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Abstract
Using a well-known galvanic displacement reaction, ∼25–40 μm long silver ribbons grown after
mixing ∼50 nm copper particles with AgNO3 solution were observed as a function of Ag+

concentration and their growth was characterized in real-time and in situ by evanescent wave
(EW) microscopy. At low Ag+ concentration, chain-like structures consisting of both Ag and Cu
were observed. When the sequence of mixing these two reactants was reversed, different Ag
microstructures (platelets and dendrites) were formed and were also characterized by EW
microscopy. Dependence of the morphology of all these microstructures on silver ion
concentration was determined by EW microscopy in conjunction with scanning and transmission
electron microscopy.

S Online supplementary data available from stacks.iop.org/NANO/27/075708/mmedia
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1. Introduction

A detailed understanding of dynamic processes like nuclea-
tion, growth and coalescence of nanoparticles and nanowires
is of great interest across broad areas of nanotechnology,
especially for the design and fabrication of nanostructures
where it can help in optimizing the final microstructures. Real
time imaging has proven to be an effective tool for investi-
gating growth of nanoscale clusters [1–3], chemical dynamics
in living cells [4], distribution of markers in migrating cells
[5], cell view of life within 100 nm of the plasma membrane
[6], dynamics of single-DNA molecules [7], etc. Electron

microscopy [8–10], and optical imaging [11–13], are two of
the most commonly used real time imaging techniques. For
example, Evans et al [14], reported on the direct visualization
of the growth of lead sulfide nanoparticle using in situ liquid
transmission electron microscopy (TEM) where as Strelcov
et al [15], reported on an in situ scanning electron microscopy
(SEM) study of lithium intercalation in individual V2O5

nanowires. Stephan et al [16], showed that SEM imaging of
biological samples (cells and tissues) can be performed under
natural (hydrated) conditions but their method needed tedious
sample preparation methods like special chamber design and
staining.

Optical imaging remains in widespread use because of its
versatility as a diagnostic and inspection tool due to its sim-
plicity and ability to image samples in a fully hydrated con-
dition. Some examples include the imaging of single silver
(Ag) nanoparticles by dark-field optical microscopy [17], and

Nanotechnology

Nanotechnology 27 (2016) 075708 (10pp) doi:10.1088/0957-4484/27/7/075708

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

0957-4484/16/075708+10$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:babu@clarkson.edu
http://stacks.iop.org/NANO/27/075708/mmedia
http://dx.doi.org/10.1088/0957-4484/27/7/075708
http://crossmark.crossref.org/dialog/?doi=10.1088/0957-4484/27/7/075708&domain=pdf&date_stamp=2016-01-20
http://crossmark.crossref.org/dialog/?doi=10.1088/0957-4484/27/7/075708&domain=pdf&date_stamp=2016-01-20
http://creativecommons.org/licenses/by/3.0


observation of the growth of carbon nanotubes by remote
microscope videography combined with pulsed laser irradia-
tion [18].

Our very recent example of optical imaging was the use
of in situ evanescent wave (EW) microscopy to visualize and
characterize growth of Ag ribbons. EW measurements are
based on total internal reflection (TIR) microscopy theory first
introduced by Ambrose in 1961 to measure the movement of
fibrocytes in tissue culture [19]. It was followed by
McCutchen in 1964 who, using what he labeled as frustrated
TIR, measured the surface topography of a large 4.4 mm glass
ball and polyvinyl chloride surfaces [20]. Since then many
advances have been made in TIR microscopy techniques,
especially in confocal [6] and evanescent microscopy
[21–23].

Our homebuilt experimental EW microscopy system is
shown in figure 1 and is reproduced here from our earlier
publication for ease of reference. EW microscopy uses the
EW produced by the TIR of light at a glass–water interface.
Under the condition of TIR, an EW is formed and propagates
in the less dense medium along the interface with an intensity
that decreases exponentially along the distance perpendicular
to the glass–water interface (S-1). The EW wave can be used
to illuminate a layer of material beyond the interface (the
shaded area in figure 1) that may contain various structures
within the penetration depth of the evanescent field. The
scattered light can be imaged to characterize these structures.
Due to the exponential drop in the intensity of the EW wave,
the image intensity is very sensitive to movement of any
object vertical to the same interface. The images appear bright
when the objects of interest approach the interface and dim
when they retreat in a way that is directly related to the EW
field intensity. Also, only those objects that are present in the
limited evanescent field penetration depth can be imaged or
tracked by this technique [24]. Interestingly, it was suggested
that this technique could be used to measure surface diffusion,
molecular conformation of adsorbates, and cell development
during cell culture, visualization of cell structures and
dynamics etc [25].

Here, we report the results from our in situ and real time
investigation of the details of the growth rates and

morphology of anisotropic silver microstructures. These were
created by the well-known galvanic displacement reaction
between Cu particles and Ag+ ions (figure 2), carried out
without a template in the absence of any external reducing
agents or electric current. Also, the samples collected after
several minutes of the in situ growth processes were analyzed
by electron microscopy (SEM and TEM) to understand better
the role of various parameters involved.

It is important to mention that there are several inherent
limitations on the resolution that can be achieved by EW
imaging. The resolution of the EW images is limited by the
low magnification objective lens (50x) and is inherent to this
method since using a higher numerical aperture and magni-
fication lens limits ability to focus better. The image quality is
also constrained by the very small (∼100 nm) EW field
penetration depth. The associated slight defocusing leads to
the appearance of fringes in EW images and it seems these
cannot be completely eliminated. However, as our results
show, that it is still possible to combine the real time in situ
EW imaging with conventional SEM and TEM analysis to
obtain an improved understanding of the processes involved
in the growth of different microstructures of Ag.

2. Experimental details

2.1. Instrumental setup

In our experiments, a laser diode (532 and 15 mW) was used
to illuminate a small amount of liquid containing the reactants
placed on a hydrophobic antireflective film-coated hemi-
spherical plano-convex lens (LA1951-A, THORLABS, USA;
focal length=25.3 mm; coating thickness=350–700 nm,
contact angle=76°) (figure 1). The scattered light from the
particles (labeled green in S-1(a)) and other structures that are

Figure 1. Diagram of our home built EW microscopy system
(reproduced from [1] with permission from the Royal Society of
Chemistry).

Figure 2. Schematic of Cu/Ag galvanic displacement reaction. (The
drawing is not to scale.)
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in the evanescent field (the shaded area in figure 1) is col-
lected by an area sensor of a CMOS digital camera (Baumer
HXC20, pixel size 5.5 μm2) with an objective lens (numerical
aperture: 0.45) and an infinity-corrected tube lens (focal
length: 200 mm) and imaged. The videos and images were
recorded by Silicon Software (GmbH micro Display 5.2.2)
using a desktop computer.

2.2. Growth of anisotropic silver microstructures

Silver nitrate and copper powder (average particle size 50 nm)
used in our experiments were purchased from Sigma-Aldrich,
USA and used without any modification. Silver ribbons were
grown by placing 40 μl of an aqueous dispersion (particle
loadings of either 0.1 and 0.01 wt%) of the nominally 50 nm
Cu nanoparticles in deionized water (18Ω cm) onto the flat
surface of the hemispherical glass lens followed by the
addition of 60 μl AgNO3 solution with different values (0.2,
0.1, 0.05, 0.01, 0.005 and 0.001M) of Ag ion concentration
or [Ag+]. We also investigated the same galvanic reaction by
first placing 60 μl AgNO3 solution on the glass lens followed
by the addition of a drop (40 μl) of the Cu dispersion, i.e. the
reverse of the above sequence. The results were quite dif-
ferent as discussed later.

2.3. SEM and TEM imaging

For SEM characterization, a drop of the liquid sample was
placed on an aluminum stub dried at 60 °C for 5 min and
examined using a high-resolution field emission SEM
(JEOL7400) equipped with an energy-dispersive x-ray
spectrometer. Samples prepared for TEM analysis by placing
a drop of the solution on a carbon-coated copper grid and
drying in air were imaged using a JEOL JEM-2010 operated
at an accelerating voltage of 200 kV. Images were analyzed
using Gatan Digital Micrograph Version 3.11.1.

3. Results and discussion

3.1. Ag ribbon growth

EW microscopy allows us to image continuously the growing
ribbons in situ and in real-time using the same camera and
software. One such video captured over 5.4 s at
100 frames s−1 is available in the supporting information (S-
4). Longer videos can also be obtained but require consider-
able computer memory. In addition to the short time videos,
the growth processes were monitored for several minutes and
a large number of static images were captured at different
time intervals and analyzed.

Figure 3 shows three sets of sequential images of dif-
ferent silver ribbons grown in the first set of experiments, i.e.
when AgNO3 solution with three different [Ag+] was added
to the Cu particle dispersion at a fixed Cu particle con-
centration (0.1 wt%). The fringes that appear in the EW
images are most likely caused by slightly defocused imaging
as reported by several authors [26, 27], or due to the Airy disk

diffraction pattern [28], and it appears that these fringes
cannot be eliminated completely.

Figures 3(a)–(d) show the sequential images of a silver
ribbon captured at 5 s intervals at [Ag+] of 0.2 M,
figures 3(e)–(h) also captured at 5 s intervals but at a [Ag+] of
0.1 M, and finally figures 3(i)–(l) at [Ag+] of 0.05M but at
time intervals of 9, 8 and 6 s. It was observed that the
induction time for ribbon formation varied based on Cu/
[Ag+] ratio. Lower [Ag+] required a higher induction time for
ribbon formation (see table 1).

The ribbon growth rate calculated from the images in (b)
and (c) is ∼2.8 μm s−1, from (e) to (f) is ∼1.2 μm s−1, and
from (j) to (k) is ∼0.7 μm s−1, i.e., the rate decreases with
decreasing [Ag+]. The intensities of the images of these rib-
bons are different, presumably because, as suggested earlier,
they are located at different vertical distances from the glass–
water interface. The average size of the Ag ribbons observed
in our EW microscopy is 25–40 μm long (see S-2). There
were several that were considerably longer and figure 3(m)
shows one of the longest Ag ribbons (74 μm, ∼40 s growth
time) observed in our experiments. It was grown at 0.2 M
[Ag+]. It must have stayed almost but not quite parallel to the
glass–water interface during its entire growth since the
intensity along its length is not constant. Section II and III of
this ribbon in figure 3(m) appears brighter compared to the
other two sections (I and II and III and IV), indicating that this
part of the ribbon was closer to the interface.

We also see a break in the Ag ribbons in some cases. For
example, two segments with almost perfect alignment can be
observed in figures 3(j)–(l). These must have originated from
two directly opposite sides of the same Cu particle since it is
difficult to imagine such a near perfect alignment if they
originated from two different random Cu particles. In any
case, this near perfect alignment is striking and dramatic and
was also reported in our earlier publication.

3.2. Chain-like structures

As the [Ag+] was decreased further to 0.01M, the images
(figures 4(a)–(d)) obtained are quite different from those
obtained above at the three higher [Ag+]. The structures in
these images (a)–(d), which were obtained at 40 s time
intervals, required considerably larger times to grow. Thus the
structure/cluster formation in this case was delayed beyond
about 80 s since the first semblance of a ribbon appeared only
in figure 4(c) taken after 80 s compared to about 7–17 s
(table 1) for the three higher concentrations.

Figure 4(d) shows what appear to be a large number of
discrete clusters of different sizes. With time, the number of
such clusters appearing in the evanescent field increased
along with their size, with some of them eventually coales-
cing into ‘chains’, reaching ∼6 μm long, as can be seen in
figures 4(d) and (e).

We call these chains, and not ribbon, since they appear to
be morphologically very different from the Ag ribbons
reported above in figure 3 and in our earlier publication [1] for
the higher [Ag+]. For instance, the particular structure shown
in figure 4(e) appears to consist of bright discrete segments
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connected by less intense links and this morphology is evi-
dent in the SEM images (compare S-5(c) and figure 4(f)).
Such images are the reason we labeled them ‘chains.’ It is
quite likely that these morphologies are a result of the scarcity
of Ag ions around the growing structure leaving less intense
Cu particle links, as discuss later. Interestingly, self-organized

formation of chain-like structures consisting of only Ag by a
solvothermal process from AgNO3 solutions were reported
earlier [29, 30].

As discussed earlier, the EW images in 4(a)–(e) are not
well resolved due to the low magnification objective lens
(50X) and the low resolution is inherent to this method. In
contrast, while the SEM image shown in 4(f) does not suffer
from these limitations, it is not real time or in situ.

From the SEM image (figure 5(a)) of a sample consisting
of structures grown under the same conditions as in
figures 4(d) and (e), it appears that ribbons (top left corner in
this image) and chains coexist, though the chain-like config-
urations seem to be predominant. If we lower [Ag+] further
from 0.01M to 0.005M to 0.001M, only the chain-like
arrangement was observed at 0.005M (figure 5(b)), but not at

Figure 3. Sequential images with increasing time (see text for details) of three different silver ribbons grown at [Ag+] 0.2 M (a)–(d), 0.1 M
(e)–(h) and 0.05 M (i)–(l) (the growth rate of these ribbons decreased with [Ag+]). Image in (‘m’) is one of the longest ribbons (∼74 μm) seen
in our experiment ([Ag+]=0.2 M) and it required ∼40 s to reach this length. All these ribbons were grown from a starting Cu particle
concentration of 0.1 wt%.

Table 1. Induction time and growth rate with Ag+ concentration.

[Ag+] (M) Induction time (s) Growth rate (μm s−1)

0.2 7±2 ∼2.8
0.1 12±2 ∼1.2
0.05 17±2 ∼0.7
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0.001M where individual clusters, some of them rod like, of
different sizes appear (figure 5(c)) with most of them
remaining discrete. The shortage of Ag ions required for
continued growth must be significant under these conditions.
Indeed, the EDX data shown in figure 5(d) of a small portion
of a chain formed at 0.01M and of a cluster formed at
0.001M [Ag+] suggest that these structures consist of both
Cu and Ag. The presence of Cu is a clear indication that not
enough Ag+ are available to consume all of the Cu (see S-7,
for the EDX spectrum of a Ag ribbon formed at a higher Ag+

concentration showing no Cu remaining). The Al peak in the
EDX spectra is from the aluminum substrate used to mount
the samples.

3.3. Reverse addition of the reactants

When a second set of experiments in which the sequence of
addition of Cu particles and Ag ions was reversed, dramati-
cally different silver nanostructures were observed. Similar
results were reported by other investigators [31], who grew
different silver nano/micro structures by controlling reaction
kinetics only. For example, Gu et al [32], reported the fab-
rication of silver dendrites on a copper substrate, which is
similar to our second set of experiments. Also, Liu et al [33],
reported obtaining various silver structures, including

dendrites, flowers and spherical aggregates, just by control-
ling reaction kinetics in the presence of the amino acids
glycine and leucine while Zhou et al [34], reported kinetically
controlled growth of fine Au nanofractals through galvanic
replacement reaction.

Figures 6(a) and (b) show the two EW images of radi-
cally different Ag nanostructures formed when 0.01M
AgNO3 was added to 0.01 wt% and 0.1 wt% Cu dispersions,
respectively. Figures 6(c) and (d) (inserts show magnified
images of a small portion in each image) show the SEM
images of the above two samples taken after several minutes
of the initial mixing of the reactants and may be compared
with the images in figures 3(m), 4(f) and 5. At the lower Cu
particle concentration, different sized platelets of Ag particles
are formed (insert 6(c)) while with 0.1 wt% Cu, dendritic Ag
nanostructures, reported and discussed by many investigators
earlier [35–38], were obtained. The selected area EDX data
confirm that, in both cases, these microstructures contain only
Ag and suggest that all the Cu that must have been present in
these structures during growth is consumed.

3.4. Proposed growth mechanism

These experiments, in which the addition process was
reversed from the first set above, clearly indicate that this

Figure 4. (a)–(d) Early stages of Ag ribbon formation observed at a low [Ag+] of 0.01 M recorded at 40 s intervals, (e) a magnified image of a
portion of (d) and (f) high magnification SEM image of a chain like structure. This SEM image is from the same sample collected several
minutes after the reactants were initially mixed. Starting Cu particle concentration in all these experiments is 0.1 wt%.
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galvanic displacement and nanostructure formation process
are kinetically controlled. The localized concentration of Ag
ions must be playing an important role in determining the
type of Ag nanostructure formed. For the same Cu to Ag
atomic ratio, two different nanostructures (figures 5(a) and
6(b)) were observed just by changing the sequence of addition
of these two precursors.

While several theories have been proposed to describe
the growth of different Ag nano/microsturctures, there is no
consensus. Here we propose a possible growth mechanism,
demonstrated pictorially in figure 7, which can account for
these variations in structure. It is based on the analysis of our
real-time images captured by EW microscopy at the very
early stages of ribbon formation as well as the large number
of electron microscopy images. The induction times and
growth pattern obtained from our real time in situ EW ima-
ging has to become an essential part of the proposed silver
microstructure formation and growth mechanism.

The Ag nano/microstructure formation process is illu-
strated in two different scenarios based on the addition
sequence: first when Ag+ is added to Cu particles and second
when the reverse is the case. In the first scenario, we have two

cases, case-I when [Ag+] is low and case-II when [Ag+] is
high. At the very beginning, Ag+ will adsorb on the Cu
particle surface, which is followed by galvanic reduction
during which a nano-electrode is created, current flowing
from a local cathodic site to an anodic site [39]. As a result,
Ag atoms are deposited on the cathodic site of the Cu surface
and simultaneously anodic oxidation occurs by dissolution of
the surface Cu atoms. This stage of the growth process cannot
be resolved by our EW imaging technique and is manifest as
the observed induction times.

Once the Ag deposition begins, the galvanic reaction
continues as usual with the Ag ions still in solution, but in the
vicinity of the Cu surface, capturing electrons from the Cu
and deposited. The Ag particle adhering to the Cu surface
have higher electronegativity than Cu and strongly attract
electrons from Cu [39], causing the Cu particle to become
positively charged, indicated by δ+ in figure 7. The electro-
negative Ag particles on the Cu particle surface have strong
catalytic activity for the cathodic reaction and could provide a
catalytic surface for the cathodic reaction (reduction of Ag
ions) [39]. Therefore, the subsequent reduction process of
Ag+ would be greatly enhanced, causing the Ag+

Figure 5. SEM images observed at three different [Ag+]: (a) 0.01 M, (b) 0.005 M (c) 0.001 M and (d) EDX spectrum of a small area of the
images in (‘a’) and (‘c’).
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approaching the Cu surface to be reduced preferentially on the
Ag particle sites rather than the on the bare Cu surface. At the
same time agglomeration of Cu particles is also possible
where another positively charged Cu surface will approach
the anodic (negatively charged Ag particle) site of a Cu/Ag
interface (figure 7 case-I, cluster). When there are not enough
Ag atoms to consume the Cu particles in the structures, a
chain like structure results eventually. Thus, the attachment of

the δ+ surface of a Cu particle with the δ− surface (from the
newly formed Ag particles) of a different Cu particle is crucial
and presumably rate controlling in this process.

For higher Ag+ concentrations (case-II) we are most
likely to observe the formation of continuous Ag ribbons (S-5
(b) and (c)) since there is adequate supply of Ag+ to cover
the entire surface of Cu particles, minimizing the possibility
of their agglomeration. Thus the growth process in this case is

Figure 6. (a) and (b) EW images of Ag nanostructures obtained when Cu particles were added to silver nitrate solution at two different Cu/
Ag ratios of Ag (0.01 M)/Cu (0.01 wt%) and Ag (0.01 M)/Cu (0.1 wt%), respectively; (c) and (d) show the corresponding SEM images
obtained after several minutes of the same samples. Insets show magnified images of a small portion of the respective images whereas (e) and
(f) represent the corresponding EDX spectra and shown the presence of only Ag and no Cu.
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driven by the larger Ag+ concentration all around the reacting
surface of the Cu particle, leading to the formation of ribbons
of Ag atoms without the intermittent Cu particles.

In the case of the second scenario of reverse addition
(bottom row in figure 7), as the Cu particles are added, they
are immediately surrounded by the Ag+ in solution leading to
a relatively high concentration of Ag+ near the reacting Cu
surface. If it is high enough to consume the entire particle, we
observe Ag platelets or dendrites as illustrated in the bottom
panel of figure 7. Thus it appears that the Ag nano/micro-
structures formed depend on the rate of Ag+ reduction and the
dissolution rate of Cu. Since the formation of these types of
microstructures has been reported and discuss by many
investigators earlier [35–38], we do not discuss this fur-
ther here.

3.5. TEM data

The TEM and selected area electron diffraction images
(SAED) of one particular nanostructure of silver grown when
0.01M Ag+ was added to 0.1 wt% Cu dispersion are shown
in figures 8(a) and (b), respectively. The crystal plane indices
associated with this are identified in the SAED pattern in
figure 8(b). The set with a lattice spacing of 0.14 nm could be
indexed to the {220} reflections of fcc silver, the intense spots
in the [111] zone axis are allowed {220} Bragg reflections
corresponding to the lattice spacing of 0.14 nm. The addi-
tional relatively weak spots in the diffraction pattern

correspond to the normally forbidden 1/3 {422} and 2/3
{422} Bragg reflections with lattice spacing of 0.25 nm and
0.12 nm, respectively. The outer set with a lattice spacing of
0.08 nm corresponds to the {422} reflection. All these data
are consistent with the data reported earlier [1, 35].

The (111) stacking fault is responsible for the occurrence
of the 1/3{422} forbidden reflection (forbidden for perfect
fcc structures) and has indeed been observed when the flat top
surface of nano/micro structures of Ag and Au is parallel to
the (111) plane of their fcc crystal structures [40–42].

4. Conclusions

Using simple, cost-effective and straightforward real time and
in situ EW microscopy, we were able to image and char-
acterize the growth and evolution of different morphologies
of Ag microstructures grown by the galvanic displacement
reaction between Cu and Ag ions. The ratio of the Cu and
Ag+ concentrations influenced the type of Ag structures—
ribbon or chain-like—formed and these were imaged. It was
observed that the growth rate of the ribbons drops with
decreasing [Ag+]. We also found that the sequence of addi-
tion of the precursors changed the morphology from ribbons
to clusters to platelets and dendrites. A possible process
sequence for the galvanic reactions that can lead to the
observed multiple morphologies is presented. These real time
observations and data analysis can assist in minimizing the

Figure 7. Schematic representation of the formation of chain, ribbon and other anisotropic Ag nanostructures at various experimental
conditions. Case I: [Ag+] is low; case II: [Ag+] is relatively high, and reverse: Cu particles added to silver nitrate solution, which is the
reverse of the sequence used in cases I and II. (The drawings are not to scale).
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number of sequential imaging steps required by electron
microscopy to characterize the growth of different Ag, Au and
perhaps other microstructures.
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