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Dihedral Butterfly Digraph and Its Cayley Graph Representation

Haruaki ONISHI†a), Nonmember, Yuuki TANAKA††, and Yukio SHIBATA†, Members

SUMMARY In this paper, we present a new extension of the butterfly
digraph, which is known as one of the topologies used for interconnection
networks. The butterfly digraph was previously generalized from binary to
d-ary. We define a new digraph by adding a signed label to each vertex
of the d-ary butterfly digraph. We call this digraph the dihedral butterfly
digraph and study its properties. Furthermore, we show that this digraph
can be represented as a Cayley graph. It is well known that a butterfly
digraph can be represented as a Cayley graph on the wreath product of
two cyclic groups [1]. We prove that a dihedral butterfly digraph can be
represented as a Cayley graph in two ways.
key words: butterfly digraph, dihedral butterfly digraph, Cayley graph,
wreath product

1. Introduction

The butterfly digraph is an important class of graphs not
only for the FFT algorithm, but also as one of the topologies
of interconnection networks for parallel computers. Other
such useful classes include the hypercube, the de Bruijn di-
graph, the Kautz digraph, and the CCC. Many extensions
of the binary butterfly digraph have been proposed includ-
ing the d-ary butterfly digraph and a butterfly digraph for
multiple-dimensional signal processing [5]. The necessity
for various topologies for parallel signal processing will in-
crease gradually when we take into account the require-
ments of current computers. We think that some of the
properties required for these topologies will be capability
for multiple signal processing and an algebraically symmet-
ric structure. In this paper, we propose a graph class with
such properties.

We discuss a new extension of the d-ary butterfly di-
graph and call it the dihedral butterfly digraph. The vertices
of the butterfly digraph are defined by the pair of a string
and a number (the number is called the level). We also de-
fine each vertex of the dihedral butterfly digraph as the pair
of a string and the level. Our extension is to append a sign
to each letter of the strings, and the adjacencies are also re-
garded as a condition with a sign. The extension from d-
ary letters to signed d-ary letters is one possible extension
of the butterfly digraph. This extension may provide new
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viewpoints, allowing us to reconsider the butterfly digraph
and a fundamental result for Cayley graphs.

We describe the fundamental properties of the dihedral
butterfly digraph. Appending signs increases the number
of representable strings; thus, it increases the number of
vertices of the dihedral butterfly digraph. It is known that
the order and size of the d-ary n-dimensional butterfly di-
graph BF(d, n) are ndn and ndn+1, respectively. The d-ary n-
dimensional dihedral butterfly digraph DBF(d, n) has n(2d)n

vertices and n(d + 1)(2d)n arcs. This digraph has similar
properties to the butterfly digraph. Relations between the
butterfly digraph and the dihedral butterfly digraph are, for
instance, DBF(d, n) includes 2n (resp. dn) BF(d, n)’s (resp.
BF(2, n)’s) and DBF(d, n) is included in BF(2d, n) as a sub-
graph. We prove that the diameter of DBF(d, n) is 3n− 1, is
(d + 1)-strongly connected and is Hamiltonian.

It is interesting that the dihedral butterfly digraph is a
Cayley graph. It is known that a butterfly digraph can be
represented as a Cayley graph on the wreath product of two
cyclic groups. A dihedral butterfly digraph can also be rep-
resented as a Cayley graph in two ways.

2. Definitions and Preliminary Results

A digraph D is defined as a finite nonempty set of vertices
and a set of arcs which are ordered pairs of two vertices.
We denote the vertex set of D by V(D), the arc set of D by
A(D), and an arc from u to v by (u, v). If (u, v) ∈ A(D), u is
adjacent to v, and v is adjacent from u. Moreover, (u, v) is
incident from u and is incident to v. The order of D is |V(D)|,
and the size of D is |A(D)|.

The indegree of a vertex v is the number of arcs that are
incident to v, and the outdegree of v is the number of arcs
that are incident from v. A digraph D is called d-regular
when the indegree and outdegree of every vertex of D are
equal to d.

A digraph H is called a subgraph of a digraph D if
V(H) ⊆ V(D) and A(H) ⊆ A(D). We denote this by H ⊂ D.
Furthermore, a subgraph H of a digraph D is a factor of
D if V(H) = V(D). A subgraph H of a digraph D is an
induced subgraph if for any vertices u, v ∈ V(H), (u, v) ∈
A(H) whenever (u, v) ∈ A(D).

A digraph D is isomorphic to a digraph H if there ex-
ists a one-to-one mapping φ from V(D) onto V(H) such that
(u, v) ∈ A(D) if and only if (φu, φv) ∈ A(H). We denote this
by D � H. An isomorphism is called an automorphism if
the mapping is from V(D) onto V(D). In addition, a digraph
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D is vertex-transitive if for any two vertices u, v ∈ V(D),
there exists an automorphism φ of D such that φu = v.

A (u, v)-path of D is a vertex sequence of V(D) be-
ginning with u and ending with v such that there is no re-
peated vertex and that when we write a sequence as u = u0,
u1, . . . , un−1 = v, there exists (uk, uk+1) ∈ A(D) for every
0 ≤ k ≤ n − 2. The length of a path including n vertices
is n − 1. The distance between u and v is defined as the
minimum length of paths from u to v (if there is no path
from u to v, the distance is infinite). The terminal vertex of
a (u, v)-path is v. An internal vertex of a u-v path P is any
vertex of P different from u or v. A collection {P1, . . . , Pk}
of paths is called internally disjoint if no internal vertex of
Pi (1 ≤ i ≤ k) lies on path Pj ( j � i).

A digraph D is (weakly) connected if there is a path
between any two vertices in D. Moreover, for any vertices
u, v in D, if there are paths from u to v and from v to u,
then D is strongly connected. When a digraph D is strongly
connected, the diameter of D can be defined as the longest
distance between any two vertices in D. A component of D
is a subgraph of D that is a maximal subgraph with respect
to the property of being connected. For nonadjacent vertices
u, v of a digraph D, if every u-v path has a vertex in a set
S ⊆ V(D), S separates u and v. If the minimum cardinality
of such a set of D is k, D is k-strongly connected.

A cycle of a digraph is a nontrivial path such that the
beginning and ending vertices are the same. If a cycle of
a digraph includes all vertices of the digraph, the cycle is
called a Hamiltonian cycle.

We denote nD for n distinct copies of a digraph D.
Let Γ be a group generated by a set Δ. A Cayley graph

Cay(Γ,Δ) is defined by the vertex set Γ, and its adjacencies
are characterized with Δ. There is an arc from a vertex u to
a vertex v in Cay(Γ,Δ) if and only if there exists α ∈ Δ such
that uα = v.

The set Zn = {0, . . . , (n−1)} forms a group with respect
to addition modulo n. This group is called a cyclic group,
and we write this group Zn.

A group is called a dihedral group Dn = {σaτb | 0 ≤
a < n, b = {0, 1}} if it is represented by the following rela-
tions:

σn = e, τ2 = e, τστ = σ−1,

where e is the identity element of Dn. Unless otherwise
specified, we use σ as the generator of order n and τ as the
generator of order 2. Note that Dn is not commutative.

We denote ⊕n for addition modulo n and �n for sub-
traction modulo n.

For two cyclic groups Zd and Zn, their direct
product is denoted as Zd × Zn. Then, Zd × Zn =

{(a, b) | a ∈ Zd and b ∈ Zn}, and for (a, b), (a′, b′) ∈ Zd ×Zn,
(a, b)(a′, b′) = (a⊕d a′, b⊕n b′). Thus, this group is commu-
tative.

Let A, B be groups. In this paper, we assume that
B = Zn (for the general definition, see [4]). The wreath
product of groups A 
 B is a set consisting of all elements π
represented by

π = (α0, α1, . . . , αn−1 ; β),

αk ∈ A (0 ≤ k < n), β ∈ B.

A 
B forms a group under the following binary operation for
ρ = (δ0, . . . , δn−1 ; γ) ∈ A 
 B:

πρ = (α0δ0�nβ, . . . , αkδk�nβ, . . . , αn−1δ(n−1)�nβ ; β ⊕n γ).

The order of A 
 B is |A|n|B|.
We define a set Ψd = {±0, . . . ,±(d − 1)}. Each ele-

ment of Ψd is a letter with a sign, in particular, 0 is also
signed; +0 and −0 are distinct elements. For x ∈ Ψd, |x| is
the letter without its sign, sgn(x) is the sign of x, and −x is
the sign inversion of x; −(±|x|) = ∓|x| (the signs are in the
same order). In addition, we denote (−)k x for k operations
of − to x; if k is even, sgn((−)k x) = sgn(x), and if k is odd,
sgn((−)k x) = sgn(−x).

Definition 1: The d-ary n-dimensional butterfly digraph
BF(d, n) is defined as follows: for integers d ≥ 2, n ≥ 1,

V(BF(d, n)) =

{
(xn−1 · · · x0; i)

∣∣∣∣∣∣ xk ∈ Zd (0 ≤ k < n),
i ∈ Zn

}
,

A(BF(d, n))

=

{
((xn−1 · · · xi · · · x0; i),

(xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n 1))

∣∣∣∣∣∣ x′i ∈ Zd

}
.

There is another definition of the butterfly digraph in
which the vertices are written as (x0 · · · xn−1; i). It is well
known that Definition 1 is equivalent to the other definition.
Definition 1 is useful when we use its recursive structure.
Algebraic representations of several digraphs including de
Bruijn digraphs, butterfly digraphs, and CCC are studied by
Annexstein et al. [1], and the following theorem is the start-
ing point for our research.

Theorem 1 (Annexstein et al. [1]): BF(d, n) can be repre-
sented as a Cayley graph Cay(Γ,Δ), where

Γ = Zd 
 Zn,

Δ = {(k, 0, . . . , 0; 1) | k ∈ Zd} .

3. Dihedral Butterfly Digraph

In this section, we define and discuss the properties of the
dihedral butterfly digraph.

3.1 Definition

The dihedral butterfly digraph is defined in a similar way to
the butterfly digraph so that each vertex is defined by the
pair of a string and a level. The difference from the butterfly
digraph is that each letter in the string is signed.

Definition 2: The d-ary n-dimensional dihedral butterfly
digraph DBF(d, n) is defined as follows: for integers d, n ≥
1, where Ψd = {±0, . . . ,±(d − 1)},
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Fig. 1 DBF(2, 2).

V(DBF(d, n)) =

{
(xn−1 · · · x0; i)

∣∣∣∣∣∣ xk ∈ Ψd (0 ≤ k < n),
i ∈ Zn

}
,

A(DBF(d, n))

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((xn−1 · · · xi · · · x0; i),

(xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n 1))

∣∣∣∣∣∣∣∣
x′i = −xi or
x′i = sgn(xi)|x|,
x ∈ Ψd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

In the similar way to the butterfly digraph, another def-
inition can be given, in which the vertices of the dihedral
butterfly digraph are written as (x0 · · · xn−1; i). This defini-
tion is equivalent to Definition 2, and we use it in Sect. 4.

From the definition, DBF(d, n) is (d + 1)-regular, the
order is n(2d)n, and the size is n(d + 1)(2d)n. In Fig. 1,
DBF(2, 2) is illustrated. Every arc in Fig. 1 is directed from
left to right. The number written above each column is the
level of the vertices of the column, and each string written
on the left side is the string of the vertices of the row. Usu-
ally, we draw figures of the dihedral butterfly and butterfly
digraphs so that the left terminal column is the same as the
right terminal column.

We define the sign sequence and absolute sequence as
follows. When x = (xn−1 · · · x0; i) is a vertex of DBF(d, n),
the sign sequence of x is the sign sequence of the string of
x, namely, (sgn(xn−1) · · · sgn(x0)). The absolute sequence of
x is the sequence of letters without signs of the string of x,
namely, (|xn−1| · · · |x0|).

3.2 Properties

3.2.1 Inclusion Relations

The dihedral butterfly digraph has many relations with the
butterfly digraph. From one of the inclusion relations be-
tween the butterfly and dihedral butterfly digraphs, we can
determine that DBF(d, n) includes 2nBF(d, n) as a factor.

Theorem 2: DBF(d, n) includes 2nBF(d, n) as a factor.

Proof. We consider an induced subgraph D of DBF(d, n)
such that the sign sequence of any vertex of D is the same.
To show that D is isomorphic to BF(d, n), we state a map-
ping f from V(D) to V(BF(d, n)) as follows:

f ((xn−1 · · · x0; i)) = (|xn−1| · · · |x0|; i).

For some x, x′ ∈ V(D), we assume that f (x) = f (x′). This
means that for letters |xk | of x and |x′k | of x′ (0 ≤ k < n),
|xk | = |x′k |. Therefore, x = x′ because any vertex of D has
the same sign sequence; thus, f is an injection. Since there
are d letters for each sign, D has dn distinct strings; thus,
D has ndn vertices. It follows that |V(D)| = |V(BF(d, n))|;
hence, f is a bijection.

Next for the adjacencies, a vertex x = (xn−1

· · · xi · · · x0; i) of D is adjacent to each vertex (xn−1 · · ·
xi+1 x′i xi−1 · · · x0; i ⊕n 1), where x′i = sgn(xi)|a| for any
a ∈ Ψd. It follows that f (x) = (|xn−1| · · · |xi| · · · |x0|; i) is
adjacent to the vertex (|xn−1| · · · |xi+1| |x′i | |xi−1| · · · |x0|; i⊕n 1),
where |x′i | ∈ Zd, because |x′i | = |sgn(xi)|a|| = |a|, and a is any
element ofΨd. This is the same as the definition of BF(d, n);
therefore, D is isomorphic to BF(d, n).

There are 2n such distinct induced subgraphs in
DBF(d, n) because the number of sign sequences with
length n is 2n. Hence, there exists 2nBF(d, n) in DBF(d, n),
as required. �

Furthermore, we prove that DBF(d, n) includes
dnBF(2, n) as a factor.

Theorem 3: DBF(d, n) includes dnBF(2, n) as a factor.

Proof. We consider an induced subgraph D of DBF(d, n)
such that the absolute sequence of any vertex of D is the
same. To show that D is isomorphic to BF(2, n), we state a
mapping f from V(D) to V(BF(2, n)) as follows:

f ((xn−1 · · · x0; i)) = (yn−1 · · · y0; i),

where for all k (0 ≤ k < n), if sgn(xk) is + then yk = 1, else if
sgn(xk) is − then yk = 0. For some x, x′ ∈ V(D), we assume
that f (x) = f (x′). This means that sgn(xk) = sgn(x′k) for
all letters in the strings of x, x′. Since any vertex of D has
the same absolute sequence, we have x = x′; thus, f is an
injection. There are 2n distinct sign sequences for the same
absolute sequence. It follows that |V(D)| = |V(BF(2, n))|;
hence, f is a bijection.

Regarding the adjacencies of D, a vertex x = (xn−1
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· · · xi · · · x0; i) is adjacent to (xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n

1) when x′i = xi or −xi. Thus, f (x) is adjacent to
(yn−1 · · · yi+1 y

′
i yi−1 · · · y0; i ⊕n 1) when y′i = 0 or 1. Since

this relation is the same as that in BF(2, n), D is isomorphic
to BF(2, n).

There are dn such disjoint induced subgraphs in
DBF(d, n). Hence, there exist dnBF(2, n) in DBF(d, n), as
required. �

Finally, we show that the dihedral butterfly digraph is
included in the butterfly digraph. This is an opposite relation
to Theorems 2 and 3.

Theorem 4: DBF(d, n) is a factor of BF(2d, n).

Proof. We state a mapping f from V(DBF(d, n)) to
V(BF(2d, n)) as follows:

f ((xn−1 · · · x0; i)) = (yn−1 · · · y0; i),

where for all k (0 ≤ k < n), if sgn(xk) is + then yk = |xk |,
else if sgn(xk) is − then yk = |xk | + d. The inverse mapping
can be written as follows:

f −1((yn−1 · · · y0; i)) = (xn−1 · · · x0; i),

where if yk < d then xk = +|yk | and if yk ≥ d then xk =

−|yk − d| (for a ∈ Zn, ±|a| is the sign appended to a). Thus,
f is a bijection.

On the arc from x = (xn−1 · · · xi · · · x0; i) to x′ =
(xn−1 · · · xi+1 x′i xi−1 · · · x0; i⊕n 1), if sgn(xi) is +, x is adjacent
to each vertex x′ when x′i = +|a| for any a ∈ Ψd or x′i = −xi.
The image of x′ is (yn−1 · · · yi+1 y

′
i yi−1 · · · y0, i⊕n 1) such that

if sgn(x′i ) is + then y′i = |x′i | ∈ Zd ⊂ Z2d, else if sgn(x′i ) is
− then y′i = |xi| + d ∈ Z2d. Thus, these arcs are included
in BF(2d, n). For the other case when sgn(xi) is −, we can
prove that these arcs are included in BF(2d, n) similarly to
above. �

The dihedral butterfly digraph can be represented with-
out its signs by using the mapping in Theorem 4.

Corollary 1: DBF(d, n) can be represented as the follow-
ing digraph D:

V(D) = V(BF(2d, n)),

A(D) =

{
((xn−1 · · · xi · · · x0; i),

(xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n 1))∣∣∣∣∣∣ 0 ≤ x′i < d or x′i = xi + d, if xi < d.
d ≤ x′i < 2d or x′i = xi − d, if xi ≥ d.

}
.

The following corollary can be derived from Theorems
2, 3, and 4.

Corollary 2:

2nBF(d, n) ⊂ DBF(d, n) ⊂ BF(2d, n).
dnBF(2, n) ⊂ DBF(d, n) ⊂ BF(2d, n).
1nBF(2, n) � DBF(1, n) � BF(2, n).

3.2.2 Strong Connectedness

We can show the strong connectedness of the dihedral but-
terfly digraph using the connectedness of the butterfly di-
graph and the two theorems proved above. Let u, v be the
vertices of DBF(d, n) and w be a vertex of DBF(d, n) such
that its sign sequence is equal to that of u and its absolute
sequence is equal to that of v. As discussed in Theorem 2,
the induced subgraph of DBF(d, n) with the same sign se-
quence of vertices is isomorphic to BF(d, n). Thus, there is
a subgraph BF(d, n) including u and w in DBF(d, n). Since
the butterfly digraph is strongly connected, there is a path
from u to w. Similarly, a path from w to v can also be found
by Theorem 3. Hence, a path from u to v can be found, and
we may also find a path from v to u by the same discussion.
Thus, the following theorem holds.

Theorem 5: DBF(d, n) is strongly connected.

3.2.3 Diameter

We can define the diameter of DBF(d, n) since it is strongly
connected.

Theorem 6: The diameter of DBF(d, n) is 3n − 1.

Proof. Let x = (xn−1 · · · x0; i) be a vertex of DBF(d, n). We
consider a vertex y = (yn−1 · · · y0; i) of DBF(d, n) such that
sgn(yk) � sgn(xk) and |yk | � |xk | for all k (0 ≤ k < n). The
string of a vertex that is adjacent from x is different from
that of x by at most one letter. Furthermore, the difference is
either one of the sign or of the absolute value. There are 2n
letters that must be changed. Therefore, the length of a path
from x to y is 2n.

We consider a path from y to y′ = (yn−1 · · · y0; i ⊕n (n −
1)). The length of this path is n−1; thus, the length of a path
from x through y to y′ is at most 3n − 1.

Here, let the length of some path from a vertex of level
i to a vertex of level i ⊕n (n − 1) be L. Then,

L ≡ i + (n − 1) − i = n − 1 (mod n).

If we assume that the length of the path from x to y′ is less
than 3n − 1, it is less than or equal to 2n − 1 by the above
congruence expression. However, this is impossible because
the length of such a path is at least 2n, as discussed in the
first paragraph. Therefore, the distance between x and y′ is
3n− 1. The strings of any two vertices in DBF(d, n) are dif-
ferent at most n letters, and their levels are different at most
n−1 letters. Thus the distance between any two vertices is at
most 3n− 1; hence, the diameter of DBF(d, n) is 3n− 1. �

The diameter of BF(d, n) is 2n − 1, while that of
DBF(d, n) is 3n − 1. We might say that the latter value
is small, since the order of BF(d, n) is ndn, while that
of DBF(d, n) is n(2d)n. On the other hand, the order of
BF(2d, n) is equal to that of DBF(d, n); however, the size
of DBF(d, n) is about half that of BF(2d, n).
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3.2.4 Connectivity

We discuss the connectivity of DBF(d, n). There is an im-
portant theorem called Menger’s theorem concerned with
the connectivity.

Theorem 7 (McCuaig [6]): If no set of fewer than k ver-
tices separates nonadjacent vertices u and v in a digraph D,
then there are k internally disjoint u-v paths.

In other words, if a digraph D is k-strongly connected, there
are k internally disjoint paths between any two vertices of D.
From this theorem, the following corollary can be deduced
(see [3]).

Corollary 3: If a digraph D is k-strongly connected, there
are k disjoint paths from any k vertices to any k vertices of
D.

It is known that the butterfly digraph BF(d, n) is d-
strongly connected. Thus, BF(d, n) has d disjoint paths from
any d vertices to any d vertices of BF(d, n) by Menger’s the-
orem.

We prove the following theorem by using these results.

Theorem 8: The dihedral butterfly digraph DBF(d, n) is
(d + 1)-strongly connected.

Proof. We prove that there are d+1 internally disjoint paths
from vertex x = (xn−1 · · · x0; i) to y = (yn−1 · · · y0; j ⊕n 1)
of DBF(d, n). x is adjacent to d + 1 vertices. As shown in
Fig. 2, we write the vertex (xn−1 · · · xi+1 −xi xi−1 · · · x0; i⊕n 1)
as x− and the other vertices (xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n

1) (x′i = sgn(xi)|a| for all a ∈ Ψd) as xx′i . Similarly,
for the d + 1 vertices adjacent to y, we write the vertex
(yn−1 · · · y j+1 −y j y j−1 · · · y0; j) as y− and the other vertices
(yn−1 · · · y j+1 y

′
j y j−1 · · · y0; j) (y′j = sgn(y j)|a| for all a ∈ Ψd)

as yy
′
j . Then, d + 1 internally disjoint paths from x to y

are deemed as d + 1 disjoint paths from x− and xx′i to y−
and yy

′
j . In the figures in this section, paths are drawn as

thick lines. We write some of the 2n induced subgraphs,
BF(d, n), discussed in Theorem 2 as BFx, BF−x , BFy, and
BF−y , which include x, x−, y, and y−, respectively. We draw
these BF(d, n)’s as boxes in the figures in this section.

We consider two paths from x to BFy and BF−y on ver-
tices with the same absolute sequence. x− and xxi are the
second vertices of such two paths, respectively, as shown
in Fig. 3. We consider two conditions of the two paths as
follows: 1. they are internally disjoint and 2. a path to BFy
(resp. BF−y ) does not pass through BF−y (resp. BFy). First,
we assume that BFx � BF−y .

Since the ith sign of either xxi or x− is equal to sgn(yi),
we consider a path from such a vertex to a vertex of BFy
(however, if BF−x = BF−y , we deem x− as a trivial path and
consider a path from xxi to BFy). Assume, without loss of
generality, that the vertex whose ith sign is equal to sgn(yi)
is xxi . xxi is adjacent to vertex xxi

1 so that its (i + 1)th sign
is equal to sgn(yi+1). xxi

2 is adjacent to vertex xxi

2 so that its
(i+2)th sign is equal to sgn(yi+2). In this way, a path follows

Fig. 2 d + 1 internally disjoint paths from x to y on DBF(d, n).

Fig. 3 Two paths from x to BFy and BF−y .

vertex xxi

k so that its (i + k)th sign is equal to sgn(yi+k). This
method constructs a path from xxi to a vertex of BFy using
the same absolute sequences. The length of such a path is at
most n−1 (since the ith = (i+n)th sign is equal to sgn(yi)). In
a similar way, we can find a path from x− to a vertex of BF−y
using the same absolute sequences (the length of this path is
at most n). These two paths P1 and P2 are internally disjoint
because the ith sign of any internal vertex of P1 is different
from that of P2. Regarding the second condition, if a path
from xxi passes through BF−y , there is the smallest integer k
such that xxi

k is a vertex of BF−y , as shown in Fig. 4. Then, the
vertex xxi

k−1 is not included in BF−y . Therefore, we proceed a
path from xxi

k−1 to x′xi

k such that its (i + k)th sign is not equal
to sgn(yi+k). As a result, the path does not pass through BF−y
until the (i + k)th sign changes. The remaining process is
similar to that mentioned above; the path proceeds from x′xi

k
to xxi

k+1 so that the (i + k + 1)th sign is equal to sgn(yi+k+1).
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Fig. 4 A path from xxi to BFy avoiding BF−y .

Then, the process constructs a path from xxi to a vertex xxi

n−1
of BF′, which is one of the 2n induced subgraphs, BF(d, n),
such that only the (i + k)th sign is different from that of y.
In BF′, a vertex that is adjacent to a vertex of BFy has level
i + k. Since BF′ is strongly connected, there is a path from
xxi

n−1 to any vertex of level i+k, as shown in Fig. 4. Hence, we
have found a path from xxi to a vertex of BFy satisfying the
two conditions. We apply a similar process to a path from
x− to BF−y satisfying the second condition. This path might
pass through an induced subgraph BF(d, n) = BF such that
only the (i + k)th and ith signs are the same as that of x− and
that only these signs are different from those of the vertices
in BF−y . A vertex u that is adjacent from any vertex of level
i + k in BF is not included in BFy, because the ith sign of
u is still different from those of vertices in BFy. Therefore,
we can proceed to u while satisfying the second condition.
Moreover, since BF is strongly connected, we can find a
path from u to a vertex adjacent to a vertex in BF−y . Hence,
we have found two paths satisfying the two conditions.

Now, we consider the other d − 1 paths from xx′i (x′i =
sgn(xi)|a| for all a ∈ Ψd and x′i � xi). There are two cases
depending on the connection of the two paths.

We assume that a path from xxi arrives at BFy (a path
from x− arrives at BF−y ). The d − 1 paths from xx′i (x′i �
xi) follow a path from xxi . That is, all absolute sequences
in the paths are the same, and when we write a path from
xx′i as xx′i , x

x′i
1 , x

x′i
2 , . . ., the sign sequence of x

x′i
k is equal to

that of xxi

k . These paths are disjoint because their absolute
sequences are different at the ith letter. d paths from xx′i end
with d vertices in BFy. In BFy, there are d disjoint paths
from the d terminal vertices to yy

′
j (y′j = sgn(y j)|a| for all

a ∈ Ψd) by Menger’s theorem. y is not included in these
d paths, because if a path includes y, then the path must
pass through some yy

′
j . The other path from x− ends with

a vertex in BF−y . Since BF−y is strongly connected, there is
a path from the terminal vertex to y−. Therefore, there are
d + 1 internally disjoint paths from x to y.

Conversely, we assume that a path from x− arrives at

Fig. 5 Route when a path from x− arrives at BFy.

Fig. 6 Route when BFx = BF−y .

BFy. As shown in Fig. 5, each path from xx′i (x′i � xi) traces
each vertex with the same string to a vertex with level i.
Then, each path can proceed to a vertex in BF−x and to BFy
along a path from x−, similarly to in the previous paragraph.
These paths are disjoint. Now, there are d terminal vertices
of the paths from x− and xx′i (x′i � xi) in BFy. By Menger’s
theorem, we can find d disjoint paths from these d terminal
vertices to yy

′
j (y′j = sgn(y j)|a| for all a ∈ Ψd) in BFy. The

other path from xxi ends with a vertex in BF−y , and we can
find a path to y−, since BF−y is strongly connected.

We consider the exceptional case of BFx = BF−y . As
shown in Fig. 6, there are d disjoint paths in BFx from
xx′i (x′i = sgn(xi)|a| for all a ∈ Ψd) to vertices written
as (yn−1 · · · y j+1 y

′
j y j−1 · · · y0; j) (y′j = −sgn(y j)|a| for all

a ∈ Ψd) by Menger’s theorem. We assume that none of
the terminal vertices of these paths are x. There are d ver-
tices in BFy that are adjacent from these terminal vertices,
one of which is y. Thus, we have found a path from x to
y. On the other hand, we can find another path from x− to
BFy, as shown in Fig. 6, by a similar route as the first two
paths. Now, there are d terminal vertices in BFy, one of
which is the terminal vertex of the path from x−, and the
others are the terminal vertices except y of the paths from
xx′i . By Menger’s theorem, there are d disjoint paths from
these d terminal vertices to yy

′
j in BFy.
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Fig. 7 Exchange of arcs when |x′i | = |xi |.

Finally, we assume that one of the terminal vertices of
the d paths in BFx considered above is x. Then BF−x = BFy,
and y is one of the vertices in BFy that are adjacent from
these terminal vertices. Thus, there are a path from x to y
and d−1 internally disjoint paths from x ending with vertices
in BFy. Let the starting vertex of the path ending with x be
x′. We can find another path from x′ to a vertex in BFy
by the same route as the first two paths. Now, there are
d internally disjoint paths ending with vertices except y in
BFy. By Menger’s theorem, we can find d disjoint paths in
BFy from these terminal vertices to yy

′
j . �

3.2.5 Hamiltonicity

We investigate the Hamiltonicity of DBF(d, n) using the
well-known fact that the butterfly digraph is Hamiltonian.

Theorem 9: The butterfly digraph is Hamiltonian.

(Refer to [2] for details of the Hamiltonicity of the butterfly
digraph.)

Theorem 10: The dihedral butterfly digraph is Hamilto-
nian.

Proof. Since BF(2, n) has a Hamiltonian cycle from Theo-
rem 9, we first construct a Hamiltonian cycle of DBF(2, n)
from 2n cycles, each of which is a Hamiltonian cycle of
BF(2, n) by Theorem 2. Then, we construct a Hamiltonian
cycle of DBF(d, n) by induction on d.

Let BF0 be a subgraph of DBF(2, n), which is
one of the BF(2, n) components of the factor 2nBF(2, n)
of DBF(2, n) mentioned in Theorem 2, and let x =

(xn−1 · · · xi · · · x0; i) be a vertex of BF0. x is adjacent to a
vertex y = (xn−1 · · · xi+1 x′i xi−1 · · · x0; i ⊕n 1) in a Hamilto-
nian cycle of BF0, where sgn(x′i ) = sgn(xi) and |x′i | = 0
or 1. Moreover, we consider another component BF1 such
that the sign sequence of any vertex of BF1 is written as
(sgn(xn−1) · · · sgn(xi+1)sgn(−xi) sgn(xi−1) · · · sgn(x0)).

If |x′i | = |xi|, the situation is shown in Fig. 7, which de-
picts the construction of a cycle including all vertices of BF0

and BF1. The vertices x′ and y′ have the same absolute se-
quences as x and y, respectively. In Fig. 7, the solid arcs are

Fig. 8 Exchange of arcs when |x′i | � |xi |.

actual arcs, and the dashed arcs are paths in a Hamiltonian
cycle of each component. We can construct a cycle includ-
ing all vertices of BF0 and BF1 by deleting arcs (x, y) and
(x′, y′) and adding arcs (x, y′) and (x′, y).

If |x′i | � |xi|, a cycle including all vertices of BF0 and
BF1 can be constructed, as shown in Fig. 8. Similarly to
that mentioned above, we construct a cycle by deleting arcs
(x, y) and (x′, y′) and adding arcs (x, u′) and (v′, y).

For two induced subgraphs, BF(2, n), of DBF(2, n), let
one BF(2, n) be different from the other BF(2, n) at the ith
sign if the string of every vertex of one BF(2, n) is different
from the string of every vertex of the other BF(2, n) at the
ith sign. It can be shown that for two induced subgraphs,
BF(2, n), of DBF(2, n) that are different at the ith sign, a
cycle can be constructed. In the construction, there is no
change in any arc other than arcs between levels i and i +
1. Therefore, for another induced subgraph BF(2, n) that
is different from BF0 or BF1 at the kth sign, the method
for level k can be used to construct a cycle joining the third
BF(2, n) (since k � i). Specifically, first, we construct 2n−1

cycles from each pair of induced subgraphs differing at the
0th sign. Let one of these cycles be C. The two BF(2, n)’s
in C are different only at the 0th sign. We consider another
cycle C′ such that the 2 ∼ (n − 1)th signs of the vertices of
C′ are the same as those of C. Then, there is some BF(2, n)
in C′ that is different from one of the BF(2, n)’s in C at the
1st sign. Thus, a cycle can be constructed from C and C′
by using the method at the 1st sign for these two BF(2, n)’s
differing at the 1st sign. Therefore, we can construct 2n−2

cycles from these 2n−1 cycles. Similarly, we can construct
a Hamiltonian cycle of DBF(2, n) by repeating this process
up to the (n − 1)th sign.

We show that there exists a Hamiltonian cycle of
DBF(d, n) by induction on d. The case of d = 2 is described
above, and we show that DBF(d + 1, n) is Hamiltonian, as-
suming the case holds for some d. It is clear that the induced
subgraph with the vertices excluding letters +d and −d is
isomorphic to DBF(d, n). By the induction hypothesis, we
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can construct a cycle C including all vertices of DBF(d, n)
included in DBF(d + 1, n). The remaining vertices can be
joined as follows.

The remaining vertices not included in C can be writ-
ten as (xn−1, . . . , xt+1, ±d, yt−1, . . . , y0; i) for 0 ≤ t < n,
where x j ∈ Ψd (t < j < n), yk ∈ Ψd+1 (0 ≤ k < t). In
DBF(d+1, n), a subgraph induced by vertices with the same
sign sequence is isomorphic to BF(d + 1, n), as discussed in
Theorem 2. We focus on one such induced subgraph. We
write it as BF and omit the sign sequences of the vertices
in BF because they are the same. We classify the vertices
(xn−1 · · · xt+1 d yt−1 · · · y0; i) (each x j ∈ Zd and yk ∈ Zd+1) not
included in C by the strings xn−1 · · · xt+1; strings xn−1 · · · xt+1

of all vertices in the set are the same. For a given t, there are
dn−t−1 such sets because the number of strings xn−1 · · · xt+1

is dn−t−1. Thus, for all t (0 ≤ t < n), there are

dn−1 + dn−1−1 + · · · + d0 =
dn − 1
d − 1

sets. Let H be a subgraph induced by one of these sets.
A subgraph F of H induced by the vertices between levels
0 and t is isomorphic to BF(d + 1, t), if we identify each
vertex (X; 0) with the vertex (X; t) (X is the string of any
vertex of F). To show the isomorphism, we omit the strings
xn−1 · · · xt+1 and the tth letters of the vertices of H, since
these are the same in H. Then, the vertex set of F can be
written as

V(F) = {(yt−1 · · · y0; i) | yk ∈ Zd+1 (0 ≤ k < t), i ∈ Zt)},
and the vertex (yt−1 · · · yi · · · y0; i) of F is adjacent to each
vertex (yt−1 · · · yi+1 y

′
i yi−1 · · · y0; i ⊕t 1) for all y′ ∈ Zd+1.

These adjacencies are the same as the definition of BF(d +
1, t); thus, F � BF(d + 1, t). By Theorem 5, F has a Hamil-
tonian cycle. We can construct a cycle including all vertices
of H by adding the remaining vertices between levels t and
n − 1 as paths to form a Hamiltonian cycle of F as follows.
In H, we array the vertices between levels 0 and t in the
same order as a Hamiltonian cycle of F. Then, the vertex
sequence can be written as

(X0; 0), (X1; 1), . . . , (Xt−1; t − 1), (Xt; t),

(Xt; 0), . . . , (X2t−1; t − 1), (X2t; t), (X2t; 0), . . . , (X0; 0),

where Xk (k is any integer) is some string. If there are dis-
joint paths from (Xmt; t) to (Xmt; 0) (m is any integer), insert-
ing these paths into the sequence makes a cycle. Since there
is an arc from level i to level i + 1 for any two vertices with
the same strings, we can construct each path from level t to
level 0 including the vertices with the same strings. Hence,
a cycle CH including all vertices of H can be constructed.

We construct a cycle including all vertices of C and
CH by joining CH to C as follows. We erase arcs ((xn−1 · · ·
xt · · · x0; t), (xn−1 · · · xt+1 x′t xt−1 · · · x0; t ⊕n 1)) of C and
((xn−1 · · · xt+1 d yt−1 · · · y0; t), (xn−1 · · · xt+1 d yt−1 · · · y0; t ⊕n

1)) of CH , and then we add arcs ((xn−1 · · · xt+1 d yt−1 · · ·
y0; t), (xn−1 · · · xt+1 x′t xt−1 · · · x0; t ⊕n 1)) and ((xn−1 · · · xt · · ·
x0; t), (xn−1 · · · xt+1 d yt−1 · · · y0; t ⊕n 1)). Here, we assume

Fig. 9 Construction of a Hamiltonian cycle by adding vertices to
BF(2, 2).

that yk = xk (0 ≤ k < t); this assumption is possible since
xk ∈ Zd and yk ∈ Zd+1.

We construct each induced subgraph as a cycle C′H sim-
ilarly to the method for H, and join C′H to C (C already in-
cludes H). We need other arcs from the construction above
when C′H is joined to C. However, such arcs exist since the
strings xn−1 · · · xt+1 of each induced subgraph are distinct.
Therefore, all remaining vertices of BF can be included in
a cycle constructed from C. It follows that we can con-
struct a cycle including all vertices of DBF(d, n) and BF
in DBF(d + 1, n).

Figure 9 shows an example of the construction of a
Hamiltonian cycle for a butterfly digraph (this is almost the
same as the construction for a dihedral butterfly digraph).
We constructed a Hamiltonian cycle of BF(3, 2) by adding
vertices to a cycle of BF(2, 2). In Fig. 9, the filled circles are
the vertices of BF(2, 2), and the open circles are the remain-
ing vertices. We can construct a Hamiltonian cycle from the
bold lines.

As described above, we can construct a Hamiltonian
cycle of DBF(d + 1, n) by applying the construction to all
2nBF(d + 1, n)’s included in DBF(d + 1, n). �

4. Cayley Graph Representation

It is known that the butterfly digraph is a Cayley graph on the
wreath product of two cyclic groups [1]. Similarly, we show
that the dihedral butterfly digraph can also be represented as
a Cayley graph.

In this section, we use the other definition of the dihe-
dral butterfly digraph for brevity. To avoid confusion, we
write down the definition.

Definition 3: The dihedral butterfly digraph DBF(d, n) is
defined as follows for integers d, n ≥ 1, where Ψd =

{±0, . . . ,±(d − 1)}:

V(DBF(d, n)) =

{
(x0 · · · xn−1; i)

∣∣∣∣∣∣ xk ∈ Ψd (0 ≤ k < n),
i ∈ Zn

}
,

A(DBF(d, n))
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=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((x0 · · · xi · · · xn−1; i),

(x0 · · · xi−1 x′i xi+1 · · · xn−1; i ⊕n 1))

∣∣∣∣∣∣∣∣
x′i = −xi or
x′i = sgn(xi)|x|,
x ∈ Ψd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then, we discuss the main result in this section. We
show the result in two ways, i.e., we obtain two different
Cayley graph representations of the dihedral butterfly di-
graph.

Theorem 11: Let

Γ = Dd 
 Zn,

Δ =

{
(ω, e, . . . , e ; 1)

∣∣∣∣∣∣ e is the identity of Dd,
ω = σk (0 ≤ k < d) or τ

}
.

Then DBF(d, n) � Cay(Γ,Δ).

Proof. We write π ∈ Γ as

π = (α0, α1, . . . , αn−1; β),

where αk ∈ Dd (0 ≤ k < n), β ∈ Zn. (Then, the order
of Γ is |Dd |n|Zn| = (2d)nn.) We state a mapping f from
Γ to V(DBF(d, n)) such that f (π) = x = (x0 · · · xn−1; i) if
we write αk = σ

aτb (0 ≤ k < n), xk = (−)ba, and i = β
(0 ≤ a < d, b = {0, 1}). The inverse can be written as
f −1(x) = π, where β = i, αk = σ

aτb (0 ≤ k < n), and
a = |xk |. If sgn(xk) is +, then b = 0, and if sgn(xk) is −, then
b = 1. Thus, f is a bijection.

Let ρ ∈ Δ. A vertex π of Cay(Γ,Δ) is adjacent to the
vertex

πρ = (α0, . . . , αn−1 ; β)(ω, e, . . . , e; 1)

= (α0, . . . , αβ−1, αβω, αβ+1, . . . , αn−1; β ⊕n 1).

We write f (π) as (x0 · · · xβ · · · xn−1; β), f (πρ) as
(x0 · · · xβ−1 x′β xβ+1 · · · xn−1; β ⊕n 1), and xβ = (−)ba, where

αβ = σ
aτb. If ω = τ, αβω = σaτb⊕21; thus, x′β = (−)b⊕21a =

−(−)ba = −xβ. This is equivalent to the inverse-sign condi-
tion of the adjacencies of DBF(d, n). If ω = σk (0 ≤ k < d),
αβω = σ

aτbσk = σa�dkτb; thus, x′β = (−)b(a�d k). It follows
that the sign of x′β is equal to that of xβ and is an element of
Ψd. Therefore, these adjacencies are the same as remaining
adjacencies of DBF(d, n). Hence, f preserves the adjacen-
cies, as required. �

The second representation is shown as follows.

Theorem 12: The dihedral butterfly digraph DBF(d, n)
can be represented as a Cayley graph on the following group
Γ and the generating set Δ:

Γ = (Z2 × Zd) 
 Zn,

Δ =

{
(ω, e, . . . , e; 1)

∣∣∣∣∣∣ ω = (1, 0) or (0, b) (∀b ∈ Zd),
e = (0, 0)

}
.

Proof. Let a vertex of DBF(d, n) be denoted (x0 · · · xn−1 ; i)
and an element of group Γ be denoted (α0 · · ·αn−1 ; β). We
consider a mapping from Γ to V(DBF(d, n)) such that for

αk = (a, b), if a = 0, then xk = +|b|, and if a = 1, then
xk = −|b| (0 ≤ k < n), and i = β. Here, each letter xk

(0 ≤ k < n) of any vertex of DBF(d, n) has a sign + or −,
and its absolute value is in Zd. Thus, it follows that there
is a corresponding letter αk that is an element of Γ. That is,
if sgn(xk) is +, then αk = (0, |xk|), and if sgn(xk) is −, then
αk = (1, |xk|). It follows that the strings x0 · · · xn−1 corre-
spond to some α0 · · ·αn−1. Since the level is i ∈ Zn and β
of an element of Γ is in Zn, there is at least one element of
Γ corresponding to a vertex of DBF(d, n). Hence, this map-
ping is a surjection, and since the cardinalities of the two
sets are equal, this mapping is a bijection.

We consider the adjacencies of Cay(Γ,Δ). Action of an
element of Δ to an element of Γ gives

(α0, . . . , αn−1; β)(ω, e, . . . , e; 1)

= (α0, . . . , αβ−1, αβω, αβ+1, . . . , αn−1; β ⊕n 1).

This element is mapped to (x0, . . . , xi−1, x′i , xi+1, . . . ,
xn−1; i ⊕n 1). We now discuss αβω and x′i . We write
αβ = (a, b) and ω = (a′, b′). Then αβω = (a, b)(a′, b′) =
(a⊕2 a′, b⊕d b′). If ω = (0, b′), b⊕d b′ can take any value in
Zd because b′ can take any value in Zd. Hence, αβω = (a, c)
(∀c ∈ Zd). This is equivalent to the condition that x′i is any
element of Ψd with sgn(x′i ) = sgn(xi). On the other hand,
if ω = (1, 0), αβω = (a ⊕2 1, b). This is equivalent to the
inverse-sign condition. For the reason described above, the
adjacencies are preserved; thus, DBF(d, n) � Cay(Γ,Δ).

�

Note that Dd and Z2 × Zd are not isomorphic, since Dd

is not commutative but Z2 × Zd is commutative.

Corollary 4: DBF(d, n) is vertex-transitive.

5. Conclusion

In this paper, we define a new class of graphs called dihedral
butterfly digraphs, and we derive some of their fundamental
properties, such as the diameter, connectivity, and Hamil-
tonicity. The dihedral butterfly digraph has many analogies
to the butterfly digraph since the definition of the dihedral
butterfly digraph is given as an extension of the butterfly di-
graph.

It is known that the butterfly digraph can be repre-
sented as a Cayley graph on the wreath product of two cyclic
groups. Similarly, we show that the dihedral butterfly di-
graph can also be represented as a Cayley graph in two ways.

Our future subjects of research will include Hamilto-
nian cycle decomposition and applications to signal process-
ing.

Acknowledgements

This research has been partly supported by a Grant-in-
Aid for Scientific Research (c) (2) (No.16500006) from the
Japan Society for the Promotion of Science. The authors



622
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.2 FEBRUARY 2008

are grateful to the anonymous referees for their constructive
suggestions for improving the manuscript.

References

[1] F. Annexstein, M. Baumslag, and A.L. Rosenberg, “Group action
graphs and parallel architecture,” SIAM J. Comput., vol.19, no.3,
pp.544–569, 1990.

[2] J.-C. Bermond, E. Darrot, O. Delmas, and S. Perennes, “Hamilton
circuits in the directed wrapped Butterfly network,” Discrete Appl.
Math., vol.84, no.1, pp.21–42, 1998.
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