Structure Based Compact Model for Output Capacitance of Trench Field-Plate MOSFET to Enable Power Loss Prediction

Kobayashi Kenya, Sudo Masaki, Omura Ichiro

Volume

Year

URL

http://hdl.handle.net/10228/00006698
Abstract
We propose a structure based compact model for output capacitance \((C_{oss}) \) of trench Field-Plate MOSFET. Appropriate equations were considered for \(C_{oss} \) curves in three regions. Output charge \((Q_{oss}) \) and stored energy \((E_{oss}) \) that were calculated by the proposed model corresponded very well to TCAD results. In assumption of 10 A and 2 MHz operation, conduction loss of 1.0 W and output charge loss of 1.26 W were estimated.

1. Introduction
Various power devices contribute to reduce energy consumption in current electronics society. Among those, low-voltage power MOSFETs market are still growing. Especially, trench gate Field-Plate MOSFETs (FP-MOSFET) have been applied in wide voltage ranged circuits from 12 to 250 V [1]-[2]. General power loss in power converters is given by the following components; the conduction loss \((P_{con}) \), switching loss \((P_{sw}) \), the gate drive loss \((P_{gd}) \) and the output charge loss \((P_{oss}) \) [3]. The FP-MOSFET which has ultra-low specific on-resistance \((R_{on}) \) and gate-drain charge \((Q_{gd}) \) can reduce the \(P_{con} \) and the \(P_{sw} \) drastically. However, due to the featured device structure, the output capacitance \((C_{oss}) \) which leads to the \(P_{oss} \), especially in case of MHz switching, is significant issue compared to old-fashioned planar gate double-diffused MOSFET (D-MOSFET) and trench gate MOSFET.

In this paper, we propose a structure based compact model for the \(C_{oss} \). The proposed model can be described by structural parameters such as device dimensions and impurity concentration, it does not need any measurement of the electrical characteristics. In this model, we considered the components of the \(C_{oss} \) in detail. It enables the power loss prediction of next generation FP-MOSFET.

2. Device parameters and basic characteristics
In this study, we chose 100 V rating MOSFET as a motive device which applied to e.g. high performance server. As shown in Figs. 1(a) and 1(b), unit cell width \((W_{cell}) \) of the gradient FP-MOSFET, which is recognized current ideal FP structure [2], [4], can be narrower than that of D-MOSFET due to FP effect in the drift layer with maintaining sufficient breakdown voltage \((V_{b}) \). Moreover, it can make drift layer concentration \((N_{d}) \) ten times higher than conventional one as shown in Table I. Therefore, ultra-low \(R_{on} \) can be achieved in the FP-MOSFET and it is approximately one-sixth of that of the D-MOSFET as simulated by TCAD (Table II).

\[
C_{oss} = C_{ds1} + C_{ds2} + C_{gd}.
\]

As an approach for the \(C_{oss} \) modeling in this complicated structure, we consider the capacitance curves divided to three regions shown in Figs. 2(a) and 2(b). Region (i), \(V_{ds} = 0-30 \) V, indicates depletion layer capacitance of plane pn-junction \((C_{d}) \). Region (ii), \(V_{ds} = 0-60 \) V, includes FP-oxide capacitance \((C_{ox}) \) and depleted mesa region capacitance \((C_{DOS}) \) along the trench. In region (iii), \(V_{ds} = 60-100 \) V, trench bottom capacitance is added.

Table I. Structural parameters for D-MOSFET and FP-MOSFET.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol (unit)</th>
<th>D-MOSFET</th>
<th>FP-MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift layer concentration</td>
<td>(N_{d}) (atoms/cm(^2))</td>
<td>2.8 \times 10^{15}</td>
<td>3.0 \times 10^{16}</td>
</tr>
<tr>
<td>Cell width</td>
<td>(W_{cell}) ((\mu)m)</td>
<td>6.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Gate width</td>
<td>(W_{g}) ((\mu)m)</td>
<td>3.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Trench width</td>
<td>(W_{t}) ((\mu)m)</td>
<td>N/A</td>
<td>1.5</td>
</tr>
<tr>
<td>Gate oxide thickness</td>
<td>(T_{ox}) ((\mu)m)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Field-plate oxide thickness (top)</td>
<td>(T_{FOS}) ((\mu)m)</td>
<td>N/A</td>
<td>0.1</td>
</tr>
<tr>
<td>Field-plate oxide thickness (bottom)</td>
<td>(T_{FOS1}) ((\mu)m)</td>
<td>N/A</td>
<td>0.75</td>
</tr>
<tr>
<td>P-base junction depth</td>
<td>(X_{p}) ((\mu)m)</td>
<td>0.75</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table II. TCAD simulated static characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol (unit)</th>
<th>D-MOSFET</th>
<th>FP-MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown voltage</td>
<td>(V_{b}) (V)</td>
<td>111.3</td>
<td>110.1</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>(V_{th}) (V)</td>
<td>2.09</td>
<td>2.03</td>
</tr>
<tr>
<td>On-resistance</td>
<td>(R_{on}) (mf2.mm(^2))</td>
<td>199.1</td>
<td>32.8</td>
</tr>
</tbody>
</table>
3. Description of compact model for \(C_{\text{oss}} \)

Junction capacitance \((C_{\text{J}} = C_{\theta}) \)

In region (i), the depletion layer of the pn-junction extends down to vertical direction of the drift layer as increasing \(V_{ds} \). The \(C_{\theta} \) is divided to \(C_{\theta 0} \) and \(C_{\theta 1} \), those are given by

\[
C_{\theta 0} = \frac{2qN_p\epsilon_0\epsilon_{\text{Si}}}{\sqrt{2(V_{ds}+\psi_0)}}, \quad V_{ds} < 1, \quad (2)
\]

\[
C_{\theta 1} = \frac{2qN_p\epsilon_0\epsilon_{\text{Si}}}{\sqrt{V_{ds}+2W(V,y)}} \left(\frac{\epsilon_{\text{Si}}}{\epsilon_{\text{Si}}+X} \right) V_{ds}, \quad V_{ds} \geq 1, \quad (3)
\]

where \(q \) is elementary charge, \(\epsilon_{\text{Si}} \) is permittivity of silicon, \(V_{ds} \) is built-in potential and other parameters are shown in Fig. 1(c) and Table I. \(W(V,y) \) is a depletion layer width in the mesa region along the sloping FP, and given by

\[
W(V,y) = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{Si}}+X} \left[\frac{\epsilon_{\text{Si}}}{\epsilon_{\text{Si}}+X} \right] V_{ds} < 1\quad \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{Si}}+X}, \quad V_{ds} < 1. \quad (4)
\]

where \(\epsilon_{\text{Si}} \) is permittivity of oxide. \(W(V,y) \) varies depending on \(T_{\text{POX}} \) and depletion layer depth of center of the mesa \(y_0 \).

FP-oxide and depletion capacitance along the trench \((C_{\text{ds}}) \)

In region (ii), when the \(V_{ds} \) is less than 1 V, initial value of the \(C_{\text{ds}} \) nearly equals to the \(C_{\text{OX}} \) which is given by

\[
C_{\text{OX}} = \frac{2qN_p\epsilon_0\epsilon_{\text{Si}}}{\text{Wcell}(T_{\text{POX}}-X)}, \quad V_{ds} < 1. \quad (5)
\]

As can be seen in Fig. 2(b), the mesa region is depleted gradually in lateral direction by the FP effect and is linearly depleted in vertical direction because of the electric field uniformity [1]. Differential equation of \(W(V,y) \) expresses a voltage change of the electric charge in the region (ii). Therefore, the capacitance including the \(C_{\text{OX}} \) and the \(C_{\text{Dep}} \) is provided by

\[
C(V) = \frac{2qN_p\epsilon_0\epsilon_{\text{Si}}}{\text{Wcell}(T_{\text{POX}}-X)} \frac{\partial W(V,y)}{\partial y}, \quad V_{ds} \geq 1. \quad (6)
\]

Trench bottom capacitance \((C_{\text{db}}) \)

When the \(V_{ds} \) becomes approximately 60 V, the \(y_0 \) reaches the almost same depth of bottom of the FP. For \(V_{ds} > 60 \) V, the \(C_{\text{db}} \) decreases continuously in this model, therefore the trench bottom capacitance \(C_{\text{db}} \) has to add to total capacitance. This value is calculated as 3.3 \(\text{nF/cm}^2 \).

As a result, total \(C_{\text{oss}} \) is expressed by Eqs. (2), (3), (5) and (6) and the \(C_{\text{db}} \). We confirmed that the \(C_{\text{oss}} \) model showed good agreement with simulated \(C_{\text{oss}} \) by TCAD (Fig. 3).

4. Validation and application of proposed model

By using the proposed model, output charge \(Q_{\text{oss}} \) and stored energy \(E_{\text{oss}} \) in the output capacitance are calculated as

\[
Q_{\text{oss}} = \int C_{\text{oss}}dV, \quad (7) \quad E_{\text{oss}} = \int C_{\text{oss}}V_{ds}dV. \quad (8)
\]

The \(V_{ds} \) dependence of both the \(Q_{\text{oss}} \) and \(E_{\text{oss}} \) correspond very well to TCAD results (Fig. 4). The capacitance of the D-MOSFET was modelled by similar manner of section 3. When products are designed for same \(R_{OH} \) = 10 m\(\Omega \), a die size of the FP-MOSFET is one-sixth of that of the D-MOSFET, as mentioned in section 2. In case of 50 V supply voltage, figure-of-merit (FOM) of \(R_{OH} E_{\text{oss}} \) improves by 25 %.

Assuming 10 A and 100 kHz to 2 MHz operation, main power losses were estimated as Fig. 5, e.g. \(P_{\text{CON}} \) = 1.0 W and \(P_{\text{Qoss}} \) = 1.26 W at 2 MHz. (About \(P_{\text{OFF}} \), it was relatively small.)

5. Conclusions

We proposed the structure based compact model for the \(C_{\text{oss}} \) of the latest FP-MOSFET. The calculated \(Q_{\text{oss}} \) and \(E_{\text{oss}} \) correspond very well to TCAD results, and we could discuss the FOM and the power loss. Regarding next generation FP-MOSFET, it is expected that the proposed compact model is useful for the device performance prediction.

References

[5] Estimated power losses of FP-MOSFET in assumption of 10A and 100kHz to 2 MHz operation.