of Asian Ceramic Societies
巻
3
号
4
ページ
407 - 411
発行年
2015-12-01
出版者
Elsevier
ISSN
2187-0764
DOI
https://doi.org/10.1016/j.jascer.2015.09.001
権利
Copyright (c) 2015 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. A