表層の電気結合で発生する高温のディーゼルエンジン

<table>
<thead>
<tr>
<th>著者</th>
<th>番地</th>
<th>年</th>
<th>番地</th>
<th>番地</th>
<th>番地</th>
</tr>
</thead>
</table>

doi: 10.1063/1.1580991
Large frequency dependence of lowered maximum dielectric constant temperature of LiTaO₃ nanocrystals dispersed in mesoporous silicate

Shigemi Kohiki, Shinichiro Nogami, Shintaro Kawakami, Syozo Takada, Hirokazu Shimooka, and Hiroyuki Deguchi
Faculty of Engineering, Kyusyu Institute of Technology, Kita-kyusyu 804-8550, Japan

Masanori Mitome
Advanced Materials Laboratory, National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan

Masaoki Oku
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 21 October 2002; accepted 5 April 2003)

A large frequency dependence of the maximum dielectric constant temperature was observed for LiTaO₃ nanocrystals (the diameter ≈20 Å) dispersed in mesoporous silicate. At the applied field frequency of 100 kHz, the maximum temperatures in the real and imaginary parts were 365 and 345 °C, respectively. The maximum temperature in the real part is apparently lower than the paraelectric–ferroelectric transition temperature of bulk LiTaO₃. The maximum temperature in the imaginary part rose from 285 to 420 °C with increasing frequency from 10 to 1000 kHz. Since the bulk LiTaO₃ shows no relaxor behavior, such superparaelectric behavior is obviously a consequence of nanominiaturization of LiTaO₃ crystal and insignificant cooperative interactions between the nanoparticles. © 2003 American Institute of Physics.

DOI: 10.1063/1.1580991

Size effects of ferroelectrics have been of great interest in science and technology.¹⁻⁶ We have already reported that the maximum dielectric constant temperatures T_m for nanocrystals of BaTiO₃ and SrBi₂Ta₂O₉ dispersed in mesoporous silicate lowered from 130 to 60 °C and from 310 to 180 °C, respectively.⁷⁻⁹ Such lowering of T_m from the paraelectric–ferroelectric transition temperature T_c of the bulk ferroelectrics suggests that the nanocrystals have a single domain structure and are in the superparaelectric state. Though, there has been no report on frequency (f) dependence of T_m as an indication of the superparaelectric state for nanominiaturized ferroelectrics. In order to confirm the f dependence of lowered T_m for nanosized ferroelectrics with insignificant cooperative effects between the particles, we prepared a diluted system of LiTaO₃ nanocrystals (d ≈20 Å) dispersed in mesoporous silicate since LiTaO₃ has a higher T_c and a larger spontaneous polarization than those of BaTiO₃ and SrBi₂Ta₂O₉.¹⁰¹¹ Because of the high stability of ferroelectric phase of LiTaO₃, the LiTaO₃ nanocrystals are promising for developments of low-power nonvolatile memory devices and low-field optical switching devices of Pb free ferroelectrics.¹²⁻¹⁴

An assembly of LiTaO₃ nanocrystals was fabricated by using mesopores of the MCM-41 molecular sieve¹⁵⁻¹⁷ as a growth template. By filling the mesopores with nanosized LiTaO₃ crystals, we can realize a diluted system of ferroelectric nanodots with a large dielectric constant (ε) separated by an amorphous SiO₂ matrix with a small ε. For preparation of the diluted assembly of LiTaO₃ nanocrystals the MCM-41 was soaked in the 0.01 mol/l lithium chloride and tantalum chloride, and then calcined at 850 °C. The assembly exhibited no peak from LiTaO₃ crystal in x-ray diffraction with a Rigaku CN2013 diffractometer using a Cu tube, while bulk powders obtained from the solution with the same conditions exhibited the diffraction peaks of LiTaO₃ crystal. Therefore, the assembly contains no bulk particle of LiTaO₃.¹⁸ A representative image shown in Fig. 1 with a JEOL JEM-3000F transmission electron microscope operated at 300 kV demonstrates that the diameter of a fine particle was ≈20 Å. Since the particle was so fine, we could not obtain a clear electron diffraction pattern, though we detected Li and Ta elements contained in the particle.¹⁹ By energy-dispersive x-ray (EDX) analysis, the assembly contained approximately 0.8 mol % LiTaO₃.

Figure 2 shows the lowering of T_m in the real part of dielectric constant $\varepsilon'(T)$ by 280 °C from 645 (the bulk T_c) to 365 °C for the LiTaO₃ nanocrystals. Since the size of the nanocrystal is evidently smaller than the ferroelectric domain size, it is readily understood that the nanocrystals have a single domain structure and are in the superparaelectric state.

FIG. 1. Bright-field image of a LiTaO₃ nanocrystal in the amorphous SiO₂ matrix. Uncertainties exist in the measurement of the particle size due to fuzzy particle boundary.

¹Electronic mail: kohiki@che.kyutech.ac.jp
above assembly, the system exhibits a paraelectriclike behavior of the polarization direction of individual nanocrystals in the paraelectric state. In a single domain nanocrystal, there is no nanocrystal disappears and the system reaches the intrinsic state. During the blocking temperature \(T_b \) separating the two states is defined as \(T \) at which \((1/f) = \tau \). The \(\tau \) varies exponentially

<table>
<thead>
<tr>
<th>(f) (kHz)</th>
<th>(T_b) (°C)</th>
<th>(U) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>285</td>
<td>0.887</td>
</tr>
<tr>
<td>50</td>
<td>324</td>
<td>0.866</td>
</tr>
<tr>
<td>100</td>
<td>345</td>
<td>0.859</td>
</tr>
<tr>
<td>500</td>
<td>393</td>
<td>0.833</td>
</tr>
<tr>
<td>1000</td>
<td>420</td>
<td>0.826</td>
</tr>
</tbody>
</table>

Two polarization states, \(+p \) and \(-p \), in a superparaelectric potential having double minima are separated by an activation energy barrier \(U \). The total dipole moment of the nanocrystal can thermally fluctuate with overcoming of \(U \), therefore, \(\varepsilon(T) \) is expected to depend on \(f \) with respect to the relaxation time \(\tau \). If \((1/f) > \tau \), the relaxation appears to be so fast and the assembly behaves like a paraelectric system. On the contrary, if \((1/f) < \tau \), the relaxation appears to be slow that quasistatic properties are observed (blocked state). The blocking temperature \(T_b \) separating the two states is defined as \(T \) at which \((1/f) = \tau \). The \(\tau \) varies exponentially

\[
\tau = \frac{1}{k_B T} \exp \left(\frac{U}{k_B T} \right)
\]

where \(k_B \) is the Boltzmann constant, \(T \) is the temperature, and \(U \) is the activation energy. The total dipole moment of the assembly of LiTaO₃ nanocrystals in a superparaelectric state for the LiTaO₃ nanocrystals. As shown in Fig. 3, \(T_m \) in \(\varepsilon''(T) \) of the assembly increased with \(f \) as expected for the superparaelectric state, while the bulk LiTaO₃ powders showed no change. Thus, \(T_b \) determined as \(T_m \) in \(\varepsilon''(T) \) reflects slow dynamics of the dielectric dipole moments in the superparaelectric state.

The \(U \) values listed in Table I were estimated with the equation

\[
T_b = U/k_B \ln(1/\tau_0 f)
\]

at the attempt time \(\tau_0 = 1 \times 10^{-12} \) s. Since \(U \) is approximately equal to the product of the Gibbs free energy density and the volume, the reduction of \(U \) from 0.887 to 0.826 eV led by the increase of \(T_b \) from 285 to 420°C implies that the free energy becomes smaller as \(T \) increased.

The LiTaO₃ nanocrystals demonstrated the superparaelectric nature of single domain ferroelectrics. The large \(f \) dependence of lowered \(T_m \) of the nanocrystals was brought about only by the nanominiaturization of LiTaO₃ crystal since the bulk LiTaO₃ shows no relaxor behavior.

One of the authors (S.K.) thanks the support from The Murata Science Foundation for this work, and helpful discussions of Dr. S. Fukushima (AML, NIMS) on EDAX. Another author (H.D.) thanks Professor Y. Murakami for helpful discussions on SR-XD. A part of this work was supported by “Nanotechnology Support Project” of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

18 We could observe weak signals can be indexed to LiTaO$_3$ (JCPDS No. 29-0836) buried in an intense background of the amorphous SiO$_2$ by synchrotron radiation x-ray diffraction at KEK-PF (Tsukuba, Japan).
19 The Li K energy-loss spectrum and the Ta L and M x-ray spectra were measured with a Gatan model-666 electron energy analyzer and ThermoNORAN VANTAGE EDX system equipped to the transmission electron microscope, respectively.