Longitudinal response functions of \(^3\)He and \(^3\)H by Lorentz kernel transformations

S. Martinelli, H. Kamada, G. Orlandini, and W. Glöckle

\(^1\)Dipartimento di Fisica, Università di Trento, I-38050 Povo (Trento), Italy
\(^2\)Institut für Theoretische Physik II, Ruhr Universität Bochum, D-44780 Bochum, Germany

(Received 25 May 1995)

The longitudinal response functions of three-body nuclei are obtained from the inversion of their integral transforms with a Lorentz kernel. The full dynamics of initial and final states is treated within this method. Results are in excellent agreement with those of previous quite different calculations. A comparison with experimental data is also presented.

PACS number(s): 21.45.+v, 25.30.Fj

I. INTRODUCTION

Inclusive electron scattering on nuclei leads to nuclear continuum states. Already for three nucleons the boundary conditions of those states are quite complex [1], not to speak of a larger number of particles. For three nucleons the continuum has been mastered [2] and already applications to inelastic electron scattering on three-nucleon ground states have appeared [3,4]. Nevertheless a method which relies on bound state techniques, avoiding asymptotic boundary conditions of oscillatory nature or related singularity structures in momentum space treatments, would be welcome.

Two attempts in this direction have been done to calculate inclusive scattering response functions. One relies on a Stieltjes transform [5], the other on a Laplace transform [6]. Both are still plagued by the ill posed nature of the corresponding inverse transformations. Nevertheless they have been already successfully applied [6,7] to inelastic scattering on the \(^3\)He particle and \(^3\)He, thereby treating the nuclear dynamics in its full complexity. The transforms of both the theoretical and experimental responses have been compared to each other. This provided very important information through the insight that in the cases studied final state interactions were absolutely mandatory. Though that useful information was obtained without transforming into the energy space the direct view onto the measured responses should be the aim.

In Ref. [8] an integral transform with a Lorentz kernel was proposed and tested in a soluble case, i.e., the deuteron. The particular shape of the kernel which does not spread the information about the response function, but averages it in a more or less narrow range, has allowed the inversion with great accuracy. Encouraged by that work we have now performed a realistic study of inclusive electron scattering on the \(^3\)N bound states. Realistic forces are employed and the predictions are compared both to results obtained with a more direct method and to data.

The theoretical formulation will be given in Sec. II and our results in Sec. III. We finish with a brief outlook.

II. THEORETICAL FORMULATION

We start by reviewing briefly the initial steps of the integral transform with a Lorentz kernel as introduced in [8]. Let

\[
R(\omega) = \sum_{f \neq 0} |\langle f | \hat{\mathcal{O}} | 0 \rangle|^2 \delta(\omega + E_0 - E_f) \tag{1}
\]

be an inelastic response function, where |0\rangle and |f\rangle are eigenstates to the underlying Hamiltonian \(H\) with energies \(E_0\) and \(E_f\), respectively. Then the transformation with a Lorentz kernel is defined by

\[
\Phi(\sigma_R, \sigma_f) = \int_{\omega_0}^{\infty} d\omega \frac{R(\omega)}{\sigma_f^2 + (\omega - \sigma_R)^2}, \tag{2}
\]

where \(\omega_0\) corresponds to the lowest inelastic threshold. Inserting (1) into (2) yields

\[
\Phi(\sigma_R, \sigma_f) = \sum_{f \neq 0} \left| \langle f | \hat{\mathcal{O}} | 0 \rangle \right|^2 \frac{1}{\sigma_f^2 + (E_f - E_0 - \sigma_R)^2} = \langle 0 | \hat{\mathcal{O}} \rangle \frac{1}{H - E_0 - \sigma_R - i\sigma_f} \frac{1}{H - E_0 - \sigma_R + i\sigma_f} \langle 0 | \hat{\mathcal{O}} | 0 \rangle - \left| \langle 0 | \hat{\mathcal{O}} | 0 \rangle \right|^2. \tag{3}
\]

The transform \(\Phi(\sigma_R, \sigma_f)\) is the sum of an elastic contribution and a norm \((\Psi_0 | \Psi_0)\), with \(|\Psi_0\rangle\) defined by

\[
|\Psi_0\rangle = \frac{1}{H - E_0 - \sigma_R + i\sigma_f} \hat{\mathcal{O}} | 0 \rangle. \tag{4}
\]

For \(\sigma_f \neq 0\) the asymptotic behavior of \(|\Psi_0\rangle\) is exponentially damped like for a bound state. Obviously \(|\Psi_0\rangle\) obeys the inhomogeneous equation

\[
(H - E_0 - \sigma_R + i\sigma_f) |\Psi_0\rangle = \hat{\mathcal{O}} | 0 \rangle. \tag{5}
\]
Let us now regard the case of three nucleons and use the Faddeev scheme. For

\[H = H_0 + \sum_i V_i \]
(6)

\((V_i\) being the pair interactions in usual odd man out notation) and assuming a single particle operator

\[\hat{\mathcal{O}} = \sum_i \hat{\mathcal{O}}_i. \]
(7)

we can rewrite Eq. (4) as

\[|\Psi_0\rangle = \frac{1}{E_0 + \sigma_R - i \sigma_I - H_0} \sum_i V_i |\Psi_0\rangle \]
\[- \frac{1}{E_0 + \sigma_R - i \sigma_I - H_0} \sum_i \hat{\mathcal{O}}_i |0\rangle. \]
(8)

This defines Faddeev components as

\[|\Psi_0\rangle = \sum_i |\psi_i\rangle. \]
(9)

Since the particles are identical only one Faddeev component is needed and the other two result by the sum of a cyclical and anticyclical permutation \(P\). Thus

\[|\Psi_0\rangle = (1 + P)|\psi\rangle, \]
(10)

with

\[|\psi\rangle = \frac{1}{E_0 + \sigma_R - i \sigma_I - H_0} V_1 |\Psi_0\rangle \]
\[- \frac{1}{E_0 + \sigma_R - i \sigma_I - H_0} \hat{\mathcal{O}}_1 |0\rangle. \]
(11)

Replacing \(|\Psi_0\rangle\) by (10) and performing the standard steps one gets

\[|\psi\rangle = G_{0t_1} P |\psi\rangle - (G_0 + G_{0t_1} G_0) \hat{\mathcal{O}}_1 |0\rangle, \]
(12)

with the free propagator

\[G_0 = \frac{1}{E_0 + \sigma_R - i \sigma_I - H_0} \]
(13)

and the NN t operator defined by

\[t_1 = V_1 + V_1 G_0 t_1. \]
(14)

Equation (12) is an inhomogeneous Faddeev equation, evaluated at the complex energy \(E_0 + \sigma_R - i \sigma_I\). Once the Faddeev amplitude \(\psi\) has been determined we get

\[\Phi(\sigma_R, \sigma_I) = 3 \langle \psi | (1 + P) |\psi\rangle - \frac{|\langle 0 | \hat{\mathcal{O}}_1 |0\rangle|^2}{\sigma_I + \sigma_R}, \]
(15)

where the factor 3 results from the antisymmetry of \(|\Psi_0\rangle\).

As an application we now regard inelastic electron scattering on \(^3\)He and \(^3\)H and concentrate on the longitudinal response function \(R(\omega, |\hat{Q}|)\) at fixed momentum transfer \(|\hat{Q}|\), driven by the density operator \(\hat{\mathcal{O}} = \rho\). We solve the inhomogeneous Faddeev equation by our standard tools in momentum space [1,9]. In the partial wave decomposition we keep the \(NN\) force only in the dominant states \(^1S_0\) and \(^3S_1 - ^3D_1\). However, we include states of total \(3N\) angular momenta up to \(15/2^+\). We have checked that higher angular momenta give negligible contributions. The resulting set of two-dimensional integral equations are solved precisely with a typical accuracy of about 1%. We use the simplest single nucleon operator without relativistic corrections as described in Refs. [3,4]

\[\rho = \sum_{i=1}^Z F_p e^{i \hat{Q} \cdot \hat{r}_i} + \sum_{j=1}^N F_n e^{i \hat{Q} \cdot \hat{r}_j}, \]
(16)

where the Gari-Krümpelemann [10] parametrization has been used for \(F_p\) and \(F_n\) representing the proton and neutron form factors.

The explicit form of the partial wave representation of \(\rho\) applied on the \(3N\) bound state \(|0\rangle\) in momentum space is given in [11]. Since \(\rho\) breaks isospin we include states of total isospin \(T = 1/2\) and \(3/2\). The Coulomb force between the two protons is neglected. For the \(3N\) bound state we use consistently just the five channel solutions of the corresponding Faddeev equations.

FIG. 1. The Lorentz transform of the longitudinal response function of \(^3\)He at \(|\hat{Q}| = 300\) MeV/c \((\sigma_I = 10\) MeV); (a) the total sum of all channels contributions; (b) single channel contributions.
FIG. 2. The monopole contribution to the longitudinal response function of 3He at $|\vec{Q}|=300$ MeV/c, for different values of σ_f. The results are compared with those obtained in Ref. [14] (diamonds).

III. RESULTS AND DISCUSSION

In Ref. [11] we have shown that the longitudinal response function has little sensitivity to the choice of the NN force. Therefore here we restrict ourselves to the Reid [12] and Bonn-B [13] NN forces.

The inhomogeneous Faddeev equation has to be solved for each total $3N$ angular momentum J and the two parities separately. $\Phi(\sigma_R,\sigma_f)$ is then obtained from Eq. (3) summing up all partial amplitudes.

In Fig. 1(a) we show $\Phi(\sigma_R,\sigma_f)$ for $\sigma_f = 10$ MeV as a function of σ_R and for $|\vec{Q}| = 300$ MeV/c. In this example the Reid potential has been used. One can notice how the form of the transform resembles that of $R(\omega,|\vec{Q}|)$, with the typical quasielastic peak around $|\vec{Q}|^2/2M \approx 50$ MeV. Of course this is expected because of the bell shaped nature of the kernel.

Since $R(\omega,|\vec{Q}|)$ builds up additively out of the different J^π contributions, one could generate them separately out of the corresponding Φ amplitudes. In Fig. 1(b) some of these amplitudes are shown for J^π ranging from 1/2$^+$ to 9/2$^+$. One sees that the shapes of the transforms are very similar in all cases but in the channel $J^\pi = 1/2^+$. This corresponds to the monopole part of the operator and it is directly connected to the three nucleon ground state. So it is wise to add first all J^π contributions up to 15/2$^-$ except for 1/2$^+$ and then invert that sum and the 1/2$^+$ piece separately. This same procedure was applied successfully in Ref. [8]. The second term in (15) is present only in the state 1/2$^+$. In this case the cancellation between the two terms may be delicate. We notice that the second term can be replaced identically by $-9|\langle 0|\psi \rangle|^2$. This is the way we actually determine Φ for $J = 1/2^+$, which is superior since the Faddeev component $|\psi \rangle$ acts like a projector on five channels for the ground state. If we did not make this replacement the full bound state $|0\rangle$ with an infinite number of channels should have been taken into account.

The inversion follows the way proposed in [8]. We expand the structure function in a set of functions $\chi_n(\omega)$

$$ R(\omega,|\vec{Q}|) = \sum_{n=1}^{N} a_n \chi_n(\omega), $$

(17)

with

$$ \chi_n(\omega) = \omega^{n-1/2} e^{-\omega/E_0}. $$

(18)

This leads to

$$ \Phi(\sigma_R,\sigma_f) = \sum_{n=1}^{N} a_n \xi_n(\sigma_R,\sigma_f), $$

(19)

with

$$ \xi_n(\sigma_R,\sigma_f) = \int_{\Delta_n} d\omega \frac{\chi_n(\omega)}{\sigma_f^+ + (\omega - \sigma_R)^2}. $$

(20)

FIG. 3. The longitudinal response function of 3He at $|\vec{Q}|=300$ MeV: dependence on the number of basis functions; (a) monopole contribution; (b) sum of all other amplitudes.
For fixed σ_j the $(N+1)$ parameters a_n and E_0 are optimized to represent $\Phi(\sigma_R, \sigma_I)$ for I values of σ_R with $I \geq N$. We have calculated $\Phi(\sigma_R, \sigma_I)$ for σ_I ranging from 5 to 25 MeV in steps of 5 MeV and for σ_R from 1.25 to 200 MeV in $I = 100$ points.

We have found that the functions resulting from this inversion procedure are independent on the values of σ_I. An example can be seen in Fig. 2, where the monopole contribution to $R(\omega, \hat{Q})$ of 3He is shown for different values of σ_I. Therefore in the following we will present results for the fixed value of $\sigma_I = 10$ MeV.

In Fig. 3 the typical quality of the convergence in N of the results is shown, both for the monopole part and for the rest of the amplitudes considered. The range of variation of the curves from $N = 4$ to $N = 7$ in the former case and from $N = 4$ to $N = 8$ for the latter gives an estimate of the magnitude of the error in our results. Higher values of N give rise either to a sudden transition to unphysical oscillations, as is shown in Fig. 3(a) for the case of $N = 7$ (which is of course rejected), or to response functions which are not positive in the whole range considered. The natural limit in the number of basis functions is clearly given by the accuracy of the transform.

Before proceeding to show the total result, Fig. 3(b) deserves further comment. All curves present some kind of almost stable oscillations at low energy. However, their
“wavelength” seems to be smaller than the resolution σ_1 of the
kernel. So they are presumably to be considered unphysical
since, in addition, no such structures are seen in the trans-
form (see Fig. 1).

The sum of the two contributions to the response function
is shown in Fig. 4(a). The curve corresponding to $N = 6$ has
been chosen for the reasons mentioned above. Nevertheless a
sort of shoulder shows up at low energy. In the same figure
and also in Fig. 2 the present results are compared with those
obtained in a totally different way in Ref. [14], i.e., using
directly the continuum. The agreement is almost perfect but
for the first and maybe the last point, i.e., just in the regions
where the inversion seems to be affected by larger uncertain-
ties.

As to the low energy part of the spectrum one could try to
improve the situation using the results on the Stieltjes trans-
form [5,15] or applying the following procedure. Since the
low energy behavior of the result in Fig. 3(b) is rather un-
certain and since, as it was also shown in Ref. [8], the mono-
pole contribution will dominate the response up to about
15–20 MeV above threshold, one could obtain the total re-
sponse matching the pure monopole part at lower energies
and the total sum at higher ones (we choose in this case
$N = 7$) at some point between 15 and 20 MeV above thresh-
hold. The result of this procedure is shown in Fig. 4(b) where
a nice agreement is obtained also for the first point of the
direct calculation.

In Figs. 5 and 6 our predictions obtained with the Bonn-B
potential for both 3He and 3H are compared to experimental
data for $|\vec{Q}| = 250$ MeV/c and $|\vec{Q}| = 300$ MeV/c. One can
see an overall satisfactory agreement, except in the peak of
3H at $|\vec{Q}| = 250$ MeV/c and of 3He at $|\vec{Q}| = 300$ MeV/c.

In conclusion we have shown that obtaining the response
function of the three body systems from the inversion of a
Lorentz kernel integral transform is a feasible task. The re-
sults are in excellent agreement with those obtained with the
direct method and in rather good accord with experimental
data. While the results do contain the full dynamics of both
initial and final states the lengthy calculation of the conti-
nuum is avoided.

The present method has been applied within a completely
nonrelativistic framework and the good agreement with the
experimental data suggests that at these values of $|\vec{Q}|$
relativistic corrections are of minor importance. Results at larger
momentum transfer could also be obtained in the same way,
provided that higher J^π components are included in the solu-
tion of Eq. (5). One could then explore at which values of
$|\vec{Q}|$ relativistic effects would begin to become significant.
Work along these lines is in progress.

ACKNOWLEDGMENTS

We would like to thank Dr. J. Golak for providing theo-
retical responses for comparison. Two of us (S.M. and G.O.)
would like to thank Dr. W. Leidemann and Professor V. Efros
for helpful discussions.

[1] See, for instance, W. Glöckle, The Quantum Mechanical Few-
Cimento A 107, 305 (1994); J. Golak, H. Kamada, H. Witała,
949 (1985)]; V. D. Efros, W. Leidemann, and G. Orlandini,
[9] W. Glöckle, in Models and Methods in Few Body Systems,
edited by L. S. Ferreira, A. C. Fonseca, and L. Streit, Lecture
W. Glöckle, in Computational Nuclear Physics 1, Nuclear
Structure, edited by K. Langanke, J. A. Maruhn, and S. E.