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In recent times, DNA structures are one of the attractive research targets because 

of their vital biological roles and remarkable therapeutic applications. Specially, G-

quadruplex DNA structures are a very interesting target because of promoter regions, 

human telomeres and aptemers are closely associated with the genetic integrity, cell 

proliferation, aging and cancer. Fundamental understanding of the interactions of small-

molecule ligands or proteins with DNA sequences and their structural effect, binding 

affinities, thermodynamic, kinetic and thermal stability are very crucial. This doctoral 

thesis has uncovered the interaction studies of novel cyclic naphthalene diimide 

derivatives (cNDIs, 1,2) & non-cyclic naphthalene diimide (NDI 3) with double stranded 

DNA (dsDNA) such as calf thymus DNA (CT-DNA), poly[d(A-T)]2, or poly[d(G-C)]2 

and G-quadruplexes DNA such as human telomere DNA (a-core & a-coreTT), promoter 

region’s DNA (c-kit & c-myc) and thrombin-binding aptamer (TBA).  

 

Firstly, I have studied the interaction of newly synthesized cNDIs 1,2 with various 

types of dsDNA to observe the cyclic linker chain effect binding to dsDNA. Secondly, I 

have studied the interaction of 2 with various types of G-quadruplexes DNA to observe 

the specific binding to G-quadruplexes DNA structure. I have studied the interaction of 

NDI 3 with dsDNA and G-quadruplexes DNA as a control.  

 

The interaction of three different types of dsDNA and seven different types G-rich 

oligonucleotides studied with newly synthesize 1,2 and NDI 3 by the physicochemical 

and biochemical method such as UV-Vis spectroscopy, Circular dichroism (CD) 

spectroscopy, Topoisomerase I assay, Stopped-flow kinetics, Thermal melting studies, 
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TRAP assay and FRET-melting assay experiments. 

 

The binding studies between cNDIs 1,2 and DNA duplexes showed affinities in 

the order of 105–106 M-1 using UV-Vis spectroscopic titration with a stoichiometry of one 

cNDI molecule covered four DNA base pairs as a bis-threading intercalation mode of 

binding. The induced CD signal was observed on cNDIs chromophore upon the addition 

of CT-DNA. Topo I isomerase assay showed that 2 can unwind circular dsDNA, it’s also 

indicated the bis-intercalation binding of cNDIs with dsDNA. According to the van’t Hoff 

and Gibbs free energy equation, thermodynamic parameters (ΔG, ΔH, and ΔS) indicated 

that entropy-dependent hydrophobic and endothermic interactions played a major role in 

the reaction between cNDIs and CT-DNA. Stopped-flow analysis showed that 2 slowly 

dissociate from GC base pairs. The salt ion effect analysis showed that upon the 

increasing salt concentration reduced cNDIs binding with dsDNA. Compound 1 showed 

much slower dissociation, a higher binding selectivity and a more entropically favorable 

interaction to dsDNA than 2 because of its longer linker chain. 

 

The binding interactions between G-quadruplex DNA structure and cNDIs 

showed the affinities in the range of 106–107 M−1 orders with a 2:1 stoichiometry. 

Compound 2 showed highest binding affinities to human telomere a-core G-quadruplex 

DNA with 270 times selectivity than dsDNA. The CD spectra of G-quadruplex DNA 

changed upon the addition of cNDIs suggesting the end staking interaction of cNDIs on 

G-tetrad plane. The thermal melting studies indicated that 2 stabilized to G-quadruplexes 

DNA with preference of human telomeric a-core TT. The FRET melting assay also 

showed that 2 highly stabilized with F21T which is an ancestor of human telomere G-
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quadruplex DNA. Compound 2 revealed an effective inhibitor against telomerase activity 

with an IC50 value of 0.9 μM.  

 

Briefly, the finding of this doctoral thesis will contribute to generate new idea to 

design and development suitable DNA binding ligands. The interesting data in the chapter 

4 indicated that 2 is the suitable candidate drug target to G-quadruplexes DNA, it deserves 

for further investigation with cancer cell line.  
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Introduction and Background 
 

1.1. DNA 

DNA (deoxyribonucleic acid) is the crucial component and present in all living 

things, large and small [1]. It is debatably the most complex structure and we are only 

just in the beginning to understand its function and mechanism. DNA is responsible for 

the management and conservation of genetic information of each living things, which is 

transferred genetic information in germ cells from one generation to the next generation. 

It also carries the essential information for proteins required for the operation of biological 

systems. In the last half-century, scientists have begun to study the mechanisms of the 

process surrounding the function of DNA, such as replication, transcription, translation, 

cell cycle mechanism and DNA damage repair. The processes of replication, transcription 

and translation are known as the central dogma of molecular biology (Fig. 1.1) [1].  

 

Fig.1.1. Representation of replication, transcription and translation [1]. 

 

1.2. Components and structure of DNA 

The basic structure of DNA was established by Watson and Crick [2]. DNA 

consists of two complementary polymer strands that intertwine to give a right handed 
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double helix running in anti-parallel directions [3,4]. Each strand is made up of a series 

of units called nucleotides. A nucleotide is made up of a deoxyribose sugar, a phosphate 

and a nitrogen containing base such as adenine (A), guanine (G), thymine (T) and cytosine 

(C). The C1´ position of the deoxyribose sugar attaches with N9 position of adenine (A) 

or guanine (G) or N1 position of thymine (T) or cytosine (C). The deoxyribose sugar 

connected through the 5  ́ hydroxyl group and the 3´ hydroxyl group of phosphate. 

According to Watson-Crick base pairing rules, adenine (A) attaches with thymine (T) by 

two hydrogen bonds and guanine (G) attaches with cytosine (C) by three hydrogen bonds. 

The bases are connected through a flexible sugar phosphate chain. The DNA strand chain 

direction is 5´- to 3´- from top to bottom. The base pairs are not planar, they can twist and 

roll. Double stranded DNA structure mostly stabilizes by the correct base pairing of 

hydrogen bonds. It may destabilize by phosphate repulsion because the negative charge 

of phosphate. High salt concentration protects phosphate repulsion and stabilize the 

double stranded DNA structure. Cationic ligand molecules may have the same role to 

stabilize the DNA structure. DNA structure also may stabilize in solution by hydrophilic 

interactions between the negatively charged phosphate groups and the surrounding 

solvent [1-4].  

 



Page 16 of 117 
 

  

Fig. 1.2. (A) Chemical composition of double stranded DNA and (B) the structure of 

double stranded DNA [2].  

 

1.3. Double stranded DNA: A-DNA, B-DNA and Z-DNA 

A number of different conformations of double helical DNA can be formed by 

rotating various bonds [3,4]. Although the B-form is the most abundant DNA polymorph, 

other conformations can exist under appropriate conditions. The structures of A-DNA, B-

DNA and Z-DNA are shown in Fig. 1.3 [5].  

 

Under physiological conditions, DNA is generally assumed to be in a B-type 

conformation DNA [3]. B-DNA and A-DNA are right handed with 10 and 11 bases per 

turn respectively, Z-DNA is left handed with 12 bases per turn. Z-DNA backbone is not 

smooth, appearing zig-zag [4].  

 

There are two distinguishable grooves running in the length of the DNA: the major 
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and the minor groove., The major groove for B-DNA has a depth of ~8Å and a width of 

~12Å; the minor groove 8Å and 6Å respectively [4]. This means that only small 

molecules, that can twist and interact with the minor groove whereas much larger 

molecules can interact with the major groove. Generally, protein molecules interact with 

DNA major groove and small molecule drugs bind with minor groove [3].  

 

Fig.1.3. The structures of A-DNA, B-DNA and Z-DNA [5].  

 

1.4. G-quadruplex DNA  

Unlike Watson-Crick duplex model, nucleic acids are not simple linear polymers 

in the cell. A fascinating structure is the G-quadruplex DNA composed of four guanines 

interconnected by Hoogsteen hydrogen bond to form tetrameric units. The formation of 

G-quadruplex DNA was proposed in the 1960s. In the presence of K+ or Na+ mono-
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cations, base pairing formed between N7 and C6 amino group of the adjacent guanines, 

and O6 carbonyl of each guanine by Hoogsteen bond [6-8]. 

 

Recently, uncovered the visualization of DNA G-quadruplex structures in human 

chromosomes have amplified the potential application in therapeutics [6].  G-quadruplex 

DNA can be folded different quadruplex forms such as parallel, antiparallel, hybrid or 

mixed hybrid types depending on extrinsic cation and DNA sequence which makes a 

platform for binding and stabilizing by the small molecule drugs [6-8]. 

 
Fig. 1.4. Polymorphism of G-quadruplexes DNA [9]. 

 

1.5. Source of G-quadruplexes DNA 

There are important regions in the human genome have been described to adopt 

G-quadruplex structures such as telomere region, promoter region and aptemers etc. 

 

1.5.1. Human Telomere G-quadruplexes DNA 

Telomeres are found at the terminus of the chromosomes, which is consisted by a 

long double stranded DNA sequence and a short G-rich single stranded sequence [10]. 

Telomeres play a vital role in maintaining genetic stability and cell growth by preventing 
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gene erosion, non-homologous end-end fusion of chromosomes and attack of nuclease. 

G-quadruplex structures form in the human telomeric DNA sequences containing four 

tandem TTAGGG repeats. The G-quadruplexes formed in those sequences have been 

observed to be highly polymorphic and dynamic in nature. Human telomeric DNA 

sequence forms a hybrid type G-quadruplex structure in K+ solution, whereas it forms an 

antiparallel basket type G-quadruplex structure in Na+ solution [11].  

 
Fig. 1.5. Structure and biological roles of telomeres G-quadruplexes DNA [12]. 

  

1.5.2. Promoter region’s G-quadruplexes DNA 

G-quadruplexes structure have been found in several promoter regions of human 

genes, including c-myc, c-kit, VEGF etc. The promoter region genes contain the sequence 

d(GGG GAG GGT GGG GAG GGT GGG GAAGG), which is formed stable G-

quadruplex structure. The G-quadruplex structure in promoter regions has a significant 
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role in transcription regulation [13-15].  

 

 

Fig.1.6. The formation of a G-quadruplex DNA in a promoter region [7].  

 

1.5.3. Aptamers G-quadruplexes DNA 

Aptamers are RNA or single stranded DNA, which can form G-quadruplexes 

structure. Aptamers G-quadruplexes DNA shows pharmacological significance such as a 

26 mer nucleotide named AS1411 5’-d(GGTGGTGGTGGTTGTGGTGGTGGTGG), 

which can inhibit cancer cell proliferation [16,17].  

 

1.6. Binding modes of ligands to DNA  

 

1.6.1. Irreversible binding to DNA 

The irreversible binding of drugs to DNA ability to bind by cross-linking through 

a base. One of the examples of irreversible binding of drugs to DNA is cisplatin [18]. 
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1.6.2. Reversible bindings of small molecules with DNA 

The small molecule drugs bind to DNA reversibly mainly three ways: 

 

1. Electrostatic binding 

2. Groove binding 

3. Intercalation 

 

Fig. 1.7. Schematic representations of binding modes for ligand–duplex DNA [3,18]. 
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1.6.2.1. Electrostatic interactions 

Because of negatively charged of DNA, the positively charged cationic molecules 

bind with DNA through external association by the electrostatic interaction (Fig. 1.7) [3]. 

I have discussed in details at the salt effect analysis section in the chapter 3 about the 

binding of ligand molecules to DNA depends on the concentration of cations in the 

solution.  

 

1.6.2.2. Intercalation 

The planar aromatic molecules insert to the base pairs of DNA and bind with DNA 

generally known as DNA intercalation. There are many ligand molecules have been 

discovered as a DNA intercalator such as proflavine, ethidium bromide, daunomycin etc. 

(Fig. 1.7) [3]. Bis-intercalation of ligands with DNA is one of the attracted field because 

bi-functional molecules interact strongly with both DNA grooves (Fig. 1.7) [3]. 

 

1.6.2.3. Groove binding 

The ligand molecules are associated with DNA at the location of major and/or 

minor groove and bind through van der Waals, hydrophobic and/or hydrogen bonding 

interactions known as DNA groove binding (Fig. 1.7) [3]. 

 

1.6.3. Binding modes between ligands and G-quadruplexes DNA 

The planar aromatic ring molecules can interact with G-quadruplex by end 

stacking on the terminal G-tetrads as well as groove binding and intercalation binding 

with G-quadruplex DNA (Fig.1.8) [12,19].  
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Fig.1.8. Interaction modes between G-Quadruplex DNA structures and ligands [12]. 

 

1.7. Binding of small molecules to double stranded DNA and 

G-quadruplexes DNA 

 

1.7.1. Binding of small molecules to double stranded DNA 

The development of small ligand molecules that bind with target DNA sequence 

selectively are leading to improve anticancer drugs [20,21]. These ligand molecules 

normally bind to target DNA sequence and controlling gene expression. An example of 

DNA binding drug is Pentamidine, which is used for the treatment of the disease of 

pancreatic cancer [22]. This drugs bind non-specifically to DNA, causing damage to 

normal cells, it displays side effects. However, one of the most challenging goals in this 

area is the design of molecules, which will bind to DNA with specific targets. 
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1.7.2. Binding of small molecules to G-quadruplexes DNA structures 

G-quadruplex DNA structures form with the assembling of telomeric repeat 

(TTAGGG)3 by telomerase in the telomeres of chromosomal end [23]. Most of the cancer 

cells activated by the over expression of telomerase enzyme in cancer cells. So, targeting 

the controlling of telomeric activity has led to the discovery of a novel anticancer drugs. 

Small molecule drugs are the main targets for stabilizing G-quadruplex DNA structure. 

There are a large number of G-quadruplex DNA stabilizing ligands has been discovered 

such as Anthraquinone [24], acridines  [25], perylenes [26], berberine  [27], porphyrins 

[28], and telomestatin derivatives [29]. These molecules are potential telomerase inhibitor. 

Most of the G-quadruplex DNA stabilizing ligands allows binding through π-π overlap 

on the terminal of G-tetrad [30]. Anthraquinone derivatives such as 2,6-disubstituted 

aminoalkylamido anthraquinone BSU-1051 is the first G-quadruplex DNA interactive 

ligands. It shows telomerase inhibition activity with IC50 values 23 µM [31]. The 3,6,9-

trisubstituted acridines shows 30-40 times higher folding to G-quadruplex than duplex 

DNA and telomerase inhibition activity with IC50 values 10-20 nM. A cyclic acridine 

(BOQ1) also shows a potent telomerase inhibitor with IC50 values 0.33 µM [32]. The 

Perelene derivatives such as PIPER shows effective telomerase inhibitor at low micro-

molar concentration. It shows a potent G-quadruplex DNA binding ligands with the 

stoichiometry of 2:1 than DNA duplex [33]. The Berberine derivatives reveal a stronger 

binding affinity to G-quadruplex and highly inhibit telomerase at low micromolar 

concentration [27]. The Napthalene diimide derivatives, NDIs shows high binding 

affinity to G-quadruplex over duplex DNA and telomerase inhibition of at low 

micromolar concentration [34]. The porphyrin derivatives are widely used macrocyclic 

ligands, shows high binding affinity to G-quadruplex DNA than duplex DNA [13,35,36]. 
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Mn-TMPyP4 shows 10,000 fold selectivity to G-quadruplex DNA over duplex DNA and 

a potential telomerase inhibitor with IC50 value 580 nM. It’s also shows the inhibitory 

effect on cancer cell line [37]. Telomestain is a natural compound isolated from 

Streptomyces anulatus, shows telomerase inhibition activity at 5 nM concentration. It’s 

also able to reduce tumor cell growth [38]. Telomestain derivatives such as cyclic 

oxazoles shows structure specific selectivity with parallel c-kit G-quadruplex DNA than 

antiparallel telomeric G-quadruplex DNA [39]. The telomestain derivatives such as 

hexaoxazole containing macrocycle (HXDV) selectively stabilize telomeric G-

quadruplexes DNA structure, whereas it did not show affinity to duplex DNA [40].  

 

 

 

2,6-disubstituted anthraquinone [31] 3,6,9-trisubstituted acridines [32] 

 

 
 

PIPER [33] Piperidino berberine [27] 

  
TMPyP4 porphyrin [35] 
 

Telomestain [39] 

Fig.1.9. Structures of known G-quadruplex ligands. 
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1.8. Methods for the study of ligand interactions with G-

quadruplex and duplex DNA 

The understanding in detail mechanisms of drug-DNA interactions are very 

crucial to the design and discovery of DNA targeting drugs [41]. There are several 

techniques which have been used to investigate drug–DNA interactions, including 

absorption spectroscopy [42], circular dichroism (CD) [43], emission spectroscopy [44], 

calorimetry [45], nuclear magnetic resonance (NMR) [46], surface plasmon resonance 

(SPR) [47], mass spectrometry [48], X-ray diffraction [49], competition dialysis [50], 

TRAP assay [23] and Molecular modeling [51]. 

In particular, the UV-Vis absorption titration have been developed for the binding 

studies to measure binding constant (K) and binding site size (n) [42]. The Stopped flow 

kinetics method have been sued to understand the dissociation constant (kd) and 

association constant (ka) of DNA-ligand interactions [42]. The CD has been used to study 

for characterizing the DNA structure and DNA structural change upon the binding of 

ligands molecules [52]. The Thermal melting studies have been used to know the 

stabilization of DNA-ligand interactions. The Fluorescence Resonance Energy Transfer 

(FRET) assays also have been widely used to study competitive thermal stabilization of 

different types of DNA binding with ligand or different types of ligand binding with DNA 

[53,54]. The Topo I isomerase assay is a powerful technique to study intercalation of 

ligands with circular double stranded DNA. The Telomere repeat amplification protocol 

(TRAP) assay is a widely used technique to know the inhibitory activity of telomerase 

enzyme by the ligand molecules [23]. Nowadays, Computer modeling, simulation is a 

popular technique to study of the interaction of ligands with G-quadruplexes DNA and 



Page 27 of 117 
 

double stranded DNA [51].  

 

1.9. Binding of naphthalene diimide derivatives to DNA 

Naphthalene diimide derivatives are important DNA binder due to their large 

conjugated planer structure. Napthalene diimide binds with double stranded DNA as a 

threading intercaator. Recently, the several concept has been explored for bis-intercalating 

or polycyclic intercalating or cyclic intercalating derivatives of naphthalene diimide [55-

60]. The interaction of a cyclic naphthalene diimide (cNDI) with DNA shows a unique 

catenated structure that dramatically stabilizes the duplex complex. Over the last few 

years a number of NDI based compounds have been developed in part by exploiting the 

available NDI-G-quadruplexes structures. A new type of macrocyclic naphthalene 

diimide, which is connected through the benzene ring with its substituent, showed 

stabilization and high affinity to G-quadruplexes DNA [61].  
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 Tetrasubstrituted NDI [62]  cNDI derivatives [61]  Tetrasubstrituted NDI [63] 

 
 

 

Tetrasubstritute NDI [64] Tetrasubstrituted NDI [65] Ferrocinyl NDI [66] 

Fig.1.10. Naphthalene diimide derivatives studied the interactions with DNA 

 

1.10. Why cyclic naphthalene diimide derivatives (cNDI)? 

Recently, researchers are searching stabilizing ligands for capable of specific 

binding with a G-quadruplexes DNA. Napthalene diimide (NDI) backbone can intercalate 

to dsDNA. Cyclization of NDI with linker chain through benzene ring, seems to be a 

wonderful idea for the stabilization of G-quadruplexes DNA. Because NDI moiety can 

be stacked on G-tetrad plane and bind with π-π interaction. The cNDI molecule would be 

reduced binding to dsDNA because linker chain and benzene part will protect to bind to 

dsDNA.  

 

So, I have synthesized a series of cNDI derivatives and investigated the interaction 

with various types of DNA targeting to develop G-quadruplexes DNA specific binder 
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whereas reducing the binding to dsDNA.   

 

1.11. The aim of the thesis 

My doctoral research deals with the design and synthesis of new DNA interactive 

compounds and the evaluation of their efficiency in binding and stabilizing the double 

stranded and G-quadruplex DNA structures. In particular, my efforts have been directed 

towards the synthesis of macrocyclic naphthalene diimide derivatives (cNDI), where 

cNDI derivatives are designed by different length of linker chain through benzene.  

 

In the last few years, several macrocycles were synthesized for binding with DNA 

specially G-quadruplexes DNA. A natural macrocyclic Telomestsian strongly stabilized 

G-quadruplexes DNA and inhibit telomerase in low concentration [29]. Porphyrins 

derivatives showed 10,000 times selectivity to G-quadruplexes DNA over duplex DNA 

[37]. Recently, NDI based macrocyclic compound showed high stabilization with G-

quadruplexes DNA [61].  

 

In this context, our interest has been devoted to the design of new cNDI 

macrocycles, considering the structure based stabilization with G-quadruplexes DNA and 

reducing the binding with dsDNA. In particular, I have targeted to optimize stacking 

interactions between the cNDI and terminal G-tetrad. So, I have deigned a shorter chain 

cNDI to specific binding model for G-tetrad.  

 

An array of biophysical and biochemical techniques, ultraviolet-visible (UV-Vis), 

Circular Dichroism (CD), Stopped-flow, FRET melting assay, Topo I isomerase assay, 
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TRAP assay and Computer modeling were utilized. The mode of binding, binding 

affinities, thermodynamics, kinetics, thermal melting, telomerase inhibition assay and 

Computer modeling with various DNA sequences are discussed. This dissertation is 

divided into five chapters which are described below:  

 

Chapter 1 is the current chapter, gives a general introduction to targeting DNA 

with small molecules as an effective strategy for drug design.  

 

Chapter 2 is a reproduce work from M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. 

Takenaka, Bioorganic Med. Chem. 23 (2015) 4769–4776 and describes the synthesis of 

cNDI derivaties 1-3.  

 

Chapter 3 is a reproduce work from M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. 

Takenaka, Bioorganic Med. Chem. 23 (2015) 4769–4776 and describes the binding 

studies, kinetic and thermodynamic analysis of cNDIs with ds DNA. 

 

Chapter 4 is a reproduce work from M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. 

Takenaka, Molecule 20 (2015) 10963-10979 and describes the binding studies, thermal 

stability and telomerase inhibition of cNDIs with different types of G-quadruplexes DNA. 

 

Chapter 5 is a reproduce work from M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. 

Takenaka, Bioorganic Med. Chem. 23 (2015) 4769–4776 & M.M. Islam, S. Fujii, S. Sato, 

T. Okauchi, S. Takenaka, Molecule, 20 (2015) 10963-10979 and described the conclusion 

and the perspective of this thesis.  



Page 31 of 117 
 

1.12. References 

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology 

of the Cell, 5th Ed., Garland Science, Taylor & Francis Group, LLC, an informa 

business, 270 Madison Avenue, New York, NY 10016, USA. 2008. 

2. J.D. Watson and F.H.C. Crick, Molecular Structure of Nucleic Acids: A Structure for 

Deoxyribose Nucleic Acid, Nature 171 (1953) 737-378. 

3. G.M. Blackburn, M.J. Gait, D. Loakes, D.M. Williams, Nucleic Acids in Chemistry 

and Biology, 3rd Ed., RSC Publication, Thomas Graham House, Science Park, Milton 

Road, Cambridge CB4 0WF, UK, 2006.  

4. C. R. Calladine and H. R. Drew, Understanding DNA: The molecule and how it works, 

2nd Ed, Academic Press: Cambridge, UK, 1997.  

5. J. Muller, Functional metal ions in nucleic acids, Metallomics 2 (2010) 318–327. 

6. D. Tannahill, J. McCafferty, S. Balasubramanian, Quantitative visualization of DNA 

G-quadruplex structures in human cells, Nat. Chem. 5 (2013) 182-186.  

7. J.L. Huppert, Four-stranded nucleic acids: structure, function and targeting of G-

quadruplexes, Chem. Soc. Rev. 37 (2008) 1375–1384.  

8. S.M. Haider, S. Neidle, G.N. Parkinson, A structural analysis of G-quadruplex/ligand 

interactions, Biochimie 93 (2011) 1239–1251.  

9. G. Song, J. Ren, Recognition and regulation of unique nucleic acid structures by small 

molecules, Chem. Commun. 46 (2010) 7283-7294  

10. E.H. Blackburn, C.W. Greider, J.W. Szostak, Telomeres and telomerase: the path 

from maize, Tetrahymena and yeast to human cancer and aging, Nat. Med. 12 (2006) 

1133-1138.  

11. K.N. Luu, A.T. Phan, V. Kuryavyi, L. Lacroix, D.J. Patel, Structure of the human 



Page 32 of 117 
 

telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold, J. Am. 

Chem. Soc. 128 (2006) 9963-9970.  

12. T. Ou, Y. Lu, J. Tan, Z. Huang, K. Wong, L. Gu, G-Quadruplexes: Targets in 

Anticancer Drug Design, Chem. Med. Chem. 3 (2008) 690–713.  

13. A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley, Direct evidence for a 

Gquadruplex in a promoter region and its targeting with a small molecule to repress 

c-MYC transcription, Proc. Natl. Acad. Sci. USA 99 (2002) 11593–11598. 

14. D. Sun, K. Guo, J.J. Rusche, L.H. Hurley, Facilitation of a structural transition in the 

polypurine/polypyrimidine tract within the proximal promoter region of the human 

VEGF gene by the presence of potassium and G-quadruplex-interactive agents, 

Nucleic Acids Res. 33 (2005) 6070-6080. 

15. S. Rankin, A.P. Reszka, J. Huppert, M. Zloh, G.N. Parkinson, A.K. Todd, S. Ladame, 

S. Balasubramanian, S. Neidle, Putative DNA quadruplex formation within the 

human ckit oncogene, J. Am. Chem. Soc. 127 (2005) 10584–89.  

16. T. Mashima, A. Matsugami, F. Nishikawa, S. Nishikawa, M. Katahira, Unique 

quadruplex structure and interaction of an RNA aptamer against bovine prion protein, 

Nucleic Acids Res. 37 (2009) 6249–6258. 

17. Y. Teng, A.C. Girvan, L.K. Casson, J.W.M. Pierce, M. Qian, S.D. Thomas, P.J. Bates, 

AS1411 alters the localization of a complex containing protein arginine 

Methyltransferase 5 and nucleolin, Cancer Res. 67 (2007) 10491-500. 

18. P.M. Takahara, C.A. Frederick, S.J. Lippard, Crystal Structure of the Anticancer Drug 

Cisplatin Bound to Duplex DNA, J. Am. Chem. Soc. 118 (1996) 12309.  



Page 33 of 117 
 

19. T. Shalaby, G. Fiaschetti, K. Nagasawa, K. Shin-ya, M. Baumgartner, M. Grotzer, G-

Quadruplexes as Potential Therapeutic Targets for Embryonal Tumors, Molecules 18 

(2013) 12500-12537.  

20. P.G. Baraldi, A. Bovero, F. Fruttarolo, D. Preti, M.A. Tabrizi, M.G. Pavani, R. 

Romagnoli, DNA minor groove binders as potential antitumor and antimicrobial 

agents, Med. Res. Rev. 24 (2004) 475-528..  

21. R. Palchaudhuri, P.J. Hergenrother, DNA as a target for anticancer compounds: 

methods to determine the mode of binding and the mechanism of action, Curr. Opin. 

Biotechnol. 18 (2007) 497-503.   

22. M.K. Pathak, D. Dhawan, D.J. Lindner, E.C. Borden, C. Farver, T.L. Yi, Pentamidine 

is an inhibitor of PRL phosphatases with anticancer activity, Mol. Cancer Ther. 1 

(2002) 1255-1264. 

23. D. Gomez, J.L. Mergny, J.F. Riou, Detection of telomerase inhibitors based on 

gquadruplex ligands by a modified telomeric repeat amplification protocol assay, 

Cancer Res. 62 (2002) 3365–3368. 

24. J.M. Zhou, X.F. Zhu, Y.J. Lu, R. Deng, Z.S. Huang, Y.P. Mei, Y. Wang, W.L. 

Huang, Z.C. Liu, L.Q. Gu, Y.X. Zeng, Senescence and telomere shortening induced 

by novel potent G-quadruplex interactive agents, quindoline derivatives, in human 

cancer cell lines, Oncogene 25 (2005) 503–511.  

25. S.M. Gowan, Heald, R. M.F. Stevens, L.R. Kelland, Potent inhibition of telomerase 

by smallmolecule pentacyclic acridines capable of interacting with g-quadruplexes, 

Mol. Pharmacol. 60 (2001) 981–988. 

26. M. Franceschin, A. Alvino, V. Casagrande, C. Mauriello, E. Pascucci, M. Savino, G. 

Ortaggi, A. Bianco, Specific interactions with intra- and intermolecular G-quadruplex 



Page 34 of 117 
 

DNA structures by hydrosoluble coronene derivatives: a new class of telomerase 

inhibitors, Bioorg. Med. Chem. 15 (2007) 1848-1858. 

27. M. Franceschin, L.D. Rossetti, A. Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. 

Savino, C. Schultes, S. Neidle, Natural and syntetic G-quadruplex interactive 

berberine derivatives, Bioorg. Med. Chem. Let. 16 (2006) 1707-1711. 

28. R.T. Wheelhouse, D.K. Sun, H.Y. Han, F.X. Han, L.H. Hurley, Cationic porphyrins 

as telomerase inhibitors: the interaction of tetra-(N-methyl-4- pyridyl)porphine with 

quadruplex DNA, J. Am. Chem. Soc. 120 (1998) 3261–3262.  

29. K. Shin-Ya, K. Wierzba, K. Matsuo, T. Ohtani, Y. Yamada, K. Furihata, Y. 

Hayakawa, H. Seto, Telomestatin, a novel telomerase inhibitor from Streptomyces 

anulatus. J. Am. Chem. Soc. 123 (2001) 1262–1263.   

30. A.D. Cian, L. Lacroix, C. Douarre, N. Temime-Smaali, C. Trentesaux, J.F. Riou, 

J.L. Mergny, Targeting Telomeres and Telomerase, Biochimie 90 (2008) 131-155.  

31. D. Sun, B. Thompson, B.E. Cathers, M. Salazar, S.M. Kerwin, J.O. Trent, T.C. 

Jenkins, S. Neidle, L.H. Hurley, Inhibition of human telomerase by a G-quadruplex-

interactive compound, J. Med. Chem. 1997, 40, 2113–2116. 

32. M.J.B. Moore, C.M. Schultes, J. Cuesta, F. Cuenca, M. Gunaratnam, F.A. Tanious, 

W.D. Wilson, S. Neidle, Trisubstituted Acridines as G-quadruplex Telomere 

Targeting Agents. Effects of Extensions of the 3,6- and 9-Side Chains on Quadruplex 

Binding, Telomerase Activity, and Cell Proliferation, J. Med. Chem. 49 (2006) 582–

599. 

33. O.Y. Fedoroff, M. Salazar, H. Han, V.V. Chemeris, S.M. Kerwin, L.H. Hurley, NMR-

Based Model of a Telomerase-Inhibiting Compound Bound to G-Quadruplex 

DNA,,Biochemistry 37 (1998) 12367–12374. 



Page 35 of 117 
 

34. I. Czerwinska, S. Sato, B. Juskowiak, S.Takenaka, Interactions of cyclic and non-

cyclic naphthalene diimide derivatives with different nucleic acids, Bioorg. Med. 

Chem. 22 (2014) 2593–2601. 

35. D.F. Shi, R.T. Wheelhouse, D.Y. Sun, L.H. Hurley, Quadruplex interactive agents 

as telomerase inhibitors: Synthesis of porphyrins and structure-activity relationship 

for the inhibition of telomerase, J. Med. Chem. 44 (2001) 4509-4523. 

36. C.L. Grand, H. Han, R.M. Munoz, S. Weitman, D.D. Von Hoff, L.H. Hurley,; D.J. 

Bearss, The cationic porphyrin TMPyP4 downregulates c-MYC and human 

telomerase reverse transcriptase expression and inhibits tumor growth in vivo, Mol. 

Cancer Ther. 1 (2002) 565-73.  

37. I.M. Dixon, F. Lopez, A.M. Tejera, J.P. Esteve, M.A. Blasco, G. Pratviel, B. 

Meunier, A G-quadruplex ligand with 10000-fold selectivity over duplex DNA, J. 

Am. Chem. Soc. 129 (2007) 1502-1503. 

38. T. Tauchi, K. Shin-ya, G. Sashida, M. Sumi, S. Okabe, J.H. Ohyashiki, K. Ohyashiki, 

Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in 

vitro and in vivo studies in acute leukemia, Oncogene 25 (2006) 5719–25. 

39. K. Jantos, R. Rodriguez, S. Ladame, P.S. Shirude, S. Balasubramanian, Oxazole-

based peptide macrocycles: a new class of G-quadruplex binding ligands, J. Am. 

Chem. Soc. 128 (2006) 13662–3. 

40. D.S. Pilch, C.M. Barbieri, S.G. Rzuczek, E.J. LaVoie, J.E. Rice, Targeting human 

telomeric G-quadruplex DNA with oxazole containing macrocyclic compounds, 

Biochimie 90 (2008) 1233-1249. 

41. J. Jaumot, R. Gargallo, Experimental methods for studying the interactions between 

G-quadruplex structures and ligands, Curr. Pharm. Des. 18 (2012) 1900-1916. 



Page 36 of 117 
 

42. C. Wei, G. Jia, J. Yuan, Z. Feng, C. Li, A spectroscopic study of the interactions of 

porphyrin with G-quadruplex DNAs, Biochemistry 45 (2006) 6681–6691. 

43. S, Paramasivan, I. Rujan, P.H. Bolton, Circular dichroism of quadruplex DNAs: 

applications to structure, cation effects and ligand binding, Methods 43 (2007) 324–

331. 

44. L.R. Keating, V.A. Szalai, Parallel-stranded guanine quadruplex interactions with a 

copper cationic porphyrin, Biochemistry 43 (2004) 15891–15900. 

45. E. Erra, L. Petraccone, V. Esposito, A. Randazzo, L, Mayol, J, Ladbury, G. Barone, 

C. Giancola, Interaction of porphyrin with G-quadruplex structures. Nucleosides 

Nucleotides, Nucleic Acids Res. 24 (2005) 753–756. 

46. C. Hounsou, L. Guittat, D. Monchaud, M. Jourdan, N. Saettel, J.L. Mergny, M.P. 

Teulade-Fichou, G-quadruplex recognition by quinacridines: a SAR, NMR, and 

biological study, Chem. Med. Chem. 2 (2007) 655–666. 

47. J.E. Redman, Surface plasmon resonance for probing quadruplex folding and 

interactions with proteins and small molecules, Methods 43 (2007) 302–312. 

48. C.L. Mazzitelli, J.S. Brodbelt, J.T. Kern, M. Rodriguez, S.M. Kerwin, Evaluation of 

binding of perylene diimide and benzannulated perylene diimide ligands to DNA by 

electrospray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 17 (2006) 

593-604.  

49. N.H. Campbell, G.N. Parkinson Crystallographic studies of quadruplex nucleic acids, 

Methods 43 (2007) 252– 263. 

50. P. Ragazzon, J.B. Chaires, Use of competition dialysis in the discovery of G-

quadruplex selective ligands, Methods 43 (2007) 313–323. 



Page 37 of 117 
 

51. P. Murat, Y. Singhb, E. Defrancq, Methods for investigating G-quadruplex 

DNA/ligand interactions, Chem. Soc. Rev. 40 (2011) 5293–5307 

52. T. Yamashita, T. Uno, Y. Ishikawa, Stabilization of guanine quadruplex DNA by the 

binding of porphyrins with cationic side arms, Bioorg. Med. Chem. 13 (2005) 2423–

2430. 

53. J.L. Mergny, Ethidium derivatives bind to G-quartets, inhibit telomerase and act as 

fluorescent probes for quadruplexes, Nucleic Acids Res. 29 (2001) 1087–1096. 

54. A. DeCian, L. Guittat, M. Kaiser, B. Saccà, S. Amrane, A. Bourdoncle, P. Alberti, 

M.P. Teulade-Fichou, L. Lacroix, J.L. Mergny, Fluorescence-based melting assays 

for studying quadruplex ligands, Methods 42 (2007)183-95. 

55. R.S. Lokey, Y. Kwok, V. Guelev, C.J. Pursell, L.H. Hurley, B.L. Iverson, A New 

Class of Polyintercalating Molecules, J. Am. Chem. Soc. 119 (1997) 7202-7210. 

56. G.G. Holman, M. Zewail-Foote, A.R. Smith, K.A. Johnson, B.L. Iverson, A 

sequence-specific threading tetra-intercalator with an extremely slow dissociation 

rate constant, Nat Chem. 3 (2011) 875-881. 

57. A.R. Smith, B.L. Iverson, Threading Polyintercalators with Extremely Slow 

Dissociation Rates and Extended DNA Binding Sites, Am. Chem. Soc. 135 (2013) 

12783–12789. 

58. Y. Chu, D.W. Hoffman, B.L. Iverson, A Pseudocatenane Structure Formed between 

DNA and A Cyclic Bisintercalator, J. Am. Chem. Soc. 131 (2009) 3499–3508. 

59. Y. Chu, S. Sorey, D.W. Hoffman, B.L. Iverson, Structural Characterization of a 

Rigidified Threading Bisintercalator, J. Am. Chem. Soc. 129 (2007) 1304-1311. 



Page 38 of 117 
 

60. J. Lee, V. Guelev, S. Sorey, D.W. Hoffman, B.L. Iverson, NMR Structural Analysis 

of a Modular Threading Tetraintercalator Bound to DNA, J. Am. Chem. Soc. 126 

(2004) 14036-14042. 

61. C. Marchetti, A. Minarini, V. Tumiatti, F. Moraca, L. Parrotta, S. Alcaro, R. Rigo, C. 

Sissi, M. Gunaratnam, S.A. Ohnmacht, S. Neidle, A. Milelli, Macrocyclic 

naphthalene diimides as G-quadruplex binders, Bioorg. Med. Chem. 23 (2015) 3819-

3830. 

62. G.W. Collie, R. Promontorio, S.M. Hampel, M. Micco, S. Neidle, G.N. Parkinson, 

Structural Basis for Telomeric G-Quadruplex Targeting by Naphthalene Diimide 

Ligands, J. Am. Chem. Soc. 134 (2012) 2723–2731.  

63. M. Micco, G.W. Collie, A.G. Dale, S.A. Ohnmacht, I. Pazitna, M. Gunaratnam, A.P. 

Reszka, S. Neidle, Structure-Based Design and Evaluation of Naphthalene Diimide 

G-Quadruplex Ligands As Telomere Targeting Agents in Pancreatic Cancer Cells, 

J. Med. Chem. 56 (2013) 2959–2974.  

64. G.N. Parkinson, F. Cuenca, S. Neidle, Topology Conservation and Loop Flexibility 

in Quadruplex–Drug Recognition: Crystal Structures of Inter- and Intramolecular 

Telomeric DNA Quadruplex–Drug Complexes J. Mol. Biol. 381 (2008) 1145–1156. 

65. F. Doria, M. Nadai, M. Folini, M.D. Antonio, L. Germani, C. Percivalle, C. Sissi, N. 

Zaffaroni, S. Alcaro, A. Artese, S.N. Richter, M. Freccero, Hybrid ligand–alkylating 

agents targeting telomeric G-quadruplex Structures, Org. Biomol. Chem. 10 (2012) 

2798–2806.    

66. S. Takenaka, K. Yamashita, M. Takagi, Y. Uto, H. Kondo, DNA Sensing on a DNA 

Probe-Modified Electrode Using Ferrocenylnaphthalene Diimide as the 

Electrochemically Active Ligand, Anal. Chem. 72 (2000) 1334-1341. 



Page 39 of 117 
 

 

 

Synthesis of cyclic naphthalene diimide 1, 2 and 3 
 

Contents of this chapter have been published in the Bioorgamic & Medicinal chemistry 

Journal (M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. Takenaka, Bioorganic Med. Chem. 

23 (2015) 4769–4776). The materials of the chapter have been reproduced with the 

permission of the Bioorgamic & Medicinal chemistry Journal [1]. 

 

2.1.1. Synthesis of cyclic naphthalene diimide 1 and 2 
 

As precursors of 1 and 2, N,N’-bis[[4-(3-aminopropyl)piperazinyl]propyl]-

naphthalene-1,4,5,8-tetracarboxylic acid diimide (4) and N, N'-bis[3-(3-

aminopropyl)methylaminopropyl] naphthalene-1,4,5,8-tetracarboxylic acid diimide (5) 

were synthesized according to the procedure reported previously [2]. 

 
 

2.1.2. Synthesis of 1 (cNDI 1) 

   A solution of 4 1.0 g (1.5 mmol), terephthalic acid 0.25 g (1.5 mmol), 

triethylamine 12 mL, 1-hydroxybenzotriazole (HOBt) 0.60 g (4.5 mmol), 1H-

Benzotriazol-1-yloxy-tri(pyrrolidino) phosphonium hexafluorophosphate (PyBOP) 

2.3 g (4.5 mmol) in CHCl3 500 mL was stirred at room temperature and the progress 

of this reaction was monitored by TLC on silica gel with mixture of CHCl3: 
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diethylamine = 10: 1.0 as developing agent. After 48 h stirring where the TLC spot of 

NDI (Rf=0) was disappeared, the reaction mixture was evaporated under reduced 

pressure and the residue was dissolved with 20 mL CHCl3. After filtration and 

subsequently evaporation under reduced pressure, the residue was chromatographed 

on a silica gel column (Merck 60) using the eluent consisted of CHCl3: diethylamine 

= 10: 1.0. The fraction of Rf= 0.33 was collected and the solvent was removed under 

reduced pressure. The obtained residue was recrystallized from ethyl acetate, and 1 

was obtained as brown crystal with 0.11 g (yield, 10%). MALDI-TOFMS (positive 

mode, α-CHCA) m/z =763.73 (theory for C42H50N8O6+H+= 763.90). 1H NMR (250 

MHz, CDCl3, TMS) δ1.54 (8H, m), 1.98 (4H, t, J = 6.0 Hz), 2.15 (6H, m), 2.29 (12H, 

m), 2.48 (4H, t, J=6.5 Hz), 3.44 (4H, m), 4.35 (4H, m, J = 6.0 Hz), 7.80 (4H, s), and 

8.77(4H, s) ppm; HRMS Calcd. for C42H50N8O6+H+: M, 763.55. Found: m/z 763.55. 

1 mM 1 aqueous solution was prepared as estimated from the molar absorptivity of 

28800 cm-1M-1 at 384 nm. 
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Fig. 2.1. Reversed phase HPLC of 1. The concentration of acetonitrile was changed 

linearly to 100% from 28% in water containing 0.1% trifluoroacetic acid over 40 min at 

40 ˚C. 
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Fig. 2.2. 1H-NMR chart of 1 in CDCl3 using TMS as internal standard. 
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Fig. 2.3. High-resolution mass spectra (HRMS-FAB) of 1. 
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2.1.3. Synthesis of 2 (cNDI 2)  

   A solution of 5 1.1 g (0.9 mmol), terephthalic acid 0.15 g (0.9 mmol), 

triethylamine 15 mL, 1-hydroxybenzotriazole (HOBt) 0.12 g (0.9 mmol), 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride 0.17 g (0.09 mmol) in CHCl3 400 mL 

was stirred at room temperature and the progress of this reaction was monitored by TLC 

on silica gel with mixture of CHCl3: diethylamine : Methanol = 10 : 0.2 : 1.0 as developing 

agent. After 48 h stirring, the reaction mixture was evaporated under reduced pressure 

and the residue was dissolved with 100 mL CHCl3. After filtration and subsequently 

washed with sat. NaHCO3 aq. (80 ml×5), and dried over magnesium sulfate. The solvent 

was removed and the residue was chromatographed on a silica gel column (Merck60) 

using the eluent of CHCl3: diethylamine : Methanol = 10 : 0.2 : 1.0. The fraction of Rf= 

0.41 was collected and the solvent was removed under reduced pressure. The obtained 

residue was recrystallized from ethyl acetate, and 2 was obtained as brown crystal with 

17 mg (yield, 3%). MALDI-TOFMS (positive mode, α-CHCA) m/z =653.54 (theory for 

C36H40N6O6+H+= 653.302). 1H NMR (500 MHz, CDCl3, TMS) 4H, m), 1.5 (4H, 

t, J=5.9), 1.87 (4H, m), 2.09 (6H, s), 2.31 (4H, m) 3.16 (4H, m), 4.12 (4H, t, J=6.8), 7.12 

(2H, s), 7.56 (4H, s), 8.71 (4H, s) ppm.  HRMS Calcd. for C36H40N6O6+H+: M, 653.302. 

Found: m/z 653.302. 1 mM 2 aqueous solution was prepared as estimated from the molar 

absorptivity of 28800 cm-1M-1 at 384 nm. 
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Fig. 2.4. Reversed phase HPLC of 2. The concentration of acetonitrile was changed 

linearly to 100% from 29% in water containing 0.1% trifluoroacetic acid over 40 min at 

40 ˚C. 
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Fig. 2.5. 1H-NMR chart of 2 in CDCl3 using TMS as internal standard. 
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Fig. 2.6. High-resolution mass spectra (HRMS-EI+) of 2. 
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2.2. Synthesis of NDI 3 

Details of non-cyclic NDI 3 synthesis was asper method previously described [3]. 
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Thermodynamics and Kinetic Studies in the 

Binding Interaction of Cyclic Naphthalene 

Diimide Derivatives with Double Stranded DNAs 

 
Contents of this chapter have been published in the Bioorgamic & Medicinal chemistry 

Journal (M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. Takenaka, Bioorg. Med. Chem. 23 

(2015) 4769–4776). The materials of the chapter have been reproduced with the 

permission of the Bioorgamic & Medicinal chemistry Journal [1]. 

 

3.1. Introduction 

Small molecules that bind to DNA affect numerous functions of living organisms, 

such molecules have potential as therapeutic agents that function by controlling gene 

expression. Thus, the study of interactions between DNA and small molecules is vital in 

chemical and biological drug discovery research [2,3]. It is important to study the 

thermodynamics and kinetics of the interactions between small molecules and DNA in 

order to understand the binding modes of these molecules and develop new, effective, 

DNA-targeted drugs [2]. Accordingly, many small molecule drugs that interact with DNA 

have been investigated [4]. A classical intercalating drug slides between adjacent base 

pairs of a DNA duplex and forms a stable complex, resulting to mutations, such as 

frameshift [6]. A threading intercalating drug is a new type of intercalator; in its 
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interaction with DNA, two substituents of the molecule are located on the major and 

minor grooves of the DNA duplex, preventing dissociation [3]. Nogalamycin is a typical 

threading intercalator, and its antitumor activity is correlated with its DNA dissociation 

rate constant [3]. This exemplifies the relationship between physical data and biological 

activity. It also shows the importance of physical studies of the interactions between small 

molecules and DNA duplexes. 

 

Expanding on threading intercalating drugs, bis-intercalators have also been 

utilized to stabilize the DNA complex [2-5]. Chaires et al. developed the bis-intercalating 

drug daunomycin [3]. Like nogalamycin, this molecule’s slower dissociation rate 

correlates with its biological activity. Recently, the same concept has been explored for 

bis-intercalating or cyclic intercalating derivatives of naphthalene diimide [6-11]. The 

interaction of a cyclic naphthalene diimide with DNA shows a unique catenated structure 

that dramatically stabilizes the complex. A new type of cyclic naphthalene diimide, 1, 

which is connected with its substituent through the benzene ring, can stabilize both a DNA 

duplex and a DNA tetraplex [12,13]. In recent years, the synthesis of bis-intercalators has 

drawn considerable attention because of the drugs’ potential superiority over mono-

intercalators. Higher DNA-binding constants, slower dissociation rates, and substantial 

sequence selectivity can be expected from the incorporation of two or more intercalating 

units into a polyfunctional ligand [7,8].  

 

Researchers have already reported that naphthalene diimide derivatives act as 

DNA-targeting anticancer agents, and such derivatives have shown potent activity against 

cancer cell lines and telomerase [14,15]. Depending on the substituents, naphthalene 
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diimide derivatives have shown selectivity toward AT- or GC-rich regions of DNA [5,7]. 

Our group previously published our synthesis and evaluation of the binding of G-

quadruplex and dsDNA with 1 and other cNDIs [12,13]. In the present study, the 

interaction of 1 and the newly designed 2 with dsDNA was analyzed by UV-Vis 

spectroscopy, CD spectroscopy, a topoisomerase I assay, and stopped-flow kinetics to 

characterize differences in binding mode and binding selectivity. 

 

 
Fig. 3.1. Chemical structure of cNDI 1, 2 and NDI 3 

 

3.2. Experimental procedure 

 

3.2.1. Materials 
CT-DNA, poly[d(A-T)]2, and poly d[(G-C)]2 synthetic polymers were obtained 

from Sigma-Aldrich (St. Louis, MO). Following the extinction coefficients (ε) were used 

for quantification of the nucleic acid solutions: 12824 M-1 cm-1 for CT-DNA, 13200 M-1 

cm-1 for poly[d(A-T)]2, and 16800 M-1 cm-1 for poly[d(G-C)]2. Details of the synthesis 

procedure for 1 and 2 are described in the supplementary data, and 3 was synthesized as 
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previously described [16]. I obtained 2.0 M KCl and 5.0 M NaCl aqueous solutions from 

Life Technologies (Carlsbad, CA), 1.0 M Tris-HCl (pH 7.4) buffer from Sigma-Aldrich 

(St. Louis, MO), and 2-Morpholinoethanesulfonic acid (MES) from Dojindo (Japan). 

 
3.2.2. UV-Vis titration experiments 

Absorption spectra were measured using the Hitachi U-3310 spectrophotometer 

with a 1-cm path-length quartz cell and were recorded in the 200–600 nm range at 25°C. 

UV-Vis absorption titrations were carried out by the stepwise addition of 3 mM/base pair 

of CT-DNA, poly[d(A-T)]2, or poly[d(G-C)]2 to a UV cell containing 6.7 µM solutions of 

1–3. The measurements were performed in 10 mM MES buffer (pH 6.25) containing 100 

mM NaCl and 1 mM EDTA. Binding data, which were obtained by spectrophotometric 

titration of increasing concentrations of each drug to a fixed concentration of DNA, were 

analyzed by Scatchard plot analysis of r/C versus r, according to the excluded-site model 

of the McGhee-von Hippel equation [17] (Eq. 3.1). The binding data were analyzed with 

KaleidaGraph software, using the Levenberg-Marquardt algorithm to determine 

parameters Kb and n. 

 
3.2.3. Thermodynamics analysis  

The effect of temperature on ligand binding affinity was investigated to derive the 

thermodynamic functions of ligand-DNA complex formation. Absorption spectra were 

measured at 20, 22.5, 25, and 27.5°C. Titrations were performed under conditions similar 

to those used in the UV-Vis titration experiments. Enthalpy change (△H) and entropy 

change (△S) were measured by the van’t Hoff equation plotted against lnK versus 1/T 

(Eq. 3.2). The free energy change (△G) was estimated by the Gibbs free energy equation 

(Eq. 3.3). 
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3.2.4. Salt effect analysis 
Salt-dependent Scatchard analysis was conducted at five different concentrations 

of sodium salt: 50, 75, 100, 125, and 150 mM. Titrations were performed under similar 

conditions as those used for the UV-Vis titration experiments. The strength of electrostatic 

interactions of the ligand was determined by plotting the negative logarithm of the sodium 

salt concentration (log [Na+]) against the binding constant (log K) (Eq. 3.4). 

 
3.2.5. Stopped flow kinetics experiments 

Stopped-flow kinetic experiments were performed with the SF-61 DX2 double 

mixing stopped-flow system (Hi-Tech Scientific Inc., Salisbury, UK) equipped with a 

Lauda RF206 temperature controller. Samples were prepared in a buffer solution (10 mM 

MES, 1 mM EDTA, and 0.1 M NaCl; pH 6.25). Absorbance was measured at the 

maximum absorption of the cNDI derivatives. Association rate constants of the ligand-

dsDNA interactions were obtained by fitting the exponential traces of absorbance 

observed after mixing the ligand solution with DNA at a 10-fold excess of the ligand 

concentration. The dual-exponential equation was used for nonlinear fitting: A1 exp(k1t) 

+ A2 exp(k2t), where A and k refer to the fractional amplitudes and rate constants, 

respectively. The intrinsic second-order association rate constant (ka) and the dissociation 

rate constants (kd) were obtained from the slope and intercept of a plot of the apparent 

association rate constant (kapp = A1k1 + A2k2) against the DNA concentration, according to 

the equation kapp = ka[DNA] + kd. The dissociation rate constant (kd) of the ligand from 

DNA was independently determined by sodium dodecyl sulfate (SDS)-driven 

dissociation measurements, as described previously [15,16]. Equal volumes of 1% SDS 

solution and the DNA-ligand complex were mixed instantaneously using a piston pump. 

Changes in absorbance over time were recorded. When the DNA-ligand complex was 
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mixed with SDS solution, the free ligand underwent incorporation into the SDS micelles. 

As this reaction is diffusion-controlled, all absorption changes represent a kd-dependent 

process; therefore nonlinear fitting of the kinetic trace provides the kd value. 

 
3.2.6. Topoisomerase I assay measurements 

A Topoisomerase I assay was carried out according to the method previously 

reported [12,13]. Briefly, 0.25 μg of pUC19 was incubated with 5 U of topoisomerase I 

in 0.1% bovine serum albumin (BSA) and 1× reaction buffer—composed of 35 mM Tris-

HCl (pH 8.0), 72 mM potassium chloride, 5 mM magnesium chloride, 5 mM 

dithiothreitol (DTT), and 5 mM spermidine—at 37°C for 5 min. Various concentrations 

of 1–3 were then added, and the mixture was incubated at 37°C for 1 h. The reaction was 

terminated by the addition of 2 μL of 10% sodium dodecylsulfate (SDS) and 0.5 µL of 

20 mg/ml proteinase K, and the solution was then incubated at 37°C for 15 min. 

Topoisomerase I was then extracted with phenol containing chloroform and isoamyl 

alcohol, and then with chloroform containing isoamyl alcohol. After ethanol precipitation 

and dissolution, topoisomerase I was analyzed by gel electrophoresis on 1% agarose in 

1× TAE at 18 V for 3.5 h. The gel was stained with Gelstar (Takara Bio, Shiga, Japan) in 

1× TAE for 30 min. 

 
3.2.7. Circular dichroism (CD) measurements 

Various concentrations (5–50 µM) of 1–3 were added to 100 μM/base pair CT-

DNA in 10 mM MES buffer (pH 6.25) containing 100 mM NaCl and 1 mM EDTA at 

25°C. CD spectra were taken at a scan rate of 50 nm/min on a Jasco J-820 

spectropolarimeter (Tokyo, Japan). Scan parameters were as follows: response = 2 s, data 

interval = 0.1 nm, sensitivity = 100 mdeg, band width = 2 nm, and scan number = 4. 
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3.2.8. Computer modeling  
Molecular models of the cNDI-DNA complexes were constructed by MOE 

2011.10 (http://www.chemcomp.com/). Compounds 1 or 2 was placed on the binding site 

of the DNA duplex, and energy minimization of the complex was carried out. Molecular 

dynamics calculation of the mineralized complex was further carried out until 1 or 2 was 

stabilized in the binding site. Finally, energy minimization of the complex was obtained, 

as shown in Fig. 6. These calculations were performed using the force field of MMFF94x. 

 

3.3. Result and discussions 

 

3.3.1. Binding studies of cNDIs- dsDNAs: UV-Vis titrations  

Spectroscopic titration of cNDIs with dsDNAs was carried out. The interaction 

showed maximum absorption at 383 nm and a large hypochromic effect with a small 

redshift, indicative of binding between the cNDIs and the dsDNAs (Fig. 3.3). An example 

of the spectrophotometric titration of 1 with CT-DNA is illustrated in Fig. 3.2A. The 

observed hypochromic effect indicated strong intercalative binding of cNDIs between 

dsDNAs. Optical data of the cNDIs are shown in Table 3.2. An isosbestic point observed 

at 395 nm supports the prediction of a two-state system involving bound and free cNDIs. 

Absorbance at a specific wavelength indicated the participation of both free and bound 

cNDIs when titrated with a fixed concentration of DNA. Scatchard plots were prepared 

using absorption changes at the specific wavelength 383 nm upon the addition of various 

concentrations of dsDNA. I used the data in a range of approximately 30%–80% bound 

region of cNDIs and dsDNA. The Scatchard plot in Fig. 3.2B illustrates binding between 

the cNDIs and dsDNAs. It was analyzed using the McGhee-von Hippel equation [17] (Eq. 
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3.1) for non-cooperative ligand binding.  

𝑣

Ｃ
= 𝐾(1 − 𝑛𝑣)(

1−𝑛𝑣

1−(𝑛−1)𝑣
)𝑛−1                                                   (3.1) 

𝑣 is the stoichiometry (the number of ligand molecules bound per moles of base 

pair), C is the free ligand concentration, K is the observed binding constant (Kb), and n is 

the number of base pairs excluded by the binding of a single ligand molecule. The solid 

line in 3.2B indicates a good fit of the experimental values to those predicted by the 

McGhee-von Hippel equation. Scatchard analysis using the spectra change of cNDIs upon 

the addition of dsDNAs showed binding constants ranging from 1.0–53.4×105 M-1, and 

the observed binding order was poly[d(G-C)]2 > CT-DNA > poly[d(A-T)]2. The expected 

value of n was four, as cNDIs interact with dsDNAs by bis-intercalation of four base pairs, 

whereas the threading intercalator 3 followed the nearest-neighbor exclusion principle 

[17], in which it was bound with dsDNAs by intercalation of two base pairs. I expected a 

violation of the nearest-neighbor exclusion principle by the cNDIs because they are large, 

cyclic macromolecules; a single cNDI molecule may cover more than two DNA base 

pairs and bind with dsDNA in bis-intercalative mode. Previous reports [12,13] on the 

binding of NDI derivatives to DNAs have shown similar trends of spectral change and 

support the binding constant for 3 observed here. Previously, our group reported that the 

interaction between 1 and duplex oligonucleotides revealed a higher binding constant (3.7 

× 106 M-1) and melting temperature than did the interaction between 3 and duplex 

oligonucleotides [12]. I further studied 1–3 with different types of dsDNA that carried 

AT- or GC-rich sequences to determine the sequence specificity of binding. Compounds 

1 and 2 showed similar trends of binding behavior with the different types of dsDNA. 

Compounds 1 and 2 showed comparatively higher binding affinity to dsDNAs than 3 

(Table 3.1) because of the binding flexibility of 3. The NDI moiety of 3 may intercalate 
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between dsDNA base pairs, and does not depend on major and minor groove binding. On 

the other hand, cNDI intercalated with the major and minor grooves of dsDNA making a 

rigid catenane complex [9]. Our observations revealed that long-chain 1 has a higher 

binding affinity to dsDNAs than short-chain 2. According to computer modeling, short-

chain 2 may have a steric strain effect in its binding with dsDNA. In addition, Sato et al. 

previously reported that the introduction of a methyl or alkyl group results in a higher 

binding constant because of the substituent effect [18]. Our group has already reported 

that other types of short-chain cNDI derivatives may have a greater affinity for G-

quadruplex DNA than for DNA duplex because of the staking interaction between the 

short-chain cNDI derivatives and G-quadruplex DNA [13]. Compound 1 displayed the 

highest affinity for poly[d(G-C)]2, with a binding constant of 5.34×106 M-1, which is 

approximately 9 times higher than the binding constant of its interactions with CT-DNA 

and Poly[d(A-T)]2 (Table 2). There is a strong tendency for cNDIs to bind with GC base 

pairs because of the rigidity, depth, and width of the GC groove. Nucleophilic guanine 

may also have a strong affinity for protonated cNDI molecules [19]. I assumed that cNDIs 

may strongly intercalate 5′-GpC-3′ sequences by insertion of the naphthalene diimide 

moiety and benzene ring into the 5′-GC/CG-3′ step, creating a catenane structure with 

dsDNA [20]. Preferential interactions of NDI ligands with GC polymers have been 

observed previously, confirming that the binding affinity of NDIs varies with DNA 

sequence [21]. Additionally, the double-stranded DNA structure is known to be highly 

dynamic in solution, with base pairs opening and reforming rapidly at room temperature. 

cNDIs may be able to exploit this millisecond “breathing” behavior of dsDNA by sliding 

between the temporarily disrupted DNA base pairs to form a pseudo-catenane or bis-

intercalation complex structure [22]. Under natural conditions, DNA dynamic breathing 
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is also referred to as “partial base flipping” [23,24]. Recently, Nakatani et al. reported that 

a single-molecule ligand can, in fact, induce nucleotide base flipping [25]. Overall, the 

present study is consistent with previous investigations of the interaction between cNDIs 

and dsDNAs, which have included bis-intercalators such as bisacridine and 

bisdaunamycine [26,27]. The binding of cNDIs to dsDNAs (Fig. 3.14) is structurally 

similar to cNDI-dsDNA structures previously described by other groups [9].  

 

  

Fig. 3.2. Spectral shifts of 6.7 µM of 1 on titration with 0, 5, 10, 15, 20, 25, 30, 40 and 50 

µM Calf thymus DNA (A) (from top to bottom). Scatchard plots for the binding of 1 to 

Calf thymus DNA (B). Experiments were performed at 25°C in 10 mM MES buffer pH 

6.25 containing 100 mM NaCl and 1 mM EDTA. 

 

Table 3.1 Binding parameters of 1-3 with CT-DNA, Ploy [d(A-T)]2 and Poly [d(G-C)]2 
 1 2 3 

DNAs 10-6Kb/M-1 n 10-6Kb/M-1 n 10-6Kb/M-1 n 
CT-DNA 0.7± 0.01 4.5 0.12± 0.005 4.9 0.34±0.006 3.4 

Poly [d(A-T)]2 0.6± 0.055 3 0.10± 0.004 5 0.28±0.001 3 
Poly [d(G-C)]2 5.34± 0.6 4 0.5 ± 0.013 3.5 0.84±0.026 2.2 

Condition: 10 mM MES (pH6.25), 1 mM EDTA, and 0.1 M NaCl.  
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Fig. 3.3. UV-Vis absorption spectra of 6.7 µM 1 (A, C, E), 2 (G, I, K) or 3 (M, O, Q) in 

the absence and presence of titrant calf thymus DNA (A, G, M), Poly (dA-dT)2 (C, I, O) 

and Poly (dG-dC)2 (E, K, Q) with 0, 5, 10, 15, 20, 25, 30, 40 and 50 µM respectively. 

Binding affinities were estimated using the scatchard plot of 1 (B, D, F), 2 (H, J, L) or 3 

(N, P, R) using the titrant calf thymus DNA (B, H, N), Poly (dA-dT)2 (D, J, P) and Poly 

(dG-dC)2 (F, L, R). Experiments were performed at 25°C in 10 mM MES buffer pH 6.25 

containing 100 mM NaCl and 1 mM EDTA. 
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Table 3.2 Summary of the optical properties of free and DNA bound 1-3.  

DNAs CT-DNA Poly [d(A-T)]2 Poly [d(G-C)]2 
ligads 1 2 3 1 2 3 1 2 3 
λmax (free)/nm 383 383 383 383 383 383 383 383 383 
λmax (bound)/nm 387 386 388 387 386 387 388 385 388 
λiso/nm 395 395 393 394 396 392 392 393 391 
H/% 60 60 62 47 49 60 61 61 61 

λiso: Wavelength at the isosbestic point; H: Hypochromicity, measured by using the 

formula,H%=Absorbance at 383 nm (free) - Absorbance at 383 nm (bound)/ Absorbance 

at 383 nm (free) × 100 [28].  

 

3.3.2. Thermodynamic analysis  

The interaction between a drug and biomolecule may involve hydrophobic forces, 

electrostatic interactions, van der Waals interactions and hydrogen bonds. According to 

data on enthalpy changes (△H) and entropy changes (△S), the following model of 

interaction between a drug and a biomolecule can be concluded: (1) △H > 0 and △S > 

0, hydrophobic forces; (2) △H < 0 and △S < 0, van der Waals interactions and hydrogen 

bonds; (3) △H < 0 and △S > 0, electrostatic interactions [29]. When there is little change 

in temperature, △H can be considered constant, and its value, along with that of △S, can 

be determined from the van’t Hoff (Eq. 3.2) and Gibbs free energy (Eq. 3.3) equations. 

𝑙𝑛𝐾𝑏 = −
∆𝐻

𝑅𝑇
+

∆𝑆

𝑅
                                                    (3.2) 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                     (3.3) 

R is the gas constant and Kb is the binding constant (Table 3.4) at the corresponding 

temperature. Fig. 3.5 shows the spectral shift of CT-DNA upon binding of 1. Using this 

absorption change, I measured the binding constant (Kb). The values of △H and △S were 

obtained from the slope and intercept of the linear plot (Eq. 3.2) of lnK against 1/T (Fig. 
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3.4). The value of △G was estimated from Eq. (3.3). Its negative value means that the 

binding process is spontaneous (Table 3.3). The values of △H and △S for the binding 

between 1-3 and CT-DNA are listed in Table 3.3. The negative values of △H for 3 

indicates the exothermic nature of the binding process with CT-DNA and intercalation 

may occur favorable electrostatic interaction (Fig. 3.4). I have assumed that the binding 

of non-cyclic NDI with CT-DNA shows flexibility consequently energy release and 

binding process entalpically driven. On the Other hands, the binding of 1 and 2 with CT-

DNA indicates the endothermic (Fig. 3.4). The positive enthalpy and positive entropy 

values of the interaction between 1 or 2 and CT-DNA indicate that hydrophobic forces 

played a major role in the reaction. These results are consistent with previously reported 

results for binding between CT-DNA and NDI derivatives [30]. When 1 or 2 interacts 

with CT-DNA, the driving force of the interaction clearly changes from enthalpy to 

entropy. The change in entropy is governed by the release of counterions and water from 

both DNA and the ligand, and also by changes in the local DNA structure upon ligand 

binding. These features simultaneously contribute unfavorable △H and favorable △S to 

the binding free energy and have been observed by other researchers [31,32]. Spolar et al. 

have also reported that the entropy change depends on the rigidity of the DNA-protein 

complexes [32]. Moreover, the intercalating chromophore of cNDIs consists of two 

aromatic ring systems that intercalate into the DNA duplex in a parallel arrangement that 

follows the lock and key model, making its stability entropically driven [4,32]. Binding 

between the bis-intercalator echinomycin and DNA has been shown to be entropically 

and hydrophobically driven, which is in agreement with our observations of binding 

between the newly designed cNDIs and CT-DNA [4,33]. According to thermodynamic 

data, I can state that long-chain 1 was more favorable for entropy-dependent binding than 
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short-chain 2. 

 

Table 3.3 Thermodynamic parameters of binding of 1-3 to calf thymus DNA. 

Parameters 1 2 3 

△H/kcal mol-1 7.8±1 9.2±0.84 -6.7±0.67 

△S/cal mol-1 52.8±3.3 54.4±2.8 3±2 

△G/kcal mol-1 (25 ˚C) -7.95 -7.0 -7.59 

Condition: 10 mM MES (pH6.25), 1 mM EDTA, and 0.1 M NaCl. 

 

 
Fig. 3.4. Plots of lnK (the observed equilibrium constants) vs 1/T under the binding of 1-
3 to calf thymus DNA. 
 
 
 



Page 63 of 117 
 

Table 3.4 Binding constants of 1-3 interacting with calf thymus DNA at different 

temperature. 

Temperature/°C 
10-5K/M-1 

1 2 3 

20.0 5.9 (±0.24) 1.2 (±0.40) 4.5 (±0.12) 

22.5 6.5 (±0.25) 1.3 (±0.40) 4.4 (±0.12) 

25.0 7.0 (±0.23) 1.4 (±0.70) 3.8 (±0.11) 

27.5 7.7 (±0.23) 1.5 (±0.12) 3.7 (±0.07) 

30.0 7.9 (±0.50) 1.8 (±0.05) 3.2 (±0.20) 

32.5 11 (±1.0) 2.0 (±0.18) 3.0 (±0.15) 

35.0 11 (±1.5) 2.6 (±0.10) 2.5 (±0.20) 
Condition: 10 mM MES (pH6.25), 1 mM EDTA, and 0.1 M NaCl. 
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Fig. 3.5. UV-Vis absorption spectra of 6.7 µM 1 with the varied amount of calf thymus 
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DNA. Experiments were performed at 20°C (A), 22.5°C (B), 25°C (C), 27.5°C (D), 30°C 
(E), 32.5°C (F), and 35°C (G) in 10 mM MES buffer pH 6.25 containing 100 mM NaCl 
and 1 mM EDTA. 

 

3.3.3. Salt effect analysis 

The entropic nature of the reaction can be related to the significant role of 

hydrophobic interactions in the binding process. Thus the electrostatic effect is almost 

entirely enthalpic [29,34]. In our study, Electrostatic interaction is less important for 

cNDIs binding to DNA because of favorable entropy. The binding constant of cNDIs to 

DNA entirely depends on salt concentration even through cNDIs is neutral. Reports in 

the past have shown that a very high concentration of NaCl would hinder small molecules 

from binding with DNA [35]. Our results show that the binding parameters decreased 

with a gradual increase in NaCl concentration (Table 3.6). According to counterion 

condensation theory (Eq. 3.4) is a measure of the number of sodium ions released from 

DNA per bound ligand. Due to the lengthening of the DNA helix and unwinding DNA 

upon intercalation, increasing the phosphate gaps along the helix axis [18,31,36]. 

Consequently, releasing condensed counterions because of the charge density of the 

duplex decreases and providing an entropically favorable contribution to the binding free 

energy. Releasing counterions explains the dramatic salt dependencies of DNA-cNDIs 

complexes. High salt destabilizes DNA- cNDIs complexes. There is a large entropic gain 

from counterion release, if the salt concentration in solution is low and the cNDIs binds 

tightly to the DNA. The entropic gain from counterion release is small, if the salt 

concentration in solution is high and the cNDIs binds weakly. I observed that an increased 

salt concentration hindered the binding of 1 more significantly than that of 2. At pH 6.25, 

the net charge would have been different because 1 possesses four nitrogen atoms in the 
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linker whereas 2 possesses only two. Moreover, at low ionic strength, a cNDI molecule 

binds to DNA with a large number of ion pairs, consequently increasing the free energy 

association through the release of a large fraction of counterions; this effect would be 

dramatically reduced at high ionic strength [37]. According to the polyelectrolyte theory 

[38], I plotted log K against –log [Na+] in Fig. 3.6, and the slope was given by Eq. 3.4. 

δ log𝐾𝑜𝑏𝑠

δ log[𝑁𝑎+]
= −𝑚𝛹                                     (3.4) 

m is the charge on the ligand and Ψ is the proportion of counterions associated 

with each DNA phosphate group, normally Ψ is 0.88 for classical intercalator with 

double-stranded B-type DNA [3,34]. However, it is known that Ψ for dicationic threading 

intercalators show 0.6 – 0.8 [16]. The data in Table 3.5 show slopes of 0.72, 0.74 and 0.83 

for 1, 2, and 3, respectively. This result suggested that these dicationic cNDI derivatives 

behave as threading intercalator and form catenane complex with double stranded DNA. 

 

Table 3.5 Salt effects of 1-3 in the binding affinity. 

cNDI derivatives 1 2 3 

δ(logKabs)/ δ(log[Na+]) 0.72 0.74 0.83 

Condition: 10 mM MES (pH6.25), 1 mM EDTA, and 0.05-0. 125 M NaCl. 
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Fig. 3.6. Plots of logK (the observed equilibrium constants), versus –log [Na+] under the 

binding of 1-3 to calf thymus DNA. 

 

Table 3.6 Binding constants of 1-3 interacting with calf thymus DNA at different salt 

concentration. 

[NaCl]/M 
10-5K/M-1 

1 2 3 

0.05 9.56 1.3 - 

0.075 7.94 1.0 - 

0.1 7.29 1.3 1.30 

0.125 5.50 0.7 0.95 

0.15 4.15 0.56 0.56 

Condition: 10 mM MES (pH6.25), 1 mM EDTA, and 0.05-0.15 M NaCl. 
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3.3.4. Stopped flow kinetic analysis 

As suggested in our group previous report [12], 1 showed a much slower 

dissociation constant in its interaction with GC than 3. In the present report, I have 

discussed in detail the association and dissociation kinetics of 1–3. 

 

Association: Typical examples of the association kinetic traces of the interactions 

of CT-DNA, Poly[d (A-T)]2, and Poly[d(G-C)]2 with 1–3 are shown in Figs. 3.7A, 3.9A 

and 3.10. All data were analyzed by two-exponential fitting, and the results are 

summarized in Table 3.7. The highest absorption by the DNA duplex-ligand complex 

occurred at 383 nm (Fig. 3.9A). Association constant (ka) was determined by the apparent 

rate constant (kapp) against DNA concentration (Fig. 3.8). Absorption decreased 

dramatically and underwent a slight bathochromic shift. This phenomenon has previously 

been observed for interactions between other naphthalene diimide derivatives and 

dsDNAs [16]. Association rate constants for 1–3 increased in the following order: 

Poly[d(A-T)]2, CT-DNA, Poly[d(G-C)]2. The association process of the interaction of 1 

with poly[d(A-T)]2 was about two and five times higher than that of 3 and 2, respectively. 

The association kinetics of 1-3 with poly[d(G-C)]2 were almost two times slower than 

with poly[d(A-T)2, implying that transient breathing of the double helix influences the 

rate of association. Previous reports on naphthalene diimides derivatives as tri-

intercalators have shown similar association constant trends [6]. Indeed, a study of the 

kinetics of the threading intercalator anthracyne also exhibited a similar association trend 

that may be related to a rate-determining DNA breathing step [39]. In addition, the 

association rate constant may depend on the cyclic character and the rigidity of the ligand 

molecule. Thus, the side chains of the ligand molecule can have large effects on DNA 
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interaction kinetics. Complex formation can be slowed by the disruption of a higher 

number of adjacent base pairs when two intercalation sites open in the double helix. 

 

Dissociation: A typical example of the SDS-driven dissociation kinetic traces of 

interactions between CT-DNA, Poly[d(A-T)]2, or Poly[d(G-C)]2 and 1–3 is shown in Figs. 

3.7B, 3.9B and 3.10. All data were analyzed by two-exponential fitting, and the results 

are summarized in Table 3.7. The highest absorption by the DNA duplex-ligand complex 

occurred at 383 nm (Fig. 3.9B). Absorption decreased dramatically and underwent a 

slight bathochromic shift. This phenomenon has previously been observed for 

interactions between other naphthalene diimide derivatives and dsDNAs [16]. 

Dissociation rate constants for 1–3 increased in the following order: Poly[d(G-C)]2, CT-

DNA, Poly[d(A-T)]2. It is worth mentioning the very slow dissociation of 1 from the GC-

rich complex, which was 100 times slower than that of 3 and 330 times slower than that 

of 2. This is due to the strong binding constant of the interaction between cNDIs and GC-

rich dsDNA (Table 3.1) because of the rigidity of the complex, as previously discussed. 

Many heterocyclic or highly polarizable intercalators exhibit a binding preference for GC 

base pairs with a larger asymmetric charge distribution. Although the cNDIs are 

symmetric, they still have significant partial atomic charges on the heterocyclic rings, and 

the molecule in Fig. 3.1 for example, exhibits significant GC binding specificity. These 

results are similar to previously reported dissociation rate constants for interactions 

between naphthalene diimide derivatives and CT-DNA, which were lower for GC-rich 

sequences than for AT-rich sequences [6]. A study of the kinetics of the threading 

intercalator anthracyne also noted a similar dissociation trend [39]. These effects are 

related to the high binding affinity of 1 and 2 for poly[d(G-C)]2, resulting from 
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hydrophobic interactions, favorable van der Waals stacking interactions of the large 

naphthalene diimide ring system, and partial atomic charges on the heterocyclic rings that 

can provide favorable coulombic interactions, particularly with GC base pairs. Long-

chain 1 showed slower dissociation from dsDNA than short-chain 2. Researchers have 

already found that longer chain bis-intercalators and poly-intercalators dissociate slowly 

from DNA duplexes [6]. 

 

Table 3.7 Kinetic parameters for binding of 1-3 to calf thymus DNA (CT-DNA), poly 

[d(A-T)]2, and poly [(G-C)]2. 

 

DNAs 

1 2 3 

10-5ka/M-1s-1 kd/s-1 10-5ka/M-1s-1 kd/s-1 10-5ka/M-1s-1 kd/s-1 

Calf thymus DNA 0.57±0.03 0.1 1.2±0.11 1.1 1.24±0.14 1.1 

poly [d(A-T)]2 1.2±0.11 0.15 0.32±0.08 4.2 2.6±0.35 2.6 

poly [d(G-C)]2 0.34±0.045 0.003 0.26±0.058 1.0 0.84±0.1 0.3 

Condition: 10 mM MES (pH6.25), 1 mM EDTA, 0.1 M NaCl. 

 

  

Fig. 3.7. Stopped-flow kinetic traces for the association (A) and the SDS-driven 
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dissociation (B) for a complex of 1 with calf thymus DNA. The smooth line represents 

the two-exponential fit to the data. A residual plot for the fit showed under the 

experimental plot. The experiments were conducted at 25 °C in 10 mM MES buffer and 

1mM EDTA with 0.1 M NaCl and the concentration of 1 to DNA base pair ratio of 1:10. 

 

 

Fig. 3.8. Plot of the apparent rate constants (kapp) against DNA concentrations for the 

determination of association rate constant (ka).  

 

 
 

Fig. 3.9. Stopped-flow kinetic traces of absorption spectra at 383 nm for (A) association 
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(B) SDS-driven dissociation for a complex of 1 with calf thymus DNA. The experimental 

condition was under the same condition described in Fig. 3.7. 

 

 
 

 

  
 

 
  

 

Fig. 3.10. Stopped-flow kinetics traces for association of 1 (A, B, C), 2 (D, E, F) and 3 

(G,H,I) from calf thymus DNA (A, D, G), from Poly [d(A-T)]2 (B, E, H) and from Poly 

[d(G-C)]2 (C, F, I). The experiments were conducted in 10 mM MES buffer and 1 mM 
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EDTA (pH 6.25) containing 100 mM NaCl. [Ligand]/ [DNA/bp] =1:10. 

 

 
 

 

  
 

 

 
 

 

Fig. 3.11. Stopped-flow kinetics traces for SDS driven dissociation of 1 (A, B, C), 2 (D, 

E, F) and 3 (G, H, I) from calf thymus DNA (A, D, G), from Poly [d(A-T)]2 (B, E, H) and 

from Poly [d(G-C)]2 (C, F, I). The experiments were conducted in 10 mM MES buffer pH 

6.25 containing 100 mM NaCl and 1 mM EDTA. [Ligand]/ [DNA/bp] =1:10 
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3.3.5. Topoisomerase I assay 

Topoisomerase-based gel assays have been widely used to evaluate compounds 

for their ability to intercalate DNA [40]. The ability of NDI derivatives to cause re-

supercoiling of plasmid DNA has been frequently reported [12,13]. The topoisomerase I 

assay exploits the ability of the topoisomerase I enzyme to relax supercoiled DNA (e.g., 

pUC19-plasmid DNA). In the presence of an intercalator, the enzyme will convert the 

relaxed DNA into a supercoiled state by unwinding the DNA structure. Previously, our 

group reported that 1 and 3 are DNA intercalators [12,13]. In the present study, plasmid 

DNA was treated with increasing concentrations of 2 in the presence of topoisomerase I. 

Complete re-supercoiling of the plasmid DNA upon interaction with 2 was readily 

observed, indicating its identity as a DNA intercalator (Fig. 3.12). Remarkably, 

Compound 1 elicited re-supercoiling more effectively than 2. Compound 1 re-supercoiled 

DNA completely at a concentration of ca. 2 µM, whereas the concentration of 2 required 

to show a similar effect exceeded ca. 10 µM. These results are in agreement with the 

higher binding affinity of 1 for DNA duplexes. 

 

 

Fig. 3.12. Topoisomerase I assay for pUC19 treated with 5.0 U of enzyme. Following 
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incubation at various concentrations of 2 (2.0, 5.0, 10, 20, 30, 40, 50 μM from left to 

right) was added and the mixture incubated further. After work-up, DNA was 

electrophoresed Lanes M and Topo I represent 1 kb size markers and pUC19 respectively. 

OC and CCC refer to open circle and the covalent closed circle respectively.  

 

3.3.6. Circular dichroism (CD) studies 

Intrinsic and induced CD spectroscopy was used to further elucidate the 

conformational aspects of the interaction between cNDIs and CT-DNA. The 

characteristic CD spectrum of right-handed B-form DNA in the 200–300 nm region can 

provide information indicating specific structural changes in DNA upon interaction with 

ligands. Previously, our group reported that 1 and 3 induce a negative CD band (in the 

340–440 nm region) upon interaction with CT-DNA, Poly [d(A-T)]2, or Poly [d(G-C)]2, 

indicating an intercalative binding mode [12]. Compounds 1 and 3 also showed a dramatic 

change in the CD spectrum in the region of 220-320 nm, indicating that the ligands affect 

duplex stability and conformation [12]. In the present study, I used CD spectroscopy to 

investigate the interaction between 2 and CT-DNA. As depicted in the CD spectrum (Fig. 

3.13A), I observed a negative peak around 245 nm for free CT-DNA, due to helicity, and 

a positive peak around 276 nm, due to base stacking. After the addition of 2, the positive 

and negative CD bands increased rapidly without any shift in the band position. I also 

observed a small negative band around the 320–400 nm region (Fig. 3.13B). These bands 

indicated that binding of CT-DNA had reached the saturation point. In light of previous 

reports [41], the negative CD band associated with 2-CT-DNA complexes may indicate 

that 1 and 2 intercalate with the long axis of the chromophore oriented parallel or 

perpendicular to the long axis of the DNA base pair [11]. Compound 1 induced higher 



Page 76 of 117 
 

CD spectra than 2 and 3, in agreement with its stronger binding to DNA duplexes DNA 

than that of 2. 

 

  

Fig. 3.13. (A) CD spectra of 100 µM DNA samples titrated with 2 (0, 5,10,15, 20, 25, 30, 

40 and μM from bottom to top) at 25°C in 10 mM MES buffer and 1 mM EDTA (pH 

6.25) containing 100 mM NaCl. (B) Induced CD spectra at wavelength region 320-400 

nm. 

 

  

Fig. 3.14. Computer modeling of the complex of 1 (A) and 2 (A) with dsDNAs. 
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3.3.7. Computer modeling 

Double stranded DNA was created with the Create Sequence of MOE software. 

Base pairs of binding site were expanded to have 3.4 Å space with slightly unwinding. 

After preparing the docking complex of cyclic naphthalene diimide with the DNA, the 

complex was minimized with a tether of nucleic bases. Computer modeling of the 

structures of the 1- and 2-dsDNA complexes is shown in Fig. 3.14. Previously, our group 

reported the binding mode of 1 with dsDNA. Here we propose a similar binding mode, 

with bis-threading intercalation or formation of a pseudo-catenate complex between 1 or 

2 and dsDNA, which is consistent with a model previously published by Iverson et al. [9]. 

Computer modeling suggests that the 2-dsDNA complex has a steric strain effect, due to 

the shorter linker chain. 

 

3.4. Conclusions 

I have developed a new type of bis-intercalator, 2, which was synthesized by the 

cyclization of naphthalene diimide (NDI). Previously, our group reported in our 

investigation of the interaction between 1 and dsDNA [12]. Here I have compared of the 

interaction between 1 and dsDNA with that of 2 and dsDNA. The result of interaction 

studies of 1–3 with dsDNAs follows the order 1> 2 > 3, which suggests that the long-

chain 1 has higher dsDNA binding selectivity and binds dsDNA with more favorable 

thermodynamics and kinetics than 2. UV-Vis analysis showed high binding affinity of 1 

to dsDNA in the range of 6 × 105–5.3 × 106 M-1 (approximately 10 times higher than that 

of 2), with bis-intercalation of four base pairs per ligand molecule. Thermodynamic 

studies of 1 and 2 indicated that entropy-dependent hydrophobic interactions play a major 

role in their interaction with dsDNA. Compound 1 showed more entropically favorable 
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interactions with dsDNA than 2. Kinetics studies of 1 and 2 indicated that 1 dissociate 

from GC base pairs more slowly than 2 because of its unique, pseudo-catenane, bis-

intercalative binding with stairs of dsDNA. Induced CD spectra and a topoisomerase I 

unwinding assay further supported the more favorable bis-intercalation binding of 1 over 

that of 2. 
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A Selective G-Quadruplex DNA-Stabilizing 

Ligand Based on a Cyclic Naphthalene Diimide 

Derivative 

Contents of this chapter have been published in the Molecules Journal (M.M. Islam, S. 

Fujii, S. Sato, T. Okauchi, S. Takenaka, Molecules, 20 (2015) 10963-10979). The 

materials of the chapter have been reproduced with the permission of the Molecules 

Journal [1]. 

 

4.1. Introduction 

Guanine-rich DNA sequences which mainly originate in important regions of the 

oncogene promoters, telomere, mRNA, ribosomal DNA (rDNA), and thrombin-binding 

aptamer (TBA) can form G-quadruplex structures [2-4]. G-quadruplex DNAs, formed at 

the telomeric end, can inhibit telomere elongation by telomerase, which are activated in 

80%–85% cancer cells, leading to inhibition of telomerase activity [2,5]. G-quadruplex 

DNAs is known to be formed at promoter regions of the human oncogene that can regulate 

gene expression at the transcriptional level [4]. DNA aptamers bind to thrombin and 

inhibit thrombin-catalyzed fibrin, resulting in blood clotting [3]. Thus, guanine-rich 

sequences have become a very promising target for the development of new anticancer 

drugs and therapeutic applications, which was attracted a lot of research interest during 

the last few decades and a few of the resulting compounds have entered into preclinical 

or clinical trials [4]. 
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It has been reported that guanine-rich oligonucleotides could form G-

quadruplexes via Hoogsteen hydrogen bonding among four guanine bases arranged in a 

square planar configuration [5]. G-quadruplex DNA shows diverse structural 

polymorphism; G-quadruplex DNA can be either parallel or antiparallel, even both 

conformations (termed hybrid) in some cases [6,7]. This G-quadruplex DNA can fold as 

a mixture of several different quadruplex forms depending on DNA sequence and 

extrinsic cation which offers a platform to induce and stabilize the quadruplexes by using 

small organic molecules [6,7]. This common structural feature poses challenges for the 

design of ligands with considerable selectivity toward one type of quadruplex over other 

G-quadruplex structures [7]. 

 

Small molecules that stabilize the G-rich single-strand DNA overhang into G-

quadruplex can be considered as potential anticancer and therapeutic agents [4]. A 

number of G-quadruplex-binding small molecules have been reported in the last few 

decades [4,8,9]. Several diverse structural ligands, including telomestain, oxazole, 

cationic TMPyP4, anthraquinone, perylene, acridine, and ethidium derivatives have been 

investigated to evaluate their ability to interact with G-quadruplex DNA and observe their 

biological functions [4,8,9]. There are a number of macrocyclic structures that have been 

developed in the last few years as G-quadruplexes DNA binding ligands such as BQQ1, 

telomestain, oxazole, porphyrin, etc. [10], which is a well-established technique to 

improve the development of G-quadruplex DNA selective drugs. A common feature of 

these G-quadruplex-binding molecules is the presence of an extended aromatic ring 

system that allows binding through π-π overlap of terminal G-tetrads [6,10]. Large flat 

aromatic planar molecules stack on G-tetrads and show high binding selectivity [7]. Non-

planar molecules that stack with G-quadruplexes are very rare and bindings are moderate 

[7]. Some of these G-quadruplex-binders include porphyrin derivatives, oxazoles, 

perylene derivatives and similar systems [11] that have fused π-ring systems within the 

molecule and showed various binding selectivity with the G-quadruplexes’ DNA 

structure. Nowadays, the researchers are focusing on developing G-quadruplex DNA 

structure-specific and selective binding ligands [7,10] which are important for drug 

development, cancer research and therapeutic application studies. 

 



Page 86 of 117 
 

Naphthalene diimides (NDIs) are very potent G-quadruplex-binding ligands with 

high cellular toxicity, which is able to effectively stabilize the terminal G-quartet of a G-

quadruplex by stacking interactions [12,13]. Over the last few years a number of NDI-

based compounds have been developed in part by exploiting the available NDI-G-

quadruplexes structures [14-22]. In our previous studies, our group has already reported 

interaction studies of some cyclic NDI derivatives and h-telo 22 G-quadruplex DNA, 

which can inhibit telomerase activity at low concentration [11,23]. In our present work, I 

synthesized new compound 2 by cyclization with the linker chain of a tertiary amino 

group and amide group through benzene to compare the binding selectivity with our 

previously reported compound 1 [11] (Figure 4.1). Compound 2 is expected to show 

reduced binding to dsDNA and increased binding affinity for G-quadruplexes DNA 

because of its shorter linker substituents. I have also sought to compare the binding 

selectivity among the various structures of G-quadruplex DNA. I have characterized the 

binding selectivity and stability of 2 to G-quadruplexes’ DNA present in the promoter 

region (c-myc and c-kit), thrombin binding aptamer (TBA) and human telomeric region (a-

core and a-coreTT) by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, 

thermal melting studies, TRAP assay and FRET-melting assay [24] experiments. 

 

 

Fig. 4.1. Chemical structures of 1, 2 and 3 (1 taken from [11]). 
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4.2. Experimental Procedure 

 
4.2.1. Materials 

The seven G-rich oligonucleotides: a-core (5′-AGGG(TTAGGG)3-3′), a-coreTT 

(5′-AGGG (TTAGGG)3TT-3′), TBA (5′-GGTTGGTGTGGTTGG-3′), c-kit (5′-

AGGGAGGGCGCTGGGAG GAGGAGGG-3′), c-myc (5′- 

TGAGGGTGGGGAGGGTGGGGAA-3′) and dsDNA composed of two complementary 

strands: (5′-GGGAGGTTTCGC-3′) and (5′-GCGAAACCTCCC-3′) were purchased 

from Genenet Co. (Fukuoka, Japan) and used without further purification. The following 

extinction coefficients were used for quantification of nucleic acid solutions (unit of ε 

was M−1 cm−1): 114,000 for 5′-GGGAGGTTTCGC-3′; 108,600 for 5′-

GCGAAACCTCCC-3′; 228,500 for a-core (5′-AGGG (TTAGGG)3-3′); 245,100 for a-

coreTT (5′-AGGG(TTAGGG)3TT-3′); 143,300 for TBA (5′-GGTTG GTGTGGTTGG-

3′); 260,100 for c-kit (5′-AGGGAGGGCGCTGGGAGGAGGAGGG-3′); 229,900 for c-

myc (5′-TGAGGGTGGGGAGGGTGGGGAA-3′). Before use, oligonucleotide solutions 

in 50 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl or KCl were heated to 95 

°C and annealed by slowly cooling to room temperature. Guanine-rich telomere 

oligonucleotide sequence (5′-d-GGGTTAGGGTTAGGGTTAGGG3′), dual label with 

FAM (fluorescent donor) and TAMRA (fluorescent acceptor) at the 5′ and 3′ end, called 

‘F21T’, respectively, were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 

synthesis procedure of 2 was described in detail in a previous article [25]. Compound 3 

was synthesized as described previously [26]. The 2.0 M KCl, and 5.0 M NaCl aqueous 

solutions were obtained from Life Technologies (Carlsbad, CA, USA). 1.0 M Tris-HCl 

(pH 7.4) buffer was obtained from Sigma-Aldrich. GoTaq Hot Start polymerase was 

purchased from Promega (Madison, WI, USA). TRAPese kit was obtained from EMD 

Millipore (Billerica, MA, USA). 

 

4.2.2. UV-Vis Titration Experiments 

Absorption spectra were measured on a U-3310 spectrophotometer (Hitachi, 

Tokyo, Japan) with a 1 cm path-length quartz cell and were recorded in the 200–600 nm 
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range at 25 °C. UV-Vis absorption titrations were carried out by the stepwise addition of 

200 μM/strand of G-quadruplexes DNA or dsDNA solution to a UV-cell containing 5.0 

μM solutions of 2 or 3. The measurements were performed in a 50 mM Tris-HCl buffer 

(pH 7.4) containing 100 mM NaCl or KCl. Binding data obtained from 

spectrophotometric titration of increasing concentrations of drug to a fixed concentration 

of DNA was cast into the form of a Scatchard plot of ν/C against ν. The Scatchard plot 

was analyzed by the Scatchard equation: ν/C = K(n–ν) [27], where ν is the stoichiometry 

(the number of ligand molecules bound per moles of base pair), C is the free ligand 

concentration, K is the observed binding constant, and n is the number of base pairs 

excluded by the binding of a single ligand molecule. For duplex oligonucleotides 

saturation of binding curves was not achieved, so K values were estimated using Benesi-

Hildebrand method 1/ΔAbs = 1/(lΔε [ligand]) + 1/(nKlΔε [ligand]) × (1/DNA) [28] with 

the assumption that the ligand/oligonucleotide complex with 1:1 stoichiometry is formed 

(Table 4.1), where Δε is a molar absorptivity change of ligand and l is 1 cm. Scatchard 

plots were prepared using absorption changes at the specific wavelength 383 nm upon the 

addition of various concentrations of dsDNA. Scatchard plots were prepared using the 

data in a range of approximately 30%–80% bound region of 2 and dsDNA. The binding 

data were analyzed with KaleidaGraph software, using the Levenberg-Marquardt 

algorithm to determine parameters Kb and n. 

 

4.2.3. Circular Dichroism (CD) Measurements 

Various concentrations (5.0 to 50 μM) of 2 or 3 were added to 1.5 μM/base pair 

G-quadruplexes DNA in a 50 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl or 

KCl at 25 °C, and CD spectra taken at a scan rate 50 nm/min on a J-820 

spectropolarimeter (Jasco, Tokyo, Japan). Other conditions were: response 2 s, data 

interval 0.1 nm, sensitivity 100 mdeg, band width 2 nm, and scan number 4 times. 

  

4.2.4. Thermal Melting Experiments 

Melting curves of G-quadruplexes DNA or dsDNA were measured on a Hitachi 3300 

spectrophotometer (heating rate of 0.5 °C/min to 90 °C) or Jasco J-820 spectrophotometer 
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(response, 100 mdeg; response, 8 s; data collecting interval, 0.5 °C; bandwidth, 2 nm) 

equipped with a temperature controller, respectively. The melting curves based on 

circular dichroism (CD) at 290 nm of a-core, a-core TT, and TBA, 262 nm of c-kit and c-

myc or 260 nm of dsDNA were measured in 50 mM Tris-HCl (pH 7.4) containing 100 

mM NaCl or KCl (for c-kit 20 mM KCl and for c-myc 5 mM KCl). A mixture of 1.5 μM 

a-core, a-core TT, TBA, c-kit, c-myc, dsDNA and 3.0 μM of 2 or 3 was placed in a cell 

of 1 cm in light path length (total 3 mL). Ligand-DNA ratio was set at 2:1. 

 

4.2.5. TRAP Assay Experiments 

Telomeric repeat amplification protocol (TRAP) assay was performed using 

published procedure [11,23]. TRAPeze Telomerase Detection Kit from EMD Millipore 

was used. Briefly, TS forward primer was elongated by telomerase in TRAP buffer (20 

mM Tris-HCl pH 8.3, 1.5 mM MgCl2, 63 mM KCl, 0.05% Tween 20, 1.0 mM EGTA) 

containing 0.05 mM dNTPs, 0.4 μM TS primer, 0.4 μM primer Mixed (RP primer, K1 

primer, TSK1 primer) and 2.0 units of GoTaq Hot Start polymerase. The mixture was 

added to freshly prepared 2 solution from 0.1 to 4.0 μM (0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 

3.0, 4.0 μM) and a positive control containing no ligand. Firstly, the elongation step was 

carried out for 60 min at 30 °C and it was followed by 5 min incubation at 95 °C. 

Secondly, 35 cycles of PCR were performed (94 °C, 30 s; 62 °C, 1 min; 72 °C, 1 min). 

Telomerase extension products were analyzed on a denaturing 12.5% polyacrylamide 

vertical gel prepared in 5 × TBE buffer (89 mM Tris base, 89 mM borate, and 1 mM 

EDTA, pH 8.0). The electrophoresis were run in 0.7 × TBE buffer for 2 h at 200 V. After 

electrophoresis gel was stained in 1 × GelStar Nucleic Acid Stain (Takara Bio, Shiga, 

Japan) in 1× TBE buffer for 30 min and photographed. 

 

4.2.6. FRET-Melting Assay 

Fluorescence-based melting competition assays was performed using a previously 

published procedure [24]. In more recent experiments, a real-time PCR apparatus 

(MX3000P, Stratagene, La Jolla, CA, USA; or Sigma-Aldrich SYBR Green or DNA 
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engine Opticon, MJ Research, Waltham, MA, USA) is used, allowing the simultaneous 

recording of 32–96 independent samples as first proposed by S. Neidle and co-workers 

[24]. The protocol used for our experiments is the following: a first step of equilibration 

at the lowest temperature (5 min at 25 °C) and a stepwise increase of 1 °C every minute 

for 72 cycles to reach 95 °C. The buffer 100 mM Tris-HCl (pH 7.4) containing 150 mM 

NaCl or KCl and 0.4 μM 2 was used for all experiments. The thermal denaturation profile 

of the oligonucleotide F21T (0.2 μM) and G-quadruplexes DNA (a-coreTT, TBA, c-kit 

and c-myc) (1.0 or 3.0 μM) were measured in the presence of 2 (0.4 μM). The ratio of F21T 

and G-quadruplexes DNA was used 1:5 or 1:15 at 0.4 μM 2. Fluorescence-based melting 

assays competition measurements were performed with F21T dual label with FAM 

(fluorescent donor) and TAMRA (fluorescent acceptor) at the 5′ and 3′ end from Sigma-

Aldrich at a heating rate of 1 °C/min. The recording is performed after 1 min stabilization. 

Typically three replicate experiments were performed, and average values are reported. 

Finally, the amount of ligand bound to the DNA was quantified by fluorescence after the 

digestion of the oligonucleotide (λex and λem were set to 490 and 520 nm for 

oligonucleotides, respectively). 

 

4.2.7. Computer Modeling 

Molecular modeling of these complexes was constructed by MOE 2011.10 

(http://www.chemcomp.com/). Compound 2 was placed on the binding site of mixed 

hybrid types G-quadruplex DNA (a-core) and energy minimization of these complexes 

was carried out. The molecular dynamics calculation of these mineralized complexes was 

further carried out until 2 was located in the binding site as stable condition. Finally, 

energy minimization of the complexes was obtained as shown in Fig. 4.11. These 

calculations were used the force field of MMFF94x. 
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4.3. Results and Discussion 

 
4.3.1. UV-Vis Absorption Titration 

To obtain the binding constant and the number of bound molecules for the 

interaction of 2 and 3 with different DNA forms such as human telomere (a-core and a-

coreTT) [5,29,30], promoter region (c-kit and c-myc) [31-33] and thrombin-binding 

aptamer (TBA) [34,35] their absorption spectra were investigated (Fig. 4.3). Fig. 4.2A 

shows a representative spectrophotometric titration of 2 with human telomeric G-

quadruplex DNA (a-core) in K+ ion. It shows a maximum absorption at 384 nm. Addition 

of increasing amounts of G-quadruplex DNAs to 2 resulted in large hypochromicities 

(45%–60%) and a noticeable small red shift (3–8 nm) was observed. These spectral 

features are suggestive of end-staking binding rather than groove binding (Fig. 4.2). I 

observed isosbestic points at 392 nm and 395 nm of 2 for G-quadruplex DNAs and duplex 

DNA, respectively. The presence of isosbestic points indicated the equilibrium between 

the bound and free ligand. For comparison, I also investigated the interaction of 2 with 

dsDNA. Upon the addition of increasing amounts of dsDNA to 2, smaller hypocromic 

shifts (25%–30%) and red shifts (2–4 nm) were observed than for G-quadruplexes DNA, 

suggesting this compound is not a good dsDNA binder (Fig. 4.2B). The Scatchard plot 

representing the binding between 2 and a-core (KCl) is presented in Fig. 4.2C. The 

Scatchard plot was analyzed by the McGhee-von Hippel Scatchard equation [27]. The 

solid line in Fig. 4.2C represents the best fit of the experimental value to the McGhee-

von Hippel equation. For dsDNA saturation of binding curves was not achieved; 

therefore, estimation of K values using the Scatchard equation was impossible. However, 

nK values were estimated using the Benesi-Hildebrand method [28]. Ligand binding 

affinity to dsDNA does not depend on the nature of the metal cation, such as sodium and 

potassium ions. In the presence of sodium and potassium ions compound 3 binds to 

dsDNA approximately 20 times stronger than 2. 
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Fig. 4.2. Spectral shifts of 5 μM 2 on titration with 0, 1.4, 2.9, 4.4, 5.8, 8.7 and 14 

μM a-core (A) or 0, 2.0, 5.0, 10, 20, 30, and 40 μM dsDNA (B) in 50 mM Tris-HCl 

(pH7.4) and 100 mM KCl. Scatchard plots for binding of 2 to a-core (C) and 

Benesi-Hildebrand plot for binding of 2 to dsDNA (D). 

The intrinsic binding constants (K) of 2 and 3 to G-quadruplexes DNA and 

dsDNA are summarized in Table 4.1. Our group has already reported that 1 carrying a 

benzene moiety as longer linker chain showed higher binding affinity to either G-

quadruplexes DNA or dsDNA than 3 [11]. In our present study, our group also found 

similar binding constant trends for G-quadruplexes DNA in the range of 106–107 M−1 

with n = 2, which shows almost five times higher binding affinity of 2 compared with the 

non-cyclic derivative 3. Comparing with 1 [11], 2 showed almost three times higher 
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binding affinity to a-core and 70 times weaker binding to dsDNA. Compound 2 showed 

approximately 200 higher selectivity to G-quadruplexes DNA than the previously reported 

1 [11]. The comparison suggests that the shorter cyclic linker chain 2 showed higher 

specific binding to G-quadruplex DNAs than the previously reported longer linker chain 

compound 1 [11]. 

 

Table 4.1 Binding parameters and melting temperatures of 2 and 3 with a-core, a-

core TT, c-kit, c-myc, TBA and dsDNA. 

DNAs 
2 3 Tm/°C  ∆Tm/°C 

10−6 K/M−1 n 10−6 K/M−1 n DNAs 2 3 

a-core (K+) 10 ± 0.5 a 1.5 1.6 ± 0.2 a 1.4 69 c 15 5 

a-core (Na+) 1.0 ± 0.04 a 2.2 0.73 ± 0.09 a 1.0 57 c - 1 

a-core TT (K+) 6.1 ± 0.4 a 1.8 1.9 ± 0.3 a 1.3 63.5 c 18 - 

TBA (K+) 3.5 ± 0.2 a 1.4 0.49 ± 0.04 a 1.1 50.5 c 11 - 

c-kit (K+) 1.9 ± 0.18 a 1.4 0.74 ± 0.05 a 1.7 54 d 11 - 

c-myc (K+) 4.0 ± 0.3 a 1.7 1.5 ± 0.2 a 1.6 70 e 15 - 

dsDNA (K+) 0.037 b - 0.60 ± 0.04 a 2.8 49 c 0.3 12 

dsDNA (Na+) 0.037 b - 0.60 ± 0.08 a 3.0 49 c 0.3 12 

Condition: Binding constant (K): 50 mM Tris-HCl (pH 7.4) and 100 mM NaCl or KCl; a: 

Scatchard analysis (K); b: Bensi-Hildebrand analysis (nK); Thermal melting: 

[ligand]:[DNA] = 2:1, 50 mM Tris-HCl (pH 7.4); c: 100 mM NaCl or KCl; d: 20 mM KCl; 
e: 5.0 mM KCl. 

 

In comparison with our previous report [11], the linker chain of 2 and 1 may play 

an important role in the binding with G-quadruplexes DNA over dsDNA. The amide 

chains of 2 and 1 might be more effective in reducing binding with dsDNA because of 

the NDI moiety site blocks the aliphatic chain from intercalating in the benzene part. 

Moreover, the benzene part itself also prevents binding of 2 and 1 from threading 

intercalations with dsDNA. However, as our group has reported earlier [25], 2 and 1 

showed affinity to calf thymus DNA (CT-DNA), Poly[d(A-T)]2 and Poly[d(G-C)]2 due to 

hydrophobic interactions between cyclic NDI derivatives and dsDNA. Compound 2 

showed lower binding affinity to CT-DNA, poly[d(A-T)]2 and poly[d(G-C)]2 than 1 
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perhaps because of steric reasons, whereas, according to the computer modeling, the NDI 

moiety site of cyclic NDI derivatives incorporated to end staking onto the G-quartet. I 

have observed that 2 showed higher selectivity to G-quartet than 1 because the tertiary 

amino chain in the linker chain of 2 may have more compatibility to bind specifically 

with the G-quartet plane than the piperazine linker chain of 1. 

 

In the presence of sodium ions the binding affinities of both ligands to basket-type 

tetraplex structures were much lower than G-quadruplexes in potassium solution. Our 

group already explained that this might be due to the fact that basket type a-core crosses 

its oligonucleotide chain over the G-quartet diagonally and disrupts access of 2 to the G-

quartet plane [11]. 

 

In our present study, all the G-quadruplexe DNA showed higher binding constants 

(K) with 2 than dsDNA. In potassium ion solution, 2 exhibited the highest binding affinity 

for mixed hybrid type a-core [29] with K = 1 × 107 M−1, whereas diminished the binding 

affinity to dsDNA with nK = 3.7 × 104 M−1. The binding data indicated that 2 has a 270-

fold preference for a-core over dsDNA. Table 4.1 shows the binding constants (K) are K 

= 6.1 × 106 M−1 for a-coreTT (hybrid type-2) [30], K = 1.9 × 106 M−1 for c-kit (parallel 

propeller type) [32], K = 4.0 × 106 M−1 for c-myc (parallel type) [32], K = 3.5 × 106 M−1 

for TBA (antiparallel chair type) [35] with 2, which represent a 165-, 51-, 108- and 95-

fold binding preference over dsDNA (K = 3.7 × 104 M−1), respectively. The ratio of ligand 

per dsDNA used for binding was n = 3, a reasonable result considering that a typical 

intercalator covers two base pairs upon binding to dsDNA, in addition to the expected 

relative difficulty in binding at terminal sites. The binding number of a ligand with G-

quadruplexes DNA was estimated to be n = 2, which may agree with an end-stacking 

binding of 2 to the external G-quartet planes of quadruplexes. 

 
According to the above result, new compound 2 showed G-quadruplexes DNA 

structure-specific binding. Compound 2 showed the highest affinity to a-core DNA, 

which exhibits mixed type hybrid (hybrid-1 and hybrid-2) structures in K+ [25] and 

possessed more than two drugs staking plane and binding loops. Computer modeling 

showed that 2 was stacked and bound to a mixed hybrid structure at various G-quadruplex 



Page 95 of 117 
 

staking planes, whereas a-coreTT exhibited hybrid-2 [30] type structures which have two 

G-tetrads staking planes and two binding sites. For this reason I observed that 2 showed 

the highest affinity with a-core. TBA exhibited an antiparallel chair type [34,35] structure 

which has G-quartet staking planes and binding loops, while c-kit and c-myc exhibited 

parallel type [32] propeller structures which possess two G-quartet staking planes, but 

binding loops are unusual for 2. According to the binding data, new compound 2 was 

revealed to be a most preferable and specific binder to telomeric G-quadruplexes DNA 

than promoter regions’ G-quadruplex DNA as well as thrombin binding aptamer. The 

binding study results are consistent with thermal melting studies where a-core showed the 

highest stabilization with 2. The binding site size (n values) obtained from binding studies 

of G-quadruplexes and 2 are consistent with the Job plot analysis from CD studies (Fig. 

4.5). 



Page 96 of 117 
 

 

Fig. 4.3. UV-Vis absorption spectra of 5.0 µM 2 in the absence and presence of a-

core (A), a-coreTT (C), TBA (E), c-kit (G), c-myc (I) and dsDNA (K) with 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 10 and 20 µM respectively. Binding affinities were 

estimated using the scatchard plot of 2 with a-core (B), a-coreTT (D), TBA (F), c-kit 
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(H), c-myc (J) and Benesi-Hildebrand plot of 2 with dsDNA (L). Experiments were 

performed at 25°C in 50 mM Tris-HCl (pH 7.4), 100 mM KCl. 

 

4.3.2. Circular Dichroism (CD) Studies 

The CD is a powerful method to differentiate the parallel, anti-parallel, and mixed-

type secondary structure of G-quadruplex DNA. Compound 2 was interacted to 

investigate the effect of the binding mode on the conformation of the G-quadruplexes, 

which is shown in Fig. 4.4. The CD spectrum of human telomere (a-core) G-quadruplex 

DNA showed a negative peak at 240 nm, a shoulder peak at 265 nm and a positive peak at 

290 nm (Fig. 4.4A) in buffer containing 100 mM KCl, supportive of a mixed hybrid type 

(hybrid-1 and hybrid-2) G-quadruplex structure [36,37]. The small positive peak at 265 

nm was transformed increasingly into a negative peak at 260 nm together with an increase 

of the positive peak at 290 nm upon the addition of 2, suggesting the induction of a hybrid 

type structure. After addition of 2, a-core structure, conformation changed a little from a 

mixed hybrid type to hybrid-1 type [38]. In our previous study, our group reported that in 

the presence of Na+ ions, telomeric DNA exists in an antiparallel basket-type 

conformation. Upon addition of 2, this antiparallel basket-type structure was also retained 

[11]. 

 

The CD spectrum of human telomere (a-coreTT) G-quadruplex in buffer 

containing 100 mM KCl exhibits a negative peak at 240 nm, a shoulder peak at 265 nm and 

a positive peak at 290 nm (Fig. 4.4B) supportive of a hybrid-2 type G-quadruplex structure 

[36,37]. The small positive peak at 265 nm is transformed increasingly into a negative 

peak at 260 nm together with an increase of the positive peak at 290 nm upon the addition 

of 2, suggesting the induction of a hybrid type structure. After the addition of 2, a-core 

structure conformation changed a little from hybrid-2 type to hybrid-1 type [38]. 

 

In the presence of 100 mM KCl thrombin-binding aptamer (TBA, Fig. 4.4C) 

exhibited a positive peak at 290 nm, and a negative band at 250 nm, supportive of an anti-

parallel chair type G-quadruplex structure [35,39]. Upon the addition of 2, the negative 
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peak transformed increasingly into at 260 nm together with an increase of the positive 

peak at 290 nm, suggesting that the binding of 2 apparently does not disturb the structure 

of TBA, which is consistent with previous reports [39]. 

 
Fig. 4.4. CD spectra of 1.5 μM of a-core (A); a-coreTT (B); TBA (C); c-kit (D); c-myc 

(E) in 50 mM Tris-HCl (pH 7.4), 100 mM KCl in addition of 2 (0, 0.38, 0.75, 0.80, 2.25, 
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and 3.00 μM) at 25 °C.  

 

Both c-myc and c-kit G-quadruplex (Fig. 4.4D,E) exist in the presence of K+ ions 

as a parallel structure, which has a characteristic positive peak centered around 262 nm, 

a negative peak at 241 nm and a small shoulder peak at 290 nm [40,41]. After the addition 

of 2 to c-myc and c-kit G-quadruplex, a decrease of the CD peaks at 241 nm and 262 nm 

was observed, with no other significant change in the spectrum and the parallel structure 

was not changed, which suggests ligand-dependent disruption of staking of G-quadruplex 

DNA. Upon the addition of 2, the c-kit structure shoulder peak at 290 nm increased little. 

This effect has also been observed previously by many research groups [42]. 

 

 
Fig. 4.5. Analysis (by Job plot) of CD spectra of 2 with a-core (A), a-coreTT (B), TBA 
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(C), c-kit (D), c-myc (E). Molar ellipticity values at 290 nm (a-core, a-coreTT, and TBA) 
and 263 nm (c-kit and c-myc) were plotted against increased ligand-DNA molar ratio. 
Experiments were performed at 25 °C in 50 mM Tris-HCl buffer pH 7.4 containing 100 
mM KCl. The intersection of data indicated the binding stoichiometry of 2 and G-
quadruplexes DNA [43]. I have observed binding stoichiometry n = 1.7 for a-core (A), n 
= 1.5 for a-coreTT (B), n = 1.8 for TBA (C), n = 2.5 for c-kit (D), n = 1.7 for c-myc (E). 
These results are consistent with the stoichiometry from UV-Vis binding studies. 
 

The Job plot analysis by CD studies (Fig. 4.5) showed that CD studies of G-

quadruplexes and 2 are consistent with binding studies where similar binding site sizes (n 

values) are obtained.  

 

4.3.3. Thermal melting Studies  
Thermal stabilization of various G-quadruplexes DNA and dsDNA in the 

presence of 2 was studied using the CD melting and UV-Vis melting experiment (Fig. 

4.6). Thermal melting of hybrid type telomeric quadruplex DNA (a-core and a-coreTT) 

was monitored at 290 nm in the presence of K+ [30].  

 

The Tm value was observed around 69 °C for a-core without 2 (Fig. 4.6A). I 

observed that the interaction of 2 with telomeric DNA quadruplex enhanced the stability 

by 15 °C for a-core and 18 °C for a-core TT, which was approximately 3 °C higher for a-

core TT than a-core G-quadruplexes DNA (Table 4.1). Researchers already reported that 

thermal melting increased after addition of base to oligonucleotides [43]. In our previous 

report [11], I observed from the absorption spectra that 1 had the lowest binding affinity 

to a-core of the sodium ion solution. Furthermore, dsDNA was monitored by UV-Vis 

melting studies. After the addition of a 2-fold concentration of 2, only a slight increase 

(up to 0.3 °C) in thermal stability was observed (Table 4.1 and Fig. 4.7). These results 

underscore the fact that 2 selectively stabilizes telomeric quadruplex DNA as well as 

promoter and thrombin binding aptamer G-quadruplex DNA over dsDNA. In comparison 

with our previous report [11], compound 2 showed high stabilizing effect to a-core and 

very weak stabilizing effect to ds DNA. 
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Fig. 4.6. Melting profiles for a-core (A); a-core TT (B); TBA (C); c-kit (D); c-myc (E) in the 

absence or presence of 2 in 50 mM Tris-HCl (pH 7.4); 100 mM KCl (A–C); 20 mM KCl 

(D); 5.0 mM KCl (E) and [ligand]:[DNA] = 2:1. 
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The melting temperatures of antiparallel chair type thrombin binding aptamer 

quadruplex DNAs (TBA) were monitored at 290 nm. Compound 2 increased the Tm of 

TBA by 11 °C (Table 4.1). These results are consistent with previously published articles 

[35,39]. The melting temperatures of parallel promoter quadruplex DNAs such as c-kit 

and c-mice were monitored at 263 NM [41,42]. In the case of the highly stable parallel c-

kit and c-myc quadruplex DNA was highly stable at high salt concentration and a stable 

baseline curve was not achieved even above 90 °C, so it is not possible to measure an 

accurate Tm in this case, so I measured Tm for c-kit and c-myc at low salt concentration. 

Compound 2 increased the Tm of c-kit by >11 °C at 20 mM K+ ion and the Tm of c-myc 

by >15 °C at 5 mM K+ ion solution (Table 4.1). This type of performance of c-kit and c-

myc is consistent with previously published articles [41,42]. According to the above 

result, I can conclude that 2 preferably stabilizes telomeric quadruplex DNA than 

promoter and thrombin binding aptamer G-quadruplex DNA. CD melting results are 

consistent with binding and competition assay studies, where 2 showed preferable binding 

to human telomeric G-quadruplex. 

 

 

 

Fig. 4.7. UV-Vis melting profiles for dsDNA (KCl) (A) and dsDNA (NaCl) (B) in 

the absence or presence of 2 in 50 mM Tris-HCl (pH 7.4) and 100 mM KCl or 100 

mM NaCl, [ligand]:[DNA] = 2:1. 
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4.3.4. TRAP Assay 

Once the G-quadruplexes DNA stabilization was established for 2, it was 

important to test whether the molecule inhibits telomerase activity. To evaluate the 

abilities of these compounds to inhibit telomerase, the telomeric repeat amplification 

protocol (TRAP assay) [11,23] was carried out using various amounts of 2 (Fig. 4.8). The 

assay clearly shows that 2 is a potent inhibitor of telomerase with activity in the 

submicromolar range (IC50) 0.9 μM. This result suggests that the TS-primer extends the 

length to form a tetraplex structure and 2 binds to it and stabilizes its structure to inhibit 

the telomerase reaction. The values obtained from the TRAP assay are comparable to those 

of previously reported derivatives [11,23]. A number of small ligands have been discovered 

to inhibit the function of telomerase by stabilizing G-quadruplexes DNA structures [8]. 

The excellent IC50 for telomerase inhibition by 2 (0.9 μM) comes from its binding 

constant (K > 107 M−1). It is suggested that this macrocyclic compound 2 may deserve 

biological assays with cancer cell lines to represent a suitable candidate drug target to 

DNA quadruplexes. 

 
Fig. 4.8. Telomerase inhibition by 2. The gel shows the effect of increasing concentrations 

of 2 (0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0 μM) on telomerase activity. Concentrations 



Page 104 of 117 
 

of 2.0–4.0 μM 2 lead to the disappearance of all PCR products. IC50s were determined as 

follows: ligand concentration under half telomerase activity with no ligand. 

 

4.3.5. FRET-Melting Assay 

The sequence and structural selectivity of different DNA binding agents has been 

previously explored by use of a thermodynamically rigorous competition assay procedure 

introduced by Ren and Chaires [24,45]. In this method, different nucleic acid structures are 

assayed against a common ligand solution. This is a simple method to evaluate specificity 

toward quadruplexes [46]. It has been already reported that F21T showed a Tm value 

around 50 °C [24] that increased by 11 °C after incorporation of 2 with F21T. Comparison 

with other G-quadruplexes DNA is shown in Fig. 4.9 and Fig. 4.10. Compound 2 displays 

a strong preference for binding to F21T quadruplex structure which corresponds to the 

human telomeric G-rich motif than other quadruplexes DNA structures. 

 

Fig. 4.9. FRET-melting assay of human telomeric DNA (a-coreTT), promoter 

region’s G-quadruplex (c-kit & c-myc) and thrombin-binding aptamer (TBA) with 
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F21T (0.2 µM) in the presence of 2 (0.4 µM). Experiments were performed in 100 

mM Tris-HCl buffer (pH 7.4) containing 150 mM KCl. 

 

Fig. 4.1. FRET-melting assay of human telomeric DNA (a-coreTT) (1.0 or 3.0 μM), 

promoter region’s DNA (c-kit & c-myc) (1.0 or 3.0 μM) and thrombin-binding 

aptamer (TBA) (1.0 or 3.0 μM) with F21T (0.2 μM) in the presence of 2 (0.4 μM). 

Experiments were performed at 25 °C in 100 mM Tris-HCl buffer pH 7.4 

containing 150 mM KCl. 

 

4.3.6. Computer Modeling 

The computer-modeling structures consisting of 2 with mixed hybrid types G-

quadruplex DNA (a-core) are shown in Fig. 4.11. In this article, I proposed a model 

involving an end stacking binding mode between 2 and mixed hybrid types G-quadruplex 

DNA (a-core), which are consistent with our previously published article [23]. The 

computer modeling showed that 2 stacked and bound to different G-quartet plane of 

mixed hybrid types G-quadruplex DNA (a-core). 
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Fig. 4.11. Computer modeling of 2 interactions with mixed hybrid G-quadruplex DNA 

structure (A–C). 

 

4.4. Conclusions 

I have synthesized a new type of ligand 2, carrying a benzene moiety as linker chain 

and studied its interaction with different types of G-quadruplexes DNA. I have compared 

this study with our group’s previously reported 1 [11] which has a long linker chain than 

2. Compound 2 exhibited high binding affinity in the range of 106–107 M−1 to G-

quadruplexes DNA and reduced binding affinity to dsDNA. The binding data (Table 4.1) 

indicated that 2 has 270-fold preferential binding for a-core, 165-fold for a-coreTT, 51-

fold for c-kit, 108-fold for c-myc, 95-fold for TBA over dsDNA. The binding 

stoichiometry of 2 for G-quadruplex is 2:1, suggesting a staking binding mode. 

Compound 2 revealed 200-fold higher binding selectivity compared with our previously 

reported 1 [11]. I have observed that 2 revealed preferable binding to mixed hybrid types 

structure of telomeric G-quadruplex DNA (a-core) over parallel types of promoter region’s 

G-quadruplex DNA (c-kit and c-myc) and antiparallel chair types of thrombin binding 

aptamer (TBA). The CD spectra showed that 2 stabilized G-quadruplexes DNA structure. 

Upon the addition of 2 to a-core the CD spectra showed little change indicating a mixed 

hybrid structure and little changed to the hybrid-1 type G-quadruplex structure [38]. Thermal 

melting measurements indicated that 2 highly stabilized the G-quadruplexes DNA 

structure. Compared with our previous report [11], 2 increased ∆Tm by 5–8 °C. I have 
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performed competitive assays in order to determine the binding selectivity among the G-

quadruplexes DNA, and 2 showed highly preferable stabilization of human telomeric G-

quadruplex sequence (F21T). This novel compound 2 can also inhibit the telomerase 

activity at low submicromolar concentrations. These results indicated that 2 is an 

important class of G-quadruplex stabilizing ligand compared with dsDNA. 
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Conclusions and Perspectives 
 

Contents of this chapter have been published in the Bioorgamic & Medicinal chemistry 

Journal and Molecules Journal (M.M. Islam, S. Fujii, S. Sato, T. Okauchi, S. Takenaka, 

Bioorganic Med. Chem. 23 (2015) 4769–4776 and M.M. Islam, S. Fujii, S. Sato, T. 

Okauchi, S. Takenaka, Molecules, 20 (2015) 10963-10979). The materials of the chapter 

have been reproduced with the permission of the Bioorgamic & Medicinal chemistry 

Journal and Molecule Journal [1,2]. 

 

The stabilization of a specific DNA sequences with small molecule is leading to the 

development of therapeutics. These small molecules bind with target DNA sequences and 

regulate the gene expression [3-6]. Recently, DNA secondary structure such as G-

quadruplexes DNA stabilizing with small ligand molecules is now considered as a 

promising target for the development of anticancer drugs [3]. But the selectivity of ligands 

binding to G-quadruplexes DNA still now are controversial. So, the designing and 

development of more specific ligands for G-quadruplexes DNA stabilization are crucial. 

 

In my doctoral thesis, I have presented two different types of cNDIs (1,2) as a new 

DNA interactive compounds which I dealt with during my doctoral research. In particular, 

my effort have been directed towards synthesis and design of two new cNDIs, one cyclic 

linker chain was designed by piperazine and amide group through the benzene ring named 
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as cNDI 1. Another type of cyclic linker chain was designed by tertiary amine and amide 

group through the benzene ring named as cNDI 2.  
 

Subsequently, in order to evaluate the activity of the newly synthesized molecules, I 

have studied their ability in binding and stabilizing different types of DNA such as 

dsDNA (calf thymus DNA (CT-DNA), poly[d(A-T)]2, or poly[d(G-C)]2) and G-

quadruplex DNA (a-core and a-core TT as a human telomeric DNA, c-kit and c-myc as 

DNA sequence at promoter region, or thrombin binding aptamer (TBA)) structure as well 

as their selectivity towards G-quadruplexes DNA with respect to duplex DNA. To these 

aims, several experimental techniques have been used such as UV-Vis spectroscopy, 

Circular Dichroism (CD) spectroscopy, Stopped-flow kinetics, Topoisomerase I assay, 

Thermal melting stability, FRET-melting assay, TRAP assay and computer modeling 

studies.  

 

Firstly, I have studied the comparison of the interaction of studies between 1 and 2 

with dsDNA. Using UV-Vis studies, I have found high binding affinity of 1 to dsDNA in 

the range of 6×105-5.3×106 M-1 with covering four base pairs of DNA per molecule, 

which are approximately 10 times higher than 2. The binding studies of 1 with poly[d(G-

C)]2 indicated approximately 5 times higher than 3, where 3 covered two base pairs of 

DNA as threading intercalator. Thermodynamic studies of 1 and 2 indicated the 

endothermic and entropy dependent hydrophobic interaction played major role in the 

reaction. Compound 1 showed more entropically favorable than 2, whereas 3 showed 

exodothermic and enthalpy dependent binding to CT-DNA played main role in the 

interactions. The analysis of salt ion effect showed that the high salt concentration reduced 
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the binding of cNDIs with CT-DNA. Kinetics studies of 1 and 2 indicated that 1 slowly 

dissociated from GC base pair than 2, which comes from the unique bis-intercalative 

binding mode like a catenane formation with stairs of double stranded DNA. The CD 

spectra indicated that 2 can induce the CT-DNA structure. The Topoisomerase I 

unwinding assay of circular dsDNA further supported favorable bis-intercalation binding 

of 1 than 2.  

 

Secondly, I have studied the interaction of 2 and 3 with different types of G-

quadruplexes DNA and compared this study with our previously reported 1 [7] which 

have long linker chain than 2. Compound 2 revealed high binding affinity in the range of 

106-107 M-1 to G-quadruplexes DNA whereas reducing the binding affinity with dsDNA. 

Compound 2 revealed 6 times higher binding constant than 3 with a-core G-quadruplex 

DNA. The binding data indicated that 2 has 270 times preferable binding for a-core, 165 

times for a-core TT, 51 times for c-kit, 108 times for c-myc, 95 times for TBA over 

dsDNA. The binding stoichiometry of cNDI-G-quardruplex is 2:1, suggesting an end 

staking binding mode. Compound 2 revealed 200 times binding selectivity over our 

previously reported 1 [7]. I have observed that 2 showed better binding to telomeric mixed 

hybrid types of a-core G-quadrulex DNA over promoter region’s parallel types of c-kit 

and c-myc G-quadrulex DNA and thrombin binding aptamer (TBA) antiparallel chair 

types of G-quadrulex DNA. The CD spectra showed cNDI molecule induced G-

quardruplexes DNA structure which also indicated the end staking interaction between 

cNDIs and G-quadruplexes DNA. Upon the addition of 2 to a-core G-quadruplex DNA, 

CD spectra conformation little changed indicating mixed hybrid structure a little changed 

to hybrid-1 types G-quadruplex DNA structure [8]. Thermal melting measurement 
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indicated that 2 highly stabilized with the G-quardruplexes DNA structure. Comparing 

with 1 [5], 2 increased △Tm by 5-8 ﾟ C. The FRET melting assay was measured to 

determine the competitive binding among the G-quardruplexes DNA, the result showed 

2 highly preferable stabilization to F21T which is the generated from the human telomeric 

G-quardruplex DNA sequences. This novel 2 can also inhibit the telomerase activity at 

low sub-micro-molar (0.9 μM) concentration. The results indicated that 2 is an important 

class of G-quadruplex stabilizing ligands compared with dsDNA. 

 

The interesting result from biochemical, biophysical and biological points of view, 

encourage further development of cNDIs derivatives to find out more specific binding G-

quadruplexes ligands. These newly design cNDIs deserve for further analysis of the 

mechanisms of action inside the cancer cell lines by these compounds, due to G-

quadruplexes binding drug candidate and the possible pharmacological applications.  
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