PAPER

Dihedral Butterfly Digraph and Its Cayley Graph Representation

Haruaki ONISHI ${ }^{\dagger \dagger}$, , Nonmember, Yuuki TANAKA ${ }^{\dagger \dagger}$, and Yukio SHIBATA ${ }^{\dagger}$, Members

Abstract

SUMMARY In this paper, we present a new extension of the butterfly digraph, which is known as one of the topologies used for interconnection networks. The butterfly digraph was previously generalized from binary to d-ary. We define a new digraph by adding a signed label to each vertex of the d-ary butterfly digraph. We call this digraph the dihedral butterfly digraph and study its properties. Furthermore, we show that this digraph can be represented as a Cayley graph. It is well known that a butterfly digraph can be represented as a Cayley graph on the wreath product of two cyclic groups [1]. We prove that a dihedral butterfly digraph can be represented as a Cayley graph in two ways.

key words: butterfly digraph, dihedral butterfly digraph, Cayley graph, wreath product

1. Introduction

The butterfly digraph is an important class of graphs not only for the FFT algorithm, but also as one of the topologies of interconnection networks for parallel computers. Other such useful classes include the hypercube, the de Bruijn digraph, the Kautz digraph, and the CCC. Many extensions of the binary butterfly digraph have been proposed including the d-ary butterfly digraph and a butterfly digraph for multiple-dimensional signal processing [5]. The necessity for various topologies for parallel signal processing will increase gradually when we take into account the requirements of current computers. We think that some of the properties required for these topologies will be capability for multiple signal processing and an algebraically symmetric structure. In this paper, we propose a graph class with such properties.

We discuss a new extension of the d-ary butterfly digraph and call it the dihedral butterfly digraph. The vertices of the butterfly digraph are defined by the pair of a string and a number (the number is called the level). We also define each vertex of the dihedral butterfly digraph as the pair of a string and the level. Our extension is to append a sign to each letter of the strings, and the adjacencies are also regarded as a condition with a sign. The extension from d ary letters to signed d-ary letters is one possible extension of the butterfly digraph. This extension may provide new

[^0]viewpoints, allowing us to reconsider the butterfly digraph and a fundamental result for Cayley graphs.

We describe the fundamental properties of the dihedral butterfly digraph. Appending signs increases the number of representable strings; thus, it increases the number of vertices of the dihedral butterfly digraph. It is known that the order and size of the d-ary n-dimensional butterfly digraph $B F(d, n)$ are $n d^{n}$ and $n d^{n+1}$, respectively. The d-ary n dimensional dihedral butterfly digraph $\operatorname{DBF}(d, n)$ has $n(2 d)^{n}$ vertices and $n(d+1)(2 d)^{n}$ arcs. This digraph has similar properties to the butterfly digraph. Relations between the butterfly digraph and the dihedral butterfly digraph are, for instance, $\operatorname{DBF}(d, n)$ includes 2^{n} (resp. d^{n}) $B F(d, n)$'s (resp. $B F(2, n)$'s) and $D B F(d, n)$ is included in $B F(2 d, n)$ as a subgraph. We prove that the diameter of $\operatorname{DBF}(d, n)$ is $3 n-1$, is $(d+1)$-strongly connected and is Hamiltonian.

It is interesting that the dihedral butterfly digraph is a Cayley graph. It is known that a butterfly digraph can be represented as a Cayley graph on the wreath product of two cyclic groups. A dihedral butterfly digraph can also be represented as a Cayley graph in two ways.

2. Definitions and Preliminary Results

A digraph D is defined as a finite nonempty set of vertices and a set of arcs which are ordered pairs of two vertices. We denote the vertex set of D by $V(D)$, the arc set of D by $A(D)$, and an arc from u to v by (u, v). If $(u, v) \in A(D), u$ is adjacent to v, and v is adjacent from u. Moreover, (u, v) is incident from u and is incident to v. The order of D is $|V(D)|$, and the size of D is $|A(D)|$.

The indegree of a vertex v is the number of arcs that are incident to v, and the outdegree of v is the number of arcs that are incident from v. A digraph D is called d-regular when the indegree and outdegree of every vertex of D are equal to d.

A digraph H is called a subgraph of a digraph D if $V(H) \subseteq V(D)$ and $A(H) \subseteq A(D)$. We denote this by $H \subset D$. Furthermore, a subgraph H of a digraph D is a factor of D if $V(H)=V(D)$. A subgraph H of a digraph D is an induced subgraph if for any vertices $u, v \in V(H),(u, v) \in$ $A(H)$ whenever $(u, v) \in A(D)$.

A digraph D is isomorphic to a digraph H if there exists a one-to-one mapping ϕ from $V(D)$ onto $V(H)$ such that $(u, v) \in A(D)$ if and only if $(\phi u, \phi v) \in A(H)$. We denote this by $D \cong H$. An isomorphism is called an automorphism if the mapping is from $V(D)$ onto $V(D)$. In addition, a digraph

$$
\begin{aligned}
& \pi=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} ; \beta\right), \\
& \quad \alpha_{k} \in A(0 \leq k<n), \beta \in B .
\end{aligned}
$$

$A 乙 B$ forms a group under the following binary operation for $\rho=\left(\delta_{0}, \ldots, \delta_{n-1} ; \gamma\right) \in A 乙 B$:

$$
\pi \rho=\left(\alpha_{0} \delta_{0 \ominus_{n} \beta}, \ldots, \alpha_{k} \delta_{k \ominus_{n} \beta}, \ldots, \alpha_{n-1} \delta_{(n-1) \ominus_{n} \beta} ; \beta \oplus_{n} \gamma\right)
$$

The order of $A<B$ is $|A|^{n}|B|$.
We define a set $\Psi_{d}=\{ \pm 0, \ldots, \pm(d-1)\}$. Each element of Ψ_{d} is a letter with a sign, in particular, 0 is also signed; +0 and -0 are distinct elements. For $x \in \Psi_{d},|x|$ is the letter without its $\operatorname{sign}, \operatorname{sgn}(x)$ is the sign of x, and $-x$ is the sign inversion of $x ;-(\pm|x|)=\mp|x|$ (the signs are in the same order). In addition, we denote $(-)^{k} x$ for k operations of - to x; if k is even, $\operatorname{sgn}\left((-)^{k} x\right)=\operatorname{sgn}(x)$, and if k is odd, $\operatorname{sgn}\left((-)^{k} x\right)=\operatorname{sgn}(-x)$.

Definition 1: The d-ary n-dimensional butterfly digraph $B F(d, n)$ is defined as follows: for integers $d \geq 2, n \geq 1$,

$$
\begin{aligned}
& V(B F(d, n))=\left\{\left(x_{n-1} \cdots x_{0} ; i\right) \left\lvert\, \begin{array}{l}
x_{k} \in \mathbb{Z}_{d}(0 \leq k<n), \\
i \in \mathbb{Z}_{n}
\end{array}\right.\right\}, \\
& A(B F(d, n)) \\
& \quad=\left\{\left.\begin{array}{c}
\left(\left(x_{n-1} \cdots x_{i} \cdots x_{0} ; i\right),\right. \\
\left.\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)\right)
\end{array} \right\rvert\, x_{i}^{\prime} \in \mathbb{Z}_{d}\right\} .
\end{aligned}
$$

There is another definition of the butterfly digraph in which the vertices are written as $\left(x_{0} \cdots x_{n-1} ; i\right)$. It is well known that Definition 1 is equivalent to the other definition. Definition 1 is useful when we use its recursive structure. Algebraic representations of several digraphs including de Bruijn digraphs, butterfly digraphs, and CCC are studied by Annexstein et al. [1], and the following theorem is the starting point for our research.

Theorem 1 (Annexstein et al. [1]): $\quad B F(d, n)$ can be represented as a Cayley graph $\operatorname{Cay}(\Gamma, \Delta)$, where

$$
\begin{aligned}
\Gamma & =\mathbb{Z}_{d} \imath \mathbb{Z}_{n} \\
\Delta & =\left\{(k, 0, \ldots, 0 ; 1) \mid k \in \mathbb{Z}_{d}\right\}
\end{aligned}
$$

3. Dihedral Butterfly Digraph

In this section, we define and discuss the properties of the dihedral butterfly digraph.

3.1 Definition

The dihedral butterfly digraph is defined in a similar way to the butterfly digraph so that each vertex is defined by the pair of a string and a level. The difference from the butterfly digraph is that each letter in the string is signed.

Definition 2: The d-ary n-dimensional dihedral butterfly digraph $\operatorname{DBF}(d, n)$ is defined as follows: for integers $d, n \geq$ 1 , where $\Psi_{d}=\{ \pm 0, \ldots, \pm(d-1)\}$,

Fig. $1 \quad D B F(2,2)$.

$$
V(D B F(d, n))=\left\{\begin{array}{l|l}
\left(x_{n-1} \cdots x_{0} ; i\right) & \begin{array}{l}
x_{k} \in \Psi_{d}(0 \leq k<n) \\
i \in \mathbb{Z}_{n}
\end{array}
\end{array}\right\}
$$

$$
A(D B F(d, n))
$$

$$
=\left\{\begin{array}{l|l}
\left(\left(x_{n-1} \cdots x_{i} \cdots x_{0} ; i\right),\right. & \begin{array}{l}
x_{i}^{\prime}=-x_{i} \text { or } \\
\left.\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)\right)
\end{array} \\
\begin{array}{l}
x_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)|x| \\
x \in \Psi_{d}
\end{array}
\end{array}\right\}
$$

In the similar way to the butterfly digraph, another definition can be given, in which the vertices of the dihedral butterfly digraph are written as $\left(x_{0} \cdots x_{n-1} ; i\right)$. This definition is equivalent to Definition 2, and we use it in Sect. 4.

From the definition, $\operatorname{DBF}(d, n)$ is $(d+1)$-regular, the order is $n(2 d)^{n}$, and the size is $n(d+1)(2 d)^{n}$. In Fig. 1, $D B F(2,2)$ is illustrated. Every arc in Fig. 1 is directed from left to right. The number written above each column is the level of the vertices of the column, and each string written on the left side is the string of the vertices of the row. Usually, we draw figures of the dihedral butterfly and butterfly digraphs so that the left terminal column is the same as the right terminal column.

We define the sign sequence and absolute sequence as follows. When $x=\left(x_{n-1} \cdots x_{0} ; i\right)$ is a vertex of $\operatorname{DBF}(d, n)$, the sign sequence of x is the sign sequence of the string of x, namely, $\left(\operatorname{sgn}\left(x_{n-1}\right) \cdots \operatorname{sgn}\left(x_{0}\right)\right)$. The absolute sequence of x is the sequence of letters without signs of the string of x, namely, $\left(\left|x_{n-1}\right| \cdots\left|x_{0}\right|\right)$.

3.2 Properties

3.2.1 Inclusion Relations

The dihedral butterfly digraph has many relations with the butterfly digraph. From one of the inclusion relations between the butterfly and dihedral butterfly digraphs, we can determine that $D B F(d, n)$ includes $2^{n} B F(d, n)$ as a factor.

Theorem 2: $\operatorname{DBF}(d, n)$ includes $2^{n} B F(d, n)$ as a factor.
Proof. We consider an induced subgraph D of $\operatorname{DBF}(d, n)$ such that the sign sequence of any vertex of D is the same. To show that D is isomorphic to $B F(d, n)$, we state a mapping f from $V(D)$ to $V(B F(d, n))$ as follows:

$$
f\left(\left(x_{n-1} \cdots x_{0} ; i\right)\right)=\left(\left|x_{n-1}\right| \cdots\left|x_{0}\right| ; i\right)
$$

For some $x, x^{\prime} \in V(D)$, we assume that $f(x)=f\left(x^{\prime}\right)$. This means that for letters $\left|x_{k}\right|$ of x and $\left|x_{k}^{\prime}\right|$ of $x^{\prime}(0 \leq k<n)$, $\left|x_{k}\right|=\left|x_{k}^{\prime}\right|$. Therefore, $x=x^{\prime}$ because any vertex of D has the same sign sequence; thus, f is an injection. Since there are d letters for each sign, D has d^{n} distinct strings; thus, D has $n d^{n}$ vertices. It follows that $|V(D)|=|V(B F(d, n))|$; hence, f is a bijection.

Next for the adjacencies, a vertex $x=\left(x_{n-1}\right.$ $\left.\cdots x_{i} \cdots x_{0} ; i\right)$ of D is adjacent to each vertex ($x_{n-1} \cdots$ $x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1$), where $x_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)|a|$ for any $a \in \Psi_{d}$. It follows that $f(x)=\left(\left|x_{n-1}\right| \cdots\left|x_{i}\right| \cdots\left|x_{0}\right| ; i\right)$ is adjacent to the vertex $\left(\left|x_{n-1}\right| \cdots\left|x_{i+1}\right|\left|x_{i}^{\prime}\right|\left|x_{i-1}\right| \cdots\left|x_{0}\right| ; i \oplus_{n} 1\right)$, where $\left|x_{i}^{\prime}\right| \in \mathbb{Z}_{d}$, because $\left|x_{i}^{\prime}\right|=\left|\operatorname{sgn}\left(x_{i}\right)\right| a| |=|a|$, and a is any element of Ψ_{d}. This is the same as the definition of $B F(d, n)$; therefore, D is isomorphic to $B F(d, n)$.

There are 2^{n} such distinct induced subgraphs in $\operatorname{DBF}(d, n)$ because the number of sign sequences with length n is 2^{n}. Hence, there exists $2^{n} B F(d, n)$ in $\operatorname{DBF}(d, n)$, as required.

Furthermore, we prove that $\operatorname{DBF}(d, n)$ includes $d^{n} B F(2, n)$ as a factor.
Theorem 3: $\operatorname{DBF}(d, n)$ includes $d^{n} B F(2, n)$ as a factor.
Proof. We consider an induced subgraph D of $D B F(d, n)$ such that the absolute sequence of any vertex of D is the same. To show that D is isomorphic to $B F(2, n)$, we state a mapping f from $V(D)$ to $V(B F(2, n))$ as follows:

$$
f\left(\left(x_{n-1} \cdots x_{0} ; i\right)\right)=\left(y_{n-1} \cdots y_{0} ; i\right)
$$

where for all $k(0 \leq k<n)$, if $\operatorname{sgn}\left(x_{k}\right)$ is + then $y_{k}=1$, else if $\operatorname{sgn}\left(x_{k}\right)$ is - then $y_{k}=0$. For some $x, x^{\prime} \in V(D)$, we assume that $f(x)=f\left(x^{\prime}\right)$. This means that $\operatorname{sgn}\left(x_{k}\right)=\operatorname{sgn}\left(x_{k}^{\prime}\right)$ for all letters in the strings of x, x^{\prime}. Since any vertex of D has the same absolute sequence, we have $x=x^{\prime}$; thus, f is an injection. There are 2^{n} distinct sign sequences for the same absolute sequence. It follows that $|V(D)|=|V(B F(2, n))|$; hence, f is a bijection.

Regarding the adjacencies of D, a vertex $x=\left(x_{n-1}\right.$
$\left.\cdots x_{i} \cdots x_{0} ; i\right)$ is adjacent to $\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n}\right.$ 1) when $x_{i}^{\prime}=x_{i}$ or $-x_{i}$. Thus, $f(x)$ is adjacent to $\left(y_{n-1} \cdots y_{i+1} y_{i}^{\prime} y_{i-1} \cdots y_{0} ; i \oplus_{n} 1\right)$ when $y_{i}^{\prime}=0$ or 1 . Since this relation is the same as that in $B F(2, n), D$ is isomorphic to $B F(2, n)$.

There are d^{n} such disjoint induced subgraphs in $\operatorname{DBF}(d, n)$. Hence, there exist $d^{n} B F(2, n)$ in $\operatorname{DBF}(d, n)$, as required.

Finally, we show that the dihedral butterfly digraph is included in the butterfly digraph. This is an opposite relation to Theorems 2 and 3.

Theorem 4: $\operatorname{DBF}(d, n)$ is a factor of $B F(2 d, n)$.
Proof. We state a mapping f from $V(D B F(d, n))$ to $V(B F(2 d, n))$ as follows:

$$
f\left(\left(x_{n-1} \cdots x_{0} ; i\right)\right)=\left(y_{n-1} \cdots y_{0} ; i\right)
$$

where for all $k(0 \leq k<n)$, if $\operatorname{sgn}\left(x_{k}\right)$ is + then $y_{k}=\left|x_{k}\right|$, else if $\operatorname{sgn}\left(x_{k}\right)$ is - then $y_{k}=\left|x_{k}\right|+d$. The inverse mapping can be written as follows:

$$
f^{-1}\left(\left(y_{n-1} \cdots y_{0} ; i\right)\right)=\left(x_{n-1} \cdots x_{0} ; i\right)
$$

where if $y_{k}<d$ then $x_{k}=+\left|y_{k}\right|$ and if $y_{k} \geq d$ then $x_{k}=$ $-\left|y_{k}-d\right|$ (for $a \in \mathbb{Z}_{n}, \pm|a|$ is the sign appended to a). Thus, f is a bijection.

On the arc from $x=\left(x_{n-1} \cdots x_{i} \cdots x_{0} ; i\right)$ to $x^{\prime}=$ $\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)$, if $\operatorname{sgn}\left(x_{i}\right)$ is,$+ x$ is adjacent to each vertex x^{\prime} when $x_{i}^{\prime}=+|a|$ for any $a \in \Psi_{d}$ or $x_{i}^{\prime}=-x_{i}$. The image of x^{\prime} is $\left(y_{n-1} \cdots y_{i+1} y_{i}^{\prime} y_{i-1} \cdots y_{0}, i \oplus_{n} 1\right)$ such that if $\operatorname{sgn}\left(x_{i}^{\prime}\right)$ is + then $y_{i}^{\prime}=\left|x_{i}^{\prime}\right| \in \mathbb{Z}_{d} \subset \mathbb{Z}_{2 d}$, else if $\operatorname{sgn}\left(x_{i}^{\prime}\right)$ is - then $y_{i}^{\prime}=\left|x_{i}\right|+d \in \mathbb{Z}_{2 d}$. Thus, these arcs are included in $B F(2 d, n)$. For the other case when $\operatorname{sgn}\left(x_{i}\right)$ is - , we can prove that these arcs are included in $B F(2 d, n)$ similarly to above.

The dihedral butterfly digraph can be represented without its signs by using the mapping in Theorem 4.

Corollary 1: $\operatorname{DBF}(d, n)$ can be represented as the following digraph D :

$$
\begin{aligned}
& V(D)=V(B F(2 d, n)), \\
& A(D)=\left\{\begin{array}{r}
\left(\left(x_{n-1} \cdots x_{i} \cdots x_{0} ; i\right),\right. \\
\left.\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)\right)
\end{array}\right. \\
& \left.\qquad \begin{array}{l}
0 \leq x_{i}^{\prime}<d \text { or } x_{i}^{\prime}=x_{i}+d, \text { if } x_{i}<d . \\
d \leq x_{i}^{\prime}<2 d \text { or } x_{i}^{\prime}=x_{i}-d, \text { if } x_{i} \geq d .
\end{array}\right\} .
\end{aligned}
$$

The following corollary can be derived from Theorems 2,3 , and 4 .

Corollary 2:

$$
\begin{aligned}
& 2^{n} B F(d, n) \subset D B F(d, n) \subset B F(2 d, n) \\
& d^{n} B F(2, n) \subset \operatorname{DBF}(d, n) \subset B F(2 d, n) \\
& 1^{n} B F(2, n) \cong D B F(1, n) \cong B F(2, n)
\end{aligned}
$$

3.2.2 Strong Connectedness

We can show the strong connectedness of the dihedral butterfly digraph using the connectedness of the butterfly digraph and the two theorems proved above. Let u, v be the vertices of $\operatorname{DBF}(d, n)$ and w be a vertex of $\operatorname{DBF}(d, n)$ such that its sign sequence is equal to that of u and its absolute sequence is equal to that of v. As discussed in Theorem 2, the induced subgraph of $\operatorname{DBF}(d, n)$ with the same sign sequence of vertices is isomorphic to $B F(d, n)$. Thus, there is a subgraph $B F(d, n)$ including u and w in $\operatorname{DBF}(d, n)$. Since the butterfly digraph is strongly connected, there is a path from u to w. Similarly, a path from w to v can also be found by Theorem 3. Hence, a path from u to v can be found, and we may also find a path from v to u by the same discussion. Thus, the following theorem holds.
Theorem 5: $\operatorname{DBF}(d, n)$ is strongly connected.

3.2.3 Diameter

We can define the diameter of $\operatorname{DBF}(d, n)$ since it is strongly connected.

Theorem 6: The diameter of $\operatorname{DBF}(d, n)$ is $3 n-1$.
Proof. Let $x=\left(x_{n-1} \cdots x_{0} ; i\right)$ be a vertex of $\operatorname{DBF}(d, n)$. We consider a vertex $y=\left(y_{n-1} \cdots y_{0} ; i\right)$ of $\operatorname{DBF}(d, n)$ such that $\operatorname{sgn}\left(y_{k}\right) \neq \operatorname{sgn}\left(x_{k}\right)$ and $\left|y_{k}\right| \neq\left|x_{k}\right|$ for all $k(0 \leq k<n)$. The string of a vertex that is adjacent from x is different from that of x by at most one letter. Furthermore, the difference is either one of the sign or of the absolute value. There are $2 n$ letters that must be changed. Therefore, the length of a path from x to y is $2 n$.

We consider a path from y to $y^{\prime}=\left(y_{n-1} \cdots y_{0} ; i \oplus_{n}(n-\right.$ $1)$). The length of this path is $n-1$; thus, the length of a path from x through y to y^{\prime} is at most $3 n-1$.

Here, let the length of some path from a vertex of level i to a vertex of level $i \oplus_{n}(n-1)$ be L. Then,

$$
L \equiv i+(n-1)-i=n-1 \quad(\bmod n)
$$

If we assume that the length of the path from x to y^{\prime} is less than $3 n-1$, it is less than or equal to $2 n-1$ by the above congruence expression. However, this is impossible because the length of such a path is at least $2 n$, as discussed in the first paragraph. Therefore, the distance between x and y^{\prime} is $3 n-1$. The strings of any two vertices in $\operatorname{DBF}(d, n)$ are different at most n letters, and their levels are different at most $n-1$ letters. Thus the distance between any two vertices is at most $3 n-1$; hence, the diameter of $\operatorname{DBF}(d, n)$ is $3 n-1$.

The diameter of $B F(d, n)$ is $2 n-1$, while that of $\operatorname{DBF}(d, n)$ is $3 n-1$. We might say that the latter value is small, since the order of $B F(d, n)$ is $n d^{n}$, while that of $\operatorname{DBF}(d, n)$ is $n(2 d)^{n}$. On the other hand, the order of $B F(2 d, n)$ is equal to that of $\operatorname{DBF}(d, n)$; however, the size of $\operatorname{DBF}(d, n)$ is about half that of $B F(2 d, n)$.

3.2.4 Connectivity

We discuss the connectivity of $\operatorname{DBF}(d, n)$. There is an important theorem called Menger's theorem concerned with the connectivity.

Theorem 7 (McCuaig [6]): If no set of fewer than k vertices separates nonadjacent vertices u and v in a digraph D, then there are k internally disjoint $u-v$ paths.
In other words, if a digraph D is k-strongly connected, there are k internally disjoint paths between any two vertices of D. From this theorem, the following corollary can be deduced (see [3]).

Corollary 3: If a digraph D is k-strongly connected, there are k disjoint paths from any k vertices to any k vertices of D.

It is known that the butterfly digraph $B F(d, n)$ is d strongly connected. Thus, $B F(d, n)$ has d disjoint paths from any d vertices to any d vertices of $B F(d, n)$ by Menger's theorem.

We prove the following theorem by using these results.
Theorem 8: The dihedral butterfly digraph $\operatorname{DBF}(d, n)$ is $(d+1)$-strongly connected.
Proof. We prove that there are $d+1$ internally disjoint paths from vertex $x=\left(x_{n-1} \cdots x_{0} ; i\right)$ to $y=\left(y_{n-1} \cdots y_{0} ; j \oplus_{n} 1\right)$ of $\operatorname{DBF}(d, n) . x$ is adjacent to $d+1$ vertices. As shown in Fig. 2, we write the vertex $\left(x_{n-1} \cdots x_{i+1}-x_{i} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)$ as x^{-}and the other vertices $\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n}\right.$ 1) $\left(x_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)|a|\right.$ for all $\left.a \in \Psi_{d}\right)$ as $x^{x_{i}^{\prime}}$. Similarly, for the $d+1$ vertices adjacent to y, we write the vertex ($y_{n-1} \cdots y_{j+1}-y_{j} y_{j-1} \cdots y_{0} ; j$) as y^{-}and the other vertices $\left(y_{n-1} \cdots y_{j+1} y_{j}^{\prime} y_{j-1} \cdots y_{0} ; j\right)\left(y_{j}^{\prime}=\operatorname{sgn}\left(y_{j}\right)|a|\right.$ for all $\left.a \in \Psi_{d}\right)$ as $y^{y_{j}^{\prime}}$. Then, $d+1$ internally disjoint paths from x to y are deemed as $d+1$ disjoint paths from x^{-}and $x^{x_{i}^{\prime}}$ to y^{-} and $y^{y_{j}^{\prime}}$. In the figures in this section, paths are drawn as thick lines. We write some of the 2^{n} induced subgraphs, $B F(d, n)$, discussed in Theorem 2 as $B F_{x}, B F_{x}^{-}, B F_{y}$, and $B F_{y}^{-}$, which include x, x^{-}, y, and y^{-}, respectively. We draw these $B F(d, n)$'s as boxes in the figures in this section.

We consider two paths from x to $B F_{y}$ and $B F_{y}^{-}$on vertices with the same absolute sequence. x^{-}and $x^{x_{i}}$ are the second vertices of such two paths, respectively, as shown in Fig. 3. We consider two conditions of the two paths as follows: 1. they are internally disjoint and 2. a path to $B F_{y}$ (resp. $B F_{y}^{-}$) does not pass through $B F_{y}^{-}$(resp. $B F_{y}$). First, we assume that $B F_{x} \neq B F_{y}^{-}$.

Since the i th sign of either $x^{x_{i}}$ or x^{-}is equal to $\operatorname{sgn}\left(y_{i}\right)$, we consider a path from such a vertex to a vertex of $B F_{y}$ (however, if $B F_{x}^{-}=B F_{y}^{-}$, we deem x^{-}as a trivial path and consider a path from $x^{x_{i}}$ to $B F_{y}$). Assume, without loss of generality, that the vertex whose i th sign is equal to $\operatorname{sgn}\left(y_{i}\right)$ is $x^{x_{i}} . x^{x_{i}}$ is adjacent to vertex $x_{1}^{x_{i}}$ so that its $(i+1)$ th sign is equal to $\operatorname{sgn}\left(y_{i+1}\right) . x_{2}^{x_{i}}$ is adjacent to vertex $x_{2}^{x_{i}}$ so that its $(i+2)$ th sign is equal to $\operatorname{sgn}\left(y_{i+2}\right)$. In this way, a path follows

Fig. $2 d+1$ internally disjoint paths from x to y on $\operatorname{DBF}(d, n)$.

Fig. 3 Two paths from x to $B F_{y}$ and $B F_{y}^{-}$.
vertex $x_{k}^{x_{i}}$ so that its $(i+k)$ th sign is equal to $\operatorname{sgn}\left(y_{i+k}\right)$. This method constructs a path from $x^{x_{i}}$ to a vertex of $B F_{y}$ using the same absolute sequences. The length of such a path is at most $n-1$ (since the i th $=(i+n)$ th sign is equal to $\operatorname{sgn}\left(y_{i}\right)$). In a similar way, we can find a path from x^{-}to a vertex of $B F_{y}^{-}$ using the same absolute sequences (the length of this path is at most n). These two paths P_{1} and P_{2} are internally disjoint because the i th sign of any internal vertex of P_{1} is different from that of P_{2}. Regarding the second condition, if a path from $x^{x_{i}}$ passes through $B F_{y}^{-}$, there is the smallest integer k such that $x_{k}^{x_{i}}$ is a vertex of $B F_{y}^{-}$, as shown in Fig. 4. Then, the vertex $x_{k-1}^{x_{i}}$ is not included in $B F_{y}^{-}$. Therefore, we proceed a path from $x_{k-1}^{x_{i}}$ to $x_{k}^{\prime x_{i}}$ such that its $(i+k)$ th sign is not equal to $\operatorname{sgn}\left(y_{i+k}\right)$. As a result, the path does not pass through $B F_{y}^{-}$ until the $(i+k)$ th sign changes. The remaining process is similar to that mentioned above; the path proceeds from $x_{k}^{\prime x_{i}}$ to $x_{k+1}^{x_{i}}$ so that the $(i+k+1)$ th sign is equal to $\operatorname{sgn}\left(y_{i+k+1}\right)$.

Fig. 4 A path from $x^{x_{i}}$ to $B F_{y}$ avoiding $B F_{y}^{-}$.

Then, the process constructs a path from $x^{x_{i}}$ to a vertex $x_{n-1}^{x_{i}}$ of $B F^{\prime}$, which is one of the 2^{n} induced subgraphs, $B F(d, n)$, such that only the $(i+k)$ th sign is different from that of y. In $B F^{\prime}$, a vertex that is adjacent to a vertex of $B F_{y}$ has level $i+k$. Since $B F^{\prime}$ is strongly connected, there is a path from $x_{n-1}^{x_{i}}$ to any vertex of level $i+k$, as shown in Fig. 4. Hence, we have found a path from $x^{x_{i}}$ to a vertex of $B F_{y}$ satisfying the two conditions. We apply a similar process to a path from x^{-}to $B F_{y}^{-}$satisfying the second condition. This path might pass through an induced subgraph $B F(d, n)=B F$ such that only the $(i+k)$ th and i th signs are the same as that of x^{-}and that only these signs are different from those of the vertices in $B F_{y}^{-}$. A vertex u that is adjacent from any vertex of level $i+k$ in $B F$ is not included in $B F_{y}$, because the i th sign of u is still different from those of vertices in $B F_{y}$. Therefore, we can proceed to u while satisfying the second condition. Moreover, since $B F$ is strongly connected, we can find a path from u to a vertex adjacent to a vertex in $B F_{y}^{-}$. Hence, we have found two paths satisfying the two conditions.

Now, we consider the other $d-1$ paths from $x^{x_{i}^{\prime}}\left(x_{i}^{\prime}=\right.$ $\operatorname{sgn}\left(x_{i}\right)|a|$ for all $a \in \Psi_{d}$ and $x_{i}^{\prime} \neq x_{i}$). There are two cases depending on the connection of the two paths.

We assume that a path from $x^{x_{i}}$ arrives at $B F_{y}$ (a path from x^{-}arrives at $\left.B F_{y}^{-}\right)$. The $d-1$ paths from $x^{x_{i}^{\prime}}\left(x_{i}^{\prime} \neq\right.$ x_{i}) follow a path from $x^{x_{i}}$. That is, all absolute sequences in the paths are the same, and when we write a path from $x^{x_{i}^{\prime}}$ as $x^{x_{i}^{\prime}}, x_{1}^{x_{i}^{\prime}}, x_{2}^{x_{i}^{\prime}}, \ldots$, the sign sequence of $x_{k}^{x_{i}^{\prime}}$ is equal to that of $x_{k}^{x_{i}}$. These paths are disjoint because their absolute sequences are different at the i th letter. d paths from $x^{x_{i}^{\prime}}$ end with d vertices in $B F_{y}$. In $B F_{y}$, there are d disjoint paths from the d terminal vertices to $y^{y_{j}^{\prime}}\left(y_{j}^{\prime}=\operatorname{sgn}\left(y_{j}\right)|a|\right.$ for all $a \in \Psi_{d}$) by Menger's theorem. y is not included in these d paths, because if a path includes y, then the path must pass through some $y^{y_{j}^{\prime}}$. The other path from x^{-}ends with a vertex in $B F_{y}^{-}$. Since $B F_{y}^{-}$is strongly connected, there is a path from the terminal vertex to y^{-}. Therefore, there are $d+1$ internally disjoint paths from x to y.

Conversely, we assume that a path from x^{-}arrives at

Fig. 5 Route when a path from x^{-}arrives at $B F_{y}$.

Fig. 6 Route when $B F_{x}=B F_{y}^{-}$.
$B F_{y}$. As shown in Fig. 5, each path from $x^{x_{i}^{\prime}}\left(x_{i}^{\prime} \neq x_{i}\right)$ traces each vertex with the same string to a vertex with level i. Then, each path can proceed to a vertex in $B F_{x}^{-}$and to $B F_{y}$ along a path from x^{-}, similarly to in the previous paragraph. These paths are disjoint. Now, there are d terminal vertices of the paths from x^{-}and $x^{x_{i}^{\prime}}\left(x_{i}^{\prime} \neq x_{i}\right)$ in $B F_{y}$. By Menger's theorem, we can find d disjoint paths from these d terminal vertices to $y^{y_{j}^{\prime}}\left(y_{j}^{\prime}=\operatorname{sgn}\left(y_{j}\right)|a|\right.$ for all $\left.a \in \Psi_{d}\right)$ in $B F_{y}$. The other path from $x^{x_{i}}$ ends with a vertex in $B F_{y}^{-}$, and we can find a path to y^{-}, since $B F_{y}^{-}$is strongly connected.

We consider the exceptional case of $B F_{x}=B F_{y}^{-}$. As shown in Fig. 6, there are d disjoint paths in $B F_{x}$ from $x^{x_{i}^{\prime}}\left(x_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)|a|\right.$ for all $\left.a \in \Psi_{d}\right)$ to vertices written as $\left(y_{n-1} \cdots y_{j+1} y_{j}^{\prime} y_{j-1} \cdots y_{0} ; j\right)\left(y_{j}^{\prime}=-\operatorname{sgn}\left(y_{j}\right)|a|\right.$ for all $a \in \Psi_{d}$) by Menger's theorem. We assume that none of the terminal vertices of these paths are x. There are d vertices in $B F_{y}$ that are adjacent from these terminal vertices, one of which is y. Thus, we have found a path from x to y. On the other hand, we can find another path from x^{-}to $B F_{y}$, as shown in Fig. 6, by a similar route as the first two paths. Now, there are d terminal vertices in $B F_{y}$, one of which is the terminal vertex of the path from x^{-}, and the others are the terminal vertices except y of the paths from $x^{x_{i}^{\prime}}$. By Menger's theorem, there are d disjoint paths from these d terminal vertices to $y^{y_{j}^{\prime}}$ in $B F_{y}$.

Fig. 7 Exchange of arcs when $\left|x_{i}^{\prime}\right|=\left|x_{i}\right|$.

Finally, we assume that one of the terminal vertices of the d paths in $B F_{x}$ considered above is x. Then $B F_{x}^{-}=B F_{y}$, and y is one of the vertices in $B F_{y}$ that are adjacent from these terminal vertices. Thus, there are a path from x to y and $d-1$ internally disjoint paths from x ending with vertices in $B F_{y}$. Let the starting vertex of the path ending with x be x^{\prime}. We can find another path from x^{\prime} to a vertex in $B F_{y}$ by the same route as the first two paths. Now, there are d internally disjoint paths ending with vertices except y in $B F_{y}$. By Menger's theorem, we can find d disjoint paths in $B F_{y}$ from these terminal vertices to $y^{y_{j}^{\prime}}$.

3.2.5 Hamiltonicity

We investigate the Hamiltonicity of $\operatorname{DBF}(d, n)$ using the well-known fact that the butterfly digraph is Hamiltonian.
Theorem 9: The butterfly digraph is Hamiltonian.
(Refer to [2] for details of the Hamiltonicity of the butterfly digraph.)

Theorem 10: The dihedral butterfly digraph is Hamiltonian.

Proof. Since $B F(2, n)$ has a Hamiltonian cycle from Theorem 9, we first construct a Hamiltonian cycle of $D B F(2, n)$ from 2^{n} cycles, each of which is a Hamiltonian cycle of $B F(2, n)$ by Theorem 2. Then, we construct a Hamiltonian cycle of $\operatorname{DBF}(d, n)$ by induction on d.

Let $B F_{0}$ be a subgraph of $\operatorname{DBF}(2, n)$, which is one of the $B F(2, n)$ components of the factor $2^{n} B F(2, n)$ of $\operatorname{DBF}(2, n)$ mentioned in Theorem 2, and let $x=$ $\left(x_{n-1} \cdots x_{i} \cdots x_{0} ; i\right)$ be a vertex of $B F_{0} . x$ is adjacent to a vertex $y=\left(x_{n-1} \cdots x_{i+1} x_{i}^{\prime} x_{i-1} \cdots x_{0} ; i \oplus_{n} 1\right)$ in a Hamiltonian cycle of $B F_{0}$, where $\operatorname{sgn}\left(x_{i}^{\prime}\right)=\operatorname{sgn}\left(x_{i}\right)$ and $\left|x_{i}^{\prime}\right|=0$ or 1 . Moreover, we consider another component $B F_{1}$ such that the sign sequence of any vertex of $B F_{1}$ is written as $\left(\operatorname{sgn}\left(x_{n-1}\right) \cdots \operatorname{sgn}\left(x_{i+1}\right) \operatorname{sgn}\left(-x_{i}\right) \operatorname{sgn}\left(x_{i-1}\right) \cdots \operatorname{sgn}\left(x_{0}\right)\right)$.

If $\left|x_{i}^{\prime}\right|=\left|x_{i}\right|$, the situation is shown in Fig. 7, which depicts the construction of a cycle including all vertices of $B F_{0}$ and $B F_{1}$. The vertices x^{\prime} and y^{\prime} have the same absolute sequences as x and y, respectively. In Fig. 7, the solid arcs are

Fig. 8 Exchange of arcs when $\left|x_{i}^{\prime}\right| \neq\left|x_{i}\right|$.
actual arcs, and the dashed arcs are paths in a Hamiltonian cycle of each component. We can construct a cycle including all vertices of $B F_{0}$ and $B F_{1}$ by deleting arcs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ and adding $\operatorname{arcs}\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$.

If $\left|x_{i}^{\prime}\right| \neq\left|x_{i}\right|$, a cycle including all vertices of $B F_{0}$ and $B F_{1}$ can be constructed, as shown in Fig. 8. Similarly to that mentioned above, we construct a cycle by deleting arcs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ and adding $\operatorname{arcs}\left(x, u^{\prime}\right)$ and $\left(v^{\prime}, y\right)$.

For two induced subgraphs, $B F(2, n)$, of $D B F(2, n)$, let one $B F(2, n)$ be different from the other $B F(2, n)$ at the i th sign if the string of every vertex of one $B F(2, n)$ is different from the string of every vertex of the other $B F(2, n)$ at the i th sign. It can be shown that for two induced subgraphs, $B F(2, n)$, of $\operatorname{DBF}(2, n)$ that are different at the i th sign, a cycle can be constructed. In the construction, there is no change in any arc other than arcs between levels i and $i+$ 1. Therefore, for another induced subgraph $B F(2, n)$ that is different from $B F_{0}$ or $B F_{1}$ at the k th sign, the method for level k can be used to construct a cycle joining the third $B F(2, n)$ (since $k \neq i$). Specifically, first, we construct 2^{n-1} cycles from each pair of induced subgraphs differing at the 0 th sign. Let one of these cycles be C. The two $B F(2, n)$'s in C are different only at the 0 th sign. We consider another cycle C^{\prime} such that the $2 \sim(n-1)$ th signs of the vertices of C^{\prime} are the same as those of C. Then, there is some $B F(2, n)$ in C^{\prime} that is different from one of the $B F(2, n)$'s in C at the 1 st sign. Thus, a cycle can be constructed from C and C^{\prime} by using the method at the 1 st sign for these two $B F(2, n)$'s differing at the 1 st sign. Therefore, we can construct 2^{n-2} cycles from these 2^{n-1} cycles. Similarly, we can construct a Hamiltonian cycle of $\operatorname{DBF}(2, n)$ by repeating this process up to the $(n-1)$ th sign.

We show that there exists a Hamiltonian cycle of $\operatorname{DBF}(d, n)$ by induction on d. The case of $d=2$ is described above, and we show that $\operatorname{DBF}(d+1, n)$ is Hamiltonian, assuming the case holds for some d. It is clear that the induced subgraph with the vertices excluding letters $+d$ and $-d$ is isomorphic to $\operatorname{DBF}(d, n)$. By the induction hypothesis, we
can construct a cycle C including all vertices of $\operatorname{DBF}(d, n)$ included in $\operatorname{DBF}(d+1, n)$. The remaining vertices can be joined as follows.

The remaining vertices not included in C can be written as $\left(x_{n-1}, \ldots, x_{t+1}, \pm d, y_{t-1}, \ldots, y_{0} ; i\right)$ for $0 \leq t<n$, where $x_{j} \in \Psi_{d}(t<j<n), y_{k} \in \Psi_{d+1}(0 \leq k<t)$. In $D B F(d+1, n)$, a subgraph induced by vertices with the same sign sequence is isomorphic to $B F(d+1, n)$, as discussed in Theorem 2. We focus on one such induced subgraph. We write it as $B F$ and omit the sign sequences of the vertices in $B F$ because they are the same. We classify the vertices $\left(x_{n-1} \cdots x_{t+1} d y_{t-1} \cdots y_{0} ; i\right)$ (each $x_{j} \in \mathbb{Z}_{d}$ and $y_{k} \in \mathbb{Z}_{d+1}$) not included in C by the strings $x_{n-1} \cdots x_{t+1}$; strings $x_{n-1} \cdots x_{t+1}$ of all vertices in the set are the same. For a given t, there are d^{n-t-1} such sets because the number of strings $x_{n-1} \cdots x_{t+1}$ is d^{n-t-1}. Thus, for all $t(0 \leq t<n)$, there are

$$
d^{n-1}+d^{n-1-1}+\cdots+d^{0}=\frac{d^{n}-1}{d-1}
$$

sets. Let H be a subgraph induced by one of these sets. A subgraph F of H induced by the vertices between levels 0 and t is isomorphic to $B F(d+1, t)$, if we identify each vertex $(X ; 0)$ with the vertex $(X ; t)(X$ is the string of any vertex of F). To show the isomorphism, we omit the strings $x_{n-1} \cdots x_{t+1}$ and the t th letters of the vertices of H, since these are the same in H. Then, the vertex set of F can be written as

$$
\left.V(F)=\left\{\left(y_{t-1} \cdots y_{0} ; i\right) \mid y_{k} \in Z_{d+1}(0 \leq k<t), i \in Z_{t}\right)\right\}
$$

and the vertex $\left(y_{t-1} \cdots y_{i} \cdots y_{0} ; i\right)$ of F is adjacent to each vertex $\left(y_{t-1} \cdots y_{i+1} y_{i}^{\prime} y_{i-1} \cdots y_{0} ; i \oplus_{t} 1\right)$ for all $y^{\prime} \in Z_{d+1}$. These adjacencies are the same as the definition of $B F(d+$ $1, t)$; thus, $F \cong B F(d+1, t)$. By Theorem $5, F$ has a Hamiltonian cycle. We can construct a cycle including all vertices of H by adding the remaining vertices between levels t and $n-1$ as paths to form a Hamiltonian cycle of F as follows. In H, we array the vertices between levels 0 and t in the same order as a Hamiltonian cycle of F. Then, the vertex sequence can be written as

$$
\begin{aligned}
& \left(X_{0} ; 0\right),\left(X_{1} ; 1\right), \ldots,\left(X_{t-1} ; t-1\right),\left(X_{t} ; t\right) \\
& \quad\left(X_{t} ; 0\right), \ldots,\left(X_{2 t-1} ; t-1\right),\left(X_{2 t} ; t\right),\left(X_{2 t} ; 0\right), \ldots,\left(X_{0} ; 0\right)
\end{aligned}
$$

where X_{k} (k is any integer) is some string. If there are disjoint paths from $\left(X_{m t} ; t\right)$ to $\left(X_{m t} ; 0\right)$ (m is any integer), inserting these paths into the sequence makes a cycle. Since there is an arc from level i to level $i+1$ for any two vertices with the same strings, we can construct each path from level t to level 0 including the vertices with the same strings. Hence, a cycle C_{H} including all vertices of H can be constructed.

We construct a cycle including all vertices of C and C_{H} by joining C_{H} to C as follows. We erase arcs $\left(\left(x_{n-1} \cdots\right.\right.$ $\left.\left.x_{t} \cdots x_{0} ; t\right), \quad\left(x_{n-1} \cdots x_{t+1} x_{t}^{\prime} x_{t-1} \cdots x_{0} ; t \oplus_{n} 1\right)\right)$ of C and $\left(\left(x_{n-1} \cdots x_{t+1} d y_{t-1} \cdots y_{0} ; t\right),\left(x_{n-1} \cdots x_{t+1} d y_{t-1} \cdots y_{0} ; t \oplus_{n}\right.\right.$ 1)) of C_{H}, and then we add $\operatorname{arcs}\left(\left(x_{n-1} \cdots x_{t+1} d y_{t-1} \cdots\right.\right.$ $\left.\left.y_{0} ; t\right),\left(x_{n-1} \cdots x_{t+1} x_{t}^{\prime} x_{t-1} \cdots x_{0} ; t \oplus_{n} 1\right)\right)$ and $\left(\left(x_{n-1} \cdots x_{t} \cdots\right.\right.$ $\left.\left.x_{0} ; t\right),\left(x_{n-1} \cdots x_{t+1} d y_{t-1} \cdots y_{0} ; t \oplus_{n} 1\right)\right)$. Here, we assume

Fig. 9 Construction of a Hamiltonian cycle by adding vertices to $B F(2,2)$.
that $y_{k}=x_{k}(0 \leq k<t)$; this assumption is possible since $x_{k} \in \mathbb{Z}_{d}$ and $y_{k} \in \mathbb{Z}_{d+1}$.

We construct each induced subgraph as a cycle C_{H}^{\prime} similarly to the method for H, and join C_{H}^{\prime} to C (C already includes H). We need other arcs from the construction above when C_{H}^{\prime} is joined to C. However, such arcs exist since the strings $x_{n-1} \cdots x_{t+1}$ of each induced subgraph are distinct. Therefore, all remaining vertices of $B F$ can be included in a cycle constructed from C. It follows that we can construct a cycle including all vertices of $\operatorname{DBF}(d, n)$ and $B F$ in $\operatorname{DBF}(d+1, n)$.

Figure 9 shows an example of the construction of a Hamiltonian cycle for a butterfly digraph (this is almost the same as the construction for a dihedral butterfly digraph). We constructed a Hamiltonian cycle of $B F(3,2)$ by adding vertices to a cycle of $B F(2,2)$. In Fig. 9, the filled circles are the vertices of $B F(2,2)$, and the open circles are the remaining vertices. We can construct a Hamiltonian cycle from the bold lines.

As described above, we can construct a Hamiltonian cycle of $\operatorname{DBF}(d+1, n)$ by applying the construction to all $2^{n} B F(d+1, n)$'s included in $\operatorname{DBF}(d+1, n)$.

4. Cayley Graph Representation

It is known that the butterfly digraph is a Cayley graph on the wreath product of two cyclic groups [1]. Similarly, we show that the dihedral butterfly digraph can also be represented as a Cayley graph.

In this section, we use the other definition of the dihedral butterfly digraph for brevity. To avoid confusion, we write down the definition.

Definition 3: The dihedral butterfly digraph $\operatorname{DBF}(d, n)$ is defined as follows for integers $d, n \geq 1$, where $\Psi_{d}=$ $\{ \pm 0, \ldots, \pm(d-1)\}$:
$V(D B F(d, n))=\left\{\begin{array}{l|l}\left(x_{0} \cdots x_{n-1} ; i\right) & \begin{array}{l}x_{k} \in \Psi_{d}(0 \leq k<n), \\ i \in \mathbb{Z}_{n}\end{array}\end{array}\right\}$,
$A(D B F(d, n))$

$$
=\left\{\begin{array}{l|l}
\left(\left(x_{0} \cdots x_{i} \cdots x_{n-1} ; i\right),\right. & \begin{array}{l}
x_{i}^{\prime}=-x_{i} \text { or } \\
\left.\left(x_{0} \cdots x_{i-1} x_{i}^{\prime} x_{i+1} \cdots x_{n-1} ; i \oplus_{n} 1\right)\right)
\end{array} \\
x_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)|x|, \\
x \in \Psi_{d}
\end{array}\right\} .
$$

Then, we discuss the main result in this section. We show the result in two ways, i.e., we obtain two different Cayley graph representations of the dihedral butterfly digraph.

Theorem 11: Let

$$
\begin{aligned}
& \Gamma=\mathbb{D}_{d} \prec \mathbb{Z}_{n}, \\
& \Delta=\left\{\begin{array}{l|l}
(\omega, e, \ldots, e ; 1) & \begin{array}{l}
e \text { is the identity of } \mathbb{D}_{d} \\
\omega=\sigma^{k}(0 \leq k<d) \text { or } \tau
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Then $\operatorname{DBF}(d, n) \cong \operatorname{Cay}(\Gamma, \Delta)$.
Proof. We write $\pi \in \Gamma$ as

$$
\pi=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} ; \beta\right)
$$

where $\alpha_{k} \in \mathbb{D}_{d}(0 \leq k<n), \beta \in \mathbb{Z}_{n}$. (Then, the order of Γ is $\left|\mathbb{D}_{d}\right|^{n}\left|\mathbb{Z}_{n}\right|=(2 d)^{n} n$.) We state a mapping f from Γ to $V(D B F(d, n))$ such that $f(\pi)=x=\left(x_{0} \cdots x_{n-1} ; i\right)$ if we write $\alpha_{k}=\sigma^{a} \tau^{b}(0 \leq k<n), x_{k}=(-)^{b} a$, and $i=\beta$ $(0 \leq a<d, b=\{0,1\})$. The inverse can be written as $f^{-1}(x)=\pi$, where $\beta=i, \alpha_{k}=\sigma^{a} \tau^{b}(0 \leq k<n)$, and $a=\left|x_{k}\right|$. If $\operatorname{sgn}\left(x_{k}\right)$ is + , then $b=0$, and if $\operatorname{sgn}\left(x_{k}\right)$ is - , then $b=1$. Thus, f is a bijection.

Let $\rho \in \Delta$. A vertex π of $\operatorname{Cay}(\Gamma, \Delta)$ is adjacent to the vertex

$$
\begin{aligned}
\pi \rho & =\left(\alpha_{0}, \ldots, \alpha_{n-1} ; \beta\right)(\omega, e, \ldots, e ; 1) \\
& =\left(\alpha_{0}, \ldots, \alpha_{\beta-1}, \alpha_{\beta} \omega, \alpha_{\beta+1}, \ldots, \alpha_{n-1} ; \beta \oplus_{n} 1\right)
\end{aligned}
$$

We write $f(\pi)$ as $\left(x_{0} \cdots x_{\beta} \cdots x_{n-1} ; \beta\right), \quad f(\pi \rho)$ as $\left(x_{0} \cdots x_{\beta-1} x_{\beta}^{\prime} x_{\beta+1} \cdots x_{n-1} ; \beta \oplus_{n} 1\right)$, and $x_{\beta}=(-)^{b} a$, where $\alpha_{\beta}=\sigma^{a} \tau^{b}$. If $\omega=\tau, \alpha_{\beta} \omega=\sigma^{a} \tau^{b \oplus_{2} 1}$; thus, $x_{\beta}^{\prime}=(-)^{b \oplus_{2} 1} a=$ $-(-)^{b} a=-x_{\beta}$. This is equivalent to the inverse-sign condition of the adjacencies of $\operatorname{DBF}(d, n)$. If $\omega=\sigma^{k}(0 \leq k<d)$, $\alpha_{\beta} \omega=\sigma^{a} \tau^{b} \sigma^{k}=\sigma^{a \ominus_{d} k} \tau^{b}$; thus, $x_{\beta}^{\prime}=(-)^{b}\left(a \vartheta_{d} k\right)$. It follows that the sign of x_{β}^{\prime} is equal to that of x_{β} and is an element of Ψ_{d}. Therefore, these adjacencies are the same as remaining adjacencies of $\operatorname{DBF}(d, n)$. Hence, f preserves the adjacencies, as required.

The second representation is shown as follows.
Theorem 12: The dihedral butterfly digraph $\operatorname{DBF}(d, n)$ can be represented as a Cayley graph on the following group Γ and the generating set Δ :

$$
\begin{aligned}
\Gamma & =\left(\mathbb{Z}_{2} \times \mathbb{Z}_{d}\right)<\mathbb{Z}_{n}, \\
\Delta & =\left\{\begin{array}{l|l}
(\omega, e, \ldots, e ; 1) & \begin{array}{l}
\omega=(1,0) \text { or }(0, b) \quad\left({ }^{\vee} b \in \mathbb{Z}_{d}\right), \\
e=(0,0)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Proof. Let a vertex of $\operatorname{DBF}(d, n)$ be denoted $\left(x_{0} \cdots x_{n-1} ; i\right)$ and an element of group Γ be denoted $\left(\alpha_{0} \cdots \alpha_{n-1} ; \beta\right)$. We consider a mapping from Γ to $V(D B F(d, n))$ such that for
$\alpha_{k}=(a, b)$, if $a=0$, then $x_{k}=+|b|$, and if $a=1$, then $x_{k}=-|b|(0 \leq k<n)$, and $i=\beta$. Here, each letter x_{k} $(0 \leq k<n)$ of any vertex of $\operatorname{DBF}(d, n)$ has a sign + or - , and its absolute value is in \mathbb{Z}_{d}. Thus, it follows that there is a corresponding letter α_{k} that is an element of Γ. That is, if $\operatorname{sgn}\left(x_{k}\right)$ is + , then $\alpha_{k}=\left(0,\left|x_{k}\right|\right)$, and if $\operatorname{sgn}\left(x_{k}\right)$ is - , then $\alpha_{k}=\left(1,\left|x_{k}\right|\right)$. It follows that the strings $x_{0} \cdots x_{n-1}$ correspond to some $\alpha_{0} \cdots \alpha_{n-1}$. Since the level is $i \in \mathbb{Z}_{n}$ and β of an element of Γ is in \mathbb{Z}_{n}, there is at least one element of Γ corresponding to a vertex of $\operatorname{DBF}(d, n)$. Hence, this mapping is a surjection, and since the cardinalities of the two sets are equal, this mapping is a bijection.

We consider the adjacencies of $\mathrm{Cay}(\Gamma, \Delta)$. Action of an element of Δ to an element of Γ gives

$$
\begin{aligned}
& \left(\alpha_{0}, \ldots, \alpha_{n-1} ; \beta\right)(\omega, e, \ldots, e ; 1) \\
& \quad=\left(\alpha_{0}, \ldots, \alpha_{\beta-1}, \alpha_{\beta} \omega, \alpha_{\beta+1}, \ldots, \alpha_{n-1} ; \beta \oplus_{n} 1\right)
\end{aligned}
$$

This element is mapped to $\left(x_{0}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots\right.$, $x_{n-1} ; i \oplus_{n} 1$). We now discuss $\alpha_{\beta} \omega$ and x_{i}^{\prime}. We write $\alpha_{\beta}=(a, b)$ and $\omega=\left(a^{\prime}, b^{\prime}\right)$. Then $\alpha_{\beta} \omega=(a, b)\left(a^{\prime}, b^{\prime}\right)=$ $\left(a \oplus_{2} a^{\prime}, b \oplus_{d} b^{\prime}\right)$. If $\omega=\left(0, b^{\prime}\right), b \oplus_{d} b^{\prime}$ can take any value in \mathbb{Z}_{d} because b^{\prime} can take any value in \mathbb{Z}_{d}. Hence, $\alpha_{\beta} \omega=(a, c)$ $\left({ }^{\forall} c \in \mathbb{Z}_{d}\right)$. This is equivalent to the condition that x_{i}^{\prime} is any element of Ψ_{d} with $\operatorname{sgn}\left(x_{i}^{\prime}\right)=\operatorname{sgn}\left(x_{i}\right)$. On the other hand, if $\omega=(1,0), \alpha_{\beta} \omega=\left(a \oplus_{2} 1, b\right)$. This is equivalent to the inverse-sign condition. For the reason described above, the adjacencies are preserved; thus, $\operatorname{DBF}(d, n) \cong \operatorname{Cay}(\Gamma, \Delta)$.

Note that \mathbb{D}_{d} and $\mathbb{Z}_{2} \times \mathbb{Z}_{d}$ are not isomorphic, since \mathbb{D}_{d} is not commutative but $\mathbb{Z}_{2} \times \mathbb{Z}_{d}$ is commutative.

Corollary 4: $\operatorname{DBF}(d, n)$ is vertex-transitive.

5. Conclusion

In this paper, we define a new class of graphs called dihedral butterfly digraphs, and we derive some of their fundamental properties, such as the diameter, connectivity, and Hamiltonicity. The dihedral butterfly digraph has many analogies to the butterfly digraph since the definition of the dihedral butterfly digraph is given as an extension of the butterfly digraph.

It is known that the butterfly digraph can be represented as a Cayley graph on the wreath product of two cyclic groups. Similarly, we show that the dihedral butterfly digraph can also be represented as a Cayley graph in two ways.

Our future subjects of research will include Hamiltonian cycle decomposition and applications to signal processing.

Acknowledgements

This research has been partly supported by a Grant-inAid for Scientific Research (c) (2) (No.16500006) from the Japan Society for the Promotion of Science. The authors
are grateful to the anonymous referees for their constructive suggestions for improving the manuscript.

References

[1] F. Annexstein, M. Baumslag, and A.L. Rosenberg, "Group action graphs and parallel architecture," SIAM J. Comput., vol.19, no.3, pp.544-569, 1990.
[2] J.-C. Bermond, E. Darrot, O. Delmas, and S. Perennes, "Hamilton circuits in the directed wrapped Butterfly network," Discrete Appl. Math., vol.84, no.1, pp.21-42, 1998.
[3] T. Böhme, F. Göring, and J. Harant, "Menger's theorem," Journal of Graph Theory, vol.37, no.1, pp.35-36, 2001.
[4] A. Kerber, "Representations of permutation groups I.," Lecture Notes in Mathematics, vol.240, 1971.
[5] F.T. Leighton, "Introduction to parallel algorithms and architectures: Arrays trees hypercubes, computer science," Morgan Kaufmann, San Mateo, CA, 1992.
[6] W. McCuaig, "A simple proof of Menger's theorem," Journal of Graph Theory, vol.8, no.3, pp.427-429, 1984.

Haruaki Onishi received his B.E. degree in computer science from Gunma University, Japan, in 2006. He is currently a masters course student at the graduate school of Gunma University. His research interests include graph theory and its applications, particularly algebraic graphs including Cayley graphs and coset graphs.

Yuuki Tanaka received his B.E., M.E. and Ph.D. degrees in computer science from Gunma University, Japan, in 2001, 2003, and 2006, respectively. He has been with the Advanced Technology Research Center, Gunma University since 2006. His research interests include graph theory and its applications, particularly Cayley graphs and de Bruijn graphs.

Yukio Shibata received his B.E. degree in communication engineering, and M.E. and Ph.D. degrees in electrical engineering from Waseda University in 1968, 1970, and 1973, respectively. He joined Gunma University in 1973 and has been a professor there since 1993. He is now with the Department of Computer Science and is engaged in studies of graph theory and its applications, particularly the isomorphic factorization of graphs, de Bruijn graphs and their application to interconnection networks, and the diagnosis of systems. He is a member of IPSJ, IEEE and AMS.

[^0]: Manuscript received March 28, 2007.
 Manuscript revised August 1, 2007.
 ${ }^{\dagger}$ The authors are with the Department of Computer Science, Graduate School of Engineering, Gunma University, Kiryu-shi, 376-8515 Japan.
 ${ }^{\dagger}$ The author is with the Advanced Technology Research Center, Gunma University, Kiryu-shi, 376-8515 Japan.
 a) E-mail: onishi@msc.cs.gunma-u.ac.jp

 DOI: 10.1093/ietfec/e91-a.2.613

