INFINITE-DIMENSIONAL LIE ALGEBRAS WITH NULL JACOBSON RADICAL

By

Fujio KUBO

(Received January 21, 1991)

0. Introduction

For a Lie algebra L the Jacobson radical of L is defined to be the intersection of all maximal ideals of L (L has no maximal ideal of L). The properties of the Jacobson radicals of finite-dimensional Lie algebras have been investigated by Marshall [6] and he has shown the following

Theorem 0.1. If a finite-dimensional Lie algebra L has a Levi decomposition $L = S + \sigma(L)$, then the Jacobson radical of L equals to $[L, \sigma(L)]$, where $\sigma(L)$ is the solvable radical of L.

For the infinite-dimensional case, Kamiya [2] shows

Theorem 0.2. If a Lie algebra L generated by finite-dimensional local subideals of L, then the Jacobson radical of L equals to $[L, \sigma(L)]$, where $\sigma(L)$ is the maximal locally solvable ideal of L.

These results are not true for the general infinite-dimensional case, even for the locally finite Lie algebras. This will be seen in §4. Taking a look at the Lie algebras given in §4 it seems to be difficult to find the characterization of the Jacobson radicals of infinite-dimensional Lie algebras by the well-known radicals. In this paper, to investigate the Jacobson radical of Lie algebras, we study the Lie algebras whose Jacobson radical is zero.

In §2 we will prove a local property that if H is an ascendant subalgebra of a Lie algebra L then the Jacobson radical of H is contained in that of L. This goes as well for a serial subalgebra H of a locally finite Lie algebra L.

The main result of §3 is that a locally finite Lie algebra L with null Jacobson radical is a direct sum of a semisimple ideal of L, whose Jacobson radical is zero, and the center of L.

In §4 we give the two examples of Lie algebras. These Lie algebras tell us that some results about the Jacobson radical of finite-dimensional Lie algebras are not true in the infinite-dimensional Lie algebras.
1. Preliminaries

Throughout this paper we always consider not necessarily finite dimensional Lie algebras over a field of characteristic zero unless otherwise specified. Notation and terminology are mainly based on Amayo and Stewart [1]. In particular "\(\triangleleft\)" , "si" , "asc" , "lsi" and "ser" denote the relations "ideal" , "subideal" , "ascendant subalgebra" , "local subideal" and "serial subalgebra" respectively. For example, a subalgebra \(H\) of a Lie algebra \(L\) is ascendant, this is denoted by \(H\ asc L\), if there is an ordinal \(\sigma\) and a series of subalgebras \(\{L_\alpha\}_{\alpha \leq \sigma}\) such that

\[
L_0 = H, \quad L_\sigma = L, \\
L_\alpha \triangleleft L_{\alpha + 1} \quad \text{for all } \alpha < \sigma, \\
L_\lambda = \bigcup_{\alpha < \lambda} L_\alpha \quad \text{for all limit ordinals } \lambda \leq \sigma.
\]

If \(\sigma\) is finite then \(H\) is a subideal of \(L\).

Let \(L\) be a Lie algebra and \(H\) a subalgebra of \(L\). We denote the center of \(L\) by \(\zeta(L)\) and \(C_L(H) = \{x \in L | [H, x] = 0\}\). Triangular brackets \(\langle \rangle\) denote the subalgebra generated by their contents. We also denote by \(ad_L(x)(y) = [y, x]\) for any \(x, y \in L\). Let \(S\) be a non-empty subset of \(L\). The ideal closure \(S^L\) is defined by

\[
S^L = \sum_{n=0}^{\infty} [S, n L]
\]

where \([S, n L]\) is inductively defined as follow: \([S, 0 L] = S, [S, 1 L] = [S, L], [S, n+1 L] = [[[S, n L], L], L]\). This is the smallest ideal of \(L\) containing \(S\).

Let \(K\) be a Lie algebra and \(I\) a subalgebra of the derivation algebra \(\text{Der}(K)\) of \(K\). Consider the direct sum

\[
L = K + I
\]

of vectorspaces \(K\) and \(I\). Then \(L\) is a Lie algebra with the product: \([h + i, k + j] = [h, k] + i(k) - j(h) + [i, j]\) \((h, k \in K, i, j \in I)\). This Lie algebra \(L\) is called the split extension of \(K\) by \(I\).

Let \(L\) be a Lie algebra. If every finite subset of \(L\) is contained in a finite-dimensional subalgebra (resp. solvable subalgebra) of \(L\) then \(L\) is called locally finite (resp. locally solvable). For a locally finite Lie algebra \(L\), \(\sigma(L)\) is the maximal locally solvable ideal of \(L\) and \(L\) is said to be the semisimple if \(\sigma(L) = 0\). Then we have the following

Lemma 1.1 ([1; Theorem 13.3.7]). Let \(L\) be a locally finite Lie algebra. If \(H\ ser L\) then \(\sigma(H) \subseteq \sigma(L)\).

Since a locally finite Lie algebra satisfying the minimal condition for two step subideals is finite-dimensional and solvable ([1; Corollary 8.5.5]), the following lemma
is immediate.

Lemma 1.2. The locally solvable simple Lie algebra is 1-dimensional.

We always put \(L^\omega = \bigcap_{n=1}^\infty L^n \).

Lemma 1.3 ([1; Lemmas 1.3.2,1.3.4,13.2.3]). (1) If \(H \) is a non-trivial ascendant subalgebra of \(L \) then \(H^\omega < L \).

(2) If \(H \) is a finite-dimensional ascendant subalgebra of \(L \) then \(H^\omega < L \).

For a Lie algebra \(L \) let \(A(L) \), \(B(L) \) be the subalgebra generated by all finite-dimensional ascendant subalgebras of \(L \), the subalgebra generated by all finite-dimensional local subideals of \(L \) respectively. We set

\[
F_{a}(L) = \{ H \text{ asc } L | H \text{ is finite-dimensional} \},
\]

\[
F_{b}(L) = \{ H \text{ lsi } L | H \text{ is finite-dimensional} \}.
\]

It is known that the class of the finite-dimensional Lie algebras is ascendantly coalescent and lsi-coalescent ([1; Theorems 3.2.5, Corollary 13.2.2]). In other words if \(H, K \in F_{a}(L) \) (resp. \(F_{b}(L) \)) then \(\langle H, K \rangle \in F_{a}(L) \) (resp. \(F_{b}(L) \)). Therefore we can write

\[
A(L) = \bigcup_{H \in F_{a}(L)} H, \quad B(L) = \bigcup_{H \in F_{b}(L)} H.
\]

For these radicals of \(L \), Kubo [4] shows

Lemma 1.4. If \(L \) is a locally finite Lie algebra then \(A(L) \) and \(B(L) \) are ideals of \(L \).

2. Local properties of \(L \) with \(J(L) = 0 \)

For a Lie algebra \(L \) we denote by \(J(L) \) the Jacobson radical of \(L \).

Lemma 2.1. (1) (Levič [5]) A simple Lie algebra can no non-trivial ascendant subalgebra.

(2) (Stewart [8]) A locally finite simple Lie algebra can no non-trivial serial subalgebra.

We state the following key lemma.

Lemma 2.2. (1) If \(H \) is an ascendant subalgebra of a Lie algebra \(L \) then \(J(H) \subseteq J(L) \).

(2) If \(L \) is locally finite and \(H \) is a serial subalgebra of \(L \) then \(J(H) \subseteq J(L) \).

Proof. Let \(H \) be an ascendant subalgebra (resp. a serial subalgebra in the case that \(L \) is locally finite) of \(L \) and \(M \) a maximal ideal of \(L \). For a homomorphism \(f \) of \(L \) it is obvious that if \(H \text{ asc } L \) then \(f(H) \text{ asc } f(L) \). If \(L \) is locally finite and \(H \text{ ser } L \) then \(f(L) \text{ ser } f(L) \) by [1; Proposition 13.2.4]. Hence \((H + M)/M \text{ asc } L/M \) (resp. \((H + M)/M \text{ ser } L/M) \). Therefore \(H \subseteq M \) or \(H + M = L \) by Lemma 2.1. If \(H + M = L \) then \(H \cap M \) is
We shall see the structure of finite-dimensional ascendant (serial) subalgebras of a Lie algebra with null Jacobson radical.

Theorem 2.3. If \(L \) is a Lie algebra with \(J(L) = 0 \) then every finite-dimensional ascendant subalgebra \(H \) of \(L \) has a unique Levi decomposition

\[
H = H^2 \oplus \zeta(H)
\]

where \(H^2 \) is a semisimple ideal of \(L \). Moreover \(L = H^2 \oplus C_L(H^2) \).

Proof. By Theorem 0.1 and Lemma 2.1 we immediately have

\[
[\sigma(H), H] = J(H) \subseteq J(L) = 0.
\]

Hence \(\zeta(H) = \sigma(H) \). This shows that \(H \) has a unique Levi factor \(H^2 \). By Lemma 1.3 we have \(H^2 = H^\omega < L \). Let \(x \in L \). Since \(H^2 \) is a finite-dimensional semisimple ideal of \(L \), \(\text{ad}_L x|_{H^2} \) is an inner derivation of \(H^2 \). Hence there exists \(z \in H^2 \) such that \(\text{ad}_L x|_{H^2} = \text{ad}_L z|_{H^2} \). Therefore \(x - z \in C_L(H^2) \) and \(L = H^2 \oplus C_L(H^2) \).

Theorem 2.4. If \(L \) is a Lie algebra with \(J(L) = 0 \) then every finite-dimensional local subideal \(H \) of \(L \) has a unique Levi decomposition

\[
H = H^\omega \oplus \sigma(H)
\]

where \(H^\omega \) is a semisimple ideal of \(L \). Moreover \(L = H^\omega \oplus C_L(H^\omega) \).

Proof. Since \(H \) is finite-dimensional and \(J(L) = 0 \), we can choose maximal ideals \(M_1, \ldots, M_r \) of \(L \) such that \(H \cap (M_1 \cap \cdots \cap M_i) = 0 \) and \(M_1 \cap \cdots \cap M_i \cap M_{i+1} \cap \cdots \cap M_r \neq M_i \) for \(i = 1, \ldots, r \). We write

\[
L/(\cap_{i=1}^r M_i) = Z \oplus (\oplus_{i=1}^r S_i)
\]

where \(Z = \zeta(L/(\cap_{i=1}^r M_i)) \) and the \(S_i \)'s are non-abelian simple. Considered \(H \) as a local subideal of \(Z \oplus (\oplus_{i=1}^r S_i) \), we have \(H^\omega \triangleleft \oplus_{i=1}^r S_i = (Z \oplus (\oplus_{i=1}^r S_i))^\omega \) by Lemma 1.3. Hence \(H^\omega \) is semisimple. Let \(S \) be a Levi factor of \(H \). Then \(S = S^\omega \subseteq H^\omega \) and so \(H^\omega = S \). The last assertion is similarly proved as in Theorem 2.3.

We shall describe the structures of the radicals \(A(L), B(L) \) of \(L \) given in §1 when \(J(L) = 0 \), as follow.

Theorem 2.5. If \(L \) is a Lie algebra with \(J(L) = 0 \) then

\[
A(L) = \bigoplus_{\lambda \in A} S_\lambda \oplus \zeta(A(L)), \quad B(L) = \bigoplus_{\lambda \in A} S_\lambda \oplus \sigma(B(L))
\]

where \(\{S_\lambda \mid \lambda \in A\} \) is the set of all finite-dimensional non-abelian simple ideals of \(L \).

Proof. We already saw in §1 that \(A(L) = \bigcup_{\lambda \in A} H_\lambda \) and \(B(L) = \bigcup_{\lambda \in A} H_\lambda \). We
write

\[S_A = \bigcup_{t \in F_a} H^L, \quad Z_A = \bigcup_{t \in F_a} \sigma(H), \]
\[S_B = \bigcup_{t \in F_b} H^L, \quad Z_B = \bigcup_{t \in F_b} \sigma(H). \]

Then by Theorems 2.3, 2.4, \(S_A \) and \(S_B \) are direct sums of finite-dimensional non-abelian simple ideals of \(L \). Hence \(S_A = S_B = \bigoplus_{\lambda \in A} S_\lambda \) where \(S_\lambda \) runs over all finite-dimensional non-abelian simple ideals of \(L \).

Let \(H, K \in F_a(L) \) (resp. \(F_b(L) \)). Since \(H \) is \(\langle H, K \rangle \in F_a(L) \) (resp. \(F_b(L) \)), \(\sigma(H) \subseteq \sigma(\langle H, K \rangle) \) by Lemma 1.1. Hence \([\sigma(H), K] \subseteq [\sigma(\langle H, K \rangle), \langle H, K \rangle] \subseteq \sigma(\langle H, K \rangle) \subseteq Z_A \) (resp. \(Z_B \)). Therefore \(Z_A \) (resp. \(Z_B \)) is an ideal of \(A(L) \) (resp. \(B(L) \)).

Obviously \(A(L) = S_A \oplus Z_A \) and \(B(L) = S_B \oplus Z_B \). Take any element \(x \in Z_A \) for some \(H \in F_a(L) \). For any \(K \in F_a(L) \) we have \([K, x] \subseteq [\langle H, K \rangle, \sigma(H)] \subseteq [\langle H, K \rangle, \sigma(\langle H, K \rangle)] = 0 \) by Theorem 2.3. This implies that \(Z_A \subseteq \zeta(A(L)) \). Therefore \(\zeta(A(L)) = Z_A + S_A \cap \zeta(A(L)) = Z_A \). By the definition of \(Z_B \) and the fact that \(Z_B \triangleleft B(L) \), we have \(Z_B \subseteq \sigma(B(L)) \). Therefore \(\sigma(B(L)) = Z_B + S_B \cap \sigma(B(L)) = Z_B \).

3. Locally finite Lie algebras with null Jacobson radical

Let \(L \) be a finite-dimensional Lie algebra. By Theorem 0.1 we can easily derive that \(J(L) = 0 \) if and only if \(L = S \oplus \zeta(L) \) where \(S \) is a semisimple ideal of \(L \) with \(J(S) = 0 \). In this section we will extend this results to locally finite Lie algebras in the following theorem 3.3. Of course for a finite-dimensional Lie algebras we can drop the condition that \(J(S) = 0 \). But we can not drop it for locally finite Lie algebras, because there is a locally finite semisimple Lie algebra \(L \) with \(J(L) \neq 0 \). Such a Lie algebra \(L \) will be given in the next section.

Lemma 3.1. Let \(L \) be a locally finite Lie algebra. If \(\sigma(L) \cap L^2 = 0 \) then \(L \) has a Levi decomposition \(S \oplus \zeta(L) \) where \(S \) is a semisimple ideal of \(L \).

Proof. Let \(S \) be a subspace of \(L \) such that \(L = S \oplus \sigma(L) \) (the direct sum of vector spaces) and \(L^2 \subseteq S \). Then \(S \) is a semisimple ideal of \(L \). Since \([\sigma(L), L] \cap L^2 = 0 \), we have \(\sigma(L) = \zeta(L) \).

Lemma 3.2. If \(L = \bigoplus_{\lambda \in A} L_\lambda \) then \(J(L) = \bigoplus_{\lambda \in A} J(L_\lambda) \).

Proof. It follows from Lemma 2.2 that \(\bigoplus_{\lambda \in A} J(L_\lambda) \subseteq J(L) \). If \(M_\lambda \) is a maximal ideal of \(L_\lambda \) then \(M_\lambda \oplus (\bigoplus_{\tau \neq \lambda} L_\tau) \) is a maximal ideal of \(L \). Hence \(J(L) \subseteq \bigcap_{\lambda \in A} (J(L_\lambda) \oplus (\bigoplus_{\tau \neq \lambda} L_\tau)) = \bigoplus_{\lambda \in A} J(L_\lambda) \).

Theorem 3.3. Let \(L \) be a locally finite Lie algebra. Then \(J(L) = 0 \) if and only if \(L \) has a Levi decomposition \(L = S \oplus \zeta(L) \) where \(S \) is a semisimple ideal of \(L \) with \(J(S) = 0 \).

Proof. Let \(M \) be a maximal ideal of \(L \). Assume that \(\sigma(L) \nsubseteq M \). Since \(L = M \)
If $J(L) = 0$ then by Lemma 3.1 L has a Levi decomposition $L = S \oplus \zeta(L)$ where S is a semisimple ideal of L. By Lemma 2.2 $J(S) = 0$.

The other implication is obvious by Lemma 3.2.

Corollary 3.5. Let L be a locally finite Lie algebra with $J(L) = 0$. Then

$$B(L) = (\bigoplus_{\lambda \in A} S_{\lambda}) \oplus \zeta(L)$$

where $\{S_{\lambda} | \lambda \in A\}$ is the set of all finite-dimensional non-abelian simple ideals of L. Hence $A(L) = B(L)$.

Proof. By Theorem 2.5 we write $B(L) = (\bigoplus_{\lambda \in A} S_{\lambda}) \oplus \sigma(B(L))$. Since $B(L) \triangleleft L$ by Lemma 1.4, $\sigma(B(L)) \subseteq \sigma(L)$. We have $\sigma(L) = \zeta(L)$ by Theorem 3.3. Hence

$$\sigma(B(L)) \subseteq \zeta(L) \subseteq B(L)$$

and so $\sigma(B(L)) = \zeta(L)$.

Since $S_{\lambda} \subseteq A(L)$ ($\lambda \in A$) and $\zeta(L) \subseteq A(L)$, we have $B(L) \subseteq A(L)$. Hence $B(L) = A(L)$. \)

4. Examples

Example 1. Let V be a vector space of infinite dimension over a field of characteristic zero. Let S the set of all linear transformations of V, regarded as a Lie algebra under the usual Lie multiplication $[s, t] = st - ts$ ($s, t \in S$). Let F be the set of elements of S of finite rank and A the set of elements of F of trace zero (in the sense of §4). It is shown in [7] that A is infinite-dimensional simple. It is easy to see that $A = F^2$ and F is locally finite. Moreover the only ideals of F are 0, A and F. Hence $\sigma(F) = 0$ and $J(F) = 0$.

Proposition 4.1. There is a locally finite Lie algebra L such that L is semisimple and $J(L) \neq 0$.

Example 2. We slightly change the construction of the Lie algebra given in Kubo [3]. For any positive integer i, let S_i be the 3-dimensional split simple Lie algebra over k of characteristic zero with basis $\{x_i, y_i, h_i\}$ and multiplications $[x_i, y_i] = h_i$, $[x_i, h_i] = 2x_i$, $[y_i, h_i] = -2y_i$. Write $K = \bigoplus_{i=1}^{\infty} S_i$. Take derivations

$$x = \sum_{i=1}^{\infty} \text{ad } x_i, \quad h = \sum_{i=1}^{\infty} \text{ad } h_i$$

Additional details and explanations may be necessary for a complete understanding, but this provides a clear and structured representation of the natural text.
Jacobson Radical

of K. Then $[x, h] = \Sigma \text{ad } [x_i, h_i] = \Sigma 2\text{ad } x_i = 2x$. Hence $\langle x, h \rangle = kx + kh$ is a subalgebra of $\text{Der}(K)$. Consider the split extension

$L = K \oplus \langle x, h \rangle$

of K by $\langle x, h \rangle$.

Lemma 4.2. Every nonzero ideal of L contains S_i for some i.

Proof. Let H be a non-zero ideal of L. We assume that $H \not\subseteq K$. We can take a non-zero element w of H such that $w = \sum_{i=1}^{n} v_i + \alpha x + \beta h$ ($v_i \in S_i, \alpha, \beta \in k$) where $x \neq 0$ or $\beta \neq 0$. Since $[w, S_{n+1}] = [\alpha x_{n+1} + \beta h_{n+1}, S_{n+1}] \neq 0$, this is a non-zero subspace of S_{n+1}.

Hence

$S_{n+1} \subseteq [w, S_{n+1}] \subseteq H$.

Theorem 4.3. (1) L is locally finite and semisimple.
(2) L is not a direct sum of non-abelian simple ideals of L.
(3) $J(L) = 0$.

Proof. The semisimplicity of L follows from Lemma 4.2. Since $L^2 \neq L$, we have the assertion (2).

(3): Since S_n is finite-dimensional and simple, $L/C_L(S_n) \cong \text{Der}(S_n) \cong S_n$. Hence $C_L(S_n)$ is a maximal ideal of L. Put $H = \bigcap_{n=1}^{\infty} C_L(S_n)$. If $H \neq 0$ then $S_i \subseteq H$ for some i by Lemma 4.2, a contradiction. Hence $H = 0$ and $J(L) \subseteq H = 0$.

We describe all ideals of L as follows.

Proposition 4.4. An ideal H of L is 0, L, K, $K + \langle x \rangle$, or of the forms

$H = (\bigoplus_{p \in P} S_p) + k(x - \sum_{q \in Q} x_q) + k\beta(h - \sum_{q \in Q} h_q)$

where P is a non-empty subset of N, Q is a non-empty finite subset of N with $Q \cap P = \phi$ and $\beta \in k$.

Proof. Let H be an ideal which is not one of the first four types listed above. Let $P = \{p \in N | [S_p, H] \neq 0\}$ and $Q = \{q \in N | [S_q, H] = 0\}$. By Lemma 4.2 $P \neq \phi$. If $P = N$ then $K \subseteq H$, contradiction. Hence $Q \neq \phi$. Obviously $H = \bigoplus_{p \in P} S_p + (\bigoplus_{q \in Q} S_q + \langle x, h \rangle) \cap H$.

Any non-zero element w of $(\bigoplus_{q \in Q} S_q + \langle x, h \rangle) \cap H \setminus \bigoplus_{q \in Q} S_q$ can be of the form

$w = \sum_{t \in T} w_t + \alpha x + \beta h$

$(\alpha, \beta \in k, w_t \in S_t, T \subseteq Q)$ where $\alpha \neq 0$ or $\beta \neq 0$. We may assume that $w_t \neq 0$ for $t \in T$, and
choose \(w \) in such a way that \(|T|\) is as small as possible. Write \(w_i = a_i x_i + b_i y_i + c_i h_i \) \((a_i, b_i, c_i \in k)\). By \([x_i, w] = [h_i, w] = 0\) we have \(a_i = -\alpha, b_i = 0, c_i = -\beta \) and so

\[
w = \alpha(x - \sum_{i \in T} x_i) + \beta(h - \sum_{i \in T} h_i).
\]

Assume that \(Q \neq T \). Then \([x_q, w] = 2\beta x_q\) and \([h_q, w] = -2\alpha x_q\) for \(q \in Q \setminus T \). Hence \(S_q \subseteq H \), a contradiction. Therefore \(T = Q \) and \(Q \) is a finite set. Since \([w, x] = -2\beta(x - \sum_{i \in T} x_i)\in H\), \(H \) is of the form required. □

Let \(U \) be a finite-dimensional Lie algebra and \(V \) its ideal. If \(J(U) = 0 \) then \(J(U/V) = 0 \) by Theorem 0.1. But this is not true for our Lie algebra \(L \). Because \(J(L) = 0 \) but \(J(L/K) = \langle x \rangle + K \).

Theorem 4.5. There is a locally finite Lie algebra \(L \) and its ideal \(K \) such that \(J(L) = 0 \) but \(J(L/K) \neq 0 \).

References

Department of Mathematics
Kyushu Institute of Technology