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Abstract

The aim of the present paper is to give a tractable way of seeking weak order
conditions of a stochastic Runge-Kutta family for stochastic differential equations
with a multi-dimensional Wiener process. This is accomplished by an extension of
the rooted tree analysis for ordinary Runge-Kutta methods. As a result, weak order
conditions can be obtained directly from diagrams of multi-colored rooted trees.
This new methodology will be of benefit when high weak order conditions need to
be sought.

Key words: Stratonovich stochastic differential equations; Multi-dimensional
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1 Introduction

The importance of numerical schemes for stochastic differential equations
(SDEs) has increased significantly as SDEs have been used for mathematical
modeling in many fields [19]. This is because SDEs are analytically unsolvable
in many cases.

Corresponding to the meaning of approximation, there are two kinds of numer-
ical schemes for SDEs, that is, strong schemes and weak schemes [10]. Strong
schemes give an approximate solution in the mean square sense [2,4,6,15].
Weak schemes give an approximation to the moment of an exact solution
[1,9,12,14,17,18,20–22]. In either type of scheme we have to seek order condi-
tions and solve them in order to obtain high order schemes.

Generally speaking, it is hard to derive order conditions. Fortunately, how-
ever, the rooted tree analysis, invented by Butcher [5], has opened the way
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to derive order conditions of Runge-Kutta schemes for ordinary differential
equations (ODEs) in a transparent manner [7,8], and it has been extended to
be applicable to the order conditions of schemes for SDEs. In fact, Burrage
and Burrage [2] have given the rooted tree analysis of strong schemes for SDEs
with a scalar Wiener process and they [3] have also extended it for SDEs with
a multi-dimensional Wiener process. Komori, Mitsui and Sugiura [13] have
extended the rooted tree analysis for ODEs to that of weak schemes for SDEs
with a scalar Wiener process.

The aim of the present paper is to further extend this to the analysis of weak
order conditions of a stochastic Runge-Kutta family for SDEs with a multi-
dimensional Wiener process.

Rößler [17] also has developed the rooted tree analysis of week order condi-
tions for another Runge-Kutta family. The following are the main differences
between his analysis and the present one.

• Rößler’s analysis gives a unified methodology to derive weak order condi-
tions of his Runge-Kutta family for Stratonovich SDEs and Itô SDEs.

• On the other hand, the present analysis has a highly diagram-based ap-
proach to obtain weak order conditions of our Runge-Kutta family for
Stratonovich SDEs.

The organization of the present paper is as follows. In the next section we will
introduce basic notations and definitions. In Section 3 we will first express
the Stratonovich-Taylor expansion of the solution of an SDE by a function
of multi-colored rooted trees, and second give a detailed expression of the
function by introducing the notions of the elementary integral, differential
and weight. In Section 4 we will first express, with a function of labeled multi-
colored rooted trees, the Taylor expansion of an approximate solution given
by a stochastic Runge-Kutta family, and second give a detailed expression of
the function by the elementary differential, numerical integral and weight. In
Section 5 we will express the order conditions of the stochastic Runge-Kutta
family in the weak sense by only the expectations of elementary weights and
numerical weights. In addition, we will give a tractable way of seeking the
expectations with multi-colored rooted trees. In Section 6 we will give the
summary and remarks. In the appendix, we will show the expectations of
elementary weights and numerical weights for weak order 2, and a stochastic
Runge-Kutta scheme in the multi-dimensional Wiener process case.

2 Preliminaries

We introduce some notations and concepts dealt with in the paper.
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Let (Ω,F , P ) be a probability space and W (t) = [W1(t), . . . ,Wm(t)] an m-
dimensional Wiener process defined on the probability space. We mainly con-
sider the following d-dimensional stochastic integral equation

y(t) = x0 +

t∫
0

g0(y(s)) ds +
m∑

j=1

t∫
0

gj(y(s)) ◦ dWj(s), 0 ≤ t ≤ Tend, (1)

where gj (j = 0, 1, . . . ,m) are d-vector valued functions and ◦ means the
Stratonovich formulation. The equation can be expressed, in differential form,
by the SDE

dy(t) = g0(y(t)) dt +
m∑

j=1

gj(y(t)) ◦ dWj(t), y(0) = x0, 0 ≤ t ≤ Tend.

We give equidistant grid points τn
def
= nh (n = 0, 1, . . . ,M) with step size

h
def
= Tend/M < 1 (M is a natural number) and consider discrete approxima-

tions yn to y(τn). Let CL
P (Rd, R) denote the totality of L times continuously

differentiable R-valued functions on Rd, all of whose partial derivatives of
order less than or equal to L have polynomial growth. Now we can give the
following definition [3].

Definition 1 Let y1, y2, . . . , yM be the discrete approximations given by a
certain scheme. Then, we say that the scheme is of weak (global) order q if for

each G ∈ C
2(q+1)
P (Rd,R), C > 0 (independent of h) and δ > 0 exist such that

|E[G(y(τM)] − E[G(yM)]| ≤ Chq, h ∈ (0, δ).

3 The Stratonovich-Taylor expansion for the stochastic differential
equation solution

The goal of this section is to represent the Stratonovich-Taylor expansion of
the solution y(t) of

y(τn+1) = yn +

τn+1∫
τn

g0(y(s)) ds +
m∑

j=1

τn+1∫
τn

gj(y(s)) ◦ dWj(s) (2)

by functions on the set of rooted trees.
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At the first step we define the integral operator Jj: for any integrable function
H of y and s > τn,

J0(H)(s)
def
=

s∫
τn

H(y(s1)) ds1, Jj(H)(s)
def
=

s∫
τn

H(y(s1)) ◦ dWj(s1)

(1 ≤ j ≤ m). Suppose that any component of gj belongs to Cκ
P (Rd,R) (0 ≤

j ≤ m), and set z(y(s))
def
= y(s) − yn as the increment of y from time τn to

s. Then, the expansion of gj(yn + z) about yn by Taylor’s theorem yields the
formal series:

Jj(gj)(s)

= Jj

(
gj(yn + z)

)
(s)

= Jj

(
gj(yn) + g

(1)
j (yn)[z] + · · · + 1

(κ − 1)!
g

(κ−1)
j (yn)[z, . . . , z︸ ︷︷ ︸

κ − 1 times

]

+
1

κ!
g

(κ)
j (yn + θjz)[z, . . . , z︸ ︷︷ ︸

κ times

]

)
(s)

= Jj

(
gj(yn)

)
(s) + Jj

(
g

(1)
j (yn)[z]

)
(s) + · · ·

+
1

(κ − 1)!
Jj

(
g

(κ−1)
j (yn)[z, . . . , z]

)
(s)

+
1

κ!
Jj

(
g

(κ)
j (yn + θjz)[z, . . . , z]

)
(s), (3)

where 0 < θj < 1. Here, the vector z(y(s)) is represented by z for sim-

plicity and g
(1)
j (yn), g

(κ−1)
j (yn) and g

(κ)
j (yn) denote the 1st, (κ − 1)-st and

κ-th order derivatives of gj, respectively. Since the linear operator g
(1)
j (yn)

is represented in a matrix form, for example, g
(1)
j (yn)[z] means the product

of the matrix g
(1)
j (yn) and the vector z(y(s)). Similarly, g

(κ−1)
j (yn)[z, . . . , z]

and g
(κ)
j (yn)[z, . . . , z] are evaluated as a result of multilinear operators on

arguments z, . . . , z ([5], p. 132).

By introducing the notations

P
(0)
j (s)

def
= Jj(gj(yn))(s),

P
(k)
j [z1, . . . , zk](s)

def
=

1

k!
Jj

(
g

(k)
j (yn)[z1, . . . , zk]

)
(s)
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for k ≥ 1 and

R
(κ)
j [z1, . . . , zκ](s)

def
=

1

κ!
Jj

(
g

(κ)
j (yn + θjz)[z1, . . . , zκ]

)
(s),

from Eqs. (2) and (3) we have

z(y(s)) =
m∑

j=0

P
(0)
j (s) +

m∑
j=0

P
(1)
j [z](s) + · · · +

m∑
j=0

P
(κ−1)
j [z, . . . , z](s)

+
m∑

j=0

R
(κ)
j [z, . . . , z](s). (4)

We can use this to obtain the expansion of y(τn+1) − yn. In relation to the
second term in the right-hand side, for example, one application of (4) yields

m∑
j=0

P
(1)
j [z](τn+1) =

m∑
j=0

P
(1)
j [

m∑
l=0

P
(0)
l ](τn+1) +

m∑
j=0

P
(1)
j

[ m∑
l=0

P
(1)
l [z]

]
(τn+1)

+ · · · +
m∑

j=0

P
(1)
j

[ m∑
l=0

P
(κ−1)
l [z, . . . , z]

]
(τn+1)

+
m∑

j=0

P
(1)
j

[ m∑
l=0

R
(κ)
l [z, . . . , z]

]
(τn+1).

In the right-hand side, only the first term has a multiple integral with a con-
stant integrand and its multiplicity is 2. When (4) is applied once again, the
second term yields another multiple integral with a constant integrand, whose
multiplicity is 3. Like this, by repeatedly applying (4) we obtain the expansion
of y(τn+1) − yn expressed by the sum of the multiple integrals with constant
integrands whose multiplicity is at most κ and those with nonconstant inte-
grands whose multiplicity is greater than κ:

y(τn+1) − yn =
m∑

j=0

P
(0)
j (τn+1) +

m∑
j=0

P
(1)
j [

m∑
l=0

P
(0)
l ](τn+1) + · · ·

+
m∑

j=0

P
(κ−1)
j [

m∑
l=0

P
(0)
l , . . . ,

m∑
l=0

P
(0)
l ](τn+1) + · · ·

+
m∑

j=0

R
(κ)
j [z, . . . , z](τn+1). (5)

In the right-hand side of (5), τn+1 only stands for the upper bound of the
integral interval. In the sequel we omit this symbol as far as it does not cause
a confusion.

5



Let N be a finite set of consecutive natural numbers, #S the cardinal number
of a set S, and V (N) the set of all possible partitions of N . That is, if p ∈ V (N)
and p = {p1, . . . , p#p} hold, then p1, . . . , p#p are non-empty pairwise-disjoint

subsets of N, the equation N =
⋃#p

i=1 pi holds, and the elements of pi are
consecutive. For example,

N = {1, 2, 3},
V (N) = {{N}, {{1, 2}, {3}}, {{1}, {2, 3}}, {{1}, {2}, {3}}}.

Let Q(n) be the sum of all products of n terms of P(·)
· appearing in the right-

hand side of (5). Then the following Lemma readily follows from (5).

Lemma 2 Q(n) can be given recursively as follows:

Q(1) =
m∑

j=0

P
(0)
j , Q(#N+1) =

∑
p∈V (N)

m∑
j=0

P
(#p)
j [Q(#p1), . . . , Q(#p#p)],

where 1 ≤ #N ≤ κ − 1.

For a combinatorial description of the above expansion, we introduce multi-
colored rooted trees (MRTs).

Definition 3 (Multi-colored rooted tree (MRT) ) A multi-colored rooted
tree with a root gj (colored with a label j from 0 to m) is a tree recursively de-
fined in the following manner:

1) τ (j) is the primitive tree having only a vertex gj.
2) If t1, . . . , tk are multi-colored rooted trees, then [t1, . . . , tk]

(j) is also a
multi-colored rooted tree with the root gj.

The totality of MRTs is denoted by T.

gj
τ (j)

gjg0
­­JJgj

[τ (0), τ (j)](j)

glgjgl
­­JJgj

[τ (l), [τ (l)](j)](j)

Fig. 1. Examples of MRTs

For an expression of the Stratonovich-Taylor expansion upon MRTs, we in-
troduce the elementary integral.

Definition 4 (Elementary integral Ψ(t) on T ) An elementary integral Ψ(t)
for t ∈ T is a function recursively given in the following manner:

Ψ(τ (j))
def
= P

(0)
j , Ψ(t)

def
= P

(k)
j [Ψ(t1), . . . ,Ψ(tk)] for t = [t1, . . . , tk]

(j).
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For example,

Ψ
(
[τ (l), [τ (l)](j)](j)

)
= P

(2)
j

[
P

(0)
l , P

(1)
j [P

(0)
l ]

]
.

For the set N, denote by TN the totality of MRTs with #N vertices numbered
with the elements of N in the following manner.

• Along each outwardly directed arc the numbers increase.
• Vertices of a subtree are consecutively numbered. This rule is also applied

to subtrees of the subtree recursively.
• Isomorphic trees are regarded to be identical.

gl 4gj 3gl2
­­JJgj 1

gl 3gj 2gl4
­­JJgj 1

gl 4gj 2gl3
­­JJgj 1

Fig. 2. Examples of trees in TN Fig. 3. An example of a tree not in TN

For u ∈ TN , let | u | stand for an MRT from which the numbers are removed.

Lemma 5 For the set N satisfying #N ≤ κ the following equation holds:

Q(#N) =
∑

u∈TN

Ψ(| u |).

PROOF. We will prove this by a mathematical induction. When #N = 1,
Lemma 2 and Definition 4 imply

Q(1) =
m∑

j=0

P
(0)
j =

m∑
j=0

Ψ(τ (j)).

When N0 is a finite set of consecutive natural numbers satisfying min(N0) ≥ 2,
suppose that the equation

Q(#N) =
∑

u∈TN

Ψ(|u|)

holds for any set N (⊆ N0) of consecutive natural numbers. Then, for N =
{min(N0) − 1} ∪ N0, from Lemma 2 we can see

Q(#N) = Q(#N0+1)

=
∑

p∈V (N0)

m∑
j=0

P
(#p)
j [Q(#p1), . . . , Q(#p#p)]
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=
∑

p∈V (N0)

m∑
j=0

P
(#p)
j [

∑
u1∈Tp1

Ψ(|u1|), . . . ,
∑

u#p∈Tp#p

Ψ(|u#p|)]

=
∑

u∈TN

Ψ(|u|),

where u ∈ TN whose root has the number min(N0)− 1, and which consists of
subtrees u1, . . . , u#p. This completes the proof. 2

Let ν(t) (t ∈ T ) be the number of different ways of numbering on t. That
is, ν(t) = #{u ∈ TN : |u| = t}. Furthermore denote by ρ(t) the number of
vertices of t ∈ T . From Lemma 5, we readily have the following lemma:

Lemma 6 The identity

Q(#N) =
∑

ρ(t)=#N
t∈T

ν(t)Ψ(t) for #N ≤ κ

holds.

For any multiple stochastic integral x, let λ(x) be the multiplicity of integrals
with respect to a time variable or Wiener processes, and σ(x) the multiplicity
of integrals with respect to a time variable.

From Lemma 6, all terms x appearing in the expansion (5) with λ(x) ≤ κ can
be expressed with Ψ(t). Actually, let yκ(τn+1) denote the truncated expansion
of y(τn+1) satisfying λ(x) + σ(x) ≤ κ. Then from Lemma 6, we have one of
the main results.

Theorem 7 The finitely truncated expansion has the following expression:

yκ(τn+1) = yn +
κ∑

i=1

∑
ρ(t)+r(t)=i

t∈T

ν(t)Ψ(t),

where r(t) is the number of vertices of t with the color 0.

Moreover, Ψ(t) has a more concise representation given by the elementary
weight, the elementary differential and the elementary coefficient:

Definition 8 (Elementary weight Φ(t) on T ) An elementary weight of t ∈
T is given recursively as follows [3]:

Φ(τ (j))
def
= Jj(1), Φ(t)

def
= Jj

(
k∏

i=1

Φ(ti)

)
for t = [t1, . . . , tk]

(j).

8



Definition 9 (Elementary differential F (t) on T ) An elementary differ-
ential is a possibly multilinear operator recursively given as follows [3]:

F (τ (j))
def
= gj(yn),

F (t)
def
= g

(k)
j (yn)[F (t1), . . . , F (tk)] for t = [t1, . . . , tk]

(j).

Definition 10 (Elementary coefficient β(t) on T ) The index β(t) (t ∈
T ) is defined recursively [3]:

β(τ (j))
def
= 1, β(t)

def
=

1

k!

k∏
i=1

β(ti) for t = [t1, . . . , tk]
(j).

If t = [τ (l), [τ (l)](j)](j), for example, β(t) = 1/2,

Φ(t) = Jj

(
Jl(1)Jj(Jl(1))

)
, F (t) = g

(2)
j (yn)

[
gl(yn), g

(1)
j (yn)[gl(yn)]

]
.

The following is the main goal of this section.

Theorem 11 For any t ∈ T we have the identity:

Ψ(t) = β(t)F (t)Φ(t).

PROOF. We carry out the proof by a mathematical induction. When ρ(t) =
1, a simple interpretation gives

Ψ(τ (j)) = P
(0)
j = Jj

(
gj(yn)

)
= gj(yn)Jj(1) = β(τ (j))F (τ (j))Φ(τ (j)).

Suppose that the statement is valid for all trees with ρ(t) ≤ k′. If t has a root
colored with j such as t = [t1, . . . , tk]

(j) (ρ(t) = k′ + 1), then the definition of
the elementary integral implies

Ψ(t) = P
(k)
j [Ψ(t1), . . . ,Ψ(tk)]

=
1

k!
Jj

(
g

(k)
j (yn)[β(t1)F (t1)Φ(t1), . . . , β(tk)F (tk)Φ(tk)]

)
=

1

k!
Jj

(
k∏

i=1

β(ti)g
(k)
j (yn)[F (t1), . . . , F (tk)]

k∏
i=1

Φ(ti)

)

=
1

k!

k∏
i=1

β(ti)g
(k)
j (yn)[F (t1), . . . , F (tk)] · Jj

(
k∏

i=1

Φ(ti)

)
= β(t)F (t)Φ(t).

Thus the statement holds in this case. 2
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4 The Taylor expansion for a stochastic Runge-Kutta family

In order to obtain an approximate solution yn+1 to the solution y(tn+1) of (2),
we consider the stochastic Runge-Kutta family given by

yn+1 = yn +
s∑

i=1

m∑
ja,jb=0

c
(ja,jb)
i Y

(ja,jb)
i ,

Y
(ja,jb)
ia = η

(ja,jb)
ia

b
(ja,jb)
ia gjb

(yn +
s∑

ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

)

+g
(1)
jb

(yn)
s∑

ib=1

m∑
jc,jd=0

γ
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib


(6)

(1 ≤ ia ≤ s, 0 ≤ ja, jb ≤ m), where each η
(ja,jb)
ia is a random variable indepen-

dent of yn and satisfies

E
[(

η
(ja,jb)
ia

)2k
]

=

 K1h
2k (jb = 0),

K2h
k (jb 6= 0)

for constants K1, K2 and k = 1, 2, . . .. Here, g
(1)
jb

denotes the derivative

of gjb
. If b

(ja,jb)
ia 6= 0, by setting η̃

(ja,jb)
ia

def
= η

(ja,jb)
ia b

(ja,jb)
ia and γ̃

(ja,jb,jc,jd)
iaib

def
=

γ
(ja,jb,jc,jd)
iaib

/b
(ja,jb)
ia we can rewrite this in the simpler form:

yn+1 = yn +
s∑

i=1

m∑
ja,jb=0

c
(ja,jb)
i Y

(ja,jb)
i ,

Y
(ja,jb)
ia = η̃

(ja,jb)
ia

gjb
(yn +

s∑
ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

)

+g
(1)
jb

(yn)
s∑

ib=1

m∑
jc,jd=0

γ̃
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

 .

(7)

These formulations include stochastic Runge-Kutta and Rosenbrock-Wanner
methods [3,12].

In this section we deal with the simple formulation.

For a transparent analysis later on, we adopt nominal symbols η̃
(ja,jb)
s+1 , α

(ja,jb,jc,jd)
s+1,ib

and γ̃
(ja,jb,jc,jd)
s+1,ib

and define α
(0,0,jc,jd)
s+1,ib

and Y
(ja,jb)
s+1 by
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α
(0,0,jc,jd)
s+1,ib

def
= c

(jc,jd)
ib

(ib = 1, . . . , s),

Y
(ja,jb)
s+1

def
= η̃

(ja,jb)
s+1

gjb
(yn +

s∑
ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
s+1,ib

Y
(jc,jd)
ib

)

+g
(1)
jb

(yn)
s∑

ib=1

m∑
jc,jd=0

γ̃
(ja,jb,jc,jd)
s+1,ib

Y
(jc,jd)
ib

 .

The Taylor-series expansion of Y
(ja,jb)
ia at yn implies the formal series:

Y
(ja,jb)
ia = η̃

(ja,jb)
ia gjb

(yn)

+η̃
(ja,jb)
ia g

(1)
jb

(yn)[
s∑

ib=1

m∑
jc,jd=0

(α
(ja,jb,jc,jd)
iaib

+ γ̃
(ja,jb,jc,jd)
iaib

)Y
(jc,jd)
ib

]

+
η̃

(ja,jb)
ia

2
g

(2)
jb

(yn)[
s∑

ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

,
s∑

ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

]

+ · · ·

+
η̃

(ja,jb)
ia

κ!
g

(κ)
jb

(yn + θjb

s∑
ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

)

× [
s∑

ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

, . . . ,
s∑

ib=1

m∑
jc,jd=0

α
(ja,jb,jc,jd)
iaib

Y
(jc,jd)
ib

], (8)

where 0 < θjb
< 1. For an expression concerning (8), we introduce some further

symbols. For a rectangular matrix z̄i = [zi
10, . . . , z

i
1m, . . . , zi

s+1,0, . . . , z
i
s+1,m]

of (m+1)(s+1) columns, where zi
·,· stands for a d-dimensional column vector,

the multilinear operator of k-th derivative of gj induces

ḡ
(0)
j

def
= [ gj(yn), . . . , gj(yn)︸ ︷︷ ︸

(m + 1)(s + 1) times

],

ḡ
(k)
j [z̄1, . . . , z̄k]

def
=

[
g

(k)
j (yn)[z1

10, . . . , z
k
10], . . . , g

(k)
j (yn)[z1

s+1,m, . . . , zk
s+1,m]

]
for k ≥ 1 and

r̄
(κ)
j [z̄1, . . . , z̄κ]

def
=

g
(κ)
j (yn + θj

s∑
ib=1

m∑
jc,jd=0

α
(0,j,jc,jd)
1ib

Y
(jc,jd)
ib

)[z1
10, . . . , z

κ
10], . . . ,

g
(κ)
j (yn + θj

s∑
ib=1

m∑
jc,jd=0

α
(m,j,jc,jd)
s+1,ib

Y
(jc,jd)
ib

)[z1
s+1,m, . . . , zκ

s+1,m]


as the remainder term.
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Next, we introduce several matrices related to the formula parameters of the
family (7). Let us define

A(j,j′) def
=



α
(0,j,0,j′)
11 · · · α

(m,j,0,j′)
11 · · · α

(0,j,0,j′)
s+1,1 · · · α

(m,j,0,j′)
s+1,1

...
...

...
...

α
(0,j,m,j′)
11 · · · α

(m,j,m,j′)
11 · · · α

(0,j,m,j′)
s+1,1 · · · α

(m,j,m,j′)
s+1,1

...
...

...
...

α
(0,j,0,j′)
1s · · · α

(m,j,0,j′)
1s · · · α

(0,j,0,j′)
s+1,s · · · α

(m,j,0,j′)
s+1,s

...
...

...
...

α
(0,j,m,j′)
1s · · · α

(m,j,m,j′)
1s · · · α

(0,j,m,j′)
s+1,s · · · α

(m,j,m,j′)
s+1,s

0 · · · 0 · · · 0 · · · 0



for α
(ja,j,jc,j′)
iaib

, where 0 stands for an m + 1-dimensional column vector of 0’s.

Similarly, define the matrix Γ̃(j,j′) for γ̃
(ja,j,jc,j′)
iaib

, and set Ã(j,j′) def
= A(j,j′)+Γ̃(j,j′).

In addition, define the (m+1)(s+1)× (m+1)(s+1) diagonal matrix D(j) by

D(j) def
= diag(η̃

(0,j)
1 , . . . , η̃

(m,j)
1 , . . . , η̃

(0,j)
s+1 , . . . , η̃

(m,j)
s+1 ).

Finally let us denote the rectangular matrix composed with Y
(ja,jb)
i ’s by

Ȳ
(j) def

= [Y
(0,j)
1 , . . . , Y

(m,j)
1 , . . . , Y

(0,j)
s+1 , . . . , Y

(m,j)
s+1 ].

Applying these symbols, we obtain the following expression from (8):

Ȳ
(j)

= ḡ
(0)
j D(j) + ḡ

(1)
j [

m∑
j1=0

Ȳ
(j1)

Ã(j,j1)]D(j)

+
1

2
ḡ

(2)
j [

m∑
j1=0

Ȳ
(j1)

A(j,j1),
m∑

j1=0

Ȳ
(j1)

A(j,j1)]D(j)

+ · · · + 1

κ!
r̄

(κ)
j [

m∑
j1=0

Ȳ
(j1)

A(j,j1), . . . ,
m∑

j1=0

Ȳ
(j1)

A(j,j1)]D(j). (9)

Similarly to P
(k)
j and R

(κ)
j in the previous section, we adopt the following

notations by using a label X(j) ∈ {A(j), Ã(j)} as well as a matrix X(j,j′) ∈
{A(j,j′), Ã(j,j′)}:

P
(0)

j′,X(j)

def
= ḡ

(0)
j′ D(j′)X(j,j′),

12



P
(k)

j′,X(j) [z̄1, . . . , z̄k]
def
=

1

k!
ḡ

(k)
j′ [z̄1, . . . , z̄k]D

(j′)X(j,j′)

for k ≥ 1 and

R
(κ)

j′,X(j) [z̄1, . . . , z̄κ]
def
=

1

κ!
r̄

(κ)
j′ [z̄1, . . . , z̄κ]D

(j′)X(j,j′).

Equation (9) then yields

m∑
j1=0

Ȳ
(j1)

X(j,j1) =
m∑

j1=0

P
(0)

j1,X(j) +
m∑

j1=0

P
(1)

j1,X(j) [
m∑

j2=0

Ȳ
(j2)

Ã(j1,j2)]

+
m∑

j1=0

P
(2)

j1,X(j) [
m∑

j2=0

Ȳ
(j2)

A(j1,j2),
m∑

j2=0

Ȳ
(j2)

A(j1,j2)] + · · ·

+
m∑

j1=0

R
(κ)

j1,X(j) [
m∑

j2=0

Ȳ
(j2)

A(j1,j2), . . . ,
m∑

j2=0

Ȳ
(j2)

A(j1,j2)]. (10)

Repeated substitution of (10) into itself implies the formal expression similarly
to (5):

m∑
j1=0

Ȳ
(j1)

X(j,j1) =
m∑

j1=0

P
(0)

j1,X(j) +
m∑

j1=0

P
(1)

j1,X(j) [
m∑

j2=0

P
(0)

j2,Ã(j1) ] + · · ·

+
m∑

j1=0

P
(κ−1)

j1,X(j) [
m∑

j2=0

P
(0)

j2,A(j1) , . . . ,
m∑

j2=0

P
(0)

j2,A(j1) ] + · · ·

+
m∑

j1=0

R
(κ)

j1,X(j) [
m∑

j2=0

Ȳ
(j2)

A(j1,j2), . . . ,
m∑

j2=0

Ȳ
(j2)

A(j1,j2)]. (11)

The above equations can be verified by using the multilinearity of operator
P

(k)

j′,X(j) [z̄1, . . . , z̄k]. The right-hand side of (11) has the following features:

• The case of k = 1
The argument of P

(1)

j′,X(j) [·] is always labeled by Ã(j′). That is, it is formed

by P
(·)
·,Ã(j′) [· · ·].

• The case of k ≥ 2
The arguments of P

(k)

j′,X(j) [· · ·] are always labeled by A(j′). That is, they are

formed by P
(·)
·,A(j′) [· · ·].

This observation suggests the introduction of rooted trees with labels A(j) or
Ã(j). In the sequel, let us denote A(·) or Ã(·) simply by X for ease of notation as
far as it does not cause a confusion. Similarly to Q(n) in the previous section,
we denote by Q

(n)
X the sum of all products of n terms of P(·)

·,· in the right-hand

13



side of (11). Then the following lemma readily follows from (11).

Lemma 12 Q
(n)
X can be given recursively as follows: for 1 ≤ #N ≤ κ − 1

Q
(1)
X =

m∑
j=0

P
(0)
j,X ,

Q
(#N+1)
X =

m∑
j=0

P
(1)
j,X [Q

(#N)

Ã(j) ] +
∑

p∈V (N)−{N}

m∑
j=0

P
(#p)
j,X [Q#p1

A(j) , . . . , Q
#p#p

A(j) ].

Note that Q
(n)
X has the same structure as Q(n) in Lemma 2 except with the

labels.

Definition 13 (Multi-colored rooted tree with labels (MRTL)) A multi-
colored rooted tree with labels, denoted by tX , is one attached by labels according
to the following rules:

1) The label of the root is X.
2) The label of the other vertices is decided by the number of branches and

the color of the parent vertex:
• the label is Ã(j) if the parent vertex has a single branch and it is colored

with j;
• the label is A(j) if the parent vertex has more than one branch and it is

colored with j.

The totality of MRTL’s whose label of the root is X, is denoted by TX . For
example, some MRTL’s are listed in Fig. 4.

gj A(0)

τ
(j)

A(0)

gj A(j)g0A(j)

­­JJgj A(0)

[τ
(0)

A(j) , τ
(j)

A(j) ]
(j)

A(0)

gl Ã(l)gl Ã(j)gj A(0)[
[τ

(l)

Ã(l) ]
(l)

Ã(j)

](j)

A(0)

Fig. 4. Examples of trees in TA(0)

Definition 14 (Elementary numerical integral Ψ̄(t) on TX) An elemen-
tary numerical integral corresponding to an MRTL is defined recursively as
follows:

Ψ̄(τ
(j)
X )

def
= P

(0)
j,X , Ψ̄(t)

def
= P

(k)
j,X [Ψ̄(t1), . . . , Ψ̄(tk)] for t = [t1, . . . , tk]

(j)
X ,

where τ
(j)
X and [t1, . . . , tk]

(j)
X express MRTL’s whose roots are labeled by X.

14



From Definitions 4 and 14, we can see that both structures of Ψ̄(t) and Ψ(t) are

the same except with the labels as well as those of Q
(n)
X and Q(n). Furthermore,

if we define t̂ as an MRT obtained by removing all labels from t ∈ TX , Θ :
TX 3 t 7→ t̂ ∈ T is a one to one correspondence from TX onto T . Therefore,
we can obtain the lemma similar to Lemma 6:

Lemma 15 The identity

Q
(#N)
X =

∑
r(t̂)=#N

t∈TX

ν(t̂)Ψ̄(t) for #N ≤ κ

holds.

For any monomial x of η̃
(·,·)
ia , let λ̄(x) be the multiplicity of products with

respect to η̃
(·,·)
ia , and σ̄(x) the multiplicity of products with respect to η̃

(·,·)
ia

except η̃
(·,0)
ia . From Lemma 15, all terms x appearing in the expansion of yn+1−

yn with λ̄(x) ≤ κ can be expressed by ((m + 1)s + 1)-st element of Ψ̄(t).
Actually, let yn+1,κ denote the truncated expansion of yn+1 satisfying λ̄(x) +
σ̄(x) ≤ κ. Then, we have one of our main results:

Theorem 16 The finitely truncated expansion of the numerical solution by
the stochastic Runge-Kutta family has the following expression:

yn+1,κ = yn +
κ∑

i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)Ψ̄(m+1)s+1(t),

where Ψ̄(m+1)s+1(t) denotes the ((m + 1)s + 1)-st element of Ψ̄(t).

The above theorem holds because yn+1 − yn is equal to the ((m + 1)s + 1)-st

element of
∑m

j=0 Ȳ
(j)

A(0,j), all terms of the expression of
∑m

j=0 Ȳ
(j)

A(0,j) are

started from P
(·)
·,A(0) , and Lemma 15 holds.

Definition 17 (Elementary numerical weight Φ̄(t) on TX(j)) An elemen-
tary numerical weight of t ∈ TX(j) is given recursively as follows:

Φ̄(τ
(j′)

X(j))
def
= 1D(j′)X(j,j′),

Φ̄(t)
def
= (

k

·
∏
i=1

Φ̄(ti))D
(j′)X(j,j′) for t = [t1, . . . , tk]

(j′)

X(j)

(0 ≤ j, j ′ ≤ m), where 1 stands for an (m + 1)(s + 1)-dimensional row vector
of 1’s, and ·∏k

i=1 Φ̄(ti) means the elementwise product of row vectors Φ̄(ti).
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The following is the goal of this section. The proof can also be obtained in a
similar way to that in Theorem 11 [13].

Theorem 18 For any t ∈ TX we have the identity:

Ψ̄(t) = β(t̂)F (t̂)Φ̄(t).

In Theorem 16 we obtained the Taylor expression of the approximate solution
yn+1 in the same form as that in Theorem 7 except with labels. Furthermore,
we showed that the elementary numerical integral Ψ̄(t) can be decomposed
into β(t̂), F (t̂) and Φ̄(t). This decomposition also has the same form as that
in Theorem 11. In the next section it will be seen that this fact, that is,
keeping the same form, leads to an advantage to seek the order conditions of
the stochastic Runge-Kutta family (7).

5 Order conditions of the stochastic Runge-Kutta family

In this section we will show the transparent way of seeking the order conditions
by utilizing the rooted tree analysis in Sections 3 and 4.

5.1 Order conditions

First of all, we introduce an important theorem in relation to weak order,
which Platen [10,16] has presented.

Theorem 19 ([10], p. 474) Suppose that x0 and y0 have the same proba-
bility law with all moments finite, where y0 is an initial random variable of a
scheme when it is applied to (1). In addition, suppose that any component of

gj belongs to C
2(q+1)
P (Rd,R) (0 ≤ j ≤ m) and satisfies Lipschitz conditions

and linear growth bounds. Furthermore, suppose that for each p = 1, 2, . . .
there exist constants K < ∞ and r′ ∈ {1, 2, . . .} independent of h such that
for each q′ ∈ {1, . . . , p}

E
[

max
0≤n≤M

|yn|2q′
∣∣∣∣F0

]
≤ K

(
1 + |y0|2r′

)
(w.p.1) (12)

and

E
[
|yn+1 − yn|2q′

∣∣∣Fn

]
≤ K

(
1 + max

0≤k≤n
|yk|2r′

)
hq′ (w.p.1) (13)
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for n = 0, 1, . . . ,M − 1, and such that

∣∣∣∣∣∣E
 L∏

j=1

(yn+1 − yn)pj
−

L∏
j=1

(ιq(y(τn+1); yn))pj

∣∣∣∣∣∣Fn

∣∣∣∣∣∣
≤ K(1 + max

0≤k≤n
|yk|2r′)hq+1 (w.p.1). (14)

for all n = 0, . . . ,M − 1 and (p1, . . . , pL) ∈ {1, . . . , d}L (1 ≤ L ≤ 2q + 1).
Here, (z)pj

and Fn denote, respectively, the pj-th component of z and a
non-anticipating sub-σ-algebra generated by the discretized Wiener process
W (τi) (i = 0, . . . , n). In addition, ιq(y(τn+1); yn) denotes the Itô-Taylor ex-
pansion of y(τn+1) − yn centered at yn and truncated up to the term x satis-
fying λ(x) ≤ q, where y(τn+1) satisfies the following Itô’s stochastic integral
equation

y(τn+1)

= yn +

τn+1∫
τn

g0(y(s)) +
1

2

m∑
j=1

∂gj

∂y
gj(y(s))

 ds +
m∑

j=1

τn+1∫
τn

gj(y(s)) dWj(s)

with probability 1. Then, the time discrete approximation yM converges to the
y(τM) weakly with order q as h → 0.

Conditions (12) and (13) require the regularity of the time discretization it-
self. The most important assumption is (14) which provides a rule on how to
construct a series of approximations {yn}1≤n≤M . Whereas (14) is expressed
by the Itô-Taylor expansion, however, the results in Section 3 are expressed
by the Stratonovich-Taylor expansion. For this, let us rewrite (14) in terms of
the Stratonovich-Taylor expansion.

For s > τn and any natural number k, define the multiple stochastic integrals
Jj1···jk

(s) and Ij1···jk
(s) by

Jj1···jk
(s)

def
=

s∫
τn

· · ·
s2∫

τn

◦ dWj1(s1) · · · ◦ dWjk
(sk)

and

Ij1···jk
(s)

def
=

s∫
τn

· · ·
s2∫

τn

dWj1(s1) · · · dWjk
(sk),

respectively. The following relation holds between Jj1···jk
(s) and the Itô integral

[10, p. 173]:
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Jj1···jk
(s)

=

s∫
τn

Jj1···jk−1
(sk) dWjk

(sk) +
1

2
δ{jk−1=jk 6=0}

s∫
τn

Jj1···jk−2
(sk−1) dsk−1, (15)

where δ{jk−1=jk 6=0} = 1 if jk−1 = jk 6= 0, or 0 otherwise. From the repeated
application of this equation and the observation that λ(x)+σ(x) is invariant for
any term x in the both hand side, we can see that Jj1···jk

(s) is expressed by the
sum of Ij1···jk′

(s) (k′ ≤ k) satisfying k + σ(Jj1···jk
(s)) = k′ + σ(Ij1···jk′

(s)). This
means that Jj1···jk

(s) satisfying k + σ(Jj1···jk
(s)) > 2q can be expressed by the

sum of Ij1···jk′ (s) with k′ > q. From this, we can see that y2q(τn+1)−yn includes
all the term in ιq(y(τn+1); yn). Hence, we can replace ιq(y(τn+1); yn) in (14)
with y2q(τn+1)−yn by noting that any term in y2q(τn+1)−yn−ιq(y(τn+1); yn)
does not prevent the inequality from holding.

Next, let us consider the discrete approximate solution part in the inequality.
For any pj, pj′ ∈ {1, . . . , d},∣∣∣E[(yn+1 − yn+1,2q)pj

(yn+1,2q − yn)pj′
|Fn]

∣∣∣ ≤ K1h
q+1

holds with probability 1, where K1 is a constant. Hence, we can replace yn+1−
yn in (14) with yn+1,2q − yn when L ≥ 2. From the point mentioned above
and the results in Sections 3 and 4, for L ≥ 2 we can rewrite the expression
in the left-hand side of (14) as follows:

E


L∏

j=1

(
2q∑

i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)Ψ̄(m+1)s+1(t))pj
−

L∏
j=1

(
2q∑

i=1

∑
ρ(t)+r(t)=i

t∈T

ν(t)Ψ(t))pj

∣∣∣∣∣∣∣∣∣∣
Fn



= E


L∏

j=1

(
2q∑

i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)Ψ̄(m+1)s+1(t))pj

−
L∏

j=1

(
2q∑

i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)Ψ(t̂))pj

∣∣∣∣∣∣∣∣∣∣
Fn

 (w.p.1)

=
2q∑

i1=1

∑
ρ(t̂1)+r(t̂1)=i1

t1∈TA(0)

· · ·
2q∑

iL=1

∑
ρ(t̂L)+r(t̂L)=iL

tL∈T
A(0)

L∏
j=1

(ν(t̂j)β(t̂j)(F (t̂j))pj
)

×E

 L∏
j=1

Φ̄(m+1)s+1(tj) −
L∏

j=1

Φ(t̂j)

∣∣∣∣∣∣Fn

 (w.p.1).
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On the other hand, for any p1 ∈ {1, . . . , d}
∣∣∣E[(yn+1 − yn+1,2q+1)p1 |Fn]

∣∣∣ ≤ K2h
q+1

holds with probability 1, where K2 is a constant. Hence, when L = 1 we can
replace yn+1 − yn in (14) with yn+1,2q+1 − yn, and this yields

E

(
2q+1∑
i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)Ψ̄(m+1)s+1(t))p1 − (
2q∑

i=1

∑
ρ(t)+r(t)=i

t∈T

ν(t)Ψ(t))p1

∣∣∣∣∣∣∣∣∣∣
Fn


=

2q∑
i=1

∑
ρ(t̂)+r(t̂)=i

t∈T
A(0)

ν(t̂)β(t̂)(F (t̂))p1E
[
Φ̄(m+1)s+1(t) − Φ(t̂)

∣∣∣Fn

]

+
∑

ρ(t̂)+r(t̂)=2q+1
t∈T

A(0)

ν(t̂)β(t̂)(F (t̂))p1E
[
Φ̄(m+1)s+1(t)

∣∣∣Fn

]
(w.p.1).

Consequently, the inequality (14) holds if

E

 L∏
j=1

Φ̄(m+1)s+1(tj)

 = E

 L∏
j=1

Φ(t̂j)

 (16)

for any t1, . . . , tL ∈ TA(0) (1 ≤ L ≤ 2q) satisfying
∑L

j=1(ρ(t̂j) + r(t̂j)) ≤ 2q and

E
[
Φ̄(m+1)s+1(t)

]
= 0 (17)

for any t ∈ TA(0) satisfying ρ(t̂)+ r(t̂) = 2q +1 since η̃(·,·)
· is independent of yn.

5.2 Calculation rules for elementary weights or elementary numerical weights

In this subsection we will give a way of seeking the expectations appearing
in weak order conditions with the help of MRTs. As preliminaries, we first
introduce some rules to calculate elementary weights easily.

By means of the chain rule
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Jj1···jk
(τn+1)Jj1···jk′

(τn+1) =

τn+1∫
τn

Jj1···jk−1
(s)Jj1···jk′

(s) ◦ dWjk
(s)

+

τn+1∫
τn

Jj1···jk
(s)Jj1···jk′−1

(s) ◦ dWjk′ (s),

we can express the product of elementary weights of some MRTs by the sum
of elementary weights of other MRTs as the following example:

Φ ( g0 ) Φ
( glgj )

= Φ

( glgjg0
)

+ Φ
( glg0 gj )

= Φ

( glgjg0
)

+ Φ

( glg0gj
)

+ Φ

( g0glgj
)

.

From the observation of the example we can obtain the following statement
in order to rewrite the product of elementary weights or the composition of
subtrees in an elementary weight:

• The product of elementary weights of two MRTs t1, t2 can be expressed by
the sum of elementary weights of an MRT generated by grafting t1 to the
root of t2 and an MRT generated by grafting t2 to the root of t1.

• The elementary weight of an MRT having subtrees t1, t2 can be expressed
by the sum of elementary weights of an MRT generated by grafting t1 to
t2’s own root and an MRT generated by grafting t2 to t1’s own root.

Hence, the product of elementary weights or the elementary weight of an MRT
having a vertex with multi-branches can be expressed by the sum of MRTs
whose each vertex has no more than one branch. Thus, next let us consider
this type of MRT only.

For a multiple Stratonovich integral expressed as the elementary weight of the
type of MRT, (15) holds. The recursive application gives a representation of
the multiple Stratonovich integral in terms of the sum of multiple Itô integrals.
In this application, only the second term in the right-hand side can yield a
term having only integrals with respect to time. The condition for it is that
the even number of indices ji’s satisfy ji 6= 0 and ji = ji+1 or ji = ji−1 holds
for each index ji. Finally, by noting that the expectation of any multiple Itô
integral is 0 if it includes an integral with respect to a Wiener process, we can
obtain the following rules for any MRT whose each vertex has no more than
one branch:

• The expectation of an elementary weight vanishes unless the even number
of vertices are of colors different from 0 and each of these vertices has a
parent or child vertex with the same color.

• Trace vertices in the direction from the root to upper vertices. Then, the
expectation of an elementary weight of an MRT in which a vertex colored
by j 6= 0 has a child vertex with the same color is equal to a half of that of
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another MRT given by replacing the two vertices with one vertex colored
by 0 ([10], p. 175). For example,

E

[
Φ

( gjgjg0
)]

=
1

2
E

[
Φ

( g0g0)]
=

1

2
Φ

( g0g0)
.

Note that there is no longer need of the expectation in the right-hand side.
By utilizing these rules, we give an example of the expectations of elementary
weights or the products of them in Appendix A.

Next, we give a way of seeking the expectations of the ((m + 1)s + 1)-st
elements of elementary numerical weights or the products of them. From the
observation of calculations for some elementary numerical weights according
to Definition 17, we can see that the ((m+1)s+1)-st element of an elementary
numerical weight can be obtained directly from a diagram for an MRTL by
the following procedure.

• Trace vertices in the direction from the root to upper vertices.

• For the root vertex, prepare indices i1 and j′1 and write down c
(j′1,j)
i1 η̃

(j′1,j)
i1 if

the color is j.
• For each vertex except the root, prepare new indices ik+1 and j′k+1 and

write down α
(j′k,j,j′k+1,l)

ikik+1
η̃

(j′k+1,l)

ik+1
if the label is A(j) and the color is l, or

α̃
(j′k,j,j′k+1,l)

ikik+1
η̃

(j′k+1,l)

ik+1
if the label is Ã(j) and the color is l, where ik and j′k mean

the indices for the parent vertex and α̃
(j′k,j,j′k+1,l)

ikik+1

def
= α

(j′k,j,j′k+1,l)

ikik+1
+ γ̃

(j′k,j,j′k+1,l)

ikik+1
.

• Finally, take a summation possible values of i· and j′· .

For example,

Φ̄(m+1)s+1

( g0 Ã(j)gj A(0)

)
=

s∑
i1,i2=1

m∑
j′1,j′2=0

c
(j′1,j)
i1 η̃

(j′1,j)
i1 α̃

(j′1,j,j′2,0)
i1i2 η̃

(j′2,0)
i2 .

Now, let us assume the following.

Assumption 20 The expectation of the ((m + 1)s + 1)-st element of an el-
ementary numerical weight or the product of those is equal to 0 if the odd
number of vertices are of the same color j(6= 0).

As we have seen above, the expectation of an elementary weight or the product
of those vanishes if the odd number of vertices are of the same color j( 6= 0).
Assumption 20 ensures that (16) holds for such MRTL’s and (17) holds. Hence,
it is helpful to decrease the number of order conditions to be dealt with.

Then, we can obtain the expectations of the ((m + 1)s + 1)-st elements of
elementary numerical weights or the products of them for weak order 2 as in
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Appendix B.

6 Summary and remarks

First, with MRTL’s, we have obtained the expression of the weak order con-
ditions of the stochastic Runge-Kutta family in the multi-dimensional Wiener
process case. In the expressions there appear the expectations of elementary
weights and elementary numerical weights. Second, we have shown the way
of seeking the expectations directly from diagrams for MRTs or MRTL’s. As
a result, we can obtain weak order conditions for the stochastic Runge-Kutta
family in quite a transparent way.

Because the Runge-Kutta family is sufficiently general, it is expected that
high weak order schemes with good properties are derived from the family.
For example, it includes a counterpart of a scheme proposed by Platen for
the multi-dimensional Wiener process case (Appendix C). Our next work is,
thus, to find the way of solving the order conditions in the multi-dimensional
Wiener process case, and to construct schemes having good performance. As
one of such works, we will consider the Runge-Kutta family for commutative
SDEs as in [17,18] in the near future [11].
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Appendix

A Expectations of elementary weights

We show the expectations of elementary weights or the products of them for
weak order 2 by utilizing the rules in Subsection 5.2. In what follows, we
suppose j, l 6= 0 and j 6= l for ease of notation. Only the expectations that
do not vanish are shown here. Although only the results of calculations are
shown here, note that they are obtained easily in a diagram-based manner.
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Table A.1
Expectations of elementary weights or the products of them

(a) For t ∈ T such that ρ(t) + r(t) = 4

t E[Φ(t)] t E[Φ(t)] t E[Φ(t)]

[τ (0)](0) 1
2h2 [[[τ (j)](j)](j)](j) 1

8h2 [τ (j), [τ (l)](l)](j) 1
8h2

[[τ (0)](j)](j) 1
4h2 [[[τ (l)](l)](j)](j) 1

8h2 [τ (l), [τ (l)](j)](j) 1
4h2

[[τ (j)](j)](0) 1
4h2 [[τ (j), τ (j)](j)](j) 1

4h2 [τ (j), τ (j), τ (j)](j) 3
4h2

[τ (j), τ (j)](0) 1
2h2 [[τ (l), τ (l)](j)](j) 1

4h2 [τ (j), τ (l), τ (l)](j) 1
4h2

[τ (0), τ (j)](j) 1
4h2 [τ (j), [τ (j)](j)](j) 3

8h2

(b) For t ∈ T such that ρ(t) + r(t) = 3

t t1 E[Φ(t)Φ(t1)] t t1 E[Φ(t)Φ(t1)]

[τ (0)](j) τ (j) 1
2h2 [[τ (l)](l)](j) τ (j) 1

4h2

[τ (j)](0) τ (j) 1
2h2 [τ (j), τ (j)](j) τ (j) h2

[[τ (j)](j)](j) τ (j) 1
2h2 [τ (j), τ (l)](j) τ (l) 1

4h2

[[τ (l)](j)](j) τ (l) 1
4h2 [τ (l), τ (l)](j) τ (j) 1

2h2

(c) For t ∈ T such that ρ(t) + r(t) = 2

t t1 E[Φ(t)Φ(t1)] t t1 t2 E[Φ(t)Φ(t1)Φ(t2)]

[τ (j)](j) τ (0) 1
2h2 [τ (j)](j) τ (j) τ (j) 3

2h2

[τ (j)](j) [τ (j)](j) 3
4h2 [τ (j)](j) τ (l) τ (l) 1

2h2

[τ (j)](j) [τ (l)](l) 1
4h2

[τ (l)](j) [τ (l)](j) 1
2h2 [τ (l)](j) τ (j) τ (l) 1

2h2

τ (0) τ (0) h2 τ (0) τ (j) τ (j) h2

t E[Φ(t)] t E[Φ(t)]

[τ (j)](j) 1
2h τ (0) h

(d) For t ∈ T such that ρ(t) + r(t) = 1

t t1 E
[
{Φ(t)}2

]
E

[
{Φ(t)}4

]
E

[
{Φ(t)}2{Φ(t1)}2

]
τ (j) τ (l) h 3h2 h2

B Expectations of elementary numerical weights

To save space, we omit expectations for elementary numerical weights cor-
responding to elementary weights in Section A. Except them, we show only
the expectations that do not vanish, of elementary numerical weights or the
products of them for weak order 2. In addition, for ease of notation we omit
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all indices and the range of values of all indices in all summations.

Table B.1
Expectations of elementary numerical weights or the products of them

(a) For t ∈ TA(0) such that ρ(t̂) + r(t̂) = 4

t E[Φ̄(m+1)s+1(t)]

[[τ (j)

Ã(0) ]
(0)

Ã(j) ]
(j)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,0)
i1i2

α̃
(j′2,0,j′3,j)
i2i3

E
[
η̃

(j′1,j)
i1

η̃
(j′2,0)
i2

η̃
(j′3,j)
i3

]
[[[τ (l)

Ã(j) ]
(j)

Ã(l) ]
(l)

Ã(j) ]
(j)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,l)
i1i2

α̃
(j′2,l,j′3,j)
i2i3

α̃
(j′3,j,j′4,l)
i3i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,j)
i3

η̃
(j′4,l)
i4

]
[[[τ (j)

Ã(l) ]
(l)

Ã(l) ]
(l)

Ã(j) ]
(j)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,l)
i1i2

α̃
(j′2,l,j′3,l)
i2i3

α̃
(j′3,l,j′4,j)
i3i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,l)
i3

η̃
(j′4,j)
i4

]
[[τ (l)

A(l) , τ
(j)

A(l) ]
(l)

Ã(j) ]
(j)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,l)
i1i2

α
(j′2,l,j′3,l)
i2i3

α
(j′2,l,j′4,j)
i2i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,l)
i3

η̃
(j′4,j)
i4

]
[τ (l)

A(j) , [τ
(j)

Ã(l) ]
(l)

A(j) ]
(j)

A(0)

∑
c
(j′1,j)
i1

α
(j′1,j,j′2,l)
i1i2

α
(j′1,j,j′3,l)
i1i3

α̃
(j′3,l,j′4,j)
i3i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,l)
i3

η̃
(j′4,j)
i4

]
(b) For t ∈ TA(0) such that ρ(t̂) + r(t̂) = 3, 2

t t1 E[Φ̄(m+1)s+1(t)Φ̄(m+1)s+1(t1)]

[[τ (j)

Ã(l) ]
(l)

Ã(j) ]
(j)

A(0) τ
(l)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,l)
i1i2

α̃
(j′2,l,j′3,j)
i2i3

c
(j′4,l)
i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,j)
i3

η̃
(j′4,l)
i4

]
[τ (l)

Ã(j) ]
(j)

A(0) [τ (j)

Ã(l) ]
(l)

A(0)

∑
c
(j′1,j)
i1

α̃
(j′1,j,j′2,l)
i1i2

c
(j′3,l)
i3

α̃
(j′3,l,j′4,j)
i3i4

E
[
η̃

(j′1,j)
i1

η̃
(j′2,l)
i2

η̃
(j′3,l)
i3

η̃
(j′4,j)
i4

]
The above expectations are expressed with the notation in (7). By substituting

η̃
(·,jb)
ia = η

(·,jb)
ia b

(·,jb)
ia and γ̃

(·,jb,∗,jd)
iaib

= γ
(·,jb,∗,jd)
iaib

/b
(·,jb)
ia for jb, jd ∈ {0, j, l}, however,

we can readily obtain the expressions of the expectations for (6).

C An example of stochastic Runge-Kutta schemes in the multi-
dimensional Wiener process case

We show an example of schemes belonging to the stochastic Runge-Kutta
family (6) in the multi-dimensional Wiener process case. This scheme is of
weak order 2 for Stratonovich SDEs with a multi-dimensional Wiener process.
In fact, the scheme is the counterpart of a weak second order explicit scheme
for Itô SDEs, proposed by Platen ([10], p. 486).

When s = 7 in (6), set random variables and parameters as in Tables C.1,
C.2 and C.3. Suppose that j, j′ 6= 0 in all tables and j 6= j′ only in the second
line for i = 3, 4. The other random variables and parameters vanish. Then, we
have

yn+1 = yn +
2 − m

2

m∑
j=1

4Wjgj(yn) +
h

2
g0(yn) +

h

4

m∑
j=1

g
(1)
j (yn)gj(yn)

+
1

4

m∑
j=1

{
4Wj + ((4Wj)

2 − h)
/√

h
}

gj

(
ȳj

+

)
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+
1

4

m∑
j=1

{
4Wj − ((4Wj)

2 − h)
/√

h
}

gj

(
ȳj
−

)

+
1

4

m∑
j=1

m∑
j′=1
j′ 6=j

{
4Wj + (4Wj4Wj′ + Vj′,j)

/√
h

}
gj

(
ỹj′

+

)

+
1

4

m∑
j=1

m∑
j′=1
j′ 6=j

{
4Wj − (4Wj4Wj′ + Vj′,j)

/√
h

}
gj

(
ỹj′

−

)

+
h

2
g0(ȳ) +

√
h

24

m∑
j=1

[
8

{
gj

(
ȳ +

√
h

2
gj(ȳ)

)
− gj

(
ȳ −

√
h

2
gj(ȳ)

) }

−
{

gj

(
ȳ +

√
hgj(ȳ)

)
− g

(
ȳ −

√
hgj(ȳ)

)}]
(C.1)

(m ≥ 2) with the intermediate variables

ȳ = yn + h
(
g0(yn) +

1

2

m∑
j=1

g
(1)
j (yn)gj(yn)

)
+

m∑
j=1

4Wjgj(yn),

ȳj
± = yn + h

(
g0(yn) +

1

2

m∑
l=1

g
(1)
l (yn)gl(yn)

)
±

√
hgj(yn),

ỹj
± = yn ±

√
hgj(yn),

where 4Wj’s and Vj′,j’s (j′ 6= j) are mutually independent random variables
satisfying

E
[
(4Wj)

k
]

=


0 (k = 1, 3, 5),

(k − 1)hk/2 (k = 2, 4),

O(h3) (k ≥ 6),

E [Vj′,j] = 0, E
[
(Vj′,j)

2
]

= h2, E [Vj′,jVj,j′ ] = −h2,

and they are also independent of yn.

Because the last term in (C.1) can be rewritten by (h/4)
∑m

j=1 g
(1)
j (ȳ)gj(ȳ) +

O(h3), (C.1) is equivalent to Platen’s scheme for Itô SDEs except the terms
being of O(h3) at least. Consequently, (C.1) is of weak order 2. (It should be
noted that there exists a typographical error in the scheme in [10].)
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Table C.1
A set of random variables

i Random variables i Random variables

1 η
(0,0)
i h 5 η

(0,0)
i h

η
(0,j)
i

√
h η

(j,j)
i

√
h

η
(j,j)
i 4Wj 6 η

(0,j)
i , η

(1,j)
i

√
h

2 η
(j,j)
i

√
h 7 η

(0,j)
i , η

(1,j)
i

√
h

3 η
(j,j)
i 4Wj + ((4Wj)2 − h) /

√
h

η
(j,j′)
i 4Wj′ + (4Wj4Wj′ + Vj,j′) /

√
h

4 η
(j,j)
i 4Wj − ((4Wj)2 − h) /

√
h

η
(j,j′)
i 4Wj′ − (4Wj4Wj′ + Vj,j′) /

√
h

Table C.2
A set of parameter values for b

(ja,jb)
ia

and c
(ja,jb)
i

i Parameters i Parameters i Parameters

1 b
(0,0)
i 1 c

(0,0)
i

1
2 b

(j,j′)
i 1 c

(j,j′)
i

1
4 6 b

(0,j)
i 1 c

(0,j)
i − 1

24

b
(0,j)
i 1 4 b

(j,j)
i 1 c

(j,j)
i

1
4 b

(1,j)
i 1 c

(1,j)
i

1
24

b
(j,j)
i 1 c

(j,j)
i

2−m
2 b

(j,j′)
i 1 c

(j,j′)
i

1
4 7 b

(0,j)
i 1 c

(0,j)
i

1
3

2 c
(j,j)
i

1
2 5 b

(0,0)
i 1 c

(0,0)
i

1
2 b

(1,j)
i 1 c

(1,j)
i −1

3

3 b
(j,j)
i 1 c

(j,j)
i

1
4 b

(j,j)
i 1

Table C.3
A set of parameter values for α

(ja,jb,jc,jd)
ia,ib

and γ
(ja,jb,jc,jd)
ia,ib

i Parameters i Parameters

2 γ
(j,j,0,j)
i1

1
2 6 α

(0,j,0,0)
i1 , α

(0,j,j′,j′)
i1 , α

(0,j,j′,j′)
i2 1

3 α
(j,j,0,0)
i1 , α

(j,j,0,j)
i1 , α

(j,j,j′,j′)
i2 1 α

(1,j,0,0)
i1 , α

(1,j,j′,j′)
i1 , α

(1,j,j′,j′)
i2 1

α
(j,j′,0,j)
i1 1 α

(0,j,j,j)
i5 ,−α

(1,j,j,j)
i5 1

4 α
(j,j,0,0)
i1 ,−α

(j,j,0,j)
i1 , α

(j,j,j′,j′)
i2 1 7 α

(0,j,0,0)
i1 , α

(0,j,j′,j′)
i1 , α

(0,j,,j′,j′)
i2 1

α
(j,j′,0,j)
i1 −1 α

(1,j,0,0)
i1 , α

(1,j,j′,j′)
i1 , α

(1,j,j′,j′)
i2 1

5 α
(0,0,0,0)
i1 , α

(0,0,j,j)
i1 , α

(0,0,j,j)
i2 1 α

(0,j,j,j)
i5 ,−α

(1,j,j,j)
i5

1
2

α
(j,j,0,0)
i1 , α

(j,j,j′,j′)
i1 , α

(j,j,j′,j′)
i2 1
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