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Abstract 
 

Human motion analysis is an emerging research field for the video-based applications 

capable of acquiring and recognizing human motions or actions. The automaticity of 

such a system with these capabilities has vital importance in real-life scenarios. With 

the increasing number of applications, the demand for a human motion acquisition 

system is gaining importance day-by-day. We develop such kind of acquisition system 

based on body-parts modeling strategy. The system is able to acquire the motion by 

positioning body joints and interpreting those joints by the inter-parts inclination. 

Besides the development of the acquisition system, there is increasing need for a 

reliable human motion recognition system in recent years. There are a number of 

researches on motion recognition is performed in last two decades. At the same time, 

an enormous amount of bulk motion datasets are becoming available. Therefore, it 

becomes an indispensable task to develop a motion database that can deal with large 

variability of motions efficiently. We have developed such a system based on the 

structured motion database concept. In order to gain a perspective on this issue, we 

have analyzed various aspects of the motion database with a view to establishing a 

standard recognition scheme. The conventional structured database is subjected to 

improvement by considering three aspects: directional organization, nearest neighbor 

searching problem resolution, and prior direction estimation. In order to investigate 

and analyze comprehensively the effect of those aspects on motion recognition, we 

have adopted two forms of motion representation, eigenspace-based motion 

compression, and B-Tree structured database. Moreover, we have also analyzed the 

two important constraints in motion recognition: missing information and clutter 

outdoor motions. Two separate systems based on these constraints are also developed 

that shows the suitable adoption of the constraints. However, several people occupy a 

scene in practical cases. We have proposed a detection-tracking-recognition 

integrated action recognition system to deal with multiple people case. The system 

shows decent performance in outdoor scenarios. The experimental results empirically 

illustrate the suitability and compatibility of various factors of the motion recognition. 
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Chapter 1 

Introduction 



 

1 
Introduction 

 
 

1.1 Background 

 

It is expected that in near future human beings and intelligent robots live together in our 

society. Robots will move into our home, offices, and other places. It is then required that 

such a robot should perform its actions based on the human-like degree of vision. 

Therefore, it would be necessary for a robot to have learning mechanisms that would 

enable the robot to adapt to and operate in a dynamic environment, because it would be 

impossible to pre-program a robot with all possible world states that it might encounter. It 

would be more desirable to teach the robot through examples. Then probably users can 

make a demonstration of a task and the robot can learn to do it. For example, we can think 

of a table setting scenario described in [1] where a robot has to learn to recognize the plates, 

glasses and other objects. Then it has to learn to grasp them in a robust manner, and 

transport them to the correct location on the table. The robot should understand, from 

example, the glasses can go on top of plates but plates cannot go on top of glasses, etc. It is 

also to be noted that the objects could be in a different location each time. Therefore it is 

not enough just to imitate the motion trajectory. Robots can be taught to perceive the 

surrounding environment and perform tasks in several ways [1-10]. According to [11], 

there are two diametrically opposite ways to teach robots: Tell the robot in detail what it 

has to do or give the robots some learning strategy and let the robot figure out what the 

appropriate action is. The former strategy was common in the beginning and the robots 

were preprogrammed to operate in a specific and highly controlled environment and to 

perform some pre-specified tasks for which controls were specified [12]. Such an approach 

is not suitable when the robot is required to learn a new task, or when it needs to adapt to a 

changing environment.  

Moreover, it is difficult to program complex tasks in detail and specify exhaustively all 

new situations the robot might encounter [11]. An example of this is the Honda robot [13- 

14] that can walk, climb stairs and manipulate objects. It took nearly 10 years to program 
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the robot with these capabilities. On the other hand, learning strategies are meant to 

prepare robots to deal with new situations. The learning techniques such as reinforcement 

learning [15, 16, 5] and genetic algorithms [17] used so far have the capacity to learn 

anything theoretically but in practice their learning power is limited [11, 18]. A 

combination of programming and learning strategies can be found in [19] where a robot is 

programmed with a set of basic behaviors and is expected to learn to use these behaviors. 

This approach does not scale well in modeling higher-level behaviors [20]. 

As we pointed out earlier, robots are to become common in our daily lives. In such a 

scenario, a robust vision-based module is to be developed within the robot so that the 

learning and teaching methods of the robot may improve its performance, and it can deal 

with unforeseen circumstances by visual analysis. In order to implant the self-acquisition 

capability within a robot, it must gather sufficient information from the environment. In 

this context, the perception of the robot is limited to the recognition, understanding, and 

interpretation of human behaviors, in terms of human motions and actions. In this respect, 

it is necessary for a robot to recognize human behaviors irrespective of which direction it 

observes a human. Since the real scenario is a three-dimensional (3-D) space, an intelligent 

robot should also correspond to the pragmatic situation. Thus the example-based learning 

strategy can be comprehensively employed with huge number of motions or actions of 

several persons from a number of varying viewpoints. In this way, the robot can be able to 

deal with the view-invariant or view-independent human behaviors. For this reason, 

researches are concentrating on the view-invariant motion capture [21-23]. Therefore, the 

view-invariance property is very much essential whenever comes the matter of motion 

analysis. This task can be accomplished by applying a range of technologies and methods 

to provide imaging-based automatic inspection, process control and guidance for robots. 

The basic tasks within an intelligent robot system thus can be separated into a number of 

phases; robots are to learn from demonstrated examples, form an internal representation of 

the observed action, use the representation to recognize actions, and finally, take decision 

based on the recognized output and act upon the decision, or reproduce the observed 

actions in the form of motion acquisition. This process is illustrated in Fig. 1.1. 

 

1.2 Computer Vision-based System 

 

Visual analysis of human movements or motions is an emerging research in the computer 

vision domain. The background of these sorts of researches lies in the basic understandings 

of computer vision itself. In this section, the ins and outs of computer vision domain are 

discussed. The next sections describe the detail of a computer vision system. 
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Fig. 1.1 Basic tasks within an intelligent robot system 

 

1.2.1 Definition of computer vision 

 

Computer vision, basically a science and technology, or combination of sciences and 

technologies, is concerned with the computational understanding and use of visual 

information which exists in the images. As a scientific discipline, computer vision deals 

with the theory for building artificial systems that obtain information from images. In part, 

computer vision is analogous to the transformation of visual sensation into visual 

perception in biological vision. For this reason the motivation, objectives, formulation, and 

methodology of computer vision frequently intersect with knowledge about their 

counterparts in biological vision. Thus it can also be described as a complement of 

biological vision. In biological vision, the visual perception of humans and various animals 

are studied, resulting in models of how these systems operate in terms of physiological 

processes. Computer vision, on the other hand, studies and describes artificial vision 

systems that are implemented in software and/or hardware. Interdisciplinary exchange 

between biological and computer vision has proven increasingly fruitful for both fields. 

However, the goal of computer vision is primarily to enable engineering systems to model 

Observing  
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and manipulate the environment by using visual sensing.  

Computer vision begins with the acquisition of images. A camera produces a grid of 

samples of the light received from different directions in the scene. The position within the 

grid where a scene point is imaged is determined by the perspective transformation. The 

amount of light recorded by the sensor from a certain scene point depends upon the type of 

lighting, the reflection characteristics, and orientation of the surface being imaged, and the 

location and spectral sensitivity of the sensor. Using the imaging through digital cameras 

within digital computers, techniques are adopted to extract, characterize, and interpret 

information in visual images of a three-dimensional (3-D) world. However, images are 

sometimes interpreted in such a way to infer 3-D information from two-dimensional (2-D) 

images. The two-dimensional structure of an image or the three-dimensional structure of a 

scene must be represented so that the structural properties required for various tasks are 

easily accessible. Moreover, there are different sorts of imaging for interpretation and 

recognition of objects and scene contents. Some of these techniques and their analyses will 

be described in the latter chapters. 

 

1.2.2 Computer vision domains 

 

A significant part of artificial intelligence deals with autonomous planning or deliberation 

for systems which can perform mechanical actions such as moving a robot through some 

environment. This type of processing typically needs input data provided by a computer 

vision system, acting as a vision sensor and providing high-level information about the 

environment and the robot. Other parts which are sometimes described as belonging to 

artificial intelligence and used in relation to computer vision are pattern recognition and 

learning techniques. As a consequence, computer vision is sometimes seen as a part of the 

artificial intelligence field or the computer science field in general. Physics is another field 

that is strongly related to computer vision. A significant part of computer vision deals with 

methods which require a thorough understanding of the process in which electromagnetic 

radiation, typically in the visible or the infra-red range, is reflected by the surfaces of 

objects and is finally measured by the image sensor to produce the image data. The third 

field which plays an important role is neurobiology, specifically the study of the biological 

vision system. This has led to a coarse yet complicated description of how "real" vision 

systems operate in order to solve certain vision related tasks by studying extensively on 

visual stimuli in both human and animals. Yet another field related to computer vision is 

signal processing.   
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Fig. 1.2 Relation between computer vision and various other fields 

 

Many methods for processing of one-variable signals, typically temporal signals, can 

be extended in a natural way to processing of non-linear two-variable signals or 

multi-variable signals in computer vision. Beside the above mentioned views on computer 

vision, many of the related research topics can also be studied from a purely mathematical 

point of view based on statistics, optimization, or geometry so as to implement different 

methods realizing in various combinations of software and hardware, or to analyze how 

these methods can be modified in order to gain processing speed without losing too much 

performance. The fields, most closely related to computer vision, are image processing, 

image analysis, robot vision, and machine vision. There is a significant overlap in terms of 

techniques and applications they cover. This implies that the basic techniques that are used 

and developed in these fields are more or less identical. However, image processing and 

image analysis tend to focus on 2-D images, how to transform one image to another, e.g., 

by pixel-wise operations such as contrast enhancement, local operations such as edge 

extraction or noise removal, or geometrical transformations such as rotating an image. This 

characterization implies that image processing/analysis neither require assumptions nor 

produce interpretations about the image content. Computer vision tends to focus on the 2-D 

and 3-D scene projected onto one or several images, e.g., how to reconstruct the structure 

or other information about the scene from one or several images. Machine vision tends to 

focus on applications, mainly in industry, e.g., vision based autonomous robots and the 
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systems for vision based inspection or measurement. This implies that image sensor 

technologies and control theory are often integrated with the processing of image data to 

control a robot and that real-time processing is emphasized by means of efficient 

implementations in hardware and software. It also implies that the external conditions such 

as lighting can be and are often more controlled in machine vision than they are in general 

computer vision, which can enable the use of different algorithms. There is also a field 

called imaging which primarily focuses on the process of producing images, but sometimes 

also deals with processing and analysis of images. For example, medical imaging contains 

lots of work on the analysis of image data in medical applications. Finally, pattern 

recognition is a field which uses various methods to extract information mainly based on 

statistical approaches. A significant part of this field is devoted to applying these methods 

to various classification and recognition purposes. Sometimes for the accomplishment of a 

complete research, one might need image processing and/or image analysis at the first step, 

apply different methodologies to extract scene information, and finally interpret the 

extracted information for robots to take decisions by applying artificial intelligence. The 

above described fields constitute the domains of computer vision (See Fig 1.2).  

 

1.2.3 Typical tasks of computer vision 

 

Due to large variety of applications in the field of computer vision and in the fields relating 

computer vision, the fulfillment of those applications requires accomplishing diverse tasks. 

Some examples of typical computer vision tasks are presented below. 
 

a) Recognition 

The classical problem in computer vision, image processing and machine vision is that of 

determining whether or not the image data contains some specific object, feature, or 

activity. This task can normally be solved robustly and without effort by a human, but is 

still not satisfactorily solved in computer vision for the general case: arbitrary objects in 

arbitrary situations. The existing methods for dealing with this problem can at best solve it 

only for specific objects, such as simple geometric objects (e.g., polyhedrons, cube, etc.), 

human faces, human shapes, printed or hand-written characters, or vehicles, and in specific 

situations, typically described in terms of well-defined illumination, background, and pose 

of the object relative to the camera. Different varieties of the recognition problem are 

described in the literature: 
 

Recognition:   

One or several pre-specified or learned objects or object classes can be recognized, usually 
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with respect to their 2-D positions in the image or 3-D poses in the scene. The task of 

recognition may include either pose of any object or the activity the object engages. 
 

Identification:   

An individual instance of an object is recognized such as, identification of a specific 

person's face or fingerprint, or identification of a specific vehicle, etc. 
 

Detection:     

The image data is captured for the detection of specific condition. For example, detection 

of possible abnormal cells or tissues in medical images, or detection of a vehicle in an 

automatic road toll system. Detection based on relatively simple and fast computations is 

sometimes used for finding smaller regions of interest from a captured image which can be 

further analyzed by more computationally demanding techniques to produce a correct 

interpretation.  
 

However, several specialized tasks based on recognition also exist. Some of those are 

described below. 
 

Content-based image retrieval:  

It is a task of finding all the images in a larger set of images which have a specific content. 

The content can be specified in different ways, for example, in terms of similarity to a 

target image (query for all images similar to image X), or in terms of high-level search 

criteria given as text input (query for all images which contain many houses, taken during 

winter and have no cars in them).  
 

Pose estimation:  

Estimating the position or orientation of a specific object relative to a camera is a typical 

pose estimation problem. An application for this technique would be assisting a robot arm 

in grasping objects from a conveyor belt in an assembly line situation, or interpreting 

human poses in different situation for the robot to take suitable decisions.  
 

Optical Character Recognition (or OCR):  

It is very important in some cases to identify characters in the images of printed or 

handwritten texts, usually with a view to encoding the text in a suitable format for 

recognition and interpretation. Some of the most common applications of OCR are reading 

bank checks, letter mails, or credit-card slips. A bank-check reader may scan just the 

courtesy-amount field (where the amount of the check is written numerically) and a postal 

OCR system may scan just the address block on a mail piece. Other major applications are 

to handle a broader range of documents such as business letters, technical writings, and 
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newspapers. These systems are able to capture an image of a document page and separate 

the page into text regions and non-text regions.  
 

b) Motion estimation 

Several tasks relate to motion estimation, in which an image sequence is processed to 

produce an estimate of the velocity either at each point in the image or in the 3-D scene. 

Examples of such tasks are: 

Tracking: Following the movements of objects (e.g. vehicles or humans). 

Understanding: Recognizing the actions or activities performed by any subject.  

Ego-motion: Determining the 3-D rigid motion of the observer (e.g., a camera).  
 

c) Scene reconstruction 

Given one or (typically) more images of a scene, or a video, scene reconstruction aims at 

computing a 3-D model of the scene. In the simplest case, the model can be a set of 3-D 

points as feature points. More sophisticated methods produce a complete 3-D surface 

model. 
 

1.2.4 Applications for computer vision 

 

With the recent advancement in the computer vision field, there are numerous applications 

of computer vision which influence our life to a great extent. This sort of system has 

basically three major application areas: surveillance, control, and analysis. The 

surveillance area covers applications where one or more subjects are being tracked over 

time and possibly monitored for abnormal actions under specific situation. A classic 

example is the surveillance of a parking lot, where a system tracks humans to decide 

whether they may be about to commit a crime, e.g., stealing a car. The control area relates 

to applications where the captured motion is used to provide controlling functionalities. 

The analysis area is concerned with the detailed analysis of the captured motion data. This 

may be used in clinical studies of orthopedics patients, choreography of dance and ballet, 

help athletes understand and improve their performance in sports analysis, and so on. 

These systems would observe the skills of the pupils and make suggestions for 

improvement.  

Besides the aforesaid areas of applications, a number of other domains of vision-based 

applications are available. One of the domains of application is virtual reality. In order to 

create an object in a virtual space, one needs to first recover the body pose in the physical 

space. Application areas lie in interactive virtual worlds, with the internet as a possible 

medium. The development of interactive spaces on the internet is still in its infancy; it is in 
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the form of “chat rooms" where users navigate with icons in 2-D spaces while 

communicating by a text. A more enriched form of interaction with other participants or 

objects will be possible by adding gestures, head pose and facial expressions as cues. Other 

applications in this domain are games, virtual studios, motion capture for character 

animation (synthetic actors) and tele-conferencing. An important application area in the 

user interface domain involves social interfaces. Social interfaces deal with 

computer-generated characters, with “human-like" behaviors, who attempt to interact with 

users in a more personal way [27]. Alternative application areas in the user interface 

domain are sign-language translation, gesture driven control of graphical objects or 

appliances, and signaling in high-noise environments such as factories or airports. In the 

motion analysis domain, a possible application is content-based indexing of sports video 

footage; in a tennis context, one may want to query a large video archive with “give me all 

the cases where player X came to the net and volleyed". This would eliminate the need for 

a human to browse through a large data set. Other applications lie in personalized training 

systems for various sports. 

Other most prominent application field is medical computer vision or medical image 

processing. This area is characterized by the extraction of information from image data for 

the purpose of making a medical diagnosis of a patient. Generally, image data is in the 

form of MRI (Magnetic Resonance Imaging), microscopy images, X-ray images, 

angiography images, ultrasonic images, and CT (Computer Tomography). An example of 

information which can be extracted from such image data is detection of tumors, 

arteriosclerosis, any malign changes, or detection of abnormal status of inner organs of 

human body. It can also be measurements of organ dimensions, blood flow, etc. This 

application area also supports medical research by providing new information, e.g., about 

the structure of the brain, or about the quality of medical treatments. 

Another application area of computer vision is in industry. Here, information is 

extracted for the purpose of supporting a manufacturing process. One example is quality 

control where details or final products are being automatically inspected in order to find 

defects. Another example is measurement of position and orientation of details to be picked 

up by a robot arm. 

One of the newer application areas is autonomous vehicles, which include 

submersibles, land-based vehicles (small robots with wheels, cars or trucks), aerial vehicles, 

and unmanned aerial vehicles (UAV). The level of autonomy ranges from fully 

autonomous (unmanned) vehicles to vehicles where computer vision based systems 

support a driver or a pilot in various situations. Fully autonomous vehicles typically use 

computer vision for navigation, i.e. for knowing where it is, or for producing a map of its 
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environment (SLAM) and for detecting obstacles. It can also be used for detecting certain 

task specific events, e. g., a UAV looking for forest fires. Examples of supporting systems 

are obstacle warning systems in cars, and systems for autonomous landing of aircraft. 

Several car manufacturers have demonstrated systems for autonomous driving of cars, but 

this technology has still not reached a level where it can be put on the market. However, 

recently the computer vision system is employed in Intelligent Transport System (ITS) for 

various vehicle automations. 

 

1.2.5 Organization of a computer vision system 

The organization of a computer vision system is highly application dependent. Some 

systems are stand-alone applications which solve a specific measurement or detection 

problem, while other constitute a sub-system of a larger design which, for example, also 

contains sub-systems for control of mechanical actuators, planning, information databases, 

man-machine interfaces, etc. The specific implementation of a computer vision system also 

depends on if its functionality is pre-specified or if some part of it can be learned or modified 

during operation. There are, however, typical functions which are found in many computer 

vision systems. 

� Image acquisition: A digital image is produced by one or several image sensor which, 

besides various types of light-sensitive cameras, includes range sensors, tomography 

devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting 

image data is a 2-D image, a 3-D volume, or an image sequence. The pixel values 

typically correspond to light intensity in one or several spectral bands (gray images or 

color images), but can also be related to various physical measures, such as depth, 

absorption or reflectance of sonic or electromagnetic waves, or nuclear magnetic 

resonance.  

� Pre-processing: Before a computer vision method can be applied to image data in 

order to extract some specific piece of information, it is usually necessary to process 

the data in order to assure that it satisfies certain assumptions implied by the method. 

Examples are  

� Re-sampling in order to assure that the image coordinate system is correct.  

� Noise reduction in order to assure that sensor noise does not introduce false 

information.  

� Contrast enhancement to assure that relevant information can be detected.  

� Scale-space representation to enhance or reduce image structures at locally 

appropriate scales.  
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� Feature extraction: Image features at various levels of complexity are extracted from 

the image data for specific purposes. Typical examples of such features are  

� Primitive features such as lines, edges, and ridges;  

� Localized interest points such as corners, blobs or points;  

� Color-based features; 

� Texture-based features; 

� Shape-based features; 

� Motion features, etc. 

� Detection/Segmentation: At some point in the processing, a decision is made about 

which image points or regions of the image are relevant for further processing. 

Examples are  

� Selection of a specific set of interest points;  

� Segmentation of one or multiple image regions which contains a specific 

object of interest.  

� High-level processing: At this step, the input is typically a small set of data, for 

example a set of points or an image region which is assumed to contain a specific 

object. The remaining processing deals with, for example, 

� Verification that the data satisfy model-based and application specific 

assumptions; 

� Estimation of application specific parameters, such as object poses or object 

size;  

� Classifying a detected object into different categories. 

 

1.3 Human Motion Analysis 

 

The systematic analysis of human motion dates back at least to Aristotle. However, it was 

only in the late 19th century that sequences of photographs could be recorded at sufficient 

speed for vision-based motion analysis. Pioneers in this field of chronophotography were 

Marey [24] and Muybridge [25]. Their recordings allowed for qualitative and quantitative 

analysis of human motion. The shift to automatic human motion analysis largely found its 

origin in the work by Johansson [26], who placed reflective markers on human joints. He 

showed that such the representation enabled human observers to recognize human action, 

gender and viewpoint. These compact representations of human motion also proved to be 

suitable for automatic recovery and recognition of human motion. However, since markers 

are usually absent in the image sequences, we focus on markerless, vision-based analysis 
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of human movement. The analysis of images involving humans gains much interest in the 

recent years.  

Generally, the task of human motion analysis refers to tracking, estimation, and 

recognition. Some of these analysis tasks involve face recognition, hand gesture 

recognition, human activity recognition, and whole-body tracking. The strong interest in 

this domain has been motivated by the desire for improved man-machine interaction for 

which there exists many promising applications. The number of analyses was 

accomplished in the field of registering human body motion using computer vision. 

Various categories were defined to characterize those sorts of researches: kinetic and 

kinematic, model-based and non-model-based, 2-D approaches and 3-D approaches, one 

person or multiple persons, number of tracked limbs, distributed and centralized processing, 

various motion type assumptions (rigid, non-rigid, elastic), etc.  

Motion analysis of a human body usually involves the extraction of low-level feature, 

such as body part segmentation, joint detection and identification, and the recovery of 3-D 

structure from the 2-D projections in an image sequence. There are two typical approaches 

to the motion analysis of human body parts depending on if a priori shape models are 

used; non-model based and model-based. In each type of approach, the representation of 

human body parts evolves from stick figures to 2-D contours and to 3-D volumes as the 

complexity of the model increases [28]. The stick figure representation is based on the 

observation that human motion is essentially the movement of the supporting bones. The 

use of 2-D contours to represent the human body is directly associated with the projection 

of the human figure in images. Volumetric models, such as generalized cones, elliptical 

cylinders, and spheres, attempt to describe the details of a human body in 3-D and thus 

require more parameters for computation.  

Fig. 1.3 Categorization of human motion analysis 

Human Motion Analysis 

Body Structure Analysis Recognition 

Model Based Non-model Based State-Space Template Matching 
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However, for the task of recognition of human motions from an image sequence, 

researchers typically use one of the two types of approaches; approaches based on a 

state-space model or ones which use a template matching technique. In the first case, the 

features used for recognition have been points, lines, and 2-D blobs. Methods using 

template matching usually apply meshes of a subject image to identify a particular 

movement. A typical categorization scheme of human motion analysis is shown in Fig 1.3. 

We can deduce different taxonomies depending on the purpose of a system. We will focus 

on more general aspects such as the overall structure of a motion analysis system and the 

various types of information being processed. The functional structure of a comprehensive 

motion analysis system is shown in Fig. 1.4. 

Before a system is ready to process data it needs to be initialized; e.g., an appropriate 

model of the subject must be established. Next the motion of the subject is tracked. This 

implies a way of segmenting the subject from the background and finding correspondences 

between segments in consecutive frames. The pose of the subject’s body often needs to be 

estimated as this may be the output of the system, e.g., to control an avatar (the graphical 

representation of a human) in a virtual environment, or may be processed further by the 

recognition process. Some higher level knowledge, e.g., a human model, is typically used 

in pose estimation. The final process analyzes the pose or other parameters in order to 

recognize the actions performed by the subject. A system need not include all four 

processes, especially since many of the systems described in this survey are the researches 

in which only a method within one of the processes is investigated. Still, all systems can be 

described within the structure. 

 

 

Fig. 1.4 A general structure for systems analyzing human motion  

 

Initialization 

Tracking 

Pose Estimation 

Recognition 
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TABLE 1.1 

Typical assumptions imposed by motion capture systems 
 

Assumptions related to movements Assumptions related to appearance 

1. The subject remains inside the workspace Environment 

2. None or constant camera motion 1. Constant lighting 

3. Only one person in the workspace at the time 2. Static background 

4. The subject faces the camera at all time 3. Uniform background 

5. Movements parallel to the camera-plane 4. Known camera parameters 

6. No occlusion 5. Special hardware 

7. Slow and continuous movements  

8. Only move one or a few limbs Subject 

9. The motion pattern of the subject is known 1. Known start pose 

10. Subject moves on a flat ground plane 2. Known subject 

 3. Markers placed on the subject 

 4. Special colored clothes 

 5. Tight-fitting clothes 

 

Besides, human motion analysis systems also adopt various assumptions on the 

conditions for motion capture. The actual assumptions characterize various systems and 

provide a useful reference for evaluation. The typical assumptions may be divided into two 

classes: movement assumptions and appearance assumptions. The former concerns 

restrictions on the movements of the subject and/or the camera(s) involved. The latter 

concerns aspects of the environment and the subject. In TABLE 1.1, the relevant 

assumptions and their association with the two classes are listed. Some assumptions are 

very general and used in every system with a few exceptions: See, e.g., [29-31]. Some 

other assumptions simplify the motion or velocity calculation, tracking scheme, trajectory 

computation, distance calculation, subject or motion segmentation, camera calibration 

parameter estimation, and so on. Importantly, which assumptions a particular system uses 

depends on its goals. Generally the complexity of a system is reflected in the number of 

assumptions introduced; i.e., the fewer the assumptions, the higher the complexity.  

We have already noticed that the visual analysis of human motion comprises many 

aspects. In this thesis, we limit our focus to human motion acquisition and human motion 

recognition. The former is a model or feature extraction task where the aim is to model the 

human motions by determining the locations or angles of key joints in the human body 

given an image of a human figure, or deriving a kinematic model from the body 

movements. The latter is the process of labeling image sequences with action labels, which 
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is a classification task. Importantly, we do not consider the interpretation of the motion, 

which requires reasoning and is usually dependent on the specific application or 

application domain. For both the motion acquisition and the recognition task, we assume 

that a human figure in an image has been localized in a previous step. A part of human 

detection or human localization also falls inside our scope. However, we briefly discuss 

this topic in the following sections. 

 

1.4 State of the Art 

 

In this section we will discuss state of the art within motion analysis context. For the 

motion analysis carried out in an uncontrolled environment, the figure-ground 

segmentation relies mostly on motion data, since these are less dependent on various 

assumptions such as a known subject, known lighting, and different markers. For the same 

reason, object-based representation (i.e., point, box, silhouette, blob, etc.) is a natural way 

of representing images at a higher level. Due to uncertainty in the motion, pose estimation 

with no model or only an indirect use of a model can be used. The dynamic recognition 

approach is also widely used in such cases. An example of state of the art is the 3-D LSK 

(Local Steering Kernel) based system by Seo and Milanfar [32] where a novel feature 

representation is proposed that is derived from space-time 3-D LSKs, which capture the 

underlying structure of the data quite well, even in the presence of significant distortions 

and data uncertainty. In fact, 3-D LSKs measure the likeness of a voxel to its surroundings 

based on computation of a distance between points measured (along the shortest path) on a 

manifold defined by the embedding of the video data in 4-D. Second, we generalize a 

training-free nonparametric detection scheme to 3-D, which we developed earlier for 2-D 

object detection [33]. The state-of-the-art performance is reported on action category 

classification by using the resulting nearest neighbor classifier. In order to achieve better 

classification performance, we apply space-time saliency detection [36] to larger videos in 

order to automatically crop to a short action clip. However, with the extension of the 

method to a large-scale database requires significant improvement of computational 

complexity. An efficient database searching strategy can be adopted. 

However, if the application is more in the form of direct animation, e.g., avatar control, 

different methods are used. This type of application is carried out in an indoor setting 

where a number of assumptions may be introduced, e.g., known subject, known 

background, and known start pose. Then the appearance-based figure-ground segmentation 

methods are applied. To obtain good accuracy, direct use of a human model is usually used. 

As an example of state of the art, we consider the work by Wren et al. [34]. First of all, 
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they use the Pfinder algorithm [35] as the underlying tracking methods. It is a probabilistic 

method which segments the subject into a number of blobs and tracks those over time. This 

method has proven to be fast, robust, and able to directly estimate the positions of the head 

and hands, which are of great importance in control applications. They apply two Pfinder 

algorithms to obtain 3-D estimates of the hands and a head. Using a human model and 

kinematic constraints, they estimate the 3-D pose of the upper body. In the framework of a 

Kalman filter the model is predicted into the next frame to support the blob segmentation 

and tracking. The innovation of the Kalman filter is used to learn various motion patterns 

(behaviors) of the subject. These can then be incorporated into the filter to improve the 

state estimates and predictions, i.e., a better pose estimation result. 

In the cases where the motion analysis is carried out in well-controlled environments, a 

number of assumptions are supposed to be introduced. A detailed model of a human is built 

for interpreting the motion extracted data which are obtained while analyzing the human 

motions. An example of direct use of a model is the work by Gavrila and Davis [37]. They 

use a model-based approach to track a subject in 3-D. A recognition cycle goes as follows. 

Based on the current and previous states, the allowed intervals for each body parameter 

(e.g., joint angles) are predicted. For each combination of the 22 body parameters, the 

human model is synthesized from the cameras’ point of view. They compare edges between 

the synthesized model and the images and thereby (re)formulate the problem as a search 

problem—how to compare two edge images (a real image with a synthesized image). The 

search problem is solved using a robust variant of Chamfer matching. When they find the 

best fit (highest similarity measure), the model is updated using these parameters. They use 

four synchronized sequences from four different cameras and run the algorithm for each 

view. In order to obtain stable edges, they wear tight-fitting colored clothes. The high 

number of joints in their relatively detailed model, the four cameras, and relatively few 

assumptions make it a rather complex system which, to some extent, is able to estimate the 

pose of an entire subject. Although the aforesaid analysis-by-synthesis approach seems to 

be the right one, it is still rather slow and computationally demanding. Methods to prune 

the state space and faster optimization schemes are required.      

 

1.5 Problem Specification 

 

The focus of the thesis is on the design, development and evaluation of computer-assisted 

human-sensitive systems. The problem in hand is the recognition of human motions or 

actions based on video-to-video matching concept. Here, recognition is divided into two 

parts: motion localization or detection and motion classification. The motion detection 
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deals with separating a motion or an action of interest from the background in a target 

video by some sort of spatial or spatio-temporal localization of moving region which is 

formed in the process of the motion performed by a person. Meanwhile, the goal of motion 

classification is to classify a given motion query into one of several pre-specified 

categories (for instance, ten categories from the Avatar Dataset [38]: bend, carry, hop, 

jump, pickup, sit-down, stand-up, stomachache, walk, wave-hands). This research opens a 

vast area of applications where it supposed to be fit. We have considered various 

constraints of different applications, for example, robustness, accuracy, speed, simplicity, 

database structurization, computational ambiguity, memory requirement, worthy of 

practical implementation, clutteredness of a scene environment, missing of sufficient 

features or important information, presence of non-human objects, multiple persons within 

a scene, etc. This sort of analysis has made our research context wide and extensive. This 

work is intended to tackle both motion detection and recognition problems simultaneously 

by searching for a motion of interest within other “target” videos with only a single 

“query” video. We focus on a sophisticated feature representation with an efficient and 

reliable similarity measure, which also allows us to avoid the difficult problem of explicit 

motion estimation. To accomplish the assigned tasks, the emphasis is always on the above 

measures of performance evaluation.  

Though the target video may contain actions similar to the query, these might appear in 

completely different context. Examples of such differences can range from rather simple 

optical or geometric differences (such as, different clothes, lighting, motion speed, scale, 

and view changes) to more complex inherent structural differences. This contextual 

analysis is mainly within the scope of semantic study of motions. Thus it falls outside of 

our research context. 

 

1.6 Objectives and Contribution of the Thesis 

 

In this thesis, we propose a novel human motion recognition technique capable of efficient 

recognition. Our technique mainly deals with the task of recognition by constructing a 

structured motion database. The objective of our research is to recognize different types of 

motions captured from a number of viewpoints where those are performed in different 

surroundings, e.g., controlled indoor, synthesized, cluttered outdoor, etc. At the same time, 

our target is to make the system efficient by keeping the recognition time shorter, 

maintaining higher accuracy, dealing with the computational complexity, and making use 

of useful features of the motions. We also want to establish our recognition scheme as 

adaptable recognition scheme for computer vision systems. The integration of the various 
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characteristics with the recognition system remains our research objective. Moreover, we 

have introduced a motion acquisition scheme that makes an intelligent robot to acquire and 

learn motions directly from the observations, and take further decisions and actions.  

In this thesis, we make several contributions, which are summarized below. We 

consider the evaluation of our contributions as an important aspect. Therefore, we 

performed extensive experiments on various datasets. 

� We give an extensive overview of the related literature in human motion recognition. 

Moreover, we have also described the concept of motion database and its 

structurization for effective data searching and retrieval. We describe directions within 

each field and the advantages and limitations of different approaches, while focusing 

on recent work. (Chapters 2 and 3) 

� We discuss on the concept of human motion acquisition, and present various recent 

work on pose analysis. We propose an automatic human motion acquisition system for 

acquiring and understanding limb movements within the motion video. For this 

purpose, we derive a human model consisting of nine joints: neck, shoulders, elbows, 

hip, and knees. These joints are detected and the inter-joint angles are computed for 

acquisition. The motions are captured from frontal and side cameras. (Chapter 4)  

� We present a structured motion database approach to human motion recognition. In 

such an approach, the directional organization of motion database is adopted, and 

motion recognition of an unseen motion is obtained by searching the directional 

databases corresponding to the directional feature spaces. However, it has the 

drawbacks of recognizing the observed motion which is similar to several motions 

within the motion database. This is called boundary problem that occurs because of the 

mis-selection of neighboring motions in the retrieval process. We propose a novel 

resolution approach to this problem to improve the system’s performance. Nevertheless, 

the direction oriented approach searches all the directional feature spaces for similarity 

measurement. This leads to the ambiguous or unnecessary searching within the 

database. We have proposed a recognition scheme by pre-estimating the possible 

orientations of an unknown motion. Thus we are able to eliminate unnecessary 

searching load and make the system faster. (Chapter 5)  

� In realistic situations, overwriting motions or partial occlusion of the human body in a 

motion is quite common. In order to make use of the former motion information that is 

lost due to the overwriting problem, we propose a directional motion template based 

recognition system. Moreover, in real-life scenarios, the surrounding environment of a 

person is much cluttered with non-uniform background, along with subtle movements 

of background objects (e.g., trees, shadows, sky, sun, waves, etc.). Because of the 
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non-uniform nature of outdoor environment, the background, if not subtracted and 

handled properly, may vastly affect the system’s performance. We propose a 

recognition system that is able to cope with the clutteredness of the background by 

background modeling and flow estimation. (Chapter 6) 

� A practical case with the motion recognition system is the presence of multiple persons 

in a scene. We use HOG features to detect human objects, and track and accumulate 

motion features with a view to performing template-based motion recognition. (Chapter 

7) 

 

1.7 Thesis Outline 

 

Various human motion representation methods and the motion representation method 

employed in the current research are discussed in Chapter 2. Existing human motion 

recognition approaches and how we have adopted the motion recognition strategy using 

structured motion database are described in Chapter 3.  

Various pose estimation methods are analyzed, and a human motion acquisition scheme 

is proposed in Chapter 4. We analyze various aspects of structured motion database for 

efficient human motion recognition and the experimental results are also presented in 

Chapter 5.  In Chapter 6, we analyze various recognition constraints in terms of missing 

motion information and cluttered environment. In Chapter 7, we present a recognition 

system that can handle the situation where there exist multiple persons and non-human 

objects in a scene. 

In Chapter 8, we summarize our main contributions and discuss the strengths and 

limitations of our approaches. We also present some future directions of research in this 

chapter.  
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2 
Human Motion Representation 

 
 

2.1 Background 

 

In order to recognize various motions, a motion needs to be described compactly by some 

convenient representation. There are different forms of representations available, for 

example, point [39, 40], box [35, 41], silhouette [43-48], blob [49-51], shape [52-55], 

volume [56-62], and so on. We consider the task of representing human motion so that it 

can be easily manipulated for high-level processing. A large body of research has been 

carried out, mainly in recent years. However, in order to derive a suitable representation, 

motions are often needed to ensure that a system commences its operation with a correct 

interpretation of the current scene. This is called preprocessing, e.g., [63-64]. Some of the 

preprocessing may be performed offline prior to the start of operation, while other parts are 

preferably included as the first phase of operation. Preprocessing may be simplified by 

relying on some assumptions based on the context of application. Preprocessing mainly 

concerns segmentation of ROI, camera calibration, adaption to scene characteristics, and so 

on. The segmentation of the ROI can be obtained by thresholding or subtraction methods, 

background/foreground modeling, image-based morphological operations, or customized 

preprocessing techniques. However, for some computer vision systems, camera parameters 

often need to be known. These can be obtained through offline camera calibration, and for 

a stationary camera setup occasionally recalibration will suffice. If something in the setup 

regularly changes, a procedure for online calibration may be preferred as in [65]. However, 

all other systems are eventually based on offline calibration. Preprocessing to adapt the 

scene characteristics mainly relates to the appearance assumptions and the segmentation 

methods. In systems based on the assumptions, a typical offline preprocessing is carried 

out to find the thresholds and capture reference images which will be used during 

processing. In some systems, initialized parameters are used in an adaptive procedure to 

calculate (and update) scene characteristics on the fly [48]. However, rather going into 

detail of the preprocessing concepts, we concentrate on detail of various state of the art 
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techniques of motion representation. Since motion representation is completely application 

oriented task, it is wise to adopt one scheme which is feasible with the current motion 

capture system. At the same time, sufficient motion information must be presented to 

uniquely distinguish each motion uniquely.  

In this section, we first present the scope of this overview, and discuss related surveys 

within the motion or action representation context. In vision-based human motion 

recognition, motion representation can be regarded as a combination of feature extraction, 

and subsequent accumulation of these features for motion representation. We discuss two 

such kind of well-known motion representation schemes those are adopted in our work in 

Sections 2.2 and 2.3, respectively. Finally, we summarize the motion representation and its 

importance in brief in Section 2.4. 

 

2.1.1 Scope of the overview 

 

The area of human motion representation is closely related to other lines of research that 

extracts and segments human motion. Different motion representations are proposed. 

Ideally, the features that are extracted from the image sequences should be able to 

generalize over small variations in person appearance, background, viewpoints, and motion 

execution. At the same time, the representations must be sufficiently rich to allow for 

robust classification of the action. The temporal aspect plays an important role in the 

performance of actions. Some of the representations explicitly take into account the 

temporal dimension; others extract image features for each frame in the sequence 

individually. In this case, the temporal variations need to be dealt with in the classification 

step. Various taxonomies of motion representation are proposed and here we adopted the 

representation categorization illustrated in [66]. According to this, motion representations 

are divided into two categories: holistic representations and patch-based representations. 

The former encodes the visual observation as a whole. Holistic, or global, representations 

are powerful since they encode much of the information. However, in general they require 

more preprocessing, such as localization, background subtraction, or tracking. They are 

also more sensitive to viewpoint, noise and occlusions. When the domain allows for good 

control of these factors, holistic approaches usually perform well. On the other hand, 

patch-based, or local, representations describe the observation as a collection of 

independent patches. Such patches are often centered around spatio-temporal interest 

points. Since the number of interest points varies depending on the observation, a 

histogram of code-words is often used. This ensures that the feature vector has a fixed 

length, but the spatial and temporal information is discarded. Since global information 
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based motion representations require less detailed information than that of patch-based 

representations, the former can be easily adopted in different motion analysis applications. 

However, in many recent researches, a number of markers are attached to the subject to 

ease the motion capture process. Also, markers are used in many other sophisticated 

motion capture applications, where subtle changes of motions are needed to be tracked, 

especially for motion animation. Due to the inconvenience for the subject, computer vision 

systems allows for touch-free and pure capture mechanism. Therefore, we shall limit our 

scope on the markerless motion capture and representation. Moreover, we shall focus on 

those representations which make use of the image sequence, i.e., motion frame, 

comprising each motion, and, rather than analyzing each frame separately, it sequentially 

aggregates useful information from the successive motion frames. The approaches that 

analyze each frame as a distinct unit or consider local features individually within a motion 

fall outside the scope of this overview. In this overview, we will discuss mainly those 

approaches that can deal with a variety of motions with different spatial and temporal 

characteristics. 

 

2.1.2 Surveys 

 

There are several existing surveys within the area of vision-based human motion analysis 

and motion representation. Recent overviews in [67-69] focus on the vision-based motion 

analysis from image sequences. This can be regarded as a feature extraction problem. In 

many cases, the task is to localize persons within the image and extract distinguishable 

features from the person’s continuous movements. We shall discuss the survey on holistic 

representations. 

Holistic representations regard the observation as a whole. Often, this requires 

localizing the person, which is the task of determining the region of interest (ROI) in the 

image. The observation within the ROI is subsequently encoded into a convenient image 

representation. Common global representations are derived from silhouettes, edges or 

optical flow, and we discuss these in this section. Such representations are global, and are 

therefore sensitive to noise, partial occlusions and variations in viewpoint. Multiple images 

over time can be stacked, to form a 3-dimensional space-time volume, where time is the 

third dimension. Such volumes can be used for action recognition, and we present work in 

this area in this section. 
 

a. Global representation schemes 

When information about the background is given, the silhouette of a person in the image 

can be obtained by using background subtraction. In general, these silhouettes contain 
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some noise due to imperfect extraction. Moreover, they are sensitive to different 

viewpoints, and implicitly encode the anthropometry of the subject. However, they encode 

a great deal of information, and are insensitive to changes in appearance. When the 

silhouette is obtained, there are many different ways to encode either the silhouette area, or 

the contour. One of the earliest uses of silhouettes is found in [70]. They extract silhouettes 

from a single view, calculate differences between subsequent frames and aggregate these 

overall frames of an action sequence. This results in a binary motion energy image (MEI), 

which indicates where motion occurs. Also, a gray-scale motion history image (MHI) is 

constructed, where pixel intensities are a recency function of the silhouette motion. Two 

templates are compared using Hu moments. In the work of [71], a  transform is applied 

to extracted silhouettes. This results in a translation and scale invariant representation, 

which is reduced in dimensionality using principal component analysis (PCA). In [72], a 

 transform surface is calculated, where the third dimension is time. Contours are used in 

[73], where the star skeleton describes the angles between a reference line, and the lines 

from the center to the gross extremities (head, feet, hands) of the contour. A codebook of 

star skeletons is used to compare sequences. The scheme in [74] uses either a silhouette or 

a contour descriptor. Given a sequence of frames, an average silhouette is formed by 

calculating the mean intensity over all centered frames. Similarly, the mean shape is 

formed from the centered contours of all frames. The work of [75] matches two silhouettes 

using Euclidean distance. In later work of [76], it is shown that silhouette templates can 

also be matched against edges using Chamfer distance, thus eliminating the need for 

background subtraction. A multi-view motion representation proposed in [83] transforms 

the postures comprising a motion into a single eXclusive-OR image for the task of storage 

and recognition. It generates the feature image by simple pixel-wise binary operations. 

When multiple cameras are employed, silhouettes can be obtained from each image 

the cameras provide. Huang and Xu [77] use two orthogonally placed cameras at 

approximately similar height and distance to the subject. Silhouettes from both cameras are 

aligned at the medial axis, and an envelope shape is calculated. Cherla et al. [78] also use 

orthogonally placed cameras and combine the features obtained from the both camera 

images. Such representations are somewhat view-invariant, but focus on protrusions on the 

human body, which are not always present. In the work of [79], silhouettes from multiple 

cameras are combined into a 3-D voxel model. Such a representation is informative but 

accurate calibration of the cameras is needed. They use motion history volumes (see Figure 

2.1(b)), which is an extension of the MHI [70] to the 3-D case. Matching is performed by 

first aligning the volumes using Fourier transforms on the cylindrical coordinate system 

around the medial axis. This makes the approach viewpoint-invariant.  
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Fig. 2.1 Various motion representation schemes. (a) Space-time volume of stacked silhouettes [55, 

84], (b) Motion history volumes [79]. (a) is viewed from a single camera, whereas (b) shows a 

recency function over reconstructed 3-D voxel models. 

 

Instead of silhouettes, the observation within the ROI can also be described with 

optical flow. This is the pixel-wise oriented difference between subsequent frames and can 

be seen as a motion descriptor. Flow information does not depend on the person’s 

appearance and is somewhat independent of a person’s pose. However, dynamic 

backgrounds can introduce noise in the motion descriptor. Also, camera movement results 

in observed motion, which is usually compensated by tracking the person. In [80], optical 

flow is calculated in person-centered images that are obtained from a tracker. They use 

sports footage, where persons in the image are very small. Optical flow can result in noisy 

displacement vectors, therefore the result is blurred. To make sure that oppositely directed 

vectors do not even out, the horizontal and vertical components are divided into positively 

and negatively directed, yielding 4 distinct channels. The similarity between two flow 

descriptors is measured using cross-correlation distance. Ahad et al. [81] use these four 

flow channels to solve the issue of self-occlusion when using a MHI approach. Some other 

slight modifications of MHI are also presented in different works to customize it for 

specific tasks [87]. The work in [88, 89] proposes the Gait Energy Image (GEI) that targets 

specific normal human walking representation based on the concept of MEI. Similar to 

GEI, an Action Energy Image (AEI) is proposed that is computed by averaging silhouettes 

and incorporates information about both structure and motion [90]. Other similar methods 

include Gait History Image (GHI)[91], Gait Moment Image (GMI) [92], Dominant Energy 

Image (DMI) [93], Average Motion Energy (AME) and Mean Motion Shape (MMS) [94], 

Motion Energy Histogram (MEH) [95], Edge MHI (EMHI) [96], Multi-level MHI 

(MMHI) [97-99], Hierarchical Motion History Histogram (HMHH) [100], and many more. 

The work in [82] derives a number of kinematic features from the optical flow. These 

include divergence, rotation, symmetry and gradient tensor features. In a subsequent step, 

PCA is applied to determine dominant kinematic modes. 
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b. Space-time volumes 

When frames over a given sequence are stacked together, a 3-D spatio-temporal volume 

(STV) can be formed. Usually, frames are aligned to account for translation of the person 

in the image. In several of the works, the STV is sampled locally. While this approach 

shares many similarities with patch-based approaches, an STV is a holistic descriptor. The 

construction of an STV therefore requires accurate localization and alignment and, in many 

cases, background subtraction or tracking. This makes them less suitable for domains 

where patch-based approaches typically perform well.  

Blank et al. [55, 84] first stack silhouettes over a given sequence to form an STV (see 

Figure 2.1(a)). Then they use the solution of the Poisson equation to derive local 

space-time saliency and orientation features. Global features for a given temporal range are 

obtained by calculating weighted moments over the local features. The work in [85] uses a 

set of space-time volumes for each sequence, each of which covers only a part of the 

temporal dimension. The scheme in [86] extracts an STV by stacking frames, and it applies 

spatio-temporal snakes to carve the volume. By analyzing the periodicity in the XT-slices 

(obtained by slicing about Y-plane) at approximately knee height, different gait patterns, 

viewed from the side, are recognized. Instead of a global matching, several works sample 

the STV surface and extract local descriptors. Yilmaz and Shah [101] use local differential 

geometric properties on the STV surface. Such properties include maxima and minima in 

the space-time domain. An action sketch is the set of descriptors that are found on the 

surface. Given that the descriptors are local, the method is sensitive to noise on the surface. 

The idea is extended in [102] by first constructing 3-D exemplars from multiple views, for 

each frame in a training sequence. Then, for each view, an action sketch is calculated from 

the view-based STV and projected onto the constructed 3-D exemplars. The action sketch 

descriptors encode both shape and motion, and can be matched with observations obtained 

from arbitrary viewpoints. The work in [103] extends the shape context to 3-D and it is 

applied to STVs. The sampling of interest points is adapted to give more importance to 

moving regions. The work in [104] uses silhouettes, and samples the volume with small 

3-D binary space-time patches. Oikonomopoulos et al. [105] extract salient points, and fit 

B-splines to these points to approximate an STV. The components of the partial derivatives 

of the volume are clustered into a codebook and used for training and recognition. The 

scheme in [106] constructs an STV of flow, and samples the horizontal and vertical 

components in space-time using a 3-D variant of the rectangle features proposed in [107]. 

Ogata et al. [108] combine the work of [106] with that of Efros et al. [80]. A combination 

of STVs of silhouettes and flow is used in [109] No background subtraction is needed, as 

3-D super-pixels are obtained from segmenting the STV. Action classification is cast as 
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3-D object matching, where the distance to the segment boundary is used as a similarity 

measure. The work is extended in [110] to allow for the matching of parts, thus allowing 

recognition of actions under partial occlusion. 

 

       (a)                   (b) 

Fig. 2.2 Eigenspace representations. (a) Graphical representation of an eigenspace containing 6 

motions used in cricket match umpiring (Wide, No, Boundary, Over Boundary, Leg bye, Out) [114]. 

The motion representation is presented by a curve within the space. (b) An example of an 

eigenspace that is created from normalized differential images, and MHIs and a SMI [115]. Only 

three prominent dimensions are displayed. 

 

A suitably compact and continuous representation of human appearance or pose is 

referred to as eigenspace representation [111] (See Fig. 2.2). This representation of motion 

consisting of a number of poses was adopted in several researches related to pose 

estimation [111], posture representation [112], 3-D object detection [113], human motion 

recognition [114], and so on. However, this sort of representation has been adopted after 

some preprocessing on motion frames. But it is also possible to use the eigenspace 

technique for motions to be compressed within a hyperspace [115, 83]. Yamato et al. [116] 

examines body silhouettes, and Akita [117] employs body contours/edges. Yamato utilizes 

low-level silhouettes of human actions in a Hidden Markov Model (HMM) framework, 

where binary silhouettes of background-subtracted images are vector quantized and used as 

input to the HMMs. In Akita's work [117], the use of edges and some simple 2-D body 

configuration knowledge (e.g., the arm is a protrusion out from the torso) are used to 

determine the body parts in a hierarchical manner (first, find legs, then head, arms, trunk) 

based on stability. Individual parts are found by chaining local contour information. These 

two approaches help alleviate some of the variability between people but introduce other 

problems, such as the disappearance of movement that happens to be within the silhouetted 

region and also the varying amount of contour/edge information (as in most natural scenes). 
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Also, the problem of examining the entire body, as opposed to only the desired regions, 

still exists, as it does in much of 3-D work. 

So far, from previous discussion we have noticed that whether or not using 2-D or 3-D 

structural information, many approaches consider a motion to be comprised of a sequence 

of static poses of an object. Underlying all of these techniques is the requirement that there 

will be individual features or properties that can be extracted and tracked from each frame 

of the image sequence. Hence, motion understanding is consequently accomplished by 

recognizing a sequence of static configurations. However, we are interested in 

two-dimensional appearance-based representation of human motion where a motion is 

described by a sequence of 2-D instances/ poses of the object. And in order to use the 

motions for learning and recognition purposes, we extract features through some 

processing so that computer can learn first and become able to recognize afterwards. 

In latter sections, we are going to discuss in details about our adopted motion 

representations: Motion History Image (MHI) and Exclusive-OR (XOR) representation. 

 

2.2 Motion History Image 

 

The concept of Motion History Image (MHI) was introduced by Bobick and Davis in 2001 

[70] which is view-specific representation of movement, where movement is defined as 

motion over time. This has been a very famous and well-established motion representation 

strategy for many years. In generating MHI, the temporal information is embedded and 

specified by the pixel intensity. So, this is much effective representation of human motions. 

Therefore, this is represented as a frame-based temporal template for human motions. 

Motion History Image, as the name implies, keeps track of the motion history, i.e. 

representing how the motion is moving along a certain period of time.  Let Hτ be a pixel 

intensity function of the temporal history of motion at a particular point. The function is 

represented in a simple way in Eq. (2.1). 
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Here, D (x,y,t) is a difference binary image constructed by successive frame difference. The 

function ),,( tyxHτ returns a scalar value, and according to the function, the more recently 

moving pixels are brighter than past moving pixels in the generated image. In the above 

equation, τ is taken as the temporal extent which is critical to define. But for the flexibility 

of the value of τ, it can be taken as the maximum gray level pixel value (255) or the 

maximum number of frames in a motion. 
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Fig. 2.3 Examples of different actions and corresponding MHIs; top row contains key frames and 

bottom row is motion history images starting form frame 1. Top to bottom: Carry (frontal view), 

Pickup (Right view), and Headache-and-Sit (Left view). 

 

However, the MHIs are represented as vector-images (how motion is moving) that can 

be matched against stored representations of known movements. The motion history 

images implicitly represent the direction of movement. In our research, the MHIs were 



29| Chapter 2    

 

generated by first changing the original motion frames to gray-level and we segment the 

region of interest. After that, Eq. (2.1) is applied to all the frames included in each motion 

or action. Some examples of MHI used for our experiment are shown in Fig. 2.3 where 

different actors performed different actions captured from different viewpoints. 

 

2.3 Exclusive-OR Representation 

 

The eXclusive-OR (XOR) representation is a simply logical manipulation between 

successive motion frames within each motion frame set. The concept of this representation 

was proposed by J. K. Tan [83] where the motion database was consisted of compressed 

form of the XOR motion image referred to as JK motion database. It is the cumulative 

logical exclusive-OR form of the frame set capable of representing the motion features by 

a single motion template. Eq. (2.2) is applied to every frame within the motion frame set 

for constructing this motion template. 
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where, r = 3,4,…,R. 

 

Here, the image of motion m of person h obtained from camera c is denoted 

by        , whereas f, U denote binarized motion frame and XOR frame. Hence, for M 

motions of H persons each motion having R frames from C camera directions generates 

motion database of MHC XOR images. This is an appearance-based motion representation 

method representing one template image for each motion. This method is capable of 

avoiding the effect of background or stationary things in the scene. Only the moving 

portion in the scene is taken into account by using the logical equation. This is simple, 

effective, and fast generating motion representation method. But for overlapping and 

complex motions it is unable to handle and may lead to incomplete representation of 

motions. However, the degree of inability and its modification is of future research concern. 

Some examples of the generation of XOR representation of motions are illustrated in Fig. 

2.4.  
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Fig. 2.4 Examples of different actions and corresponding XOR images; top row contains key 

frames and bottom row is cumulative motion images starting form frame 1. Top to bottom: Carry 

(frontal view), Pickup (Right view), and Headache-and-Sit (Left view). 
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2.4 Summary 

 

In this chapter, we concentrate on the different forms of motion representations employed 

in recent years. We also describe, in detail, about two standard motion representations 

adopted in our work as a feature image from which we extract significant information for 

the task of human motion recognition. This form of motion images are used in the 

construction of a feature space which will be described in Chapter 3. 
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3 
Human Motion Recognition 

 
 

3.1 Background 

 

The recognition task of a human motion analysis system can be seen as the most important 

problem to solve. It is considered as the final or long term goal for many of the motion 

capture systems. It is a kind of classification problem whose purpose is to classify the 

captured motion as one of several types of the learned actions. The term ‘action’ and 

‘motion’ will be used interchangeably throughout the thesis. The actions are normally 

simple, such as walking and running, but more advanced actions such as different ballet 

dance steps have also been studied. However, there is hierarchy of human movements to 

analyze and interpret it. We define the hierarchy as follows;  

 

� Movement: A motion which is characterized by a definite space-time trajectory in 

some configuration space. For a given viewing condition, the appearance of 

movements is consistent. This is a basic motion that can be detected using low level 

processing of features. 

� Activity: Activity describes motion consisting of a sequence of movements. 

Activities do not refer to external elements. 

� Action: Actions can be considered as the highest level of abstraction. According to 

Bobick, actions are the boundary where perception meets cognition. This is because 

different instances of the same action can have different interpretation depending on 

the context or object being manipulated. So, the recognition of an action should be 

linked to the context of application.  

 

Moreover, we can also categorize the motions based the formation of a motion. We 

categorize them either simple or complex motions. A simple action consists of only one 

type of movements in it; for example, bending down, sit-down, stand-up, stomachache, etc. 

On the other hand, a complex action contains more than one type of movement; for 
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example, bend to pick something and then standup again with the picked object. In this 

thesis, we shall try to make use of these two kinds of motions.  

Traditionally, two different paradigms exist for recognition: static recognition and 

dynamic recognition. Static recognition is concerned with spatial data, one frame at a time. 

The approaches usually compare prestored information with the current image. The 

information may be templates [119], transformed templates [120], normalized silhouettes 

[121], or postures [122]. Conversely, dynamic recognition employs the temporal 

characteristics for recognition. The methods based on this approach process either 

spatio-temporal data or temporal pose estimated data. Other forms of recognition 

approaches are available, as well. 

We present related surveys on human motion recognition in Section 3.2. We outline the 

main characteristics and challenges of the field in Section 3.3, as these motivate the various 

approaches that are reported in literature. In Section 3.4, we mention the concept and 

construction of a feature space that is adopted in our work. We introduce the concept of 

motion database in Section 3.5. The section emphasizes significance of motion database, 

importance of a structured motion database and the employment of the structured motion 

database in the current work. Finally, we highlight the contributions of this chapter in brief 

in Section 3.6. 

 

3.2 Surveys and Taxonomies 

 

The recognition of an action can be performed at various levels of abstraction. Depending 

on the constraints and the requirements of specific applications, the recognition schemes 

are analyzed and the most suitable one is selected. Thus different recognition schemes and 

distance metrics are adopted in different works, and we shall intensively focus those 

schemes. However, we focus on actions and do not explicitly consider context such as the 

environment, interactions between persons or objects. These approaches fall outside the 

scope of this overview. Moreover, we consider only full-body movements. This excludes 

the work on gesture recognition and other limb extraction based approaches. Another focus 

of this survey is on motion classification. Practically, motion recognition implies motion 

classification, and this concept is focused in the survey.  

Given the image representation of an unseen sequence, the recognition of human 

motions becomes the process of motion classification. In this process, a label is associated 

to the observed frame sequence. Alternatively, a probability distribution over the motion 

labels can be given. Motion classification is divided into template matching and state-space 

approaches (See e.g. [28, 69]). Recently, many different approaches have been proposed, 
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and we feel that this traditional taxonomy does not capture these trends properly. Therefore, 

we use a different approach that is more focused on recent trends. Section 3.2.1 discusses 

approaches that directly match new sequences to training sequences or action prototypes. 

These methods do not explicitly model variations in the temporal domain. A subcategory is 

that of discriminative classifiers that does not match, but rather classify the motion 

representation directly. Grammars and graphical models are described in Section 3.2.2. 

These approaches have a state-space character and model temporal variation implicitly. A 

topic that is related, but is strictly not within the scope of our survey is the detection of 

query motions in video. These approaches are useful to temporally (and spatially) divide a 

video into segments, but they lack both the motion model and the labeling ability. We 

therefore discuss these works separately in Section 3.2.3. 

 

3.2.1 Direct recognition 

This section discusses approaches that classify the motion representation without paying 

special attention to variations in the temporal domain. In Section 3.2.1.1, we discuss the 

work that maps a new sequence to labeled sequences in the training set or to action class 

prototypes. The traditional class of spatio-temporal templates also falls into this category. A 

second class of approach is that of the discriminative classifiers. These learn a function that 

discriminates between two or more classes by operating directly on the image 

representation which we discuss in Section 3.2.1.2. 

 

3.2.1.1 Nearest neighbor classification 

k-Nearest neighbor (NN) classifiers are the simplest methods of classification. The idea is 

that motion representations of a given sequence are compared to those of labeled sequences 

in a training set. The most common label among the k most similar sequences is chosen as 

the classification. The ability to cope with variations in spatial and temporal performance, 

viewpoint and human appearance depends on the motion representation that is used, and 

the distance metric that is applied. NN classification can be either performed at the frame 

level, or for whole sequences. In the latter case, issues with different frame lengths need to 

be resolved. Due to their fixed descriptor length, global feature-based approaches lend 

themselves well for matching. For the local feature-based representations, a histogram of 

codewords can be used to obtain a fixed-length descriptor. For example, Blank et al. [55] 

apply 1-NN using Euclidean distance between global features; [104] uses Euclidean 

distance between histograms. In the work of [94], experiments are performed with various 

distance metrics. Bobick and Davis [70] describe their MHI templates using Hu moments. 

Given the different orders of these moments, Mahalanobis distance is used to compare a 
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given sequence to an action class prototype. In [123], PCA is used to reduce the dimension. 

Another work [124] uses a learned discriminative distance metric in their NN 

classification. 

 

Dynamic time warping: Dynamic time warping (DTW) is a distance measure between 

two sequences, possibly with different lengths. It simultaneously takes into account a 

pair-wise distance between corresponding frames and the cost of alignment of the 

sequences. For two sequences to have a low alignment cost, they need to be segmented 

similarly in time, and be performed at similar rates. Dynamic programming is used to 

calculate the optimal alignment. [125] uses DTW but observe that their normalized shape 

features lie on a spherical manifold. Therefore, they adapt a distance function between two 

shapes. In later work [126], they also address the alignment of sequences by considering 

the space of warping functions for a given activity. A related distance is the longest 

common subsequence (LCS), which is also applied between two sequences. It only takes 

into account similar elements of both sequences, and results in an increased distance when 

more inserts or deletions are necessary to warp one sequence onto the other. LCS was used 

by Yang et al. [127]. 

 

Manifold comparison: Different instances of a given action occupy only a part of the 

entire feature space. This subspace is a manifold, and it can often be embedded into a lower 

dimensional space. This embedding can be learned from training data, and allows for 

interpolation of the image representation. Elgammal and Lee [128] use this for human pose 

recovery, for which they construct manifolds for each action class, and learn mapping 

functions from image representation to manifold, and from manifold to pose space. For 

action recognition, pose information is not required. Instead, given a new sequence, the 

minimum distance of each frame to the manifold of a certain action can be determined. 

This approach has been taken by Masoud and Papanikolopoulos [129], who use PCA on 

motion recency images to determine the manifold. While the temporal order is neglected in 

such an approach, the burden of temporal alignment and variations in speed of 

performance can be overcome. Instead of using PCA, which is linear, some works learn a 

non-linear embedding. In [130], learned manifolds are adopted using either PCA or local 

linear embedding (LLE) on silhouette images. They experiment with different projection 

functions for LLE. Silhouettes and their distance transforms are also used by Wang and 

Suter [132] who use locality preserving projections (LPP) for the embedding. The use of 

Gaussian mixture models (GMM) to model the density of the low-dimensional embedding 

is investigated. Related work by the same authors [133] either uses the minimum mean 
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frame-wise distance to the manifold, as in [129], or a frame-order preserving variant. Here, 

it is assumed that the time between two subsequent frames is equal for the entire sequence. 

More robust in this sense is the work in [134], where an adaptation of DTW is used. This 

requires adding a time dimension into the embedding, for which they use Isomap. Recent 

work in [135] focusses on parametric and non-parametric manifold density functions, and 

describes appropriate distance functions for Grassmann and Stiefel manifold embeddings. 

All these manifolds are learned in an unsupervised manner, which does not guarantee good 

discrimination between related classes. The work in [136] address this issue by learning an 

embedding that is discriminative both in a spatial and temporal sense. They propose local 

spatio-temporal discriminant embedding (LSTDE), which maps silhouettes of the same 

class close in the manifold, and model temporal relations in subspaces of the manifold. 

 

Keyframes: It has been observed that many actions can be represented by a small number 

or even a single key frame or key pose. For example, [137] recognizes forehand and 

backhand tennis strokes by matching edge representations to stored and manually labeled 

key poses. Also based on edge distance is the work in [138], where action clusters are 

learned in an unsupervised fashion. They manually provide action class labels after the 

clustering. Weinland et al. [139] also learn a set of action key poses but use 3-D voxel 

representations. The previous methods used only a single frame for action classification. 

This is convenient when the frame contains a key pose, but in general they will generate 

many false matches. By considering a sequence of poses over time, ambiguities can be 

reduced. In [140], histograms of matches are used to manually selected key poses. The 

length of the histogram equals the number of key poses, and each bin contains the number 

of frames that best match the corresponding key pose. The histogram is normalized and 

1-NN is used for classification. 

  

3.2.1.2 Discriminative classifiers 

Discriminative classifiers distinguish between classes without explicitly modeling each. 

The motion representation is simply regarded as a feature vector. Support vector machines 

(SVM) are popular classifiers that learn a hyperplane in a feature space that is described by 

a weighted combination of support vectors. SVMs have often been used in [141-144]. Here, 

the image representation must be of fixed length, for example a histogram of code-words 

over a sequence of frames. SVMs can be trained efficiently. Relevance vector machines 

(RVM) can be regarded as the probabilistic variant of the SVM. An additional advantage is 

that RVM usually results in a sparser set of support vectors. They have been used for action 

recognition in [145]. 



37|Chapter 3    

 

3.2.2 Graphical models 

State-based models, or graphical models, are discussed in this section. They consist of 

states, connected by edges. These edges model probabilities between states, and between 

states and observations. For the task of action recognition, an observation corresponds to 

the image representation at a given frame. Usually, one model is trained per action class. In 

this case, states correspond to phases in the performance of the action. Hidden Markov 

models (HMM) are the most well-known generative graphical models. The adoption of 

HMM in motion recognition researches is immense. They use hidden states that correspond 

to different phases in the performance of an action. HMMs model state transition 

probabilities, and observation probabilities. To keep the modeling of the joint distribution 

over representation and labels tractable, two independent assumptions are introduced. First, 

state transitions are conditioned only on the current state, not on the state history. This is 

the Markov assumption. Second, observations are conditioned only on the current state, so 

subsequent observations are considered independent. We discuss the use of generative 

graphical models, in particular HMMs, for the task of action recognition. 

HMMs have been used in a large number of works. Yamato et al. [116] cluster 

grid-based silhouette mesh features to form a compact codebook of observations. They 

train HMMs for the recognition of different tennis strokes. Training of an HMM can be 

done efficiently using the Baum-Welch algorithm. The Viterbi algorithm is used to 

determine the probability of observing a given sequence. When using a single HMM per 

action, action recognition becomes finding the action HMM that could generate the 

observed sequence with the highest probability per action. In [146], a set of HMMs is used, 

each of which models the action from a certain viewpoint. Weinland et al. [75] construct a 

codebook by discriminatively selecting a set of templates. In their HMM, they explicitly 

include the viewpoint, which allows them to condition the observation on the viewpoint. 

Related work in [147] uses an Action Net, which is constructed by considering key poses 

and viewpoints. Transitions between views and poses are encoded explicitly. Ahmad and 

Lee [148] take into account multiple viewpoints and use a multi-dimensional HMM to deal 

with the different observations. Instead of modeling viewpoints, the work in [149] uses a 

hybrid HMM, where one process denotes the closest shape-motion template, while the 

other encodes position, velocity and scale of the person in the image. [151] track persons in 

2-D by learning the appearance of the body-parts. In [150], these 2-D tracks are 

subsequently lifted to 3-D using stored snippets of annotated pose and motion. An HMM is 

used to infer the action from these labeled code-word motions. However, [152] uses a 

slightly different approach by assigning one code-word observation to each state. This 

allows them to effectively train the dynamics, at the cost of reduced flexibility due to a 
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simpler observation model. 

Instead of modeling the whole human body as a single observation, an HMM can be 

made for every body-part individually. This makes training easier, as the combinatorial 

complexity is reduced to learning dynamical models for each limb individually. In addition, 

this has the advantage that composite movements that are not in the training set can be 

recognized. The work of [153] uses the 3-D body-part trajectories that are obtained using 

[150]. Instead of using labeled codeword motions, they construct HMMs for the legs and 

arms individually, where 3-D trajectories are the observations. This allows them to use 

much simpler action models. For each limb, states of different action models with similar 

emission probabilities are linked. This results in a HMM that allows for automatic 

segmentation of actions, for legs and arms separately. A similar approach has been taken in 

[154], where arms, legs and head are found with a set of view-dependent detectors. The 

work of [155] uses a different approach, but they also use 3-D joint locations as 

observations. First, they construct a large number of action HMMs, each of which uses a 

subset of the joints. This results in a large number of relatively weak classifiers. 

Subsequently, they use AdaBoost to select a set of these classifiers that form the final 

strong classifier. 

In the work by Peursum et al. [156], a factored-state hierarchical HMM (FSHHMM) is 

used to jointly model image observations and body dynamics for each action class 

separately. By evaluating an image sequence using each of the action models, the action 

with the lowest log-likelihood is selected. Related work by Caillette et al. [157] uses a 

variable length Markov model (VLMM) to model observations and 3-D poses for a given 

action. The work is mainly aimed at improved 3-D pose tracking, but can also be used for 

recognition as in [156]. Natarajan and Nevatia [158] introduce a hierarchical variable 

transition HMM (HVT-HMM), which consists of three layers. The top layer models 

composite actions, the middle layer primitive actions and the bottom layer poses. Due to 

their variable window approach, actions can be recognized with low latency. 

 

3.2.3 Video correlation 

The approaches which fall within the context of this category do not explicitly model the 

image representation of subjects in the image, nor do they model action dynamics. Rather, 

they correlate an unseen sequence to video sequences in a database. Such work is mostly 

aimed at the detection of actions, rather than their recognition. However, since these works 

share many similarities to those previously discussed, we will describe them briefly in this 

section.  
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Zelnik-Manor and Irani [159] use histograms of appearance-normalized gradient 

patches, calculated at multiple temporal scales. Patches that exhibit low variance in the 

temporal dimension are ignored, which focusses the representation on the moving areas in 

the video. Consequently, for human action recognition, this restricts the approach to 

detection of movement against non-moving backgrounds. The work of [84] uses 

histograms of codewords, obtained from Gabor response instead of gradient patch 

histograms. Shechtman and Irani [59] consider the spatial dimension by correlating 

spacetime patches over different locations in space and time. Similarly to [159], they use 

space-time cuboids, but local motion information is used instead of gradients. To avoid 

calculating the optical flow, a rank-based constraint is used directly on the intensity 

information of the cuboids. Matikainen et al. [161] present an approximation of method 

that uses motion words and a look-up table to allow for faster correlation of the motion of 

different patches. In a recent work [160], a self-similarity descriptor is proposed, that 

correlates local patches. Such a descriptor is invariant to color, texture and can deal with 

small spatial variations. A query template is described by an ensemble of all descriptors, 

either at the frame level, or over a sequence of frames. 

 

3.3 Challenges of the Domain 

 

In human action recognition, the task is to analyze a video and to issue a corresponding 

action class label. The challenges of this domain encompass intra- and inter-class variations, 

differences in the recording, Spatial and temporal variations, difference in performance 

evaluation, and so on. In this section, we discuss these in detail. 

 

a) Intra- and inter-class variations 

For many actions, there are large variations in performance. For example, walking 

movements can differ in speed and stride length. Also, there are anthropometric differences 

between individuals. In fact, personal differences in gait have motivated its use as a 

biometric cue. Similar observations can be made for other actions, especially for 

non-cyclic actions or actions that are adapted to the environment (e.g. avoiding obstacles 

while walking, or pointing towards a certain location). For multiple classes, distinguishing 

becomes more challenging when the intra-class variation of each class is high. For example, 

slow running resembles jogging. A good human action recognition approach should be able 

to generalize over variations within one class, while at the same time to distinguish 

between actions of different classes.  
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b) Environment and recording settings 

Even when actions are performed in the same manner, differences in the recording setup 

and environment result in differences in the captured movement. Since we focus on 

vision-based human action recognition, we address these differences explicitly. The 

environment, in which the action performance takes place, is an important source of 

variation in the recording. When this environment is cluttered or dynamic, it might prove 

harder to localize the person in the video. Moreover, the environment or recording setup 

might be such that parts of the person might be occluded in the recording. This introduces 

source of uncertainty and missing of information. Also, the fact that a single camera is only 

able to capture a projection introduces a source of variation. The same action, observed 

from different viewpoints, can lead to very different image observations. Often, a known 

camera viewpoint is assumed, but this restricts the use to static cameras. When multiple 

cameras are used, viewpoint problems and issues with occlusion can be alleviated, 

especially when observations from multiple views can be combined into a consistent 

representation. Dynamic (or irregular) backgrounds further increase the complexity of 

localizing the person in the image and robustly observing the motion. When using a 

moving camera, these issues become even harder. Different persons can appear differently 

due to differences in anthropometry, but also due to clothing, skin color and facial 

appearance. Lighting conditions can further influence the appearance. A robust approach 

should be able to generalize over these factors or employ an initialization phase. 

 

c) Spatial and temporal variations 

Since human motion is performed by a person, a common approach is to localize the 

person in the image or video first. There may be variations in the localization, and human 

action recognition algorithms should be able to cope with them. There can also be variation 

in the detection in the temporal domain. Often, actions are assumed to be segmented in 

time before the actual action classification takes place. Such an assumption moves away 

the burden of the segmentation from the recognition task, but requires a separate 

segmentation process in advance. This might not always be realistic. Also, there is 

substantial variation in the rate of performance of an action. We already discussed 

inter-personal variations, but the rate at which the action is recorded also has an important 

effect on the temporal extent of an action, especially when motion features are used. A 

robust human action recognition algorithm should be invariant to these different rates of 

execution. 
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d) Evaluation criteria 

Within the domain, much of the evaluation efforts are focused on either publicly available 

or customized self-developed datasets. While adopting those datasets, there is the risk of 

tuning the algorithms to the datasets. In particular, the presence of several of the above 

mentioned variations strongly guides design decisions. Therefore, databases with sufficient 

variation for these challenges are necessary. Another related concept is the reliability of the 

data labeling. Most existing data uses actors that perform predefined actions. This readily 

provides the data labeling. However, performance of an action might be perceived 

differently by different people. There may be the case of significant disagreement between 

human labeling and the assumed ground-truth on a specific dataset. When no ground truth 

is available, an unsupervised approach needs to be pursued. While such an approach will 

discover classes of similar movement, there is no guarantee that these classes are 

semantically meaningful. 

 

3.4 Construction of a Feature Space 
 

A feature is a salient attribute for characterizing a motion in such a way that one motion 

can be distinguishable from the other. A set of features, collectively termed as feature 

image or motion image, characterizes a motion to determine the similarity of it among a 

number of training motions. However, a feature space refers to a mathematical space where 

the features, i.e., feature values, form a compact representation. In the context of motion 

recognition, the feature space plays an important role. This construction and manipulation 

of the feature space is performed at the learning and recognition phase. How well the 

motion has been characterized – this specifies how perfectly the recognition task will be 

accomplished. So, the selection of feature space construction scheme is very crucial in 

upgrading the performance of the system. This includes statistical modeling (e.g., HMM 

[51, 146-152, 162-163]), mathematical modeling (e.g., Hu moments [70]), time 

series-based modeling (e.g., motion time series [164]), feature extraction [165-166], 

eigenspace representation [111], or many other techniques. 

Though the feature space construction scheme varies from system to system, the 

fundamental thing is to choose the scheme which can adapt to the system considering the 

system input. We need to keep in mind some advantages of the scheme – ease of 

employment, flexibility, reliability, simplicity, proof of excellence, etc. – before we select 

one. Among the aforesaid schemes, eigenspace representation is much acceptable and 

highly appreciated strategy that can be adopted in the current work, while coping with the 

successful transformation of motion data. In the next sections, this scheme will be 

described elaborately. 
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3.4.1 Eigenspace 

 

Mathematical Definition 

In linear algebra, the eigenvectors (from the German eigen meaning "inherent, 

characteristic") of a linear operator are non-zero vectors which, when operated on by the 

operator, result in a scalar multiple of them. The scalar is then called the eigenvalue 

associated with the eigenvector. In applied mathematics and physics, the eigenvectors of a 

matrix or a differential operator often have important physical significance. In classical 

mechanics the eigenvectors of the governing equations typically correspond to natural 

modes of vibration in a body, and the eigenvalues to their frequencies. In quantum 

mechanics, operators correspond to observable variables, eigenvectors are also called 

eigenstates, and the eigenvalues of an operator represent those values of the corresponding 

variable that have non-zero probability of occurring. 

Formally, we define eigenvectors and eigenvalues as follows: If A: V→V is a linear 

operator on some vector space V, v is a non-zero vector in V and λ is a scalar (possibly 

zero) such that 

vAv λ=                              (3.1) 

Then we say that v is an eigenvector of the operator A, and its associated eigenvalue is λ. 

Note that if v is an eigenvector with eigenvalue λ, then any non-zero multiple of v is also 

an eigenvector with eigenvalue λ. In fact, all the eigenvectors with associated eigenvalue λ, 

together with 0, form a subspace of V, the eigenspace for the eigenvalue λ. In other words, 

If A is an n X n square matrix and λ is an eigenvalue of A, then the union of the zero vector 

0 and the set of all eigenvectors corresponding to eigenvalues λ is a subspace of R
n
 known 

as the eigenspace of λ. 

 

Practical Definition 

According to object recognition concept, an efficient coding scheme is necessary for 

storing and retrieving the views representing the object or image. The most common 

coding scheme is based on representing each view using a relatively low-dimensional 

space which captures important characteristics of the entire set of views. This 

low-dimensional space is generally formed using an eigen-decomposition (or principal 

components analysis) to denote a subspace which provides a reasonable approximation to 

the set of stored views. Each stored model view is represented in terms of its projection 

into this subspace which is quite compact in comparison with the number of pixels in each 

view. An unknown object is recognized by projecting its image into the subspace and then 
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finding the closest model views in the subspace using some similarity measure. We refer to 

this subspace as an eigenspace.  

Subspace methods are attractive when there is a relatively large database of model 

views because the set of model views can be represented using a small number of 

coefficients each rather than the thousands of pixels in each image. This both saves storage 

and speeds of the process of finding the closest matching images in the database. Moreover, 

when the subspace is relatively low-dimensional (e.g., 25-30 dimensions), we can 

approximate the closest matches in the database easily [167]. Subspace methods can also 

be viewed as a form of generalization or learning. To the extent that a subspace captures 

the important characteristics of a given set of images while omitting the unimportant 

characteristics, it can be insensitive to unimportant variations in the images. The most 

effective applications of subspace methods have been limited to those tasks where the 

objects that are to be recognized appear fully visible i.e. not partially occluded against a 

uniform background and where the images are nearly correctly registered with each other 

in advance. For example, a particularly successful application is the recognition of faces 

from mugshots, where the head is generally about the same size and location in the image, 

and the background is a fixed color [168]. The main reason for these limitations is that 

when extraneous information from the background of an unknown image is projected into 

the subspace, it tends to cause incorrect recognition results. This is analogous to the 

problem that occurs with template matching techniques, using measures such as the sum of 

squared differences (SSD) or correlation, where background pixels included in a matching 

window can significantly alter the correlation value and cause incorrect matches. One 

standard way of addressing this problem in template matching is to use sub-regions of the 

views, such that the regions do not contain any background. A similar approach has also 

been taken in eigenspace matching [111, 169]. One drawback, however, is that sub-regions 

are generally less distinctive and thus can lead to more possible matches being found. This 

issue of distinctiveness has been addressed in [170] where they use a selection procedure 

for image regions based on a minimum description length principle. 

Therefore, the eigenspace technique is a coding technique which is based on principle 

component analysis (PCA). It is a variation of Karhunen-Loeve transform; this method 

computes eigenvectors from an orthogonal basis for the representation of individual images 

in the image set. Though a large number of eigenvectors may be required for very accurate 

reconstruction of an image, only a few eigenvectors are generally sufficient to capture the 

significant appearance characteristic of an image. These eigenvectors constitute the 

dimensions of what we refer to as the eigenspace for the image set. If any two images from 

the set are projected onto the eigenspace, the distance between corresponding points in the 
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eigenspace is a measure of similarity of the images [111]. 

 

3.4.2 Construction of an Eigenspace 

 

In an eigenspace, each image or view is represented as a single point in the 

multi-dimensional space; we refer to this point as a compressed form of the image. So, for 

the construction of an eigenspace, the first step is the acquisition of an image set. After that, 

the eigenspace is computed with the image set with a set of multi-dimensional points 

corresponding to the images in the set. The construction process is described below. 

 

3.4.2.1 Normalization of image set 

For constructing an image set, all the images of the set should be same size (e.g., 32 X 32 

pixels for our experiment). This is done by scale normalization (e.g., Fig. 3.1). In our work, 

the motion images are in the form of MHI and XOR images which are treated as our input 

image set. Suppose, the motion image is symbolized as a vector x̂  represented as pixel 

brightness values from the image in raster scan manner:  

[ ]T21
ˆ,.....,ˆ,ˆˆ

Nxxx=x                        (3.2) 

where, N is the total number of pixels in each motion image and ‘T’ is the transpose of a 

matrix or a vector. 

However, we would like our system to be unaffected by the intensity or brightness. So, 

the brightness normalization is performed on each image, such that the total energy 

contained in the image is unity, i.e.     = 1. This brightness normalization transforms 

each motion image x̂  to a normalized image x :  

[ ]T21 ,.....,, Nxxx=x                        (3.3) 

where, 
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                 (3.4) 

This scale and brightness normalized motion image will be later used for computation of 

an eigenspace. 

x
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Fig. 3.1 An example of scale normalization 
 

3.4.2.2 Computation of an Eigenspace 

Similar motion images, corresponding to same actions, tend to be correlated to a large 

degree, since motion images for same actions performed by different actors are almost 

alike. Keeping this in mind, we compute the eigenspace consisting of different actions 

performed by different actors. In our experiment, there are two types of eigenspaces: local 

eigenspaces consisting of actions from one camera direction (frontal, left, or right) each, 

and a global eigenspace with all the actions from all camera directions. So, we have 

computed four eigenspaces in our experiment. But the construction scheme is same for all 

the eigenspaces. We shall describe here the eigenspace construction, in general. 

To compute the eigenspace, we first subtract the average of all images in the motion 

image set (local or global image set). This ensures that the eigenvector with the largest 

eigenvalue represents the dimension in an eigenspace in which the variance of images is 

the maximum in the correlation sense. However, this is the most important dimension of 

the eigenspace. The average c of the motion image set is determined as: 

∑ =
=

M

m m
M 1

1
xc                          (3.5) 

where, M is the total number of motion images or total number of learning actions. 

A new set of motion images are obtained by subtracting the average image from each 

of the normalized motion image in the set. 

X ≜ (x1 - c, x2 – c,…, xM - c)                   (3.6) 

The image matrix X is N X M, where M is the total number of motion images, and N is the 

total number of pixels in each image. To compute eigenvectors of the motion image set, a 

covariance matrix Q is defined as: 

Q ≜ XX
T
                           (3.7) 

320 X 240 pixels 32 X 32 pixels 
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The covariance matrix is N X N, obviously a large matrix, since a large number of pixels 

constitute the motion image. However, the eigenvectors ei and the corresponding 

eigenvalues λi of Q are determined by solving the following eigen-equation: 

iii eQe λ=                           (3.8) 

By solving the above equation, N eigenvectors are obtained with 

eigenvalues                  . The eigenvalues of the covariance matrix is real and 

nonnegative. All the N eigenvectors in the set constitute a complete eigenspace. However, 

it is noticeable that the variance is higher for higher eigenvalues and the variance becomes 

smaller as the eigenvalue decreases. Considering this fact, in place of taking large number 

of eigenvectors, corresponding to the eigenvalues, it is reasonable to reduce the number of 

dimensions of the eigenspace. Among N eigenvectors, k most prominent eigenvectors 

(           ) are chosen to create an eigenspace ES consisting of the learning motions 

using the metric expressed in Eq. (3.9). 

∑

∑
=

=

=
N

i
i

k

i
i

1

1

λ

λ
κ                        (3.9) 

The value of κ is taken to be greater than or equal to 0.80 practically. The eigenvectors for 

which the variances are more, those are chosen as the prominent eigenvectors. There are 

other algorithms (e.g., spatial temporal adaptive [248 ]) for computing k 

eigenvectors directly from the covariance matrix. The result is a set of eigenvalues {λi | i = 

1, 2, …, k} where kλλλ ≥≥≥ ....21 , and a corresponding set of eigenvectors {ei | i = 1, 2, 

…, k}. These k eigenvectors constitute the eigenspace which is an approximation to the 

complete eigenspace with N dimensions.  

After computing the eigenvectors for the construction of an eigenspace, the only task 

left is the projection of the motion images onto the constructed eigenspace. This is done by 

first subtracting the average image c from the image vector xm and performing the dot 

product with each axis of the k dimensional eigenspace. Thus the projected point gm onto 

the eigenspace is obtained by Eq. (3.10). 

)(),....,,( 21 cxeeeg −= m

T

km                    (3.10) 

keee ,....,, 21

Nλλλ ≥≥≥ ....21
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This represents a multi-dimensional point within the hyperspace which will be used later 

for storage and similarity measurement. An example of the eigenspace structure is 

illustrated in Fig. 3.2. 

 

 

Fig. 3.2 An example of an eigenspace and projected motion images (M1, M2,…, Mn). MHI 

motion representations are used for the illustration. Each motion is represented as a single 

point within the space. Three major dimensions of the eigenspace are displayed. 

 

3.5 Motion Database 

 

Database is a collection of data stored in a computer system. The database, solely, relies 

upon the organization or the storage within the computer. Irrelevant to the conventional 

database concepts, the most common database organization is linear – arranges data in the 

order of its input. There are no predefined rules for the storage. Therefore, at the time of 

query, it becomes brute-force searching for the content within the database. In order to 

overcome this limitation of query time, many of the researches have been performed in 

developing a suitable motion database capable of quick retrieval. 

 

3.5.1 Overview 
 

Enormous growth of motion archives has significantly increased the demand for research 

efforts aimed at efficiently finding similar motions within a large motion database. One 
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popular strategy of searching for motions within a motion database is that in which the 

motion query is expressed as a motion template or a compressed representation of motion. 

However, the motions are also sometimes represented as multi-dimensional spatial data 

which are to be stored within the database [83, 115]. Thus there are many variations for 

motion representations based on different applications. Therefore, considering the 

variability, there are many non-linear databases available for storing the motions, as a 

whole. Therefore, considering the variability, there are many non-linear databases available 

for storing the motions, as a whole. Some examples of this kind of databases are: AVL 

Trees [171], B-Trees [172], B+-Trees [187], R-Trees [173], R+ -Tree [174], PK-Tree [175], 

etc. Most of these structures deal with the storage of the multi-dimensional data within the 

database. B-Tree [172] structure is considered to be an effective database structure to store 

and retrieve motion data efficiently. In recent work, B-Tree structure has been successfully 

adopted as a high-speed retrievable Structured Motion Database (SMoDB) [176-179]. 

Another human motion database proposed uses a binary tree and node transition graphs 

[180]. The database consists of a binary tree representing the hierarchical clustering of 

states observed in the motion clips, as well as node transition graphs representing the 

possible transition among the nodes in the binary tree.    

In order to store a motion, it is required to be transformed into a suitable form for the 

ease of storage and retrieval, which we call an index. The process of generating an index is 

termed as indexing. As the size of the motion database is increasing, the problem of 

indexing of motion databases has attracted great interest in the database community. There 

are many researches in the past years involving the task of indexing depending on the 

variability of the format of the motion data [181-185]. A hash table index database of 

human motions is adopted in [186]. However, motion database development is an 

emerging research area that requires much attention to make the overall motion analysis 

more robust, accurate and fast. In our current work, we have adopted the B-tree structure as 

the structured motion database approach. We shall discuss about B-tree and the reasons for 

adopting it in detail in Section 3.5.3. 

 

3.5.2 Various non-linear database structures 

 

As we mentioned earlier, a number of non-linear tree structure are available as database to 

structurize the motion database. We describe in brief some of these structures. 

� AVL Tree 

An AVL tree is a self-balancing binary search tree, and it was the first such data structure to 

be invented. In an AVL tree, the heights of the two child sub-trees of any node differ by at 
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most one. Lookup, insertion, and deletion all take O(log n) time in both the average and 

worst cases, where n is the number of nodes in the tree prior to the operation. Insertions 

and deletions may require the tree to be rebalanced by one or more tree rotations. The 

balance factor of a node is the height of its left sub-tree minus the height of its right 

sub-tree (sometimes opposite) and a node with balance factor 1, 0, or −1 is considered 

balanced. A node with any other balance factor is considered unbalanced and requires 

rebalancing the tree. The balance factor is either stored directly at each node or computed 

from the heights of the sub-trees. 

AVL trees are often compared with red-black trees because they support the same set of 

operations and because red-black trees also take O(log n) time for the basic operations. 

Because AVL trees are more rigidly balanced, they are faster than red-black trees for 

lookup intensive applications. However, red-black trees are faster for insertion and 

removal. 
 

� B-Tree 

A B-tree is a tree data structure that keeps data sorted and allows searches, sequential 

access, insertions, and deletions in logarithmic time. The B-tree is a generalization of a 

binary search tree in that a node can have more than two children. Unlike self-balancing 

binary search trees, the B-tree is optimized for systems that read and write large blocks of 

data. It is commonly used in databases and filesystems. A B-tree is kept balanced by 

requiring that all leaf nodes are at the same depth. This depth will increase slowly as 

elements are added to the tree, but an increase in the overall depth is infrequent, and results 

in all leaf nodes being one more node further away from the root. 

B-trees have substantial advantages over alternative implementations when node access 

times far exceed access times within nodes, because then the cost of accessing the node 

may be amortized over multiple operations within the node. This usually occurs when the 

nodes are in secondary storage such as disk drives. By maximizing the number of child 

nodes within each internal node, the height of the tree decreases and the number of 

expensive node accesses is reduced. In addition, rebalancing the tree occurs less often. The 

maximum number of child nodes depends on the information that must be stored for each 

child node and the size of a full disk block or an analogous size in secondary storage. 

While 2-3 B-trees are easier to explain, practical B-trees using secondary storage want a 

large number of child nodes to improve performance. The detail of B-Tree will be 

described in the next section. 

� B+-Tree 

B+-tree is a variant of B-tree while there is no single paper introducing the B+ tree concept. 

Instead, the notion of maintaining all data in leaf nodes is repeatedly brought up as an 
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interesting variant. An early survey of B-trees covers the concept of B+ trees [187]. A B+ 

tree or B plus tree is a type of tree which represents sorted data in a way that allows for 

efficient insertion, retrieval and removal of records, each of which is identified by a key. It 

is a dynamic, multilevel index, with maximum and minimum bounds on the number of 

keys in each index segment (usually called a "block" or "node"). In a B+ tree, in contrast to 

a B-tree, all records are stored at the leaf level of the tree; only keys are stored in interior 

nodes. The primary value of a B+ tree is in storing data for efficient retrieval in a 

block-oriented storage context—in particular, filesystems. This is primarily because unlike 

binary search trees, B+ trees have very high fan-out (typically on the order of 100 or more), 

which reduces the number of I/O operations required to find an element in the tree. 

The NTFS, ReiserFS, NSS, XFS, and JFS filesystems all use this type of tree for 

metadata indexing. Relational database management systems such as IBM DB2, Informix, 

Microsoft SQL Server, Oracle 8, Sybase ASE, PostgreSQL, Firebird, MySQL and SQLite 

support this type of tree for table indices. Key-value database management systems such as 

CouchDB and Tokyo Cabinet support this type of tree for data access. InfinityDB is a 

concurrent B-tree. 

 

� R-Tree 

An R-tree is a tree data structures used for spatial access methods, i.e., for indexing 

multi-dimensional information such as geographical coordinates, rectangles or polygons. 

The R-tree was proposed by Guttman in 1984 [173] and has found significant use in both 

research and real-world applications. 

The key idea of the data structure is to group nearby objects and represent them with 

their minimum bounding rectangle in the next higher level of the tree; the "R" in R-tree is 

for rectangle. Since all objects lie within this bounding rectangle, a query that does not 

intersect the bounding rectangle can also not intersect any of the contained objects. At the 

leaf level, each rectangle describes a single object, at higher levels the aggregation of an 

increasing number of objects. This can also be seen as an increasingly coarse 

approximation of the data set. Similar to the B-tree, the R-tree is also a balanced search 

tree (so all leaf nodes are at the same height), organizes the data in pages and is designed 

for storage on disk (as used in databases). Each page can contain a maximum number of 

entries, often denoted as M. It also guarantees a minimum fill (except for the root node), 

however best performance has been experienced with a minimum fill of 30% − 40% of the 

maximum number of entries (B-trees guarantee 50% page fill, and B*-trees [187] even 

66%). The reason for this is the more complex balancing required for spatial data as 

opposed to linear data stored in B-trees. As with most trees, the searching algorithms (e.g., 
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intersection, containment, nearest neighbor search) are rather simple. The key idea is to use 

the bounding boxes to decide whether or not to search inside a sub-tree. In this way, most 

of the nodes in the tree are never read during a search. Like B-trees, this makes R-trees 

suitable for large data sets and databases, where nodes can be paged to memory when 

needed, and the whole tree cannot be kept in main memory. 

 

� R+-Tree 

An R+ tree is a method for looking up data using a location, often (x, y) coordinates, and 

often for locations on the surface of the earth. Searching on one number is a solved 

problem; searching on two or more, and asking for locations that are nearby in both x and y 

directions, requires craftier algorithms. Fundamentally, an R+ tree is a tree data structure, a 

variant of the R tree, used for indexing spatial information. 

R+ trees are a compromise between R-trees; and kd-trees; they avoid overlapping of 

internal nodes by inserting an object into multiple leaves if necessary. Coverage is the 

entire area to cover all related rectangles. Overlap is the entire area which is contained in 

two or more nodes. Minimal coverage reduces the amount of "dead space" (empty area) 

which is covered by the nodes of the R-tree. Minimal overlap reduces the set of search 

paths to the leaves (even more critical for the access time than minimal coverage). Efficient 

search requires minimal coverage and overlap. R+ trees differ from R trees in that: 

o Nodes are not guaranteed to be at least half filled 

o The entries of any internal node do not overlap 

o An object ID may be stored in more than one leaf node 

 

� PK-Tree 

A PK-tree is a dynamic spatial indexing structure that can be conceived as a variation of 

PR quad-trees. However, it differs from all existing trees by employing a unique set of 

constraints to eliminate unnecessary nodes that can result from a skewed spatial 

distribution of objects. This ensures that the total number of nodes in a PK-tree is O(n) and 

the average height of a PK-tree is O(log n) under some special conditions. In addition, 

PK-tree has a set of nice properties: non-overlapping of sibling nodes, uniqueness of a 

PK-tree for a given set of data points, and so on.  

 

3.5.3 Structured motion database 

 

Due to the increased number of registration within the database, the maintenance of the 

database organization is becoming a very crucial issue. Database system also faces a 
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number of challenges for its implementation. We mention here some challenges that are 

faced at the time of adopting a suitable database structure and also how B-tree has fulfilled 

the required degree of efficiency.  

 

3.5.3.1 Database challenges and its handling  

� Time to search a sorted file 

Usually, sorting and searching algorithms have been characterized by the number of 

comparison operations that must be performed using order notation. A binary search of a 

sorted table with n records, for example, can be done in O(log2 n) comparisons. If the table 

had 1,000,000 records, then a specific record could be located with about 20 comparisons: 

log 21,000,000 = 19.931.... Large databases have historically been kept on disk drives. The 

time to read a record on a disk drive can dominate the time needed to compare keys once 

the record is available. The time to read a record from a disk drive involves a seek time and 

a rotational delay. The seek time may be 0 to 20 or more milliseconds, and the rotational 

delay averages about half the rotation period. For a 7200 RPM drive, the rotation period is 

8.33 milliseconds. For a drive such as the Seagate ST3500320NS, the track-to-track seek 

time is 0.8 milliseconds and the average reading seek time is 8.5 milliseconds. For 

simplicity, assume reading from disk takes about 10 milliseconds. Naively, then, the time 

to locate one record out of a million would take 20 disk reads times 10 milliseconds per 

disk read, which is 0.2 seconds. 

The time won't be that bad because individual records are grouped together in a disk 

block. A disk block might be 16 kilobytes. If each record is 160 bytes, then 100 records 

could be stored in each block. The disk read time above was actually for an entire block. 

Once the disk head is in position, one or more disk blocks can be read with little delay. 

With 100 records per block, the last 6 or so comparisons don't need to do any disk 

reads—the comparisons are all within the last disk block read. To speed the search further, 

the first 13 to 14 comparisons (which each required a disk access) must be sped up. 

 

� An index speeds the search 

A significant improvement can be made with an index. In the example above, initial disk 

reads narrowed the search range by a factor of two. That can be improved substantially by 

creating an auxiliary index that contains the first record in each disk block (sometimes 

called a sparse index). This auxiliary index would be 1% of the size of the original 

database, but it can be searched more quickly. Finding an entry in the auxiliary index 

would tell us which block to search in the main database; after searching the auxiliary 

index, we would have to search only that one block of the main database—at a cost of one 
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more disk read. The index would hold 10,000 entries, so it would take at most 14 

comparisons. Like the main database, the last 6 or so comparisons in the aux index would 

be on the same disk block. The index could be searched in about 8 disk reads, and the 

desired record could be accessed in 9 disk reads. The trick of creating an auxiliary index 

can be repeated to make an auxiliary index to the auxiliary index. That would make an 

aux-aux index that would need only 100 entries and would fit in one disk block. 

Instead of reading 14 disk blocks to find the desired record, we only need to read 3 

blocks. Reading and searching the first (and only) block of the aux-aux index identifies the 

relevant block in aux-index. Reading and searching that aux-index block identifies the 

relevant block in the main database. Instead of 150 milliseconds, we need only 30 

milliseconds to get the record. The auxiliary indices have turned the search problem from a 

binary search requiring roughly log2 n disk reads to one requiring only logb n disk reads 

where b is the blocking factor (the number of entries per block: b = 100 entries per block; 

log b1,000,000 = 3 reads). In practice, if the main database is being frequently searched, 

the aux-aux index and much of the aux index may reside in a disk cache, so they would not 

incur a disk read. 

  

� Insertions and deletions cause trouble 

If the database does not change, then compiling the index is simple to do, and the index 

need never be changed. If there are changes, then managing the database and its index 

becomes more complicated. Deleting records from a database doesn't cause much trouble. 

The index can stay the same, and the record can just be marked as deleted. The database 

stays in sorted order. If there are a lot of deletions, then the searching and storage become 

less efficient. 

Insertions are a disaster in a sorted sequential file, because room for the inserted record 

must be made. Inserting a record before the first record in the file requires shifting all of 

the records down one. Such an operation is just too expensive to be practical. A trick is to 

leave some space lying around to be used for insertions. Instead of densely storing all the 

records in a block, the block can have some free space to allow for subsequent insertions. 

Those records would be marked as if they were "deleted" records. Both insertions and 

deletions are fast as long as space is available on a block. If an insertion won't fit on the 

block, then some free space on some nearby block must be found and the auxiliary indices 

adjusted. The hope is that enough space is nearby so that a lot of blocks do not need to be 

reorganized. Alternatively, some out-of-sequence disk blocks may be used. 

The B-tree uses all those ideas by the following way: 

o It keeps records in sorted order for sequential traversing. 
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o It uses a hierarchical index to minimize the number of disk reads. 

o It uses partially-full blocks to speed insertions and deletions. 

o The index is elegantly adjusted with a recursive algorithm. 

o B-tree minimizes waste by making sure that the interior nodes are at least ½ full. 

A B-tree can handle an arbitrary number of insertions and deletions. 

Moreover, the B-Tree has some advantages over other structures; some of those are as 

follows. 

o It works with one-dimensional data, numeric or real numbers. 

o With simple indexing of data, multi-dimensional data can be stored structurally 

within the B-Tree. 

o Storage utilization is considerably better in the average. 

o Storage is requested and released as required. 

o Simple but effective searching within the database for retrieval. 

 

3.5.3.2 Overview of B-Tree 

A B-Tree is a multi-way tree branching structure with adaptable capability of storage and 

retrieval. It is an efficient approach to external searching discovered by R. Bayer and E. 

McCreight [172]. The idea is to make the structure possible both to search and to update a 

large file with guaranteed efficiency.  

The B-Tree consisting of m descendants (order of the tree) with height h is defined by 

),( hmτ . Then the B-Tree T is either empty (h = 0) or has the following properties:  

(a) Every node has at most m children. 

(b) Each path from the root to any leaf has the same length h. 

(c) Root has at least 2 children, unless it is a leaf. 

(d) Each node has       to m descendants, except for the root and leaves. 

(e) A non-leaf node with k children contains k-1 keys. 

Figure 3.3 shows a B-Tree of the class )3,4(τ with order 4 and height 3. Therefore, each 

node (except for the root and the leaves) has between  24  and 4 children, so it contains 2, 

3, or 4 keys. The root is allowed to contain 1 to 4 keys; in this case it is 1. All of the leaves 

are at level 3. It is noticeable that (i) the keys appear in increasing order from left to right, 

using a natural extension of the concept of symmetric order; and (ii) the number of leaves 

is exactly one greater than the number of keys. 

 2/m
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Fig. 3.3 A B-Tree structure in τ (4, 3) 
 

Each node of B-Tree is called a page. Within each page of B-Tree, there are two kinds 

of data: a pointer and a key (shown in Fig. 3.3). A page containing l keys and l+1 pointers 

is represented in Fig. 3.4.  
 

p0 x1 p1 x2 p2 …………. xl pl 
Unused 

Space 

Fig. 3.4 Organization of a page of a B-Tree 
 

Here x1< x2< ….. < xl and pi points to the sub-tree for keys between xi and xi+1. Therefore, 

searching in B-Tree is quite straightforward: page (1) has been fetched into the internal 

memory, we search for the given argument among the keys x1, x2, ….. , xl. When l is large, 

it is better to use binary search, otherwise sequential search is the best. However, if the 

search is successful, the desired key is found; but if the search is unsuccessful because the 

argument lies between xi and xi+1, the page pointed by pi is fetched and the process 

continues. The pointer p0 is used if the argument is less than xi, and pl is used if the 

argument is greater than xl. 

 

3.6 Summary 

 

In this chapter, we discuss a number of issues concerning human motion recognition. At 

first, we present detailed survey on human motion recognition and its various challenges. 

Then we explain the feature space construction scheme adopted in our work. Finally, we 

present the overview of motion database, mention the challenges for a suitable structured 

database, and give a brief description of B-tree structured database. 
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Automatic Human Motion Acquisition 
 

 

4.1 Human Pose Acquisition 
 

Human pose acquisition is the process of acquiring a configuration or a model of human 

body, and thus making use of this information to learn within an intelligent system or a 

robot. When poses are collected over time, it can be applied in human motion analysis. 

Traditionally, motion capture systems require that markers are attached to the body. These 

systems have some major drawbacks as they are obtrusive, expensive and impractical in 

applications in which the observed humans are not necessarily cooperative. As such, many 

applications, especially in surveillance and human-computer interaction (HCI), would 

benefit from a solution that is markerless. Vision-based motion capture systems attempt to 

provide such a solution using cameras as sensors. Over the last two or three decades, this 

topic has received much interest, and it is considered as an emerging research domain. In 

this chapter, we present the characteristics, challenges and related surveys on pose 

acquisition within the vision-based human motion analysis context.  

 

4.2 Survey on Pose Acquisition 
 

The study and research on human pose acquisition cover a significant portion with Human 

motion analysis concept. In theory, as many details as the human body can exhibit could be 

acquired, such as facial movement and movement of the fingers. We mainly focus on large 

body parts (torso, head, and limbs). We limit ourselves to estimating body part 

configurations over time, and we do not precisely evaluate the motion recognition. For 

some applications, the positioning of individual body parts is not important. Instead, the 

entire body is analyzed as a single object, and body configurations are extracted for pose 

analysis.  

Body parts segmentation refers to the process of locating the body parts or body joints 

within an image. Most of the cases, the background of the image does not have any 
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significant effect on the segmentation. Such kind of human body parts segmentation based 

modeling is illustrated in Fig. 4.1. Theoretically, the goal of body modeling is to construct 

the function that gives the likelihood of an input image, given a set of parameters. These 

parameters include body configuration parameters, body shape and appearance parameters 

and camera viewpoint. Some of these parameters are assumed to be known in advance, for 

example a fixed camera viewpoint or known body part lengths. Estimating a smaller 

number of parameters makes the search for the optimal model instantiation more tractable 

but also poses limitations on the visual input that can be analyzed. Due to the variations 

between people in shape and appearance, and a different camera viewpoint and 

environment, the same pose can have many different observations. Also, different poses 

can result in the same observation. Since the observation is a projection (or combination of 

projections when multiple cameras are deployed) of the real world, information is lost. 

When only a single camera is used, depth ambiguities can occur (See Fig. 4.2). Also, 

because the visual resolution of the observations is limited, small changes in pose can go 

unnoticed.  

 

Fig. 4.1 The result of body modeling for the falling sequence as adopted in [188]. 

 

 

Fig. 4.2 The result of body modeling for the falling sequence as adopted in [189]. 
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4.2.1 Body parts segmentation and modeling 

 

Model-based approaches use a human body model, which may include the kinematic 

structure and the body dimensions. In addition, a function is used that describes how the 

human body appears in the image domain, given the model’s parameters. Instead of using 

the original visual input, the image is often described in terms of edges, color regions or 

silhouettes. A matching function between visual input and the generated appearance of the 

human body model is then needed to evaluate how well the model instantiation explains 

the visual input. 

Analyzing human motions by tracking or modeling body-parts is a much investigated 

research subject. A number of researches have been performed for such kind of motion 

analysis. In [190], a markerless capture of a human in full 3-D with a high-dimensional 

body model is addressed. It employs a simple 29-dimensional model of the human body 

parameterized by 24 joint rotations and five global variables (x, y, z, orientation, scale). A 

view-based human activity recognition method is proposed in [191]. In this work, an 

activity is represented by a set of pose and velocity vectors for the major body parts (hands, 

legs, and torso). A sequence-based voting approach is used to recognize activity invariant 

to the activity speed [192]. A Human Body Part Decomposition (HBPD) technique is used 

in the spatiotemporal analysis of the deforming apparent contour of a human moving 

according to a protocol of movements for the 3-D human body model acquisition from 

three mutually orthogonal views. In addition, the process of simultaneous 2-D part 

determination and shape estimation is modularized by employing Supervisory Control 

Theory of Discrete Event Systems. Finally, a novel algorithm is proposed in which the 

selectively integrates the apparent contours from three mutually orthogonal viewpoints to 

obtain a 3-D model of the subject’s body parts. However, a hand gesture extraction method 

is proposed in [193]. The human position and the rising hand gestures are estimated by 

integrating silhouettes from multiple cameras by a background image subtraction and a 

frame subtraction. In [194], a human body kinematic acquisition is proposed that extends 

Shape-From-Silhouette (SFS) from the traditional SFS formulation to apply to dynamic 

articulated objects. This method recovers shape and motions in two steps: (1) correctly 

segmenting the silhouettes to each articulated part of the object, (2) estimating the motion 

of each individual part using the segmented silhouette. An efficient method for detecting 

and segmenting multiple and partially occluded objects is proposed in [195]. A part 

hierarchy is maintained, and the segmentation and detection tasks are formulated as binary 

classification problem. By maximizing the joint likelihood defined based on the part 

detection responses and the object edges part detection responses are grouped, merged and 
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assigned to multiple object hypotheses. 

A human body can be represented by its joints through stick-figure, since it reflects 

anatomic features of the human. A lot of researches have been performed on this concept. 

However, it may be hard to obtain the joints directly from an image and usually various 

assumptions are introduced to simplify the matter. In the work by Lee and Chen [196], the 

positions of the joints in the image and the 3-D length of each segment are beforehand. 

Given the 3-D position of the neck, a partial tree is build. At each node one of two 

solutions for the next joint is possible, since the joint’s projection in the image and the 3-D 

length are known. A path through the tree is equal to one body pose. The tree is pruned 

using kinematic constraints and the assumption that the subject is walking is posed. In 

[197], they improve their system by introducing a smooth motion constraint. In the work 

by Attwood [198], a similar approach is taken, except that he uses three static postures 

(standing, kneeling, and sitting) instead of a walking assumption to prune the solution 

space. In [199], the 3-D positions of the joints are estimated using markers and stereo. 

These are compared with 3-D model joints using a graph-based scheme to find the correct 

pose of the subject. Some other works addressing the joint-based stick representation are 

mentioned in [200-207]. 

However, automatic human body extraction has much impact on human motion 

acquisition. The modeling of human body is performed from the images captured from 

single or multiple cameras. As human body is rigid one, the full-body model comprises the 

model of each articulated parts. The motion analysis represents how the articulated parts 

change their state in response to a particular motion. In [208], a monocular camera-based 

automatic human body modeling technique is proposed. It starts by finding shoulder and 

hip after locating the head based on curvature. Multiple frames’ information is integrated to 

identify the extremities as hands and feet. Moreover, connectivity energy is employed to 

locate the elbow and knee joint points. Finally, a complete human model is effectively built 

for motion recognition and analysis purpose. Another articulated human body model 

acquisition method using multiple cameras is introduced in [209]. The human body is 

modeled as a set of tapered super-quadrics connected in articulated structure and the 

parameter of the model is automatically estimated using the video sequences obtained from 

multiple calibrated cameras. In [210], a knowledge-based framework is presented to 

capture the meta-representations for real-life video with human walkers. The system 

models the human body as an articulated object where each body part’s motion, shape and 

texture is extracted, and treats human walking as cyclic activity with highly correlated 

temporal patterns. An articulated motion modeling strategy for activity analysis is proposed 

in [211]. It combines robust optical flow estimation, RANSAC, and region segmentation 
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using color and Gaussian shape priors. The combination results in a system that can 

robustly estimate and segment multiple motions. A view-insensitive 2-D-Model generation 

method using a high perspective camera is proposed in [21]. It focuses on using the 3-D 

principal directions of man-made environments, and also the direction of motion to 

transform both 2-D-Model and input images to a common frontal view before fitting 

process. Later, inverse transformation is performed on the resulting human features 

obtaining a segmented silhouette and pose estimation in the original image. A vision 

system for labeling the outline of a moving human body, named as First Sight, is proposed 

in [213]. Two processes constitute the system. The first process extracts the outline of a 

moving human object, whereas the second process builds a human body model, interprets 

the outline and produces a labeled 2-D human body stick figure for each frame. The 

proposed body model has two parts: the basic model that uses cylinders in modeling the 

body, and the extended model which models the body outline with self-occlusion and with 

varying changes in appearance. A novel human capture scheme employing visual hull and 

Iterative Closest Point (ICP) is proposed in [214]. In this method, the 3-D representation is 

achieved through visual hull from multiple 2-D cameras and the 3-D articulated body is 

tracked in the 3-D representations using an articulated body from a repository of 

subject-specific articulated bodies that would match the subject which is the closest based 

on a volume and height evaluation. An improvement of this method proposed in [215] 

maintains anatomical consistency by enforcing rotational and translational joint range of 

motion constraints for each specific joint.  

However, kinematic models describe the human body as a tree, consisting of segments 

that are linked by joints. Every joint contains a number of degrees of freedom (DOF), 

indicating in how many directions the joint can move. All DOF in the body model together 

form the pose representation. These models can be described in either 2-D or 3-D. 2-D 

models are suitable for motion parallel to the image plane. The works in [49] and [225] use 

a so-called Cardboard model in which the limbs are modeled as planar patches. Each 

segment has 7 parameters that allow it to rotate and scale according to the 3-D motion. In 

[226], an extra patch width parameter was added to account for scaling during in-plane 

motion (See Fig. 4.3(a)). In [227-228], a human body is described by a 2-D scaled 

prismatic model [231]. These models have fewer parameters and enforce 2-D constraints 

on figure motion that are consistent with an underlying 3-D kinematic model. But despite 

their success in capturing front-parallel human movement, the inability to encode joint 

angle limits and self-intersection constraints renders 2-D models unsuitable for tracking 

more complex movement. 3-D models allow a maximum of three (orthogonal) rotations 

per joint. For each of the rotations individually, kinematic constraints can be imposed. 
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Instead of segments that are linked with zero-displacement, [230] models the connection 

by constraints on the limb ends. In a similar fashion, Sigal et al. [232] model the 

relationships between body parts as conditional probability distributions. Bregler et al. 

[229] introduce a twist motion model and exponential maps which simplify the relation 

between image motion and model motion. The kinematic DOF can be recovered robustly 

by solving simple linear systems under scaled orthogonal projection. 

Due to the restriction of 2-D models in terms of camera’s angle, many researchers have 

been trying to depict the geometric structure of a human body in more detail using some 

3-D models such as elliptical cylinders, cones, spheres, etc. [216-224]. The more complex 

3-D volumetric models, the better results may be expected, but they require more 

parameters and lead to more expensive computation during the matching process (See Fig. 

4.3(b)). An early work by Rohr [216] made use of 14 elliptical cylinders to model a human 

body in 3-D volumes. The origin of the coordinate system was fixed at the center of torso. 

Eigenvector line fitting was applied to outline the human image, and then the 2-D 

projections were fit to the 3-D human model using a similar distance measure. Aiming at 

generating 3-D description of people by modeling, Wachter and Nagel [217] recently 

attempted to establish the correspondence between a 3-D body model of connected 

elliptical cones and a real image sequence. Based on the iterative extended Kalman 

filtering, incorporating information of both edge and region to determine the degrees of 

freedom of joints and orientations to the camera, they obtained the qualitative description 

of human motion in monocular image sequences. 

 

 
Fig. 4.3 Human shape models. (a) 2-D model [226], (b) 3-D volumetric model consisting of 

super-quadrics [224]. 
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4.2.2 Pose analysis 

 

A number of researches have been performed to estimate pose rather than the body-parts 

segmentation for human motion analysis. Basically, the concept of pose or posture is more 

or less related to silhouette. Each silhouette image within a motion sequence represents a 

pose, which is further required to be analyzed to extract application-specific information. 

In [189], a pose tracking system, known as Silhouette Lookup (SiLo) tracker, is proposed 

that uses articulated pose and it is based upon looking up observed silhouettes in a 

collection of known poses. This technique exploits temporal continuity to choose the best 

hypothesis among multiple candidate poses at each frame via a Markov chain formulation. 

Relieved of the burden of finding the perfect match, simple yet effective metrics make 

feasible rapid retrieval of candidate silhouettes. Smoothing and optimization based upon 

polynomial splines is performed to create a plausible human motion. A real-time silhouette 

extraction technique is proposed that estimates human postures for analyzing a sequence of 

human posture images [233]. It has several processes except the silhouette extraction by 

YIQ color values: obtaining orientation of the upper body, contour image, tips of feet and 

hands, top of head and estimating major joint positions. A novel method to estimate the 

body configuration and pose in a 3-D space is introduced in [234]. Initially, a set of 

boundary sample points from the image are obtained. Later, the 2-D image positions of 14 

keypoints (wrists, elbows, shoulder, hips, knees, ankles, head, and waist) are estimated on 

the image by deformable matching to a set of stored exemplars that have hand-labeled 

keypoint locations. These estimated keypoints can then be used to construct an estimate of 

the 3-D body configuration in the test image. Gavrila and Davis [37] take a top–down 

approach with search-space decomposition for pose estimation. Poses are estimated in a 

hierarchical coarse-to-fine strategy, estimating the torso and head first and then working 

down the limbs. The initial pose prediction is based on constant joint angle acceleration. 

An analysis-by-synthesis approach is applied in a discrete fashion, resulting in a limited 

number of possible solutions per joint. Drummond and Cipolla [42] introduce constraints 

between linked body parts in the kinematic chain. This allows lower parts to effect parts 

higher in the chain. A pose is described by the rigid displacement for each body part. This 

yields an over-parameterized system which is solved in a weighted least-squares 

framework. 

Recent work has focused on the recovery of human poses in cluttered scenes. The work 

in [235] adopts a three-stage approach, based on [236], to subsequently find human bodies, 

namely, their 2-D body part locations and a 3-D pose estimate. Sminchisescu et al. [237] 

learn top–down and bottom–up functions in alternate steps. The bottom–up process is 
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tuned using samples from the top–down process, which is optimized to produce estimates 

that are close to those predicted by the bottom–up process. The processes are guaranteed to 

converge to equilibrium. Another silhouette based human motion reconstruction technique 

is proposed in [238]. This technique reconstructs unconstrained motions captured from 

multiple cameras using volume intersection. Motion data are acquired by fitting a model of 

the performer to the reconstructed volume. 

 

4.3 Extension to Motion Modeling 
 

Within the context of this thesis, the goal of pose acquisition is to apply it in motion 

modeling. Motion modeling refers to the parameterized modeling of the human body 

performing the motions within successive motion frames. Rather than using a single pose 

or posture, we are to extend it in temporal direction. Thus motion modeling encompasses 

both the pose modeling and the aggregation of the models for motion analysis. In some 

earlier work, such concept is effectively focused.  

In the work of [216], a 3-D model based approach is proposed to interpret the 

movements of articulated bodies, e.g., pedestrians walking movements are recognized from 

the data obtained from medical motion studies. A 3-D cylindrical model is built and model 

parameters are estimated in consecutive images by applying Kalman filter (See Fig. 4.4(b)). 

A fast skeletonization technique, named star skeleton, is proposed in [73] that uses 

HMM-based methodology for action recognition. Here, pose-wise start-skeletons are 

generated over time. In the training phase, the model parameters of the HMM of each 

category are optimized so as to best describe the training symbol sequences. For human 

action recognition, the model which best matches the observed symbol sequence is selected 

as the recognized category (See Fig. 4.4(a)). A shape and stick figure based model of 

human body leading to motion analysis is introduced in [212].  

 

    
     (a)      (b) 
Fig. 4.4 Human motion modeling: (a) star skeleton in pickup sequence [73], (b) cylindrical 

model [216]. 
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However, a human body tracking mechanism for human in motion is also adopted in 

[188]. An activity manifold learning with poses is proposed in [128]. A 3-D model based 

estimation of human motion is adopted in [239] that uses multiple cameras. In [240], a 

view-based method for the recognition of human action/activity is introduced where an 

activity is represented by a set of poses and velocity vectors for the major body parts 

(hands, legs, and torso), and stored in a set of multidimensional hash tables. The 

recognition of a sequence of body pose vectors is done by a method of indexing and 

sequencing with only a few pose vectors. Many other pose acquisition methods are 

available that focus on human motion analysis. Yet, this field of research within the domain 

of motion analysis is very immature. Further investigations are needed to make this domain 

rich with many research outcomes concerning the computational complexity, viewpoints, 

preciseness, accuracy, etc. to make the system worthy of practical implementation. With 

this view, we have proposed a pose-oriented human motion acquisition method by 

following motion modeling strategy. The goal of our work is to acquire, analyze and 

recognize different categories of motions by vision-based motion capture. This approach is 

discussed in Chapter 7.  

 

4.4 Automatic Human Motion Modeling 
 

As the issues of motion modeling introduced in Section 4.3, we propose a human motion 

modeling strategy based on the acquisition and understanding of limb movements. 

Analyzing the prior researches, we find those either complex or partially representative 

modeling of human body. However, we are interested in the modeling which is much 

simpler, and, at the same time, able to model the human body with maximum 

representative structure. So, we propose here a semi-3-D modeling of human limb 

movements, including head, for the task of motion acquisition by a robot. This involves the 

thorough analysis of a human by using a silhouette image, and a skeletonized model. We 

analyze frontal- and right side-view of a human body. The system framework is depicted in 

Fig. 4.5. Various tasks of the modeling system are described below. 

 

4.4.1 Silhouette extraction 
At first, each image frame comprising a motion is extracted. A background subtraction 

procedure is applied on the image. In our work, we use the static background which is 

subtracted from the image having the actor in it. After successful background subtraction 

from the background image, the outline of a human body is extracted in the form of 

silhouette. 
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Fig. 4.5 System framework for motion modeling  

 

4.4.2 Generation of a skeleton  
A raw skeleton is constructed by thinning. Thinning is a morphological operation that is 

used to remove selected foreground pixels from binary images, somewhat like erosion or 

opening. It can be used for several applications, but is particularly useful for 

skeletonization. It is commonly used to tidy up the output of edge detectors by reducing all 

lines to single pixel thickness. Thinning is normally only applied to binary images, and 

produces another binary image as output. In the following, we describe our adopted 

thinning algorithm in brief [41].  

- The thinning of a set A by structuring element B, denoted A⊗B, can be defined in 

terms of the hit-or-miss transform 

A⊗B =A - A⊛B 

            = A ⋂ (A⊛B)c 

- The usual process is to thin A using a sequence of structuring elements B1,…Bn 

- In other words, A is thinned by successive passes of structuring elements B1, B2,… 

- The entire process is repeated until no further change occurs 

Head Extraction 

Hand Modeling 

Leg Modeling 

Human Model Fitting 

Silhouette Extraction 

Skeleton Generation 

Input image 

Model 
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An example of the thinning algorithm is shown in Fig. 4.6. 

However, the procedure from silhouette extraction to skeleton generation is shown in Fig. 

4.7. The raw skeleton is modeled according to our proposed human model shown in Fig. 

4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.6 An example of the implementation of the thinning algorithm on an image A. 

 

           

         (a)                          (b)                          (c) 

 

Fig. 4.7 Skeleton construction: (a) an original frame, (b) silhouette image, (c) constructed skeleton. 
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Fig. 4.8 Proposed human model. 

 

4.4.3 Head and neck positioning 

A template of head is constructed by estimating neck from top of the human body. The template is 

matched to locate the head position inside each image frame. The head is to be tracked in 

successive frames.  

Moreover, the neck is also obtained by vertical histogramming as shown in Fig. 4.9. The neck 

is relocated on the human body skeleton. 

 

 

 

 

 

 

        (a) 

 

 

 

 

 

 

  (b)      (c) 

 

Fig. 4.9 Neck positioning. (a) original frame, (b) silhouette image, (c) neck positioning by vertical 

histogramming 

neck 
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4.4.4 Hand modeling 
The shoulder points of both sides are necessary to model hands from frontal-view. 

Shoulder points are located on the skeleton by histogram tracing from neck to an assumed 

hip. The left and right shoulder points are assumed as the starting points of left and right 

hands, respectively. Efficient DFS (Depth-First-Search) algorithm traverses through the 

skeleton to obtain the maximum pixel length hand region.  

After getting the positioned hand pixels for both hands, they are modeled based on the 

elbow joint. Assuming the shoulder-elbow and elbow-hand regions as rigid, the elbow is 

positioned based on maximum inclination of region at a point from shoulder to hand. In the 

modeling process, shoulder-elbow and the elbow-hand joint angles are computed. Hand 

modeling for frontal view is shown in Fig. 4.10.  

Moreover, the side-view of the body helps to model hand movements observed from 

the right side. This makes our hand model a 2-DOF model. Similar to the frontal analysis, 

the visible portions of hands are extracted and inter-relation of the joints is calculated in 

terms of joint angles. However, the right- and left-hand models are specified in the 

modeling. Hand modeling for the right side view is shown in Fig. 4.11. 
 

         

 (a)                           (b) 

Fig. 4.10 Hand modeling for a frontal view. (a) a hand skeleton, (b) hand modeling 

 

                
       (a)                     (b)                      (c) 

Fig. 4.11 Hand modeling for a right side view. (a) isolation process of the hands, (b) 

isolated hands, (c) hand modeling 



69 | Chapter 4 
 

 

A number of assumptions are imposed at the time of hand modeling using both hands’ 

information.  

- Label hands as either left or right. 

- Mostly frontal view hand position is employed to solve the ambiguity between two 

hands 

- We consider the hands are not at the maximum pick position. 

- Intersecting hands are allowed in the computation. 

o Calculate angles for intersecting hands by using DFS-branching 

- Limitations: 

o Overlapping or occluded hands 

o Non-extracted hands 

 

4.4.5 Leg modeling 
Leg modeling starts with the identification of a waist point from a frontal view. Similar to 

hands, DFS algorithm traverses through the skeleton to obtain the maximum pixel length 

leg region. The point with the maximum-length branching in the DFS-tree is estimated as a 

waist. The knee joint is located based on some predefined assumptions. 

Moreover, the side-view of the human body provides information for the modeling of 

the legs observed from the right side. By positioning the waist on the side-view skeleton, 

the side-view based legs are modeled. The interrelation of the leg joints is described 

numerically in terms of angles between waist-knee and knee-foot. The positional 

information of the both legs is also specified. The leg modeling strategy is depicted in Fig. 

4.12. The leg model is represented numerically by angles. Side-view modeling of legs is 

performed like front-view modeling. Small leg movements are unidentified thorough out 

the leg modeling. However, there are some assumptions imposed on leg modeling. Those 

are mentioned as follows. 
 

    
         (a)                 (b)               (c)                  (d) 

Fig. 4.12 Leg modeling. (a) Leg pixels are traversed, (b) the longest branch obtained by DFS, (c) 

waist is located, (d) knee and foot are positioned, and joint angles are shown.  

Longest 
branch 

Waist 

Waist 

knee 

foot 

waist-knee angle 

knee-foot  
angle 
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- Both leg pixels are obtained 

o In waist location stage 

o Colorize leg pixels with two different colors 

- Locate knee points based on: 

o knee height = 
2

pixels leg oflength  Total
 

- Locate foot points 

o Denoted by the end point in the DFS traversal 

 

4.5 Experiments 
 
We have modeled different sorts of human movements using our proposed modeling strategy in 

order to evaluate the precision of the modeling. The modeling rate is calculated by matching 

against the joint position and joint angles on the original human body and the derived model (See 

Fig. 4.13). We have experimented on 1129 motion frames consisting of four different body and 

head movements performed by two actors. We have obtained 93% modeling rate based on the 

strategy depicted in Fig. 4.13. TABLE 4.1 summarizes the modeling rate and error rate for all the 

joint angles. However, the right-view movements of the legs are not taken into account for 

experimentation. Figure 4.14 shows an example of modeling for frontal view and right side view.  

 
Fig. 4.13 Joint-by-joint matching scheme for evaluation 

 
TABLE 4.1  

Modeling rate of the proposed model 
 

 

 

 

 

 

 

 

Joints Modeling Rate (%) Error Rate (%) 

Head-Neck 93% 7% 

Shoulder-Elbow(Front) 93% 7% 

Elbow-Hand(Front) 93% 7% 

Shoulder-Elbow(Side) 86% 14% 

Elbow-Hand(Side) 86% 14% 

Hip-Knee 99% 1% 

Knee-Foot 99% 1% 

Average 93% 7% 
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(a) 

 

     
(b) 

Fig. 4.14 The result of modeling of a hand waving sequence. (a) Frontal view, (b) right-side view. 

 
4.6 Discussion 
 

A semi-3-D modeling system is proposed that can be used for the acquisition of body and 

limb movements by a humanoid robot. The acquired motions are supposed to be 

recognized by the robot or an intelligent system in real-life scenario. We have developed 

the system for acquisition by modeling the movements of the body parts. We use frontal- 

and side-view capture of motions. As two cameras are used, the 2-DOF movements are 

corresponded. However, there are some limitations in the modeling in terms of modeling 

errors arising from generation of silhouette image, hands’ overlapping and non-extracted 

hand regions. Modeling of torso region corresponding to the deformation occurred in 

various motions is our future consideration. 

 

4.7 Summary 

 

In this chapter, we discuss a number of related issues concerning human pose acquisition. 

We present a detailed survey on human pose acquisition. We also present some recent 

works that emphasize the concept of motion modeling using the poses. We present our 

proposed human motion modeling strategy, and show the performance of the strategy by 

experiments. This motion modeling concept has much potential for the acquisition of rather 

complex motions in future motion recognition applications. 



 
 
 
 
 
 
 

Chapter 5 

Human Motion Recognition  

Employing Structured 

Motion Database 



 

5 
Human Motion Recognition  
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5.1 Introduction 

 

In recent years, with the increasing interest in the field of computer vision and image 

processing, the development of an efficient human motion recognition system has become 

an indispensable part of the intelligent systems and Human-Computer Interaction (HCI) 

systems. Developing a reliable intelligent system that is capable of manifesting what a 

human is performing in a scene is a very much challenging task. This sort of system has 

wide variety of applications, especially in surveillance, virtual and augmented reality, 

animation, intelligent robots, diagnostics of orthopedic patients in clinics and hospitals, 

supporting aged people in rehabilitation centers, performance evaluation and training of the 

athletes in sports, and so on. Due to diverse applications for such systems, it requires 

robustness as well as accuracy. Moreover, the system is subjected to be in use in real-time; 

this urges for relatively fast response of the system. This attribute constrains on the system 

development that the system should have the capability of high-speed recognition. 

Therefore, having a number of aspects for the recognition system, the literature related to 

the problem of recovering and recognizing human motions in a scene is intensive [28, 128, 

129, 131, 134, 241, 242]. However, we focus on the methods addressing the specific 

problem of recognizing human motions from image sequences without using markers, 

tracking devices, or special body suits. Based on whether or not a priori knowledge about 

the object’s shape is required, the methods for human motion analysis can be classified 

broadly into two categories: model-based and appearance-based approaches [115, 243]. 

However, other forms of categories are also available [67]. Both the approaches have their 

own advantages and disadvantages. Appearance-based approaches are applicable to diverse 

situations, since they do not require a specific object model. Those methods are sensitive to 

noise in general, because they lack any mechanism to distinguish noise from signal in 
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visual input. Appearance-based approaches build a body representation in a bottom-up 

fashion by first detecting appropriate features in an image, whereas in model-based 

approaches, the fitting process involves either an optimization scheme such as the least 

square method [244] or a stochastic sampling scheme such as the particle filtering method 

[245]. In practice, the degree of detail in the body representation (e.g., head, torso, limbs, 

etc.) is not a mandatory requirement for recognition purpose; rather motion-specific 

representation composed of adequate features to represent each motion uniquely is enough 

to accomplish the task of recognition. Therefore, advanced image processing techniques 

are being comprehensively investigated in search of effective representation of a motion. 

Standard techniques for the motion representation include the ones based on Motion 

History Image (MHI) and its variants [70, 129, 115, 81]. Motion history-based 

representations include not only the movement of a body itself but also the change of 

position of a person in a scene. However, object’s silhouette information alone can be used 

as an input for a recognition system. Wang and Suter [131] used silhouettes as the input to 

their recognition system. Elgammal and Lee [128] also used silhouettes without motion 

history. Moreover, another motion recognition approach was also proposed which 

considered multi-view motion representation and recognition [83]. In this approach, the 

motion postures are iteratively transformed into a single eXclusive-OR (XOR) template 

image for the task of registration and recognition.  

However, in order to deal with the high dimensional complex information extracted 

from human motion, it is necessary to find reduced representation of the motion while 

maintaining sufficient discriminating data for performing the recognition. To accomplish 

these goals, existing researches have used simple data reduction techniques such as 

Principal Component Analysis (PCA) [129], Eigenspace technique [111], Locality 

Preserving Projections (LPP) [131, 246], etc. Moreover, a statistical matching method 

using Hidden Markov Model (HMM) that allows for a principled probabilistic modeling of 

the temporal sequential information is also adopted in various works [128,162]. An 

alternative approach for matching the data sequences using Dynamic Time Warping 

(DTW) is also employed in recent works [134, 247]. The recognition methods mentioned 

in the aforesaid literature commonly use single or frontal cameras to capture motions in the 

case of view-based motion analysis. But an intelligent system may have the flexibility of 

orientation-independent recognition. Therefore, it is necessary to handle the 

orientation-specific data in an effective way.  

 

5.2 Contribution of the Work  

In this chapter, we propose a human motion recognition approach capable of distinguishing 
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the orientation-specific motions effectively by means of a structured data organization. The 

novelty of the proposed approach lies in improving the precision and robustness of the 

recognition by making use of the directional organization of the motion database (referred 

to as “directional motion sub-database”) corresponding to the varying viewpoints and the 

nearest index searching strategy with the database. The directional candidates obtained 

from the directional motion sub-databases play an effective role to find similar motions. 

Unlike earlier researches, we propose an adoption of multi-viewpoint concept without 

integrating the orientation-wise information, and thus reducing the load of detailed 

analysis. 

The aforementioned structured motion database system faces a significant problem, 

called a boundary problem or a nearest neighbor searching problem, which might degrade 

the performance of the overall recognition system. The boundary problem, as the name 

implies, is the misclassification of motion points residing near the boundary of the search 

space or the miss-selection of the candidate motion points within the space. The novelty of 

this work lies in resolving the boundary problem for the improvement of a human motion 

recognition system. The current work makes the following contributions: (1) We present a 

novel approach for overcoming the existing problem within the structured motion database. 

(2) The misrecognition is highly recovered by increasing the extent of searching. (3) We 

represent experimental results showing the significant improvement by adopting the 

proposed approach. 

However, in the above system, an unknown motion is exhaustively searched over the 

stored data without any prior cue indicating the possible direction of motion capture to 

which it may belong. This often leads to the redundant searching by including the 

searching spaces where possibly it does not reside. Therefore, the time requirement as well 

as the recognition accuracy is subjected to be improved to make the system more efficient. 

Therefore, we propose a structured database based direction-oriented motion capture by 

pre-estimating the possible orientations of an unknown motion. Thus we are able to 

eliminate unnecessary search load and make the system faster so that it can be 

implemented in online applications. 

 

5.3 Motion Representation 

 

We use the concept of motion representation to generate a form to characterize a motion 

for the computer to understand and to use the motion for recognition. This is a very crucial 

task. However, as mentioned earlier, we have used two standard representations of 

motions: MHI, and Exclusive-OR image. We generate the motion images (or feature 
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images) from preprocessed motion frames (See Fig. 5.1). Details of these representations 

are described in Section 2.2 and 2.3. 

 

 
Fig. 5.1 Pickup motion and corresponding motion representations: (a) Some frames representing 

the motion, (b) MHI, (c) XOR image. 

 

5.4 Construction of Directional Feature Spaces 

 

A feature is a significant attribute for characterizing a motion and determining the 

similarity of it among a number of training motions [111]. The aggregation of the feature 

should have the quality of distinguishing unique motions. Based on this concept, a feature 

space is constructed in the form of an eigenspace, where the eigenvectors corresponding to 

the prominent eigenvalues construct an eigenspace of projected motion data. An 

eigenspace is a high-dimensional feature space that represents the proximity among the set 

of data. It is a modified form of Karhunen-Loeve Transform (KLT) that is used to derive 

the relationship among different random variables. In practice, a large set of learning 

motions is required to be projected onto the eigenspace by finding prominent eigenvectors. 

In Section 3.4, we have presented detailed description of the construction of a feature 

space.  

We compute the eigenspace consisting of different actions performed by different 

actors. For each camera viewpoint, separate eigenspaces are created, which we call 

(a) 

(b) 

(c) 
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directional eigenspaces or the first hierarchy of eigenspaces, by projecting corresponding 

motions onto those using Eq. (3.10), which can be used to characterize motions as well as 

camera directions (See Fig. 5.2(a)). For constructing an image set, all the images of the set 

should be same size. In our work, feature images generated in the form of MHI or XOR 

image can be successfully characterized by 32X32 pixels. Correspondingly, equal number 

of sub-databases are also built and maintained. Each sub-database returns a single 

candidate motion for a motion query. Moreover, a global eigenspace or the second 

hierarchy of eigenspaces containing all the learning motions is also built, and maintained to 

decide the most similar one among several candidate motions (See Fig. 5.2(b)). The global 

eigenspace is constructed in a similar fashion as directional eigenspaces. 

      

(a) 

 

(b) 

Fig. 5.2 Hierarchy of eigenspaces: (a) Directional eigenspaces, (b) global eigenspace. First three 

dimensions of these eigenspaces are shown for visualization. 

 

5.5 Development of a Motion Database 

 

A database, solely, relies upon the organization of data within the computer memory. The 

most common database organization is linear, i.e., the data arranged in the order of its input. 

At the time of query, the database performs sequential blind searching among the data. In 

order to overcome the problem of sequentiality in the query, many researchers have been 

comprehensively involved in the development of a suitable database that is organized in a 

non-sequential manner and also capable of quick and successful retrieval. Moreover, due to 

the increased number of motion archives, maintenance of the database organization is also 

drawing much attention. As a result, the B-tree [172] database structure is adopted in our 

…………        
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research as a structured non-sequential motion database. 

 

5.5.1 Indexing of motion data 

According to the concept of structured database as mentioned in Section 3.5.1, the motions 

which are projected onto the eigenspaces are required to be indexed (i.e., generating an 

index) into a numeric format for the flexibility of storage. The dimension of an eigenspace 

is taken as an important cue in space partitioning. The eigenspace is uniformly divided into 

several divisions. Each eigen-axis ek (k = 1,2,..,K) is divided into S (S >1; integer) sections 

leading to S
k
 hypercubes with equal edge length of L along each eigen-axis. Each 

hypercube is referred to as a bin in spatial term and an index in numeric term (See Fig. 5.3). 

In this thesis, the edge length L of the hypercube is termed as bin length. Each motion point, 

represented as a bin or index, is assigned a digit from 0 to S-1 along each eigen-axis. 

Therefore, an index becomes a K-digit S-nary number (See Fig. 5.4). However, in the case 

of no division of the space, in fact, no database system exists; it is rather sequential storage 

of the motion data. Therefore, the structured form of the database is preferable to realize a 

profound database system. 

 

Fig. 5.3 Sectioning of each eigen-axis for indexing within an eigenspace 

 

Digit-(K-1) …………… Digit-4 Digit-3 Digit-2 Digit-1 Digit-0 

(0~S-1) …………… (0~S-1) (0~S-1) (0~S-1) (0~S-1) (0~S-1) 

Fig. 5.4 A format of a K-digit S-nary index 
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5.5.2 Directional organization of structured database 

In the case of the motions with several orientations, the motions can be grouped into 

several motions sets based on the orientation. The steps for constructing a directionally 

organized structured database are as follows: 

a. Capture the training motions having c (c >1; integer) orientations by 

maintaining motion synchronization. 

b. Create motion sets Mi (i=1,2,…,c) based on the orientation. 

c. Construct eigenspaces ESi corresponding to each motion set Mi using the 

scheme described in Section 3.4.2. 

d. Construct the structured B-tree sub-database BSBi corresponding to each 

eigenspace ESi taking the division parameter S as described in Section 5.5.1. 

e. Combine all the sub-databases to develop directionally organized database. 

   

5.5.3 Robustness of the directional organization 

The B-tree structured database maintains the ordered arrangement of data within the tree 

structure [83, 172, 249, 178]. Each index, as generated in Section 5.3.1, is also assigned a 

decimal value based on the radix of the index. Depending upon the assigned value, the 

indexes are stored in an orderly way within the database. The B-tree retrieval algorithm is 

then applied to retrieve the matched index, or the most appropriate position if matching 

fails. However, the decimal value does not efficiently represent the neighboring indexes of 

an index corresponding to its co-ordinate values within original feature space. Moreover, 

till now there is no standard algorithm for the indexing strategy to select the nearest 

neighboring point within the space when the exact match of an index is not encountered. 

Our adopted approach is to calculate the digit-wise Sum of Squared Difference (SSD) 

between the consecutively stored indexes within the B-tree. However, it is not the exact 

measure, rather an approximation, to select the nearest index within the space. The nearest 

index searching algorithm is described below. In the algorithm, Keys(..) denote the pointer 

to the successor (or children) within the tree structure. 

 

Algorithm 5.1: Nearest neighbor search 

1. For query index y, y>xi and pi-1=NULL 

  - Calculate MinDist(MinDist(xi-1, y), MinDist(xi, y)) 

2. For query index y, xi>y≥xi pi=NULL 

  - Calculate MinDist(MinDist(xi, y), MinDist(xi+1, y)) 

3. For query index y, y<xi and pi-1 ≠ NULL 

  - Calculate MinDist(MinDist(xi-1, y), MinDist(xi, y)) as MD1 



79|Chapter 5    

 

 

     - Calculate ),( )(
1,...3,2,1
yxMinDist l

ipl −=

as MD2 

     - Calculate MinDist(MD1, MD2) 

4. For query index y, xi>y≥xi pi≠NULL 

     - Calculate MinDist(MinDist(xi+1, y), MinDist(xi, y)) as MD1 

     - Calculate ),( )(

,...3,2,1
yxMinDist l

ipl=
as MD2 

     - Calculate MinDist(MD1, MD2) 

 

The conventional database organization is represented by high dimensional eigenspace, 

whereas the directional organization is represented by comparatively low dimensional 

space due to the splitting up the whole dataset into directionally independent datasets. It is 

certain that with the increase in number of dimensions, the probability of miss-selection 

proportionally increases. Thus, the conventional organization exhibits lower possibility to 

select the exact nearest index than that of the directional organization based on the 

aforementioned searching algorithm. Therefore, our proposed directional organization 

theoretically and experimentally proves the robustness of the recognition system. 

 

5.5.4 Boundary problem 

 

5.5.4.1 Overview 

A boundary problem, in this context, is referred to as possible miss-selection of a candidate 

bin, composed of motion points, within the feature space. In a general sense, we can 

mention it as the misclassification of motions. This problem commonly occurs in such kind 

of space searching due the similarity of a motion with several motions. According to the 

theory, there are two cases for the occurrence of this problem. 

[1]  Motion points lying on the edge of a query space imply the inaccurate selection of 

the bin, since other point in another bin may be near the point (See Fig. 5.5(a)). 

[2]  If the query index does not seem to reside within the database, it is necessary to 

find the least different index within it. But because of the multidimensionality of 

the feature space, no algorithm exists (except linear searching) that can do it 

accurately. Here, we adopted approximation algorithm that uses the decimal value 

corresponding to the S-nary number to match the nearest bin. The output of the 

algorithm may lead to misclassification of motions. This phenomenon is illustrated 

in Fig. 5.5(b). 
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(b) 

Fig. 5.5 Occurrence of the boundary problem: (a) Point inside the oval is the nearest; but other 

point will be selected, (b) Index comparison of input (32) with other three 22, 33 and 42. The point 

inside 22 is the nearest but 33 is selected. 

 

5.5.4.2 Boundary problem resolution  

 

In order to deal with the boundary problem, we maintain two sets of query space by 

shifting the space division to a certain scale. Thus we get two sets of query spaces, namely 

original and shifted query space set (See Fig. 5.6). In Fig. 5.6, we see how the boundary 

problem is resolved by maintaining two query space sets over the feature space. The 

proposed selected point searching shows visually better performance than the only using 

the conventional one. However, corresponding to two sets of query spaces, two parallel 

motion databases are developed which constitute the whole database system. In our work, 

we make use of two parallel B-Tree databases to cope with the significant problem. 
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Fig. 5.6 Boundary problem resolution. Two query space sets are used for resolution. 

 

5.5.5 Prior estimation of direction 

 

In order to estimate the possible orientations of an unregistered motion, a global 

eigenspace containing all the training motions of all the camera views is analysed and 

information is manipulated. For prior estimation of directions, the projected training 

motion points within the global eigenspace are clustered based on the orientations from 

which those are viewed (See Fig. 5.7). For D number of orientations, D clusters are 

constructed correspondingly within the space. We enclosed those direction-wise motion 

points by hyperspheres within the space as clusters.  Thus we obtain D hyperspheres in 

the space, either overlapping or non-overlapping. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Clustering of motion points on global eigenspace. A two-dimensional eigenspace 

is shown. 
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5.5.6 Database search scheme 

 

The structured motion database searching strategy is quite simple, but effective. When an 

unknown motion comes, it is first represented as a sequence of image frames and is 

processed for generating motion representation. The MHI or XOR image is generated from 

the motion frames, its position within the global eigenspace is computed and the clusters it 

belongs to are also found out and selected as the possible estimation of directions. For 

example, we obtain d directions among the total of D directions. Then the prior selected d 

directional eigenspaces are searched by projecting onto the directional eigenspace. An 

index, representing motion identity within the directional sub-database, is generated from 

the point corresponding to the unknown motion after its projection onto each eigenspace. 

For the selected number of camera orientations, the equal number of similar motions is 

obtained by searching the corresponding B-Tree sub-database as mentioned in Section 

5.5.3. The index searching process is repeated for the original and shifted query spaces. 

Based on the query of the motion, one of the two query space sets is selected adopting the 

distance measurement function as shown in Eq. (5.1). The closest motion point on a 

directional eigensapce is referred to as a candidate motion. Similarly, for selected number 

of camera directions, same number of candidate motions is obtained by searching the 

corresponding query space sets. If the query index resides within the database, it is found 

by simple index comparison. But for the case of the index not residing within the database, 

the nearest neighboring point approximation algorithm is employed to find the suitable 

query index (See Algorithm 5.1) corresponding to each camera direction. 

     Thus we get several candidate motions from camera-directional eigenspaces. Those 

candidate motions are projected onto the global eigenspace as ),..,2,1( Dr
rm

=g , where D is 

the number of camera directions. The test motion is projected as gm within the global 

eigenspace. The most similar motion is calculated from within the global eigenspace using 

the Euclidian distance function shown in Eq. (5.1). 
 

mm
r

m r
d gg −= min                            (5.1) 

 

5.6 Recognition Strategy 

 

As we mentioned in Section 5.5.6, the database search scheme predominantly serve the 

purpose of recognition. Practically, after successful search within the structured motion 

database, we obtain the most similar motion to the input unknown motion. In this section, 

we summarize and illustrate the recognition strategy as one of the most important 

operations of the proposed motion recognition system. According to Fig. 5.8, the steps 
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required for the task of recognition are stated below: 

- The possible directions of the feature image corresponding to input motion are 

extracted from the clusters within the global eigenspace by direction estimation. 

- It is projected onto the selected directional eigenspaces and an index is generated 

for each of the selected directional eigenspace. 

- Each index is searched within each sub-database of B-tree set having original and 

shifted B-tree. Thus we get the closest point by searching the two. Among D 

number of directions, a subset, i.e., d sub-databases corresponding to d directional 

eigenspaces are searched, and we obtain d number of candidate motions.  

- The candidate motions are projected onto the global eigenspace. The most similar 

motion is obtained from the global eigenspace by computing Eq. (5.1). 
 

 

Fig. 5.8 Illustration of the recognition strategy 
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5.7 Experiments 

 

5.7.1 Experimental setup 

 

The experiments are performed on Avatar dataset with different synthesized human avatars 

(See Fig. 5.9). Each avatar actor performs ten different types of motions, namely bend 

(bending down), carry (carrying a box), jump (hopping in a place), pjump (jumping with 

two hands up and landing down), pickup (picking up something from the ground), sitdown 

(sitting down on a chair), standup (standing up from a chair), stomachache (touching 

stomach with pain and crouch), walk (walking motion), and wave2 (waving two hands up 

in the air). The variations in motion are realized by a subject’s height and shape, speed of 

motion, and field of view. The scene is assumed to be backgroundless. Eight uncalibrated 

cameras are placed surrounding the avatar at 45 degrees apart, having 0-, 45-, 90-, 135-, 

180-, 225-, 270- and 315-degree camera orientations (See Fig. 5.10). Human surface is 

perpendicular to the viewing plane, i.e., parallel to the camera direction at 0-degree camera 

view and the viewing angles are considered in clockwise direction. Figure 5.11 and Fig. 

5.12 illustrates different motions, and the corresponding MHIs and XOR images. The 

motion dataset consists of 800 motion data separated into eight orientations. Among those, 

560 motion data are considered as training set, and the rest as testing set. Thus the 

directional sub-databases consist of 70 motion data corresponding to each orientation, 

whereas the global eigenspace consists of 560 motion data corresponding to all the 

orientations. Likewise, the test set consists of 30 motions each (10 motions performed by 3 

actors) for every orientation. Each frame extracted from motion is 320X240 pixels that is 

represented as 32X32 pixels while generating the feature images. Eight directional 

eigenspaces are constructed corresponding to eight cameras. Thus a total of 16 B-Trees are 

constructed for eight directional eigenspaces each having two B-Trees for the problem 

resolution. The recognition system was implemented and tested on a Core2Duo 2.93 

GHz-processor 4 GB-RAM computer. The system is tested for MHI and XOR images to 

illustrate the improvement in performance regardless of the representation adopted. 
 

 

 

 

 

 

 

Fig. 5.9 Ten synthesized avatar actors 

 Actor 1  Actor 2  Actor 3  Actor 4  Actor 5  Actor 6  Actor 7  Actor 8  Actor 9  Actor 10 
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(b) 

Fig. 5.10 (a) Eight views of an actor performing a motion, (b) surrounding camera concept. 

 

5.7.2 Definition 

 

5.7.2.1 Bin length 

A bin is defined as the hypercube within each directional eigenspace by portioning each 

eigen-axis. By transforming the extent of each axis to unit with S divisions along the axis, 

the length of each edge of a bin is defined as: 

S
L

1

axis  thealong divisions ofnumber  Total

axis-eigenan  ofExtent 
 )(Length Bin ==  

 

We shall refer to the bin length as L in the latter part of the thesis. 

 

5.7.2.2 Recognition rate 

Recognition rate is defined as the percentage of successfully recognized motions among 

total number of motions. It can be defined as: 

100 
motions ofnumber  Total

motions recognized ofNumber 
ratenRecognitio ×=  
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5.7.2.3 Searching rate 

The time elapses for searching for a test motion within the database is known as searching 

time. We also compute searching rate which is defined as: 

 
 timesearching Total

database e within thdata ofnumber  Total
rateSearching =  

The units for searching time and searching rate are millisecond and data/millisecond, 

respectively. 

 

5.7.2.4 Recall 

Recall is defined as the percentage of successfully recognized motions among the ground 

truth motions. It can be defined as: 

100
Truth Ground

motions recognized ofNumber 
 )( Recall ×=R  

 

5.7.2.5 False Positive Rate (FPR) 

False Positive Rate (FPR) is defined as the percentage of miss-recognized motions among 

the total number of motions which are recognized correctly and incorrectly. It can be 

defined as: 

100
motions recognized wrongly ofNumber motions recognizedcorrectly  ofNumber 

motions recognized wrongly ofNumber 
                      

 )( Rate Positive False

×

+

=FPR

 

 

5.7.2.6 Precision 

Precision is defined as the percentage of recognized motions among the total number of 

motions which are recognized correctly and incorrectly. It can be defined as: 
 

100
motions recognized wrongly ofNumber motions recognizedcorrectly  ofNumber 

motions recognized ofNumber 
                      

 )(Precision 

×

+

=P

 

5.7.2.7 Scale of shifting 

Scale of shifting refers to the extent within the eigenspace the space division is shifted to 

form a shifted query space (See Section 5.5.4). In general, we have taken it as L/2, i.e., half 

of the bin length. But we have also experimented for other scales of shifting.  
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Fig. 5.11 A single motion frame and corresponding MHIs of each of the 10 motions from 

different camera angles (a) 0, (b) 90, (c) 135, (d) 270 degrees. 
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Fig. 5.11 A single motion frame and corresponding XOR images of each of the 10 motions 

from different camera angles (a) 0, (b) 90, (c) 135, (d) 270 degrees. 
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5.7.3 Experimental results and the analysis of the results 

 

First of all, the structured motion database with the directional organization is used to 

evaluate the performance of the recognition system. The experimental results are obtained 

by varying the division parameter that we call bin length. The results are extensively 

compared with the methods proposed in [83, 249, 178] which we refer to as existing 

methods/strategies. 

Using MHI, in the case of no division, the recognition rates for proposed and existing 

strategies are 97% and 96%, respectively. The average recognition rates for the bin lengths 

1/2 to 1/10 employing proposed and existing strategies are 86% and 74%, respectively; 

while the maximum recognition rate is achieved in our proposed approach for bin length 

1/5 as 89%. So, we notice significant difference in recognition rates between the proposed 

and other database organizations. Similarly, using XOR images, in the case of no division, 

the recognition rate is 95% for the both cases. The average recognition rates for proposed 

and existing strategies are 77% and 64%, while the maximum recognition rate is achieved 

in our proposed approach for bin length 1/8 as 85%. Therefore, our proposed approach 

with directional organization claims significant improvement over others for both the 

representations. The above results are tabulated in TABLE 5.1. From TABLE 5.1, it is 

noticeable that MHI outperforms XOR representation by considerable amount in terms of 

recognition rate. 

Moreover, we have also investigated the time requirement for the proposed directional 

organization-based method and existing methods. In the case of MHI with no division, the 

searching rates are 31.4 data/ms and 8.5 data/ms for proposed and existing organization, 

respectively. The average searching rates using the structured motion database concept are 

51.4 data/ms and 37.8 data/ms, respectively. Therefore, using MHI the proposed approach 

is very much faster than the earlier approach. Similarly, using XOR images, in the case of 

no division, the searching rates are 8 data/ms and 1.8 data/ms for proposed and existing 

organization, respectively. The average searching rates using structured database concept 

are 39 data/ms and 41 data/ms, respectively. In the case of XOR, time requirement does 

not vary due to the high dimensionality of the feature space, while the proposed directional 

organization-based approach is three to four times faster than the sequential search. 

TABLE 5.2 tabulates the searching time and searching rates for both the aforesaid cases. 

Secondly, we have solved the boundary problem within the motion database that 

implies higher performance than our approach with directional organization only. We have 

computed experimental results for the problem resolution scheme having adopted the 

directional organization. We have tabulated it in TABLE 5.3, and compared it with our 
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aforesaid directional organization based results. We have computed the results for the scale 

of shifting of L/2. Moreover, a motion-wise performance graph is also shown in Fig. 5.12. 

 

TABLE 5.1  

Recognition rate (%) for existing and proposed directional organization 

Bin Length 
MHI XOR 

Existing Proposed Existing Proposed 

1 96 97 95 95 

1/2 80 88 58 75 

1/3 76 88 61 73 

1/4 80 82 67 78 

1/5 68 89 63 76 

1/6 78 83 68 75 

1/7 70 85 64 73 

1/8 75 83 70 85 

1/9 70 86 69 79 

1/10 65 86 60 78 

Average 74 86 64 77 

 

TABLE 5.2 

Time consideration for existing and proposed directional organization 

Bin 

Length 

MHI XOR 

Existing Proposed Existing Proposed 

Searching 

Time(ms) 

Searching 

Rate(data/ms) 

Searching 

Time(ms) 

Searching 

Rate(data/ms) 

Searching 

Time(ms) 

Searching 

Rate(data/ms) 

Searching 

Time(ms) 

Searching 

Rate(data/ms) 

1 66.17 8.5 18.1 30.94 308.55 1.8 70.16 8 

1/2 13.72 40.8 9.98 56.11 12.81 43.7 14.625 38.3 

1/3 14.6 38.4 11.11 50.41 14.66 38.2 13.825 40.5 

1/4 13.89 40.3 11.48 48.78 13 43.1 13.9 40.3 

1/5 15.15 37 11.52 48.61 11.69 47.9 13.95 40.1 

1/6 15.96 35.1 11.59 48.32 16.4 34.1 15.28 36.6 

1/7 14.68 38.1 11.83 47.34 14.15 39.6 15.18 36.9 

1/8 15.51 36.1 13.63 41.09 15.02 37.3 13.72 40.8 

1/9 16.5 33.9 13.76 40.7 12 46.7 14.175 39.5 

1/10 13.97 40.1 12.87 43.51 14.5 38.6 14.82 37.8 

Average 14.9 37.8 12 45.58 13.8 41 14.4 39 
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TABLE 5.3  

Recognition rate (%) for directional organization only and with boundary problem 

resolution 

Bin 

Length 
MHI XOR Image 

Directional 

Organization only 

With Boundary 

Problem Resolution 

Directional 

Organization only 

With Boundary 

Problem Resolution  

1 97 97 95 95 

1/2 88 94 75 90 

1/3 88 94 73 82 

1/4 82 90 78 83 

1/5 89 91 76 84 

1/6 83 91 75 85 

1/7 85 92 73 82 

1/8 83 92 85 88 

1/9 86 90 79 84 

1/10 86 90 78 85 

 

 

Fig. 5.12 Motion-wise comparative performance analysis according to boundary problem 

resolution 

 

We obtain the average recognition rate of 92% for the system with the resolution to the 

boundary problem, whereas 86% for the system without the resolution using MHI (See 

Table 5.3). Similarly, we obtain the XOR-based average recognition rate of 85% for the 

system with the resolution to the boundary problem, whereas 77% for the system without 

the resolution (See Table 5.3). In Table 5.3, grey cells represent the recognition results 

having the boundary problem with directional organization only, whereas white cells 

represent the results after resolution. The results are computed with varying bin lengths. 

For both the representations, our introduced resolution scheme shows significant 
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improvement. The motion-wise comparative performance analysis illustrated in Fig. 5.12 

shows that for every motion the recognition rate is increased by a considerable amount. 

However, we have also computed the searching time corresponding to the boundary 

problem resolution scheme. Those are tabulated in TABLE 5.4.  

Thirdly, as we mentioned in Section 5.5.5, we have introduced prior estimation of 

directions within the motion recognition system. We have also performed experiments 

employing this strategy for the directional organization only, and jointly with the 

directional organization and the boundary problem resolution scheme. 
 

Case-1: The directional organization. Using MHI, the recognition rates computed for bin 

length 1 for the directional organization and with the prior estimation strategies are 97% 

and 96%, respectively. The average recognition rates for the bin lengths 1/2 to 1/10 

employing these two strategies are 86% and 85%, respectively; while the maximum 

recognition rate is achieved with prior direction estimation for bin length 1/2 as 88%. 

Similarly, using XOR images, in the case of no division, the recognition rates are 95% for 

both the cases. The average recognition rates for proposed and existing strategies are 77% 

for both of them, while the maximum recognition rate is achieved with prior direction 

estimation for bin length 1/8 as 86%. Therefore, we notice almost equal recognition 

accuracy for the proposed and existing strategy. The above results are tabulated in TABLE 

5.5. From TABLE 5.5, it is noticeable that MHI outperforms XOR representation by 

considerable amount in terms of recognition rate. But the proposed approach merely affects 

the performance for the both cases. 

However, we have comprehensively investigated the time requirement for prior 

estimation-based method and the existing methods. In the case of MHI with no division, 

the searching time is 15.1 milliseconds (ms) and 18.1 milliseconds (ms) for prior 

estimation-based method and existing method, respectively. The average searching time 

using the structured motion database concept is 10.2 ms and 12 ms, respectively. Therefore, 

using MHI the proposed approach that utilizes the prior direction estimation is much faster 

than that of the approach not using the direction estimation. If we consider the reduction of 

searching cost in terms of the number of eigenspaces, we found that 266 eigenspaces 

corresponding to 240 test motions remain unsearched due to direction estimation. So, in 

average, more than one eigenspace per motion is eliminated for redundancy at the time of 

searching for the candidate motions. Similarly, using XOR images, in the case of no 

division, the searching time is 68.3 ms and 70.16 ms for the new and existing method, 

respectively. The average searching time using structured database concept for the new and 

existing method is 13.6 ms and 14.4 ms, respectively. In the case of XOR, due to the 

scattered nature of the motion points within the space, the dimensionality of the feature 
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space becomes comparatively high which leads to the less reduction of the searching 

spaces. Thus there is only slight reduction in time requirement for the proposed approach. 

TABLE 5.6 also tabulates the searching time for the prior estimation-based method and 

existing method. 

TABLE 5.4  

Searching time (ms) for directional organization only and with problem resolution 

Bin 

Length 
MHI XOR Image 

Directional 

Organization only 

With Boundary 

Problem Resolution 

Directional 

Organization only 

With Boundary 

Problem Resolution  

1 18.1 18.1 70.16 70.16 

1/2 9.98 26.96 14.625 49.56 

1/3 11.11 22.9 13.825 28.34 

1/4 11.48 24.69 13.9 28.88 

1/5 11.52 23.53 13.95 29.57 

1/6 11.59 24.77 15.28 31.12 

1/7 11.83 25.36 15.18 30.35 

1/8 13.63 28.22 13.72 30.55 

1/9 13.76 26.85 14.175 32.18 

1/10 12.87 25.63 14.82 31.93 
 

TABLE 5.5  

Experimental results with directional organization only and with prior direction 

estimation 

Bin  

Length 
MHI XOR 

Directional 

Organization only 

Prior direction 

estimation 

Directional 

Organization only 

Prior direction 

estimation 

Recognition 

rate(%) 

Searching 

Time 

(ms) 

Recognition 

rate(%) 

Searching 

Time 

(ms) 

Recognition 

rate(%) 

Searching 

Time 

(ms) 

Recognition 

rate(%) 

Searching 

Time (ms) 

1 97 18.1 96 15.1 95 70.16 95 68.3 

1/2 88 9.98 88 8.3 75 14.62 75 13.93 

1/3 88 11.11 87 9.22 73 13.82 73 12.83 

1/4 82
 

11.48 82 9.81 78 13.9 78 12.77 

1/5 89 11.52 88 9.85 76 13.95 76 13.28 

1/6 83 11.59 83 9.76 75 15.28 75 14.86 

1/7 85 11.83 85 10 73 15.18 73 14.63 

1/8 83 13.63 82 11.9 85 13.72 86 13.04 

1/9 86 13.76 85 11.5 79 14.17 79 13.39 

1/10 86 12.87 86 11.6 78 14.82 78 13.97 
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Case-2: Jointly with the directional organization and the boundary problem resolution 

scheme. Moreover, we have also computed the recognition rate and searching time for the 

prior direction estimation strategy by adopting the directional organization and boundary 

problem resolution scheme. We have computed the results for the scale of shifting of L/2. 

In this case, we obtained the maximum recognition rate of 93% and 90% for MHI and 

XOR image, respectively. However, the average MHI-based recognition rates for the bin 

lengths 1/2 to 1/10 employing the primitive directional organization-based methods and 

jointly with the directional organization and the boundary problem resolution scheme 

method are 91% and 92%, respectively; whereas the average XOR-based recognition rates 

for the bin lengths 1/2 to 1/10 employing the aforementioned strategies are 85% for both 

cases. After computing the searching time employing the resolution scheme with and 

without the prior direction estimation, we found the average searching time for MHI-based 

recognition with above strategies 20.9 ms and 25.4 ms, respectively. Similarly, the average 

searching time for XOR-based recognition obtained for the two cases is 31.7 ms and 32.5 

ms, respectively. Therefore, we have also achieved a significant improvement in searching 

time with the boundary problem scheme with prior estimation of directions. The results are 

presented in TABLE 5.6. 

 

TABLE 5.6  

Experimental results with boundary problem resolution, and with prior direction 

estimation and boundary problem resolution scheme 

Bin  

Length 
MHI XOR 

Boundary problem 

resolution 

Prior direction 

estimation+ 

boundary problem 

resolution 

Boundary problem 

resolution 

Prior direction 

estimation+ 

boundary problem 

resolution 

Recognition 

rate(%) 

Searching 

Time 

(ms) 

Recognition 

rate(%) 

Searching 

Time (ms) 

Recognition 

rate(%) 

Searching 

Time (ms) 

Recognition 

rate(%) 

Searching 

Time (ms) 

1 97 18.1 96 15.1 95 70.16 95 68.3 

1/2 94 26.96 93 18.5 90 49.56 90 47.6 

1/3 94 22.9 93 17.4 82 28.34 83 27.8 

1/4 90 24.69 90 20.4 83 28.88 83 28.4 

1/5 91 23.53 89 19.4 84 29.57 84 28.8 

1/6 91 24.77 91 20.6 85 31.12 85 30.6 

1/7 92 25.36 91 20.7 82 30.35 82 29.8 

1/8 92 28.22 91 23.5 88 30.55 88 29.9 

1/9 90 26.85 90 24.2 84 32.18 84 31.4 

1/10 90 25.63 89 22.6 85 31.93 85 31.2 
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Fig. 5.13 Illustration of recognition rate for various schemes with XOR and MHI 

 

Fig. 5.14 Illustration of time requirement for various schemes with XOR and MHI 

 

In the above analysis of experimental results, we have emphasized three aspects of 

structured motion database; directional organization, resolution of the nearest neighbor 

searching problem, and prior estimation of directions. We have demonstrated the 

performance of these aspects with comprehensive experimentation and analysis. We 

illustrate the overall performance comparison in terms of recognition rate and searching 

time in Fig. 5.13 and Fig. 5.14, respectively. We notice the significant increase in 
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performance from non-directional to problem resolution scheme for both MHI and XOR 

image representations. The eigenspace with bin length 1 is referred to as non-structured 

form of motion database that employs exhaustive search within the database for finding 

candidate motions. However, having employed the structured motion database with MHI 

templates, the average recognition rate for non-directional, directional, problem resolution 

(scale of shifting is L/2), prior direction estimation and problem resolution with prior 

estimation schemes are 74%, 86%, 92%, 85% and 91%, respectively. Similarly, with XOR 

image, the average recognition rate for non-directional, directional, problem resolution 

(scale of shifting is L/2), prior direction estimation and problem resolution with prior 

estimation schemes are 64%, 77%, 85%, 77% and 85%, respectively. We notice significant 

improvement in recognition rates from non-directional to problem resolution. From Fig. 

5.14, we notice the average searching time requirements for the above five schemes in 

order are 14.9 ms, 12 ms, 25.4 ms, 10.2 ms and 20.9 ms with MHI, and are 13.8 ms, 14.4 

ms, 32.5 ms, 13.6 ms and 31.7 ms with XOR, respectively. 

We have also tabulated the performance evaluation of various schemes, namely, 

non-structured, basic structured (or non-directional), directional, prior direction estimation, 

problem resolution, and problem resolution with prior estimation, with the maximum 

recognition rates achieved and the corresponding time requirement (See TABLE 5.7). We 

find that 95% and 93% recognition rate is obtained for the problem resolution scheme at 

the scale of shifting 2L (L=1/2) with MHI and XOR image, respectively. However, for the 

scheme having prior direction estimation and problem resolution together, though the 

recognition rate (94%) is slightly less than the scheme with problem resolution only, it 

shows shorter searching time which is much acceptable in this case. Therefore, the scheme 

with problem resolution with prior estimation of directions presents the best performance 

for our experimentation utilizing the three aspects of the structured database altogether. 

However, we have also calculated the motion-wise recall, FPR and precision at scale of 

shifting 2L (L=1/2); we found that standup and pickup motions show higher FPR and lower 

precision with MHI, and stomachache and pickup show higher FPR and lower precision 

with XOR image. These measures are tabulated in TABLE 5.8. 

Moreover, we have also analyzed the effect of shifting parameter (i.e., scale of shifting) 

on the recognition rate by varying the parameter at L/4, L/2, L and 2L. We found that when 

the scale of shifting is 2L, the recognition rate is found to be the maximum for both the 

MHI and XOR image. We found 95% and 93% recognition rate with the shifted B-Tree 

concept without the prior estimation. Thus we can assume the shifting parameter 

experimentally for a specific dataset. This effect is illustrated by bar-graph in Fig. 5.15. 
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 TABLE 5.7  

 Performance evaluation for various recognition schemes 

 

TABLE 5.8 

Motion-wise performance evaluation 

 

 

Fig. 5.15 Effect of scale of shifting on recognition rate 

Scheme 

MHI XOR 

Recognition 
Rate (%)  

Searching Time 
(ms) 

Recognition 
Rate (%)  

Searching Time 
(ms) 

Non-structured 96 66.53 95 336.84 

Basic structured 80 14.9 70 13.8 

Directional 89 12 85 14.4 

Prior estimation of directions 88 10.2 85 13.64 

Directional with problem 
resolution  95 33.24 93 59.64 

Directional with prior 
direction estimation and 
problem resolution 

94 22.85 93 57.28 

Motion 

MHI XOR 

Recall (%) Precision (%) 
False 

Positive Rate 
(%) 

Recall (%) 
Precision 

(%) 

False 
Positive Rate 

(%) 
bend 87.5 100 0 87.5 95.5 4.5 

carry 83.33 95.2 4.8 83.33 87 13 

jump 91.67 88 12 100 96 4 

pickup 95.83 85.2 14.8 79.17 86.4 13.6 

pjump 100 100 0 100 100 0 

sitdown 87.5 100 0 83.33 87 13 

standup 91.67 84.6 15.4 100 100 0 

stomachache 100 100 0 100 82.8 17.2 

walk 100 100 0 100 100 0 

wave2 100 88.9 11.1 100 100 0 
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5.8 Discussion 

 

We have proposed a novel recognition technique for identifying and interpreting human 

motions and actions from surrounding viewpoints using large avatar motion set. This 

method employs three essential aspects of the structured motion database; namely, 

directional organization, resolution of the nearest neighbor searching problem, and prior 

estimation of directions. In recent times, a bulk of motion/action datasets is available for 

action or behavior understanding and analysis. Due to the large amount of data, the 

structurization becomes an indispensable task. The structurization demands the database to 

be efficient with respect to recognition rate, time and space. We found that the aforesaid 

aspects jointly construct a database for the motion recognition that is suitable according to 

the above three criteria, i.e., recognition rate, time and space. Our proposed method utilizes 

the spatio-temporal information of motions and the concept of hierarchical eigenspaces for 

each camera direction to characterize the directional motion, as well as, to get some idea 

about the possible direction of the activities.  

We propose a scheme where both the top-down and bottom-up strategies are followed 

one-after-another. We have estimated the directions for an unregistered motion by 

top-down manner, and we obtained the possible orientations of the motion that guides the 

searching algorithm. On the other hand, the motion is searched within the directional 

eigenspaces and candidate motions are obtained. These candidate motions are further 

projected onto the global eigenspace to confirm the category of the motion. This is 

accomplished by bottom-up manner. Previously, motion recognition is accomplished in 

bottom-up manner only [38, 83, 176, 177, 178, 249], whereas the newly introduced hybrid 

manner of problem solution proposed in this paper shortens the search time by reducing 

potentially unnecessary search cost within the feature spaces. The goodness of the system 

lies in reducing the search complexity that makes it improved and non-redundant. The 

scheme of prior direction estimation with nearest neighbor search problem resolution has 

significantly reduced the search time with high recognition rate: This proves its 

effectiveness in performance. We obtain 94% recognition rate at 22.85 ms with MHI, and 

93% recognition rate at 57.28 ms with XOR image. Though both MHI and XOR 

image-based system shows similar recognition rate, the search time varies due to the high 

dimensionality of the feature space with XOR image. However, we notice a slight decrease 

of less than one percent in the recognition rate with this scheme; this is due to the inclusion 

of 90 percent of the total number of direction-wise motion points for constructing each 

direction-wise cluster. Moreover, with the increase in registration within the database, the 

search time tends to rise; but selective search may lead to time-efficient human motion 
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recognition. 

However, there is hardly any research that employs surrounding viewpoints for motion 

capture; rather frontal or sideways’ motions are captured. Noticeably, we have obtained 

higher recognition rates with much higher data search rate for the surrounding camera 

arrangement. By analyzing the proposed system, we can figure out some findings which 

are stated below. 

i. For conventional strategy with all the motions within a single eigenspace without 

using the hierarchical strategy will surely lead to longer search time due to the 

increase of dimensions to realize the motion space. For this case, the search is x 

times longer than the proposed approach, for x is a numeric factor.  

ii. In our experimentation, though we vary the motion speed, the recognition rate is 

unaffected for the captured motions. Thus the proposed system has achieved high 

recognition performance with high-speed recognition. 

iii. For XOR, compared to MHI, linear search time increases proportional to the 

number of data, whereas using our proposed technique the time increase is almost 

unaffected by the number of dimensions for same number of registered data. 

Surely, if the number of data registration increases, the dimension will 

consequently increase. But with this increment, the proposed approach is capable 

of keeping the search time short. 

iv. The search time requirement for the proposed approach having the boundary 

problem resolution scheme is found to be somehow increased compared to that of 

directional organization-based approach due to the search of the B-Tree twice, 

rather than once. Though we can compromise a little amount of time for the 

precision, the adoption of the advent technique, e.g., parallel programming, 

multi-threaded programming etc., might be a possible alternative. 

v. The division parameter S might be chosen based on the types of motions being 

recognized to make the system an unsupervised one. From Fig. 5.16, we get some 

idea about the proper bin length for the system. The bin length is to be selected in 

such a way to optimize the system’s performance in terms of recognition rate and 

search time. For our experimental dataset, we can choose the length of 1/2 for both 

MHI- and XOR image-based system (as shown in blue circle in Fig. 5.16) 

according to recognition rate by compromising with time requirement. 
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Fig. 5.16 Possible selection of bin length; (a) MHI, (b) XOR images. 

 

In the performed experiments, the motions were formed by varying speed, and varying 

shape of the performing subjects. In spite of the variability in motions, our proposed 

motion database shows satisfactory performance on their recognition. In Section 5.5, the 

motion database development scheme and other factors are analyzed, and the reasons 

behind the superiority of the method over conventional or non-directional organization are 

also represented by introducing several novel aspects for the structured motion database. 

Although we have achieved satisfactory performance for our proposed system, there are, of 

course, some limitations in terms of occlusion of the body parts or overlapping movements, 

moving cameras, changing background, etc. The occurrence of the motions, i.e., how the 

motion is moving, is another cause of poor recognition. The experimental motions, 

however, are not so much complex, rather simple and have almost no overwriting problems. 

For the overwriting cases, the Directional MHI representation [81] has much potential to 

uniquely represent each motion. This form of motion template may also be incorporated in 

our proposed system (See Section 6.2). Moreover, it would be worthwhile to develop the 

system with real-life large motion database with a huge number of indoor and outdoor 

motions. Separate mechanism for background subtraction and foreground segmentation 

might be employed for real-life motion recognition cases (See Section 6.3). 

 

5.9 Summary 
 

In this chapter, we have presented a novel approach for human motion recognition by 

developing an efficient motion database that is organized based on camera orientation. We 

have discussed the detailed structure and operations of the motion database. We have also 

performed experiments with the proposed technique, and the performance evaluation is 

comprehensively analyzed. Thus the effectiveness of the proposed system is described 

through experimental data and graphical illustrations. Finally, we discuss some issues 

regarding the developed human motion recognition system. 
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Analysis on the Constraints 

in Human Motion Recognition 
 

 

6.1 Introduction 

 

Human motion recognition system imposes a number of constraints on performing of the 

motions, environmental condition, recording setup, camera orientations, and many others. 

As mentioned in Section 5.9, the overlapping of the body parts and the overwriting or 

repetitive characteristics of motions may lead to significant drop of system’s performance. 

Similarly, from one camera viewpoint the moving regions may be visible, whereas from 

other camera viewpoints those may not be visible; the same action, observed from different 

viewpoints, can lead to very different image observations. Also, the fact that a single 

camera is only able to capture a projection introduces a source of variation. All this leads to 

the missing of sufficient information for representing a motion. Often, a known camera 

viewpoint is assumed, but this restricts the use of static cameras. In Chapter 3, we 

mentioned that the successful recognition of a motion depends on how well the motions are 

characterized by means of features. Likewise, missing of the information may occur due to 

the variability of the environmental conditions. Suppose that actions are performed in the 

same manner for different environmental conditions; the differences in the environmental 

condition result in differences in the captured movement. The environment or the 

surroundings, in which the action performance takes place, is an extremely important 

source of variation in motion capture. When this environment is cluttered or dynamic, it 

might prove harder to localize the person in the video. The environmental setup might be 

such that parts of the person might be occluded in the capture. This introduces source of 

uncertainty and missing of information. Dynamic (or irregular) backgrounds further 

increase the complexity of localizing the person in the image and robustly observing the 

motion. When using a moving camera, these issues become even harder. Different persons 

can appear differently due to differences in anthropometry, but also due to clothing, skin 
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color and facial appearance. Lighting conditions can further influence the appearance. A 

robust approach should be able to generalize over these factors. Since we focus on 

vision-based human action recognition, we address the aforementioned constraints 

explicitly. 

In this chapter, we deal with two important constraints in human motion recognition: 

inclusion of directional information to handle missing information, and cluttered outdoor 

environment for the recording environment to handle the irregular backgrounds in motion 

recognition. The recognition system employing the directional information is discussed in 

Section 6.2. Besides, a recognition system implemented for a cluttered outdoor scenario is 

discussed in Section 6.3.  

 

6.2 Inclusion of Directional Information 

 

6.2.1 Overview 

Development of a robust human motion recognition system concerns with the fact that it 

adapts to the complexities imposed on recognition. Since the motion overwriting problem 

leads to the loss of sufficient information while representing a motion, the direction of 

movement can be treated as a significant clue for solving the aforesaid problem. Therefore, 

we exploit the directional vectors in motion analysis, and the robustness is enhanced for the 

current system over earlier methods. In our approach, we use the structured motion 

database concept as discussed in Section 5.5. Multi-directional distinct motions are 

represented, and compressed with the motion flow detection and compression technique, 

and prominent features are extracted. The extracted features are stored within a motion 

database that can cope with different forms of motion information. Our proposed system 

framework is illustrated in Fig. 6.1. However, we shall present the motion segmentation 

and motion flow computation techniques in the next sections. 

 

 

 

 

 

 

 

 

 

Fig. 6.1 System frame with the inclusion of directional information 
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� Motion Segmentation 

Our proposed system computes a spatio-temporal volume for each motion. For this 

computation, the motion should be somehow segmented to determine the flow of the 

motion; otherwise unwanted noise will reduce the significant information embedded within 

the motion to be represented uniquely. Such kind of motion segmentation can be obtained 

by first transforming each motion frame by Gaussian blurring, and extract the moving 

region between successive frames. After successful segmentation of motion sequences, the 

direction and magnitude of the motion, i.e., flow of motion, is computed using optical flow 

computation. 

 

� Optical Flow 

An optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual 

scene caused by the subtle change of motion in temporal direction. Our concerned flow of 

motion is estimated and/or computed by determining the optical flow between successive 

motion frames (See Fig. 6.2). As the similarity measurement between different motions 

depends on both spatial and temporal information, optical flow can be used as a 

discriminative feature for determining the correlation. However, a number of optical flow 

methods are available to compute the optical flow [250]. The optical flow methods try to 

calculate the motion between two successive image frames which are taken at times t and  

t + δt at every pixel position. In this work, we have adopted Lucas-Kanade (LK) method 

for computing the optical flow. Here, we present a mathematical explanation about the 

Lucas-Kanade method.  

 
   (a)    (b) 

 
(c) 

 Fig. 6.2 Illustration of optical flow. (a) previous frame, (b) current frame, (c) current frame 

with optical flow. The tree is moving with the wind in the figure. 
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Lucas-Kanade Method 

In computer vision, the Lucas–Kanade method is a widely used differential method for 

optical flow estimation developed by Bruce D. Lucas and Takeo Kanade [251]. It assumes 

that the flow is essentially constant in a local neighborhood of the pixel under 

consideration, and solves the basic optical flow equations for all the pixels in that 

neighbourhood, by the least squares criterion. By combining information from several 

nearby pixels, the Lucas-Kanade method can often resolve the inherent ambiguity of the 

optical flow equation. It is also less sensitive to image noise than point-wise methods. On 

the other hand, since it is a purely local method, it cannot provide flow information in the 

interior of uniform regions of the image.  

The Lucas-Kanade method assumes that the displacement of the image contents 

between two nearby instants (frames) is small and approximately constant within a 

neighborhood of the point p under consideration. Thus the optical flow equation can be 

assumed to hold for all the pixels within a window centered at p. Namely, the local image 

flow (velocity) vector (Vx,Vy) must satisfy 

 

where nqqq ,....,, 21 are the pixels inside the window, and Ix(qi), Iy(qi), It(qi) are the partial 

derivatives of the image I with respect to position x, y and time t, evaluated at the point qi 

and at the current time. 

These equations can be written in matrix form Av = b, where 
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This system has more equations than unknowns and thus it is usually over-determined. The 

Lucas-Kanade method obtains a compromise solution by the least squares principle. 

Namely, it solves the 2×2 system 

A
T
Av = A

T
b or 

v = (A
T
A) 

− 1
A

T
b 

 

where, A
T 

is the transpose of matrix A. That is, it computes 
 

(6.1) 

(6.2) 

(6.3) 
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with the sums running from i=1 to n. The matrix A
T
A is often called the structure tensor of 

the image at point p. 

The plain least squares solution above gives the same importance to all n pixels qi in 

the window. In practice, it is usually better to give more weight to the pixels that are closer 

to the central pixel p. For that, one uses the weighted version of the least squares equation, 

A
T
WAv = A

T
Wb or 

v = (A
T
WA) 

− 1
A

T
Wb 

where, W is an n×n diagonal matrix containing the weights Wii = wi to be assigned to the 

equation of pixel qi. That is, it computes 

 

The weight wi is usually set to a Gaussian function of the distance between qi and p. 
 

� Half-wave rectification of the optical flow 

The optical flow computed from the successive frame sequences are further represented 

through the horizontal and vertical velocities. However, the horizontal and vertical 

components are half-wave rectified to signify the four directional movements, namely right, 

left, up, down (See Fig. 6.3). 

  

(a) 

    

    

 

 

 

 (b)   (c)  

Fig. 6.3 Computation of an optical flow image. (a) Original consecutive frames, (b) 

Intensity image for the horizontal(x) and vertical(y) components of the optical flow 

generated from original consecutive frames, (c) Intensity image of four separate channels 

of x and y. top row: x
+
, x

-
 , bottom row: y

+
, y

-
. 

(6.4) 

(6.5) 

(6.6) 
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Thus the motions possess more significant information to be distinguished from other 

motion. Though the computation of optical flow might not be very accurate in coarse and 

noisy environment, it can be tuned to perform better. The optical flow, thus computed, can 

be used as directional motion descriptor for accomplishing the task of recognition. The 

optical flow computed in the aforementioned way is used as motion features which are 

further processed to generate motion representation for the recognition purpose. In Section 

6.2, we present a MHI-based motion representation that uses four directional information 

to generate four directional MHIs for each motion.  

 

6.2.2 Directional motion history image 
 

The introduction of the directional concept in MHI was realized from the original Bobick 

and Davis paper [70]. According to [70], absence of motion flow was analyzed as the 

limitation or objection of using traditional MHI. It is necessary to establish some 

correlation between the construction of MHI and the direction of motion (e.g., optical 

flow). However, in other researches this directional concept was adopted for motion 

detection and recognition [87]. The optical flow vector between consecutive frames are 

computed which denotes the direction of movement of a person in motion. The optical 

flow vector is split along the horizontal and vertical directions by four components, namely 

x
+
 (right), x

-
 (left), y

+
 (up), and y

-
 (down). These optical flow images are referred to as 

vector images. Directional vector images are separated and are used to construct the MHI 

separately using Eq. (6.7). 
 

     
(a) 

 

 

 

 

 

 

  

(b) 

Fig. 6.4 Directional Motion representation a) stomachcache motion, (b) directional MHIs.     

Top row: MHIx+,MHIx-, bottom row: MHIy+,MHIy-. 
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Here, D (x,y,t) is a binary difference image, *

τH (*= x
+
, x

-
, y

+
, y

-
) is a scalar valued 

function, δ is the decay parameter and th
*
 is a threshold. 

Using the directional representation, four directional motion history images are 

generated for each motion representing the right-, left-, up-, and down- directional 

movements, respectively (See Fig. 6.4). These four directional images represent a motion 

more vigorously compared to non-directional representation. However, as the accurate 

determination of optical flow is almost impossible, some of the generated directional 

images contain significant amount of noise within those. Neglecting the noise-factor, these 

motion images will act as the motion descriptor for the recognition system. 

 

6.2.3 Selection of a representative feature image 

 

As the directional feature image, generated from optical flow, may include noise, the 

employment of all the feature images for learning and recognition will surely lead to the 

erroneous result. So, the selection of the representative feature image is a very crucial issue 

for such kind of development of a robust system. A representative directional MHI is a 

feature image selected from a set of 4-directional MHIs to characterize a particular motion. 

The task of selection is likely to be accomplished by taking the Motion Energy Image 

(binarized MHI) from the MHI and by computing the pixel volume [70]. But for some 

cases, due to the existence of unwanted noise within the optical flow, the noise advances to 

the generation of directional MHI. So, the usage of inter-frame information, if extracted 

effectively, plays an important role in selecting the best representative directional MHIs. 

Based on this concept, we use two considerations for the selection of a representative 

feature image; direction of global motion, and higher pixel volume. If the selected feature 

image from the directional of global motion has much less number of pixels, the higher 

pixel volume comes into account.  



108|Chapter 6    

     

The direction of global motion refers to overall direction of motion as the vector sum of 

the valid gradient directions. We compute the direction of global motion in the following 

way: 

 
(a)   (b)   (c) 

Fig. 6.5 Computation of the direction of global motion. (a) gradient magnitudes and directions, (B) 

large gradients are eliminated; (C) overall direction of motion is found 

 

(a) We compute MHI for the motion. 

(b) Motion gradient is also computed from MHI (See Fig. 6.5(a)(b)). 

(c) Then the direction of global motion is computed by summing up the 

pre-computed motion vectors. One could compute the global motion from 

the center of mass of each of the MHI silhouettes, but the current method 

is much faster (See Fig. 6.5(c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 Representation of a motion (stomachache) extracted from five directional video cameras. 
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The representative images thus selected are used to construct directional eigenspaces 

for further task of learning and recognition of the proposed system (See Section 5.4). The 

representation of a motion by representative feature image is depicted in Fig. 6.6. 

 

6.2.4 Storage and retrieval within the motion database 
 

In order to develop a structured motion database, we follow the database development 

strategy discussed in Section 5.5. We have adopted only the directional organization of the 

motion database. We summarize here the important steps for the database development.  

- Construction of the directional eigenspaces 

- Construction of global eigenspace 

- Indexing of the training motions 

- Store the indexes in the B-tree structured motion database 

Similarly, for recognition, we use the similar concept as described in Section 5.6, except 

that the prior direction estimation and boundary problem resolution schemes are discarded. 

The recognition strategy is summarized as follows. 

- An unknown motion is first represented as a sequence of 2-D image frames 

and directional motion image is constructed from successive optical flow 

images. 

- One representative feature image is selected for each motion. 

- Those feature images are projected onto each view-oriented eigenspace. 

- An index, representing motion identity within the directional database, is 

generated after projecting onto each eigenspace. 

- For each view, the number of similar motions, termed as candidate motions, is 

obtained by searching the corresponding B-Tree. 

- Finally, these candidate motions are projected onto the global eigenspace as 

),..,2,1( Dr
rm =g , where D is the number of camera directions or views. The 

unknown motion is projected as gm within the global eigenspace. The most 

similar motion is calculated within the global eigenspace using Eq. (5.1).  
 

6.2.5 Recognition results 

 

The experimentation of the system is performed by avatar actors of different size, shape, 

and the field of view (distance from camera). Ten humanoid avatars performs ten distinct 

motions: bend (bending down), carry (carrying a box), jump (hopping in a place), pjump 

(jumping up and landing down), pickup (picking up something from the ground), sitdown 

(sitting down on a chair), standup (standing up from a chair), stomachache (touching 
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stomach with pain and sit), walk (walking motion), and wave2 (waving two hands in the 

air). Five uncalibrated cameras are placed facing the avatar between 0 to 180 degree 

viewing angles, at 45 degrees apart. Motions are captured at 30fps (frames per second) 

with varying frame numbers performing realistic movements by the avatars. Figure 6.7 

illustrates different motions and their corresponding representative directional MHIs 

(Section 6.2.3). 

     
 

     

(a) 

      

     

(b) 

Fig. 6.7 Illustration of representative directional MHIs. (a) 10 types of motions, (b) corresponding 

directional MHIs. 

TABLE 6.1  

Performance Evaluation with directional MHI 

Bin Length Recognition Rate (%) 
Time consideration 

Searching time (ms) Searching rate (data/ms) 

1 91.3 78.9 4.4 

1/2 91.3 50.2 7 

1/3 83.3 33 10.6 

1/4 84 42.2 8.3 

1/5 76.7 40.3 8.7 

1/6 86 54.1 6.5 

1/7 83.3 55.5 6.3 

1/8 83.3 60.2 5.8 

1/9 86 60.4 5.8 

1/10 84 63.6 5.5 

Average 85%  6.89 data/ms 

   Bend         Carry          Jump         Pjump       Pickup 

   Sitdown       Standup     Stomachache     Walk         Wave2 
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A total of 500 captured motion data are divided into the training set and the testing set; 

350 motion data are used to construct the training set, and the remaining 150 are used for 

recognition. Varying bin lengths are used for the evaluation of the proposed technique. 

With large number of motions, if the length of the bins is long, it has higher possibility that 

many motion points will have an identical index and need much time to searching within 

the bin. Conversely, if the bin length is short, less motion points will be sought. So, we 

adopt varying bin length and calculate the recognition rate and searching time for the 

performance evaluation. 

The recognition results are tabulated using the directional feature images in TABLE 

6.1. We obtained about 92% recognition rate for the system having the bin length of 1. A 

satisfactory rate of 91.3% recognition rate is achieved at bin length 1/2. However, with 

shorter bin lengths, the system also performs well. Moreover, we have also analyzed the 

database searching time for the recognition (See TABLE 6.1). We have obtained the 

average searching rate by calculating average searching time per motion and it was found 

to be 6.89 data/ms. For bin length 1, the system shows much lower searching rate, whereas 

subdivision strategy (indexing) increases the searching rate up to a considerable amount. 

Suppose, for bin length 1, the searching rate is 7 data/ms, whereas for bin length 1/2 it is 

about 6.5 data/ms. Moreover, we have also tested the recognition using the MHI and XOR 

representations in place of directional MHI. It shows better performance using XOR 

images; but a slight decrease in performance using MHI. We obtained the average 

recognition rate of 89% and 79% using MHI and XOR images, respectively. However, due 

to the procedure for selecting the appropriate feature image the search time for DMHI is 

found to be longer than that of MHI, whereas it has shorter search time than that of XOR 

images. The results are graphically illustrated in Fig. 6.8 and Fig. 6.9. 

 

 

Fig. 6.8 Comparison of recognition rates using directional MHI, MHI and XOR images 
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Fig. 6.9 Comparison of searching rates using directional MHI, MHI and XOR images 

 

6.2.6 Discussion 

 

We present a robust recognition technique for identifying and interpreting human motions 

and actions. This approach uses spatio-temporal directional feature-based representation of 

motions by exploiting optical flow over time. We adopt the directional MHI to include 

more precise information than the conventional MHI with no information of flow of 

motion. We obtained the average recognition rate of 85%, and searching rate of 6.89 

data/ms. We notice that its performance is quite deficient than MHI-based system. The 

reason behind it is that most of our experimental motions are not so much complex for 

using the concept of directional MHI properly. In the work of [81], more complex motions 

are captured, and DMHI is proved a prominent one over MHI. However, for simple 

motions, MHI shows much better representation. Except for this fact, the proposed system 

with the inclusion of directional information achieves high recognition performance with 

high-speed recognition. As the directional MHI signifies each motion strongly by making 

use of the flow of motion, it certainly increases the robustness of the system. So, if the 

optical flow is computed near accurately, motion recognition with directional MHI leads to 

robust performance. Moreover, the selection of appropriate representative feature image is 

also vital to the system. The analyses of these points are left as our future work.  

 

6.3 Cluttered Outdoor Environment 

 

6.3.1 Overview 

According to the literature on human motion recognition discussed in Section 3.2, almost 

all the recognition schemes employ indoor/experimental environment for learning and 

recognition. Usually, it is an existing demand to recognize human activities in both indoor 
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and outdoor scenes.  The system that is capable of working in indoor environment mostly 

fails to perform well outdoors, since every vision-based system is usually environment- 

dependent. As with the indoor activities, the background is almost uniform and the 

illumination condition is almost constant; so it does not affect the system performance in a 

large degree. On the contrary, the outdoor scenario is much cluttered with non-uniform 

background, along with subtle movements of background objects (e.g., trees, shadows, sky, 

etc). Because of the non-uniform nature of outdoor environment, the background, if it is 

not subtracted and handled properly, it may vastly affect the system’s performance. So, the 

motion segmentation based on background modeling has crucial importance. Referring to 

the recognition approach presented in Chapter 5, the system is required to be adapted to the 

system for outdoor environment with real-life activities. Moreover, the viewpoint of 

different activities is also an important factor at the time of recognition. Most of the 

recognition systems deal with the activities either facing the camera or parallel to the 

camera plane [67]. But those systems perform poorly when the activities are to be viewed 

from back or from other camera angles. Therefore, it is supposed to be concerned to label 

various actions or activities within the motion database, and to apply those 

viewpoint-oriented activities to accomplish comprehensive recognition.  

In this work, a novel motion recognition system is proposed, having the ability to cope 

with the clumsiness of the surrounding environment and to recognize activities from 

different viewpoints. Activities are represented as successive frames extracted from a video. 

The direction and magnitude of movement between consecutive frames are computed and 

directional motion templates are generated. We have also made use of the structured 

database as motion database for efficient storage and retrieval (see Section 5.5). Next 

sections describe different phases in the development of such a system. A system 

framework is shown in Fig. 6.10. 

 

 

Fig. 6.10 System framework for the cluttered outdoor recognition 
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6.3.2 Motion segmentation 

Motion segmentation refers to the task of segmenting moving region from a video. A video 

is supposed to be composed of sequence of frames or images. Therefore, in this context, 

motion segmentation encompasses the preprocessing tasks on the frames to extract the 

moving region or to suppress the region not being the region of interest in successive 

frames.    

In this work, this task has vital importance, since the system is designed to adapt with 

the outdoor environment where the static background is cluttered with non-uniformity 

(movement of unwanted objects) and subtle changes in illumination or lighting conditions. 

So, motion segmentation should be performed accurately so that those moving regions can 

be later used for computing the flow of motion. Dynamic adaptive Gaussian Mixture 

Model (GMM) is a very effective technique for background modeling which classifies the 

pixels of a video frame either background or foreground based on probability distribution 

[252]. We present a brief description on GMM here. 

 

Gaussian mixture model   

A Gaussian Mixture Model (GMM) is a parametric probability density function 

represented as a weighted sum of Gaussian component densities. GMMs are commonly 

used as a parametric model of the probability distribution of continuous measurements or 

features in a biometric system, such as vocal-tract related spectral features in a speaker 

recognition system. GMM parameters are estimated from training data using the iterative 

Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation 

from a well-trained prior model. 

A Gaussian mixture model is a weighted sum of M component Gaussian densities as 

given by Eq. (6.8). 

 

where, x is a D-dimensional continuous-valued data vector (i.e. measurement or features), 

wi, i = 1, . . . ,M, are the mixture weights, and g(x|µi, Σi), i = 1, . . . ,M, are the component 

Gaussian densities. Each component density is a D-variate Gaussian function of the form, 

 

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint 

that 1
1

=∑ =

M

i iw . The complete Gaussian mixture model is parameterized by the mean 

vectors, covariance matrices and mixture weights from all component densities. These 

(6.8) 

(6.9) 
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parameters are collectively represented by the notation, 

             (6.10) 

There are several variants on the GMM shown in Eq. (6.10). The covariance matrices, 

Σi, can be full rank or constrained to be diagonal. Additionally, parameters can be shared, 

or tied, among the Gaussian components, such as having a common covariance matrix for 

all components, The choice of model configuration (number of components, full or 

diagonal covariance matrices, and parameter tying) is often determined by the amount of 

data available for estimating the GMM parameters and how the GMM is used in a 

particular biometric application. It is also important to note that, because the component 

Gaussians are acting together to model the overall feature density, full covariance matrices 

are not necessary even if the features are not statistically independent. The linear 

combination of diagonal covariance basis Gaussians is capable of modeling the 

correlations between feature vector elements. The effect of using a set of M full covariance 

matrix Gaussians can be equally obtained by using a larger set of diagonal covariance 

Gaussians. 

In our work, GMM is employed within successive frames to model the background, 

and thus extract the moving regions (i.e., foreground) between consecutive frames (See Fig. 

6.11). These extracted regions are used at the time of flow computation. The conventional 

frame difference technique cannot deal with the non-uniformity of the background, 

whereas the dynamic form of GMM effectively selects moving points within the cluttered 

background. From the extracted moving regions obtained using GMM are later used for 

estimating those points that are tracked for the computation of optical flow to signify 

motion flow. 

  

 

 

 

         Frame 14                          Frame 21 

(a) Original Frame 

 

 

                             

 

 

(b) Extracted moving regions at frame 14 and frame 21 

Fig. 6.11 Extraction of moving regions using dynamic GMM. (a) Single frame of the bend action, 

(b) extracted moving regions 
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6.3.3 Optical flow based MHI generation 

 

The flow of motion wraps up much information about the moving regions. This 

information is gathered by analyzing two consecutive frames. Optical flow is the most 

widely used flow computation technique. An optical flow is the pattern of apparent motion 

of objects, surfaces, and edges in a visual scene caused by the subtle change of motion in 

temporal direction. Our concerned flow of motion is estimated and/or computed by 

determining the optical flow between successive motion frames. As the similarity 

measurement between different motions depends on both spatial and temporal information, 

optical flow can be used as a discriminative feature for determining the correlation (See 

Fig. 6.12). Similar to the optical flow based directional feature image generation described 

in Section 6.2, we generate the same direction of flow represented motion representation, 

directional MHI. An example of the direction MHI is shown in Fig. 6.13. Moreover, the 

selection mechanism for the representative feature images are same as mentioned in 

Section 6.2.2. The reader is referred to Section 6.2.1 and 6.2.2 for the detailed 

methodology for the generation of the directional feature images. 
 

 

(a) 

 

 

 

  

 

 
(b) 

Fig. 6.12 Computation of optical flow image. (a) Original consecutive frames, (b) intensity image 

for four separate channels of x and y. top row: x
-
, x

+
 , bottom row: y

-
, y

+
. 
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(a) 

    

(b) 

Fig. 6.13 Generation of four-directional MHIs. (a) Waving-two-hands action, (b) four directional 

MHIs, x
-
, x

+
, y

-
, y

+
, respectively. 

 

Likewise, the representative images for the learning motions are used to construct an 

eigenspace (See Section 3.4). The motion points are then indexed, and stored in the B-Tree 

structured database for the task of recognition. Due to the fact that the number of 

experimental motions is not large enough, we have not adopted the directional organization 

concept of the motion database. 

 

6.3.4 Recognition strategy 

 

The recognition strategy is also simple, but effective. When an unknown motion comes, it 

is first represented as a sequence of image frames and is processed for generating motion 

representation. Then 4-directional MHIs are obtained from the motion frames. Among the 

four MHIs, the MHI capable of signifying most of the features is selected. Then the feature 

image is projected onto global eigenspace. An index, representing motion identity within 

the directional database, is generated from the unknown motion after projection onto the 

eigenspace. The most similar motion is obtained by searching the corresponding B-Tree by 

calculating number base-based difference among the indexes. If the query index resides 

within the database, it is found by simple index comparison. But for the case of the index 

not residing within the database, the task becomes finding the most similar index which 

corresponds to the most similar motion within the database. The candidate motions, either 

residing within the same bin or within the nearest bin, are projected onto the eigenspace. 

The unknown motion is also projected within the eigenspace. The most similar motion is 

calculated within the global eigenspace using Eq. (5.1). 
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6.3.5 Experimental results  

 

The evaluation of the system is performed by capturing human activities in outdoor with 

non-uniform, dense, unstructured background. Five human actors performed six distinct 

activities with movement overlapping: bend (bending down), jump (hopping in a place), 

pickup (picking up something from the ground), stomachache (touching stomach with pain 

and sit), walk (walking motion), and wave2 (waving two hands upwards and moving down). 

Four uncalibrated cameras are placed in different angles relative to the human body. 

Moreover, they are captured at 30fps (frame per second) with varying speed to perform 

each motion. Optical flow is generated for each motion. As the system performance vitally 

depends on the generation of the optical flow and its separation into four channels, the 

optical flow computation technique adopted in [253] is modified to adapt to the current 

circumstance. The renowned Lucas-Kanade optical flow technique is used in the current 

work. After computing optical flow, the MHIs are constructed. Some examples of the 

directional MHIs generated and selected to represent the activities are shown in Fig. 6.14.  

      

(a) 

      

(b) 

      

(c) 

(d) 

Fig. 6.14 Representation of MHIs for each motion from different viewpoints. (a) Original motion, 

one frame each, (b) represented directional MHIs of (a), (c) original motion, one frame each, (d) 

represented directional MHIs of (c).  
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TABLE 6.2 

Recognition rate (%) for the experimental motions 

Bin Length Recognition Rate (%) 

1 80 

1/2 70 

1/3 66 

1/4 67 

1/5 70 

1/6 64 

1/7 73 

1/8 64 

1/9 63 

1/10 71 

 

Varying bin lengths are used for the evaluation of our proposed recognition technique 

by simulation. With large number of motions, if the bin length is high, there is higher 

possibility that more motion points will have an identical index and need much time to 

search similar motions, and vice versa. Total of 100 captured motion data are divided into 

the training set and the testing set by taking into account leave-one-out cross-validation 

strategy, where one data sample is used for testing whereas the remaining data constitute a 

training set. Thus the motion database are constructed and tested against the testing data for 

recognition. There is much variability in the simulation as the motion is captured from 

variable viewpoints and overlapping moving regions. We have tabulated the recognition 

results in TABLE 6.2. We obtained a maximum of 80% recognition rate with the system. 

Due to the elimination of some significant pixels in generating the MHIs due to cluttered 

background subtraction, similar dress color with background and selection of field of view, 

the misrecognition occurs. 

 

6.3.6 Discussion 

 

The experimental results provide performance evaluation for the recognition system using 

directional MHI representations. We obtain satisfactory recognition rate with the system. 

The system deals with the outdoor motion data which is core issue in the novelty of the 

system. However, we see that the recognition results, though satisfactory, sometimes fails 

to recognize motions due to the failure of characterizing the motions, and thus less features 

are tracked in optical flow. This is due to the factors such as non-uniformity of illumination, 

distance of the actor from a camera, synchronization of the learning motions, dress color 

effect, movement of background objects, shadows, temporary presence of other objects, etc. 
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So, the system is subjected to be upgraded to obtain higher recognition rate by adapting 

with the aforesaid environment conditions.  

 

6.4 Summary 

 

In this chapter, we have presented two methods to deal with two constraints in human 

motion recognition. At first, we proposed the directional flow included motion 

representation to deal with the problem of directional motion overwriting problem. We 

have adopted our structured motion database to implement this concept, and also 

performed experimentation to evaluate the effectiveness of the technique. After that, we 

proposed a recognition system for the cluttered outdoor environment, and used GMM as 

the background modeling technique to extract the significant spatial information from the 

motions. We also performed experiments with the outdoor motions and obtain satisfactory 

performance within the cluttered outdoor scenario. We have also analyzed the advantages 

and limitations of the both techniques in separate sections. 
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Multiple Persons’ Action Recognition 
 

 

7.1 Overview 
 

For the task of motion analysis, the detection and recognition of generic objects present an 

important issue. In a scene, there exist several moving objects in practical cases (See Fig. 

7.1). So, to figure out the motion of either a human or other moving objects, it becomes 

necessary to perform detection procedure within the scene and then segment the scene 

from non-interest moving objects. It is possible to detect generic objects, for example, 

human, car, bicycle, tree, building, mountain, forest, and so on. There are a lot of 

challenges for object detection in a scene involving wide variety of articulated poses, 

variable appearance/clothing, complex backgrounds, unconstrained illumination, 

occlusions, etc. A number of object detectors are available that include Rectified Haar 

Wavelets [254], Histograms of Oriented Gradients (HOG) [255], Edge images [256], 

Haar-like Wavelets and Space-time Difference[257], 1st and 2nd Order Gaussian Filter 

[258], and many others. Dalal and Triggs [255] proposed HOG for human detection that 

has drawn much attention of many researchers for its effectiveness in detection. This 

method is able to detect a human region accurately and fast by extracting the gradient 

information from an image and exploiting the information for determining human 

existence. In [259], the cascade-of-rejectors based HOG method is proposed that is found 

to be better than the basic HOG in terms of higher processing rate, variable sized-blocks, 

and selection of best feature for detection. Another form of HOG is introduced in [260] to 

deal with the motion of subjects, the camera and the background and to variations in pose, 

appearance, clothing, illumination and background clutter. This method combines 

motion-based descriptor (differentials of optical flow) and HOG descriptor. Recently, an 

efficient HOG human detection is proposed that reuses the features in blocks to construct 

HOG feature for intersecting detection windows, and also utilizes sub-cell based 

interpolation to compute HOG features efficiently [261]. In [262], HOG-based human 

detector is adopted with partial occlusion handling mechanism.       
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Fig. 7.1 An example of several persons occupying a scene 

 
Several other approaches have been adopted to accomplish object 

detection/classification task. Bag-of-Words (BoW) is used in computer vision for object 

categorization [263]. This technique is also known as "Bag of Features model". The BoW 

model allows a dictionary-based modeling, and each document looks like a “bag” (thus the 

order is not considered), which contains some words from the dictionary. Computer vision 

researchers use a similar idea for image representation (Here an image may refer to a 

particular object, such as an image of a car). For example, an image can be treated as a 

document, and features extracted from the image are considered as the “words”. It usually 

includes following three steps: feature detection, feature description and codebook 

generation. A definition of the BoW model can be the “histogram representation based on 

independent features”. The BoW method has been used for human action classification in 

[203]. In this approach, a hierarchical model is proposed that can be characterized as a 

constellation of bags-of-features and that is able to combine both spatial and 

spatial-temporal features. Moreover, BoW model is also used for scene understanding and 

proved to be quite successful [212].   

Among these methods, HOG has drawn the attention of many researchers for its 

effectiveness in detection. This method is able to detect a human region accurately and fast 

by extracting the gradient information from an image and exploiting the information for 

determining human existence. Thus it has been employed successfully to various 

environments in the recent years. In the earlier researches, the HOG features were mostly 

used for detection of human in successive frames, whereas we have employed these 

features in a detection-tracking fashion. A number of approaches have been adopted for 

action recognition since last decade. Robustness as well as accuracy is the key factor for 

the recognition.  

In this chapter, we shall present a HOG-based multiple persons’ action recognition 

technique by integrating the human detection, tracking and action recognition techniques. 
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Moreover, we have also developed a Structured Motion Database (SMoDB) which is 

developed for action recognition that is capable of high-speed and high-precision searching 

within the registered actions (See Chapter 5). The system framework is illustrated in Fig. 

7.2. According to the framework, the overall system is divided in order of its phases: fast 

human detection, feature tracking, and recognition. We shall discuss these phases in 

subsequent sections. 

 

7.2 Fast Human Detection 
 

Each individual is detected within a video sequence by fast human detector. In our work, 

Histograms of Oriented Gradients (HOG) method is adopted for the detection. Here below 

we describe the procedure of fast human detection in brief. 

 

7.2.1 Object detection 
 

The object detection architecture is based upon a method for classifying individual image 

regions. This is divided into two phases. The learning phase creates a binary classifier that 

provides object/non-object decisions for fixed sized image regions (“windows”); while the 

detection phase uses the classifier to perform a dense scan reporting preliminary object 

decisions at each location of the test image. These preliminary decisions are then fused to 

obtain the final object detections. Both the learning phase and the detection phase contain 

three stages which are depicted in Fig. 7.3. Overall this defines a fixed and relatively 

simple architecture for object detection. The final detector performance depends on the 

accuracy and reliability of the binary classifier and on how multiple detections are fused 

during the detection phase. 

 

 
Fig. 7.2 System framework having detection, tracking, and recognition module  
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Fig. 7.3 Object detection architecture. (a) The learning phase extracts robust visual features from 

fixed size training windows, and trains a binary object/non-object classifier over them. (b) The 

detection phase uses the learned binary classifier to scan the test image at all locations for 

object/non-object decisions. These preliminary decisions are later fused to produce the final object 

detections.  

 

The first stage of learning is the creation of the training data. The positive training 

examples are fixed resolution image windows containing the centered object, and the 

negative examples are similar windows that are usually randomly subsampled and cropped 

from set of images not containing any instances of the object. The binary classifier is 

learned using these examples. Ideally, each positive window contains only one instance of 

the object, at a size that is approximately fixed w.r.t. the window size. In some cases, the 

windows contain only a limited number of points of view of the object. However, the 

simple window architecture has various advantages. It allows a conventional classifier to 

be used for detection and relieves the classifier of the responsibility to be invariant to 

changes in position and scale (although invariance to other types of transformations, 

changes in pose and viewpoint, and illumination still has to be assured). It also means that 

the classifier works in relative coordinates (feature position relative to the center of the 

current window) which allows relatively rigid template-like feature sets to be used. On the 

other hand, it means that the classifier is run on a large number of windows, which can be 

computationally expensive and which makes the overall results very sensitive to the false 

positive rate of the classifier.  

Scan images 

Run classifier to obtain the 

object/non-object 

Fuse multiple detections in 3-D 

space 

Object detection with bounding boxes 

Detection phase 

Create normalized training data 

Generate feature vector 

Learning binary classifier 

Object/non-object 

Training phase 
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The image feature extraction process maps image windows to a fixed size feature space 

that robustly encodes visual form. These feature vectors are fed into a pattern recognition 

style classifier. Any classifier can be used for the purpose, but SVM or AdaBoost is 

common. In this thesis, we have selected a simple, reliable classification framework as a 

baseline classifier for most of the experiments. We use linear SVM as our baseline binary 

classifier as it proved to be the most accurate, reliable and scalable. Three properties of 

linear SVM make it valuable for comparative testing work: It converges in a reliable and 

repeatable manner during training; it handles large data sets gracefully; and it has good 

robustness towards different choices of feature sets and parameters. As the linear SVM 

works directly in the input feature space, it ensures that the feature set is as linearly 

separable as possible, so improvements in performance imply an improved encoding. 

 

     
 
Fig. 7.4 An overview of HOG feature extraction. The detector window is tiled with a grid of 

overlapping blocks. Each block contains a grid of spatial cells. For each cell, the weighted vote of 

image gradients in orientation histograms is performed. These are locally normalized and collected 

in one big feature vector. 

Normalize gamma and color 

Compute gradients 

Accumulate weighted votes into 
spatial & orientation cells 

Detection Window 

Input image 

Contrast normalize over 
overlapping spatial blocks 

Collect HOGs for all blocks over 
detection window 
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7.2.2 Histogram of Oriented Gradient (HOG) descriptors 
 

HOG was originally proposed by Dalal and Triggs in 2005 [255]. In HOG, the local object 

appearance and shape is characterized by the distribution of local intensity gradients or 

edge directions without precise knowledge of the corresponding gradients or edges. It is 

significantly robust to shape or illumination change. These gradient features are collected 

over a search window of an image. The search window is divided into small spatial regions, 

termed as cells, for each cell represents the local histogram of oriented gradients over the 

pixels contained in the cell. The histograms consist of the gradient orientations into a 

number of bins. Each orientation bin for HOG computation is evenly spaced over 0˚-180˚ 

that constitutes a 9-bin histogram. Figure 7.4 presents the complete processing chain of the 

feature extraction algorithm. In practice, the implementation differs slightly from that 

presented in Fig. 7.4. Certain stages are optimized for efficiency. 

The HOG representation has several advantages. The use of orientation histograms 

over image gradients allows HOGs to capture local contour information, i.e. the edge or 

gradient structure which is very characteristic of local shape. In conjunction with the 

spatial quantization into cells, it allows those to capture the most relevant information with 

controllable precision and invariance (e.g. by changing the number of bins in orientation 

histograms and the cell size). Translations and rotations make little difference so long as 

they are much smaller than the local spatial or orientation bin size. For example, in the 

human detector we find that rather coarse spatial sampling, fine orientation sampling and 

strong local photometric normalization turns out to be the best strategy, presumably 

because this permits limbs and body segments to change appearance and move from side to 

side provided that they maintain a roughly upright orientation. Gamma normalization and 

local contrast normalization contribute to another key component, illumination invariance. 

The use of overlapping blocks provides alternative normalization so that the classifier can 

choose the most relevant one. These steps ensure that as little information as possible is 

lost during the encoding process. Overall encoding focuses on capturing relevant fine 

grained features and adding the required degree of invariance at each step. 
 
7.2.3 Integral image/histogram 
 
The integral image is an intermediate representation for images which allows a rapid 

computing of rectangular features. The integral image at location x, y contains the sum of 

the pixels above and to the left of the pixel (x,y), including (x,y). 

 

(7.1) 

where ii(x,y) is the integral image and i(x,y) is the original image. 
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Fig. 7.5 Concept of integral histogram. Yellow indicates already traversed points. At each step, the 

current integral histogram is obtained from the integral histogram values of the three neighbors, and 

the bin that corresponds to current point’s value is increased by one. 

 

Porikli [94] suggested a similar method to efficiently compute histograms over 

arbitrary rectangular regions, called ‘Integral Histogram’ (See Fig.7.5). The scan of the 

image requires updating the integral histogram for such data points that their left, upper, 

and upper-left neighbors are already scanned in case of an image data. The integral 

histogram at a point is obtained by three arithmetic operations for each bin of using the 

integral histogram values of the three neighbors as shown in Fig. 7.5. The integral 

histogram values of the previous point are copied to the current point before the 

propagation. Either the updated bin is copied to all of the remaining points, or all the 

previous bins are copied to the current bins. 

 

7.2.4 Integral HOG 
 

Inspired by the concept of integral histogram, Zhu et al. [259] developed a fast way to 

calculate the HOG feature, which is called integral HOG. First of all, each pixel’s 

orientation (including its magnitude) is discretized into 9 histogram bins. Next, an integral 

histogram is computed and stored for each bin of the HOG. And finally they are used to 

compute the HOG efficiently for any rectangular image region. This method is fast to 

compute, while there are some differences with the original HOG method: 

- First, they could not use a Gaussian mask and tri-linear interpolation in constructing 

the HOG for each block because this would not fit with the integral histogram 

approach. 

- Second, they used L1 normalization instead of L2 normalization because it allowed 

a faster computation when using the integral images. 
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7.2.5 Human detection with integral HOG descriptor 
 

A larger spatial region, termed as block, is formed by accumulating the cell-based oriented 

histograms. Contrast-normalization is accomplished to be invariant to illumination, 

shadows, etc. These normalized descriptor blocks are referred to as HOG (See Fig. 7.6). In 

our work, we have adopted another fast HOG-based method employing the integral 

histogram to detect the humans in a scene. Original HOG is quite time-consuming, since 

for every search window it computes the oriented gradients even though for some blocks 

within the neighboring windows it is already computed. On the contrary, the integral 

histogram representation allows rapid computing of the rectangular feature by 

pre-computing the cumulative histograms for all the bins corresponding to each point on an 

image. Finally, those are used to compute the HOG features for the blocks within the 

search window. Thus ambiguous block-based feature computation is eliminated. This 

makes the HOG feature generation accurate and fast.  

After the detection of a probable human region, the classifier classifies the region 

whether there is a human or not. If a human exists, it is detected by a rectangular region 

enclosing the human. Support Vector Machine (SVM) is used to construct the classifier 

where a strong classifier is constructed from a number of weak classifiers. Accordingly, a 

scene with many persons is segmented into several regions based on the number of the 

occupying persons. The corresponding regions are detected in the scene. Thus the detector 

output provides several bounding boxes corresponding to the detected humans in a scene. 

However, in order to use the detector output for recognition, the distinguishable features 

corresponding to each human region are to be tracked in subsequent frames to accumulate 

the information of the motion flow.  

 

   
  (a)      (b)            (c)   

 

Fig.7.6 Histograms of oriented gradients: (a) A 64X128 search window (a rectangle enclosing the 

leftmost person), (b) a 16X16 block of 4 cells, (c) the histograms of oriented gradients 

corresponding to the 4 cells. 
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7.3 Feature tracking 
 

Feature tracking is a process of finding the important features of an object of interest from 

one frame in a subsequent frame of a video stream. In order to keep track of the motion 

flow, the features corresponding to each person is tracked in successive frames. We have 

employed the well-established Lucas-Kanade Tracker for person-wise feature tracking. 

Lucas-Kanade optical flow tracker itself does not work very well because it works on a 

large window and a large window is too often unable to track smaller region of features. To 

solve this problem, we can track first over larger spatial scales using an image pyramid and 

then refine the initial motion velocity assumptions by computing down the levels of the 

image pyramid until we arrive at the raw image pixels. Hence, the technique is first to 

solve for optical flow at the top layer and then to use the resulting motion estimates as the 

starting point for the next layer down. We continue going down the pyramid in this manner 

until we reach the lowest level. Thus we minimize the violations of our motion 

assumptions and so can track faster and longer motions. This technique is known as 

pyramid Lucas-Kanade method (See Fig. 7.7).  

 

Fig. 7.7 Pyramid Lucas-Kanade optical flow. 

 

                   

     Frame at t              Frame at t+1       Computed optical flow 

 

Fig. 7.8 Optical flow computation from L-K tracker output. 

 



130|Chapter 7    

In our system, the tracker is first provided with the prominent features which are to be 

tracked at every time-stamp. Then the tracker tracks those feature in the next frame. These 

tracked features are properly clustered on the frame to maintain individual feature sets. The 

intra-frame features are tracked and the inter-frame tracking synchronization is maintained 

for each individual. However, the HOG classifier output initially guides the feature tracker 

with the region of interest. Afterwards, the moving region corresponding to a particular 

action performed by a particular person is resized based on the tracker output. In this way, 

we compute the optical flow of a motion (See Fig. 7.8). The optical flow vectors are used 

in the recognition phase to construct a template for the action to be recognized. 

 

7.4 Action Recognition  
 

In the action recognition phase, the segmented moving regions for each individual are 

passed through a template generator to construct an accumulated feature image. We have 

adopted MHI template (See Section 2.2) as an action representation. The subsequent 

operations for the action recognition are described briefly as follows:  

- An MHI is generated from frame sequence corresponding to an action. 

- A number of directional eigenspaces are computed with the generated MHIs of the 

actions corresponding to each camera viewpoint (See Section 5.4).  

- An index is generated for each motion points within the eigenspace, and those 

indexes are stored in a Structured Motion Database (SMoDB) for the task of 

recognition (See Section 5.5). The database development is done at learning phase. 

- For the purpose of action recognition, an input motion is searched within the 

motion database and the most similar motion is obtained by the scheme described 

in Section 5.6, except that the prior direction estimation scheme is discarded. 

 

7.5 Performance Analysis     
 

The experiments were performed for the performance evaluation of the proposed system. 

For training the SVM human classifier using HOG features, 1506 positive training samples 

and 1226 negative training samples (negative training images are further sampled into 10 

samples corresponding to each negative image) extracted from INRIA Dataset and other 

outdoor images were used (See Fig. 7.9). For action learning, five types of actions were 

captured: Pickup, Jump, Jogging, Headache, Fall-Down (See Fig. 7.10). Six actors 

performed total of 90 actions which were captured from three directions, namely, front, left 

and right. The learning actions have varying frame numbers ranging from 29 to 130 frames 
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per action representing either fast or slow movements. The block size was 2X2 cells with 

cell size 8X8 pixels. The search window size was 64X128 pixels having 105 overlapping 

fixed-sized blocks. As each cell represents 1-D 9-bin histogram features, correspondingly 

each block consists of 36-D feature vector, and a total of 3780 dimensional feature vector 

was obtained. To test the detector performance, we have used 1126 test samples. From this 

experiment, 98% detection rate was obtained with the trained SVM classifier.  

 
Fig. 7.9 Some examples of positive training samples. 

 

     

Fig. 7.10 Some learning actions captured from different directions. 

 

     

(a) Experimental outdoor scenes 1 through 5 

          

(b) Corresponding generated MHI motion templates for each individual 
 

Fig.7.11 Experimental scenes and corresponding motion templates within the rectangular region for 

each person 
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TABLE 7.1 Experimental Results with five scenes. 

 

 Detection Tracking Recognition 

Scene 1 100% 55% 100% 

Scene 2 100% 54% 67% 

Scene 3 67% 52% 100% 

Scene 4 100% 41% 100% 

Scene 5 67% 42% 100% 

 

To test our overall system, we have considered five outdoor scenes where multiple 

persons were performing different actions. Figure 7.11 shows the detection results which 

demonstrate the robustness of the system in terms of detection, tracking, and recognition. 

The outputs of the HOG detector and the recognizer are analyzed separately. We have 

tabulated the experimental results in terms of detection rate, rate of successfully tracked 

points, and recognition rate for the five scenes in TABLE 7.1. We found the average 

detection rate for our experimental scenes is 87%. The average of successfully tracked 

features is about 49%. Finally, we have obtained the average recognition rate of 93% 

corresponding to the detected humans. In scene 3 and scene 5, one person each was found 

undetected and the actions were also not taken into account for recognition. However, 

tuning of the fusion parameter for human detection may be able to detect the human. 

However, we have calculated the vital time requirement factors. Most of the time 

elapses within this system is due to human detection, feature tracking, and MHI generation 

for all the existing persons. We found that human detection takes most of the time (about 

75%-80% of the total time), whereas the feature tracking and MHI generation steps does 

not take much time (20%-25% of the total time). Figure 7.12 graphically illustrates the 

time requirement for the above factors. 
 

 

Fig. 7.12 Time distribution for major three steps  
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7.6 Discussion 
 

We propose a novel multiple persons’ action recognition system. This system is robust in 

detection, tracking and recognition in the sense that it can deal with the cases where several 

persons perform similar or dissimilar actions in a scene with unknown background, 

whereas the earlier researches have not adopted such an integrated strategy to handle this 

sort of situations. Moreover, in some cases, background subtraction is employed against 

known background: But our system is more generalized than those methods. Our proposed 

system is also capable of fast detection and recognition. Since an outdoor environment is 

usually non-symmetric and cluttered by nature, it is quite difficult to establish a system that 

can cope with each and every situation for human detection and its action analysis. In our 

system, we have adopted the following assumptions: 

a. At each time stamp, the left and rightmost regions are searched for possible human 

entries. 

b. For overlapping of multiple humans, the system is subjected to be terminated for 

the overlapping humans. A threshold is set for detecting the occurrence of 

occlusion. 

c. If a reasonable number of feature points are not tracked in subsequent frames, the 

person is assumed to be out of the visible area. 

d. All the persons in a scene perform actions simultaneously. 

 

Although there are some limitations and assumptions in the form of occlusion and false 

detection, it is proved to be an efficient approach according to the performance of the 

system in terms of precision.  

 

7.7 Summary 
 

In this chapter, we have presented a human action recognition system capable of dealing 

with several persons’ actions. We have discussed the framework for the recognition system. 

The overall system is divided into three phases: human detection, person-wise feature 

tracking, and action recognition. We have discussed each phases, and also performed 

experiments with several persons in outdoor environment. Finally, we have focused on 

some issues regarding the advantages and constraints of the system.  
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Discussion and Conclusions 

 

 
8.1 Discussion 

 

Our contribution has a number of merits over other existing methods which are intensively 

surveyed in different chapters of this thesis. Also, there are some limitations, and points of 

improvement for our proposed methods. As our contribution emphasizes on human motion 

acquisition and human motion recognition, we shall discuss on these topics separately in 

Section 8.1.1 and 8.1.2. In Section 8.2, we summarize our overall contribution, and finally, 

Section 8.3 presents some future research directions.  

 

8.1.1 Human motion acquisition 

 

Our proposed human motion acquisition system focuses on the modeling of human body in 

successive frames. It is based on the acquisition and understanding of limb movements. 

The proposed model employs a simple body parts or joints extraction scheme to model the 

motion. However, some matters are still unsolved which include the modeling of torso or 

trunk, accurate positioning of the joints, shape deformation of body and body parts, and so 

on. We have also assumed the human having no body parts occlusion and all the joints are 

mostly visible throughout the movements. However, the above factors are quite hard to 

deal with when there is a case of pose analysis in non-3-D environment. Our proposed 

scheme, though it employs a semi-3-D form of the model, is quite difficult to present the 

subtle body parts movements in such a form. The reason for not choosing the 3-D form of 

motions lies in the fact that it is computationally expensive and, having surveyed various 

related works, we notice that the accuracy of the model is really much perfect as the 

integration of different view’s information is not an easy task. In this respect, our proposed 

method with two camera views performs satisfactorily for simple body movements. 

However, it may be worthwhile to use another frontal view camera to solve the ambiguities 
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of limbs, and overlapping of body parts. Moreover, the ultimate target of such a kind of 

acquisition system is to extend to the self-development of motion database in real-time by 

self-learning of robots. At the same time, when an unknown new motion comes, it is 

acquired by a robot and the motion database is updated with the new one correspondingly. 

Based on this, we shall specify some ideas on the development of such a system in Section 

8.3. 

 

8.1.2 Human motion recognition 

          

We present a novel recognition technique for identifying and interpreting human motions 

or actions utilizing a structured motion database. This approach used spatio-temporal 

representation of motions. In such an approach, the directional organization of motion 

database is adopted: Motion recognition of an unseen motion is obtained by searching the 

selected directional databases: And the nearest neighbor searching problem is resolved. A 

motion is represented by Motion History Image and Exclusive-OR image, and these are 

used to construct eigenspace. We obtained the recognition rate 94% and the recognition 

time is about 20 milliseconds. Thus the proposed system has achieved high recognition 

performance with high-speed recognition. 

Although we have achieved satisfactory performance from our proposed recognition 

system, there are, of course, some limitations in the current system. A more sophisticated 

motion detection technique might increase the robustness of the recognition system. 

Moreover, with respect to the structured motion database, the selection of bin length is an 

important issue to solve. This can be solved by adopting specific datasets and the 

corresponding best bin length obtained empirically. Suppose that tennis action dataset, 

cricket action dataset, kitchen activity dataset, etc., imply the best bin length separately. 

Similar with the bin length, the scale of shifting should also be chosen in such a way to 

produce the best results. However, the system incorporates all the frames to generate the 

motion images. Therefore, a strategy is required to deal with this limitation.  

We have also presented two significant constraints in human motion recognition in 

the form missing information and recognition in cluttered outdoor scenario. With the first 

constraints, though the directional information increases the robustness of the system, there 

should be some selection for the appropriate feature image. It is also recommended to use 

all the four directional feature images so that significant information is not lost. Rather than 

this, we consider to adopt a mechanism to switch the representation scheme between MHI 

and directional MHI, since MHI seems performing better in the case of simple motions. 

For the second constraint, the motions are captured in cluttered outdoor scenario, and the 
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motion recognition scheme is applied on these captured motions. Though it shows 

reasonable performance for the outdoor data, practically its performance is subjected to be 

improved to be able to use it in real-life applications.  

We propose another human motion recognition system by considering the practical 

cases where several persons occupy a scene. The system works well with the experimental 

outdoor motions. Analyzing the time requirement for various phases of the system, we find 

it a bit long in terms of the speed concerned. We may use the AdaBoost or other boosting 

algorithm to select prominent HOG feature (e.g., [259]), rather than selecting all the 

features. This will certainly reduce the detection time, and will make a high-speed 

recognition system. 

However, with some limitations, our proposed system emphasizing certain factors 

works well and can be upgraded to adapt to the environment. The significant merit of the 

contribution is that it works with the extracted motion frames and the normalized human 

posture images. In other words, we are using only the relative posture change within 

successive motion frames to recognize a human motion. Therefore, if it is possible to 

extract a human region firmly, the system can recognize the motion using even low 

resolution cameras, in both indoor and outdoor. Another noticeable thing inside the 

implementation of the system is the employment of separate eigenspaces for each camera 

direction which corresponds to a system with multi-camera concept. Some fundamental 

advantages of the proposed technique are as follows; 

(i)   The human motions observed from multiple directions can be dealt with 

numerically using the eigenspace concept. 

(ii)   The motion database is also in compact form, since only one motion image is 

utilized for each motion with several frames. 

(iii) The proposed technique is advantageous with respect to computational load, 

recognition rate, and steadiness of performance. 
 

There is broad area of applications for such a human motion recognition system. The 

most desirable one is the control of an intelligent robot capable of human motion or action 

recognition with instant decision making in any security system, or in clinics or 

rehabilitation centers, or in surveillance system for tracking suspicious matter, etc. With the 

use of networks, it will become more effective, reliable and robust. 
 

8.2 Conclusions 

 

We summarize the contribution of this thesis in a brief way. Within the motion acquisition 

context, we proposed a motion modeling strategy for acquiring and understanding limb 
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movements within the motion video. It extracts the joint location on the human body, and 

makes a human body model correspondingly.  

We present a structured motion database approach to human motion recognition by the 

structurization and organization of large amount of human motion data. We adopted a 

novel directional organization, a boundary problem resolution scheme, a direction 

estimation method to accomplish a high-precision and high-speed recognition. Moreover, 

in order to make use of missing motion information, we propose a directional motion 

template based recognition system. Furthermore, for the real-life scenarios which are 

cluttered with non-uniform background, along with subtle movements of background 

objects, we propose a recognition system that is able to cope with the cluttered nature of 

the background by background modeling and flow estimation. We propose a 

detection-tracking-recognition based human action recognition system using HOG features, 

Lucas-Kanade tracker, MHI, and structured motion database. As a conclusion, we claim 

that we have developed suitable motion recognition systems which have reasonable 

capability to recognize motions. 

 

8.3 Future Work 

 

The proposed multi-factor based recognition systems require further investigation to make 

the recognition more improved and the recognition system more enhanced. It would be 

more efficient to develop the system with real-life indoor, outdoor, simple and complex 

motion datasets for the practical implementation of the system. We can include different 

sports motions within the system. The motion representation plays an important role in 

building templates for recognition. Other motion representations [87] could also be 

adopted to test the system’s performance. In the motion modeling scheme, the system 

should be enhanced to the motion recognition. The possible directions for the 

enhancements are mentioned below. 

- Three cameras can be used: frontal, side (left/right), and top. 

- Detect the body parts: (a) head, (b) torso, (c) limbs: (i) hands (upper arm, lower 

arm), (ii) legs (thigh, leg). 

- Detect corresponding joints. 

- Track the body parts in the successive frames. 

- Storage of feature points at each frame (for each pose) for the body parts, or store 

trajectory information of the body parts. 

- Store the features in the database for recognition purpose. 

However, the system is subjected to be comprehensively investigated in order to be 
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practically implemented in crowded scenarios. The detector should be trained with huge 

number of positive and negative samples. Moreover, the detection strategy should be 

improved, if necessary, for accurate and fast detection. We can adopt the occlusion 

handling mechanism proposed in [212] to build our system to effective even in the 

situation where significant occlusion occurs.  

A miss-recognition condition will occur if one person partially occludes another, 

making separation difficult. So, multiple cameras are recommended in such a situation. 

Besides, the occlusion of the body parts or repetition of same movement more than once, 

may also lead to worse performance. Possibly, multi-view method can cope with the 

problem, as well. For monitoring situation, one can use an overhead camera to select which 

ground based cameras have a clear view of a subject and to specify (assuming loose 

calibration) where the subject would appear in each image.  

Above all, our proposed approach is a one-step forward to the development of a 

complete human action recognition system and has much potential to be applied to 

real-world scenarios. 
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