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Abstract

Background: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular
nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact,
orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high
computational cost because they have to consider complicated positional constraints through the entire optimization
process.

Results: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an
approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To
demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of
edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding
performances compared with other existing grid layouts.

Conclusions: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid
algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed
algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application
program can be freely downloaded from http //www.cadlive.jp/hybridlayout/hybridlayout.html.
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Introduction

Rapid advances in molecular biology have revealed a detailed

map for gene regulatory networks, signal transduction pathways

and metabolic circuits. Visual representations of such networks are

critically important to help researchers gain insight into a large-

scale complex network [1], stimulating the interest in developing

computational tools that support visualization of biochemical

networks.

A scientific goal of drawing a comprehensive biochemical map

is to facilitate human perception of its topological structure or

understandings of how network pathways generate cellular

functions. Obviously, it is tedious and laborious to make intuitive

and heuristic layouts for large-scale complex networks. In general,

an automatic drawing of such complex networks can be achieved

by converting biochemical pathway data into a graph represen-

tation. Many types of drawing algorithms have been developed

with their associated graphical notations [2–11]. Many visualiza-

tion software programs have been presented to enhance the

usability of drawings [12–16]. They focus on how to place objects

and route their connections to render layouts in traditionally

accepted styles [17–30].

Force-directed layout algorithms have widely been used for

visualizing large-scale maps of biological networks [3,31–33],

including biological similarity relationship networks [34] and

coarse-grained maps of protein-protein interactions [35–37].

Their basic idea is to model a graph as a mechanical system,

where the nodes are repulsive particles and the edges are attractive

interactions. A layout is determined when the forces drive the

system to a steady state (a local minimum of energy). To find

aesthetically pleasing drawings of network maps constraint-based

layouts extends the force-directed approach with constraints on

node position [38] or they uses simulated annealing algorithms or

some heuristic algorithms to optimize a randomly generated initial

placements [39–41]. An objective or cost function is defined to

measure the quality of the layout and it should be optimized

subject to given constraints on the objects in the network. In

general, definition of a cost function is critical for human-

understandable drawings. The constraints can include horizontal

and vertical alignment of nodes [42,43], non-overlapping nodes

[44,45], edge direction [23], closeness of grouped nodes [42,43],
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orthogonal ordering between nodes [46], containment of nodes

within clusters [47,48], placement of nodes below other nodes in

directed graphs [49], drawing cycles on a rectangle [50] and

multilevel framework [51,52]. Some algorithms require not only

the topology of the network but also biological information such as

subcellular localization [22–24,42,43] and biological process [48].

As alternative methods, the spectral analysis for graph

visualization computes the layout of a graph using certain

eigenvectors of related matrices [53]. It can compute global

optimum efficiently and calculate fast, but the spectral method

usually provides very heterogeneous layouts with high node

density. Self-Organizing Maps (SOM) were employed to perform

layout of directed graphs, either weighted or unweighted [54,55].

It attempts to distribute the nodes uniformly within a topology

(e.g., rectangle, sphere, heart shape), keeping nodes close to their

neighbors.

It is practically important to avoid the overlapping of node areas

and to attach a label with a molecular species name to each node

for enhanced understanding or traceability of biochemical

networks. While some algorithms such as the scan-line algorithm

[45] have been presented to enforce non-overlap in single

dimension, grid layout algorithms, which arrange the nodes of

biochemical network maps to grid points, can be solutions to

attach a label to each node without overlapping. Since we first

proposed a grid layout algorithm in bioinformatics in 2005 [25],

because all the nodes are arranged to geometrically aesthetic grid

points to draw an orderly, balanced network map and the number

of grid points (the map size) is arbitrarily determined to ensure a

compact map. Especially, nodes on grid points are readable when

zooming in a local region of large-scale maps. Our original grid

layout algorithm (GL) converted biochemical network maps into

graph representation and arranged their nodes to grid points so

that a specifically designed cost function is minimized over all

possible mappings [25]. This algorithm repeatedly updates the

layout by moving nodes one by one according to the simulated

annealing methods. LucidDraw (LD) adopted a similar cost

function to GL [25], while it speeded up the layout process

dramatically [56]. LD employed a neighborhood-test procedure

that repeatedly tries to move every single node to its adjacent

vacant site to lower down the cost function. This layout algorithm

avoids a local minimum by the perturbation that moves each node

to a randomly chosen neighboring location. To avoid a locally

optimal layout, sweep calculation was presented [22,24], where

the costs changed by moving a node of interest are encoded, and

then the cost differences corresponding to the movements are

calculated by using the encoded data. Cerebral (CE) employed

search-based layout algorithms, but used a stochastic approach to

searching and an optimized scoring function to make the layout of

large networks tractable [42,43].

Despite those improvements, existing grid layouts that take

account of the cost function regarding positional constraints

through the entire optimization process remain to be improved in

terms of calculation speed. In this paper, we challenge an

alternative or novel approach to fast grid layout, which combines

an approximate pattern matching algorithm with widely-used, fast,

typical layout algorithms such as spectral analysis, force-directed

algorithms and SOM. In this study, we focus on the grid layout

algorithms that rely merely on network topology without any use

of molecular component, process and function. Use of an

approximate pattern matching algorithm redistributes the coarse

layouts by such fast algorithms on the square grid points, while

preserving the topological relationships among the nodes. The

proposed algorithm is a novel use of the pattern matching, thereby

achieving very fast grid layouts with good topological performanc-

es compared with other existing grid layout methods in our limited

knowledge.

Methods

Hybrid Grid Layout Algorithm
A biochemical network map can generally be converted into a

graph to calculate the geometric coordinates of the molecules (nodes).

The network graph consisting of N nodes and undirected edges

(interactions) are described by an N by N adjacency matrix

A~(aij)(i~1,2,:::,N , j~1,2,:::,N). When there is an edge from a

node i to another node j, then its element aij is 1, otherwise aij~0. To

draw the network map, it is necessary to calculate the x-y coordinates

of N nodes P~fpi Dpi~(pi:x,pi:y),pi:x,pi:y[Real,i~1,2,:::,Ng.
Practically, the text labels showing molecular names are critically

important to trace the pathways of interest. It is important to secure

the space necessary for node labels, but ordinary layout algorithms do

not consider the label space. To obtain a view of a large-scale network

graph whose nodes have text labels without any overlaps of them in a

compact space, we propose the hybrid layout algorithm that maps

molecular nodes on the grid points, while enhancing their topological

quality, as shown in Figure 1 and Table 1.

In the first stage, the positions of a set of graph nodes are

roughly determined by typical, fast layout algorithms, named

preprocessor algorithms. The preprocessor algorithms layout the

nodes so as to improve topological features, such as a small

number of edge-edge crossings, a short length of the total edges,

and clear cluster structures, but they do not consider attaching text

labels to nodes. In the second stage, an approximate point-set

pattern matching algorithm finds a one-to-one and onto mapping

from the graph nodes to grid points, i.e., assigns one grid point for

each graph node exclusively. The computational problems to find

an optimal point-set pattern matching on the plane defined so far

is NP-hard [57–59]. Our algorithm is designed to minimize space

Figure 1. An image of the hybrid grid layout algorithm. A. An ordinary or preprocessor algorithm draws a network map where the node labels
may overlap. B. An approximate pattern matching algorithm finds a one-to-one, exclusive correspondence between a set (pattern) of graph nodes
and a set of the grid points with the minimum axis-parallel insertions and deletions of space. C. The spaces of text labels are ensured.
doi:10.1371/journal.pone.0037739.g001

Hybrid Grid Layout Algorithm
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insertion and deletions in a series of enhancement of axis-parallel

bounding box of graph nodes, and runs in polynomial-time. The

distance between the grid-lines secured by this second stage

guarantees enough space for text labels of graph nodes.

Furthermore, since the approximate pattern matching algorithm

consumes up a large amount of memory space and takes a

considerable amount of time, we propose, as a practical

implementation, a divide-and-conquer strategy that can drastically

reduce the computation time.

Preprocessor Algorithms
There can be many candidates of preprocessor algorithms [60–

64], but the investigation of all candidates are not practical. Thus,

we selected four widely-used methods with different, typical

algorithms.
Spectral analysis. Use of a spectral method minimizes the

sum of squared edge length to calculate the coordinates of

thousand nodes in a graph with a very fast speed, which considers

its cluster structures. Clustering structures can be well represented

or displayed by the spectral analysis, because elements with

approximately equal values in the eigenvectors correspond to

nodes having strong mutual connections [53]. The eigenvectors

corresponding to small eigenvalues can be calculated in not more

than O(N2) time, so that the spectral method is capable of

clustering and drawing very large networks, e.g., a WWW network

with 105 nodes. Nevertheless, the spectral method usually provides

very heterogeneous layouts with high dense nodes and gives good

results only in rather special networks. Thus, serious improvement

is required to draw biochemical network maps that are under-

standable to humans.
Kamada-Kawai algorithm. KK [65] is a spring force

directed layout algorithm, where the nodes are represented by

steel rings and the edges are springs between them. The attractive

force is analogous to the spring force and the repulsive force is

analogous to the electrical force. The basic idea is to minimize the

energy of the system by moving the nodes and changing the forces

between them. They use the Newton-Raphson method for

optimization with respect to a single node and reduce the overall

stress by iteratively solving for each node. The time complexity is

O(N2) for each iteration of the algorithm in the worst case.
Fruchterman-Reingold algorithm. Fruchterman and Re-

ingold [66] proposed a variant of Eades’ approach [67] as the

spring force algorithm, in which attractive forces take into

account the optimal distance between nodes, defined as a

function of the number of nodes in the graph and the size of

the drawing window. Differing from KK, this algorithm directly

supports the layout of disconnected graphs and attractive forces

occur between adjacent nodes only, whereas repulsive forces

occur between every pair of nodes. Each iteration computes the

sum of the forces on each node, and then moves the nodes to

their new positions. Simulated annealing is used for optimization.

The movement of nodes is mitigated by the temperature of the

system. As the algorithm progresses through successive iterations,

the temperature should decrease so that nodes settle in place. The

cooling schedule, attractive forces, and repulsive forces can be

provided by users. The time complexity is O(N2zE) for each

iteration of the algorithm in the worst case, where E is the

number of edges.

Gürsoy-Atun algorithm. GA [54] performs layout of

directed graphs, either weighted or unweighted. It employs an

algorithm different from KK and FR, because it does not

explicitly strive to layout graphs in a visually pleasing manner.

Instead, it attempts to distribute the nodes uniformly within a

topology (e.g., rectangle, sphere, heart shape), keeping nodes

close to their neighbors. The algorithm is built based on Self-

Organizing Maps.

Pattern Matching Algorithm
Depth-first recursive search algorithm. As shown in

Table 1, the nodes drawn by a preprocessor algorithm are aligned

or matched to the grid points in a setting square space, while

maintaining the relative positions of the preprocessed nodes. The

pattern matching algorithm searches a pattern for the shortest

movement from the preprocessed nodes to their grid points. The N

preprocessed nodes drawn in a continuous space: P~fpi Dpi~

(pi:x,pi:y),i~1,2,:::,Ng, are mapped on the grid points:

G~ gi Dgi~ gi:x,gi:yð Þ,gi:x,gi:y[Integer½0,
ffiffiffiffiffiffi
M
p

),i~1,2,:::,N
� �

, in

the setting square space with M points one by one (MwN).
Overlaps of nodes are not allowed and all the permutations for N

nodes are considered. When the k-th node is moved to its matched

grid point, the other k+1 to N-th nodes that remain to be matched

are moved in parallel together with the movement of the k-th

matched node, where pu (kz1ƒuƒN) are updated as pupdate
u ,

resulting in the temporal pattern:

tempG(k)~ftempgDtempgi~gi(i~1,2,:::,k),tempgu~pupdate
u (u

~kz1,:::,N)g, where tempgi~gi(i~1,2,:::,k) are on the grid

points, indicated as integer vectors and tempgu~pupdate
u

(u~kz1,:::,N) are given as real vectors. Once the nodes are

matched, they are fixed. Without the parallel movement, it would

take a long time to find the vacant grid point nearest to the

preprocessed nodes, when many nodes are very condensed, i.e.,

the grid points close to the preprocessed node are readily full. Use

of the parallel movement can save the search iterations because

the nodes that have not matched yet move away from the

condensed region.

The distance from a preprocessed node to its matched grid

point is defined as Manhattan distance:

di~Dgi:x{pupdate

i
:xDzDgi:y{pupdate

i
:yD

The sum of the matching distances for all N nodes is provided

by:

Table 1. An overview of hybrid grid layout algorithms.

Preprocessor algorithm

Fast, non-grid algorithms for determining the relative positions of network
nodes P

Spectral Analysis

Kamada-Kawai algorithm

Fruchterman-Reingold algorithm

Gürsoy-Atun algorithm

Pattern matching

Pattern matching algorithm for distributing the preprocessed nodes to square
grid points G

Divide and conquer method by the quad-tree: The layout area is divided into
the subareas, where the node number is limited to ‘‘cut size’’.

Depth-first recursive search for matching the preprocessed nodes on square
grid points.

doi:10.1371/journal.pone.0037739.t001
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D(N)~
XN

i~1

di

The matched pattern of grid points G is obtained by minimizing

D(N).

As shown in Table S1, the depth-first recursive search

algorithm is used to explore the layout pattern that minimizes

D(N), with respect to all the permutations of N nodes. The

recursive algorithm stores the minimal D(N) and the coordinates

of the N matched grid points G. When newly calculated D(N) is

less than the stored one, it and its associated coordinates of the grid

points replace the stored ones; otherwise the stored ones are

conserved. To save the calculation time, the sum of the k-node

matching distance D(k)(kvN) and the coordinates of its

associated nodes tempG(k) are stored. When D(k) is more than

the stored minimal D(N), the further search from k to N-th nodes

is omitted.

Matching of each node. Assuming that the nearest grid point to

pi~(pi:x,pi:y) is vacant, the matched grid point gi~(gi:x,gi:y) is

provided by:

gi~(ni:x,ni:y), pi:x{ni:xv0:5\pi:y{ni:yv0:5.

gi~(ni:x,ni:yz1), pi:x{ni:xv0:5\pi:y{ni:y§0:5.

gi~(ni:xz1,ni:y), pi:x{ni:x§0:5\pi:y{ni:yv0:5.

pi:x{ni:x§0:5\pi:y{ni:y§0:5.

where ni:x~int(pi:x), ni:y~int(pi:y). ni:x and ni:y correspond to

the integer parts of pi:x and pi:y, respectively. Actually, when the

nearest node is full, it is necessary to search the nearest vacant grid

point according to its distance from pi. When (k-1) nodes are

matched to the grid points, the nearest, vacant grid point for the k-

th node is searched as shown in Table S2 and Figure S1. The k-

th grid point candidates gsk(j)(j~1,2,:::) are sorted in the

ascending order of Manhattan distance dsk(j) between pk and

gsk(j). When gsk(J) is the nearest vacant point, gk~gsk(J) and

dk~dsk(J).
Setting grid square space. The network map should be

drawn within a compact space. In this study, we use

xmax~ymax~2|
ffiffiffi
n
p

as the square, which is given by GL [25].

Algorithm’s complexity. Since it is necessary to store the

sum of the k-node matching distance D(k)(kvN) and the

temporal pattern tempG(k) in each layer depth (1ƒkƒN), the

space complexity is O(N2). The time complexity requires O(N!)
for all the permutations of nodes (NP-complete). Thus, we use the

divide-and-conquer method to greatly reduce the calculation time.

Divide-and-Conquer Strategy
Applying the recursion algorithm directly to a large set of nodes

of a graph is difficult in practice, due to calculation complexity

(Figure S2). The divide-and-conquer strategy is employed to

accelerate the approximate pattern matching. We adopt the quad-

tree [68] to divide the network into groups of the nodes and

examine how the time complexity is balanced with the preference

of resultant layouts. The quad-tree simply and recurrently divides

the layout space into the quarters with the same area square until

the number of nodes becomes less than until the partitioning parts

contains a limited number of nodes, named cut size. We use the

cut size of 10 for a high speed layout. This kind of strategy works

very well if we can assume that points are in approximately

uniform distribution.

Combination of Preprocessor and Pattern Matching
Algorithms

The four widely-used, fast layout algorithms are combined to

the approximate pattern matching algorithm with the divide-

conquer method. The resultant hybrid layout algorithms with

spectral analysis, Kamada-Kawai algorithm, Fruchterman-Rein-

gold algorithm, and Gürsoy-Atun algorithm are named SA, KK,

FR, and GA, respectively.

Reference Algorithms for Grid Layout
Four algorithms for random layout (R), GL, LD, and CE are

used as reference or control methods. We selected the reference

grid layout algorithms that rely merely on topological information

without any biological constrains (molecular component, process,

function).
Random layout (R). Nodes are randomly scattered in a

given grid space without any overlaps. Uniform random numbers

are employed.
Our original grid layout algorithm (GL). GL is an

optimization algorithm for minimizing the cost function for

layouts of networks [25]. The network is built as a system of

interacting particles which are placed on a two-dimensional square

grid and is confined within its area. The particles (nodes) interact

according to a predefined energy function based on the network

topological structure, where all edges are straight lines. The energy

of the configuration of particles is the cost function of the

corresponding layout. A stable configuration has low energy;

equivalently, an acceptable layout has a low cost function.
LucidDraw (LD). A good layout algorithm [56] depends on

two factors: a proper cost function and an efficient optimization

method. LD adopts a similar cost function as GL [25], while it

speeds up the layout process dramatically, serving as an instant

visualization tool in the context of a wide range of network analysis

tasks. To reduce the search area of every node, the neighborhood-

test method is used, greatly decreasing the computational cost. To

fully optimize the cost function, the re-optimization-after-pertur-

bation strategy is used to force the layout to escape from current

local minimum and search for better layouts. The perturbation

strategy, despite its simplicity, achieves rather good performance

comparing to other sophisticated heuristics like simulated anneal-

ing. The technique was employed in other discrete global

optimization problems [69,70].
Cerebral (CE). CE [42,43] evaluates the quality of the node

in its new position depending on a node’s function. Node

distributions are evaluated based on edge length, node-edge

crossings and edge-edge crossings. CE uses simulated annealing to

search a minimum cost under the hard constraints (layout space)

and soft constraints (energy function). CE divides the layout space

on the y axis into regions sized proportionally to the number of

nodes in each layer. The energy function is defined by edge length,

edge-edge and node-edge crossings, and known biological function

grouping. This is similar to the cost function defined by CBS-grid

(Kojima et al. 2008). The time complexity of CBS-grid requires

O(avedeg2:N3=2), which avedeg is the average degree and N is the

number of nodes, while that of Cerebral requires O(avedeg:N3=2).
Cerebral is better than CBS-grid for the time complexity. Cerebral

runs in the expected time O(E
ffiffiffiffiffi
N
p

) (O(N3=2) in the worst case)

while using O(N) memory, where E is the number of edges.

Measures for Characterizing Layouts
Calculation speed. The calculation time is measured to

characterize calculation complexity for each layout algorithm. A

personal computer (OS: Windows XP 32bit, CPU: Intel

Core2Duo 3.0GHz, Memory: 3.2GByte) is used.

Hybrid Grid Layout Algorithm
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Edge-edge crossings. One measure of a graph drawing

algorithm’s quality is the number of edge-edge crossings it draws

[22,23,42,43]. Most graphs cannot be drawn without edge-edge

crossings. According to this metric, good algorithms draw graphs

with as few edge-edge crossings as possible. The ratio of edge-edge

crossings is defined as the ratio of the number of edge-edge

crossings to the total number of edge combinations.

Node-edge crossings. The problem of node-edge crossings

should be avoided for biochemical network layout, because the

node-edge crossings cause confusion where edges are outgoing and

incoming and may lead to a misunderstanding of the whole

biochemical network structure [22,23,42,43]. The ratio of node-

edge crossings is defined as the ratio of the number of node-edge

crossings to the total number of node-edge combinations. Here, we

set both the width and the height of node labels to

( max (x){ min (x))
.

(2
ffiffiffiffiffi
N
p

z1), where max(x) and min(x) are

the maximum and minimum values of x axis in the nodes,

respectively.

Relative edge length. The relative edge length is defined as:

Relative edge length~

(the sum of the edge length)

(the drawin garea that all nodes span)|(the number of edges)

The relative edge length can indicate the efficiency of drawings.

A small value of the relative edge length indicates the total edge

length necessary for drawing the whole map is short, which

indicates a high efficiency of drawings and would suggest well-

balanced distributions of nodes as shown in Figure S3.

Connectivity F-measure. Generally adjacent and nonadja-

cent nodes should be closely and far located in geometry,

respectively. To characterize the geometric performance of the

layout, the idea of the F-measure is employed that is widely used

in the field of information retrieval. The connectivity F-measure

is defined as the weighted harmonic average of precision and

recall [71]. Let #P be the number of elements in set P. The

precision cPREi(rdi) for the i-th element circle Ci(rdi) is defined

by:

cPREi(rdi)~
# jDpj[Ci(rdi),ai,j~1,j=i
� �

# jDpj[Ci(rdi),j=i
� � ;

where pj is the nodes and rdi is the radius of Ci. Next, the recall

cRECi(rdi) is defined as:

cRECi(rdi)~
# jDpj[Ci(rdi),ai,j~1,j=i
� �

# jDai,j~1,j=i
� � ;

Roughly speaking, high precision favors a small rdi and high

recall favors a large value of rdi; the optimal rdi should be found

in between them. The optimal radius rdi

^
is chosen for each i that

maximizes the following F-measure with weight factor a. (a = 1/2

is used throughout our experiments.).

cFi(rdi)~1= a
1

cPREi(rdi)
z(1{a)

1

cRECi(rdi)

� �
;

The measure to evaluate an embedded network layout, denoted

as the connectivity F-measure, is defined by:

cF~
XN

i~1

cFi(rd
^

i)

N
:

A large value of the connectivity F-measure shows that the

adjacent and nonadjacent nodes are closely and far located with

respect to each node, respectively. The connectivity F-measure is

illustrated in Figure S4.

Functional F-measure. To identify biologically functional

modules in the map, nodes with the same function should be

located closely. The functional F-measure is defined that measures

the degree to which the nodes with the same biological function

are closely located and the nodes with different functions are far

located, while the connectivity F-measure determines the degree to

which the adjacent and nonadjacent nodes are closely and far

located, respectively. The precision fPREi(rdi) for the i-th

geometric center element circle Ci(rdi) in a functional module

Mi (i~1,2,::,k) is defined by:

fPREi(rdi)~
# jDpj[Ci(rdi),Mi

� �
# jDpj[Ci(rdi)
� � :

where pj is the nodes and rdi is the radius of Ci. Next, the recall

fRECi(rdi) is defined by:

fRECi(rdi)~
# jDpj[Ci(rdi),Mi

� �
# jDpj[Mi

� � :

The optimal radius rdi

^
is chosen for each i that maximizes the

following F-measure with weight factor a. (a = 1/2 is used

throughout our experiments.).

fFi(rdi)~1= a
1

fPREi(rdi)
z(1{a)

1

fRECi(rdi)

� �
:

Since k is the number of functional modules, the measure to

evaluate an embedded network layout, denoted as the functional

F-measure, is defined by:

fF~
Xk

i~1

fFi(rd
^

i)

k
:

Hybrid Grid Layout Algorithm

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e37739



A large value of the functional F-measure shows that the nodes

with the same function and with different functions are closely and

far located in the map, respectively. The functional F-measure is

illustrated in Figure S5.

Implementation
The hybrid layout algorithm is implemented as a Windows

Matlab (32bit) application software that consists of the input

function for biochemical networks, the preprocessor with

different layout algorithms, the pattern matching algorithm,

and visualization program of resultant networks. MatlabBGL

(http://www.stanford.edu/,dgleich/programs/matlab_bgl/) is

used to compile the preprocessor algorithms from the Boost

library into Matlab programs. The approximate pattern match-

ing algorithm is written in C language. The visualization tool

BNV2.0 is written in JAVA. These algorithms are called by the

Matlab program. The test machine is the Intel Core2Duo

(3.0 GHz) with memory 3.2 GBytes. CE [42,43] uses the

formatted networks by Cytoscape (http://www.cytoscape.org/)

[14] to calculate the coordinates of the nodes, exporting the

coordinates calculated.

The graphical User Interface
The visualization tool (BNV2.0) was developed based on the

JGraph tool of LucidDraw. JGraph (http://www.jgraph.com/

jgraph.html) is an open source graph visualization library written

in Java. BNV2.0 supports interactive operations on the network

drawings such as moving nodes, zooming in/out, showing/hiding

labels, and editing functions like redo/undo. BNV2.0 implements

an additional function to search a node and modules, which

highlights a target node by changing its frame color (Figure S6).

To make easy use of BNV2.0 in the Matlab environment, GUI

(Figure S7) was developed to provide an intuitive way to

manipulate input network data and adjust the detailed parameters

necessary for layout.

Biochemical Network Maps
To demonstrate the feasibility of the hybrid algorithms, we

applied them to 16 metabolic networks in KEGG [72] (Table 2),

which are converted into the CADLIVE format by the CADLIVE

Converter [73].

Results and Discussion

Biochemical Network Maps Drawn by the Hybrid
Algorithms

To investigate the performance of the hybrid layout algorithms

with different preprocessors, SA, KK, FR and GA, they are

applied to drawing of metabolic network maps with different sizes,

as shown in Figure 2. As reference methods, a random layout (R),

our original grid layout (GL), LucidDraw (LD), and Cerebral (CE)

are employed. In the random layout algorithm, nodes are

uniformly and randomly distributed in the given square area, as

expected. On the other hand, the node distributions by the hybrid

algorithms and reference ones show specific topological features,

such as heterogeneous distributions and modular structures,

respectively. Selection of the preprocessor algorithms, which

calculate a coarse layout that gives a relative position to each

node, affected the calculation speed and topology of the resultant

layouts.

Characterization of Hybrid Grid Layout Algorithms
First, the calculation speed for the hybrid algorithms was

evaluated as shown in Figure 3A. GL required lots of calculation

time and could practically not calculate any map with more than

several hundred nodes, while its topological performances were

very good (Figure 3B, C, D, E, F). LD, an improved version of

GL, calculated layouts faster than GL, but it was still slower than

the hybrid layout algorithms. The two hybrid grid layout

algorithms (FR and GA) were faster than CE or comparable to

it, indicating that the hybrid algorithms can greatly increase the

calculation speed. Although a random layout algorithm (R) was

very fast, the geometric performance was very poor (Figure 3B,

Table 2. Biochemical networks used by the proposed layout algorithms.

Number Network Nodes Edges

1 Glycan Biosynthesis and Metabolite 54 61

2 Nucleotide Metabolism 160 236

3 Metabolism of Other Amino Acids 201 246

4 Energy Metabolism 214 323

5 Biosynthesis of Other Secondary Metabolism 261 288

6 Metabolism of Cofactors and Vitamines 370 430

7 Metabolism of Terpenoids and Polyketides 414 467

8 Lipid Metabolism 425 558

9 Carbohydrate Metabolism 540 845

10 Amino Acid Metabolism 613 812

11 Xenobiotics Biodegradation and Metabolism 652 768

12 3+10 781 1058

13 2+3+10 922 1290

14 1+7+8+11 1430 1759

15 2+3+4+5+6+9+10 2456 3483

16 All combinational networks in 1–11 networks 4198 5682

doi:10.1371/journal.pone.0037739.t002
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C, D, E, F). The approximate pattern matching for KK, FR, and

GA was very fast, thus their calculation time depended on

selection of the preprocessors (Figure 4). FR presented the highest

calculation speed. On the other hand, SA was slowest and its

pattern matching required a long time. It is because the spectral

analysis provided highly heterogeneous node distributions

(Figure 2), which make it hard to find vacant grid points. The

speed of the pattern matching is suggested to be fast for the

homogeneous node distributions generated by FR (Figure 2,

Figure 4).

Second, the ratio of edge-edge crossings was characterized as

shown in Figure 3B. R indicated the largest ratios (approximately

0.39) for all the networks (data not shown). The ratios of the edge-

edge crossings by FR and GA were less than that by LD. The

ratios by FR and CE were greatly reduced to a comparable level.

FR could greatly reduce the ratio of edge-edge crossings. Third,

Figure 2. The metabolic network maps drawn by hybrid grid layout algorithms. A: The nucleotide metabolism network maps (Nodes: 160,
Edges: 236). B: The amino acid and nucleotide metabolic network maps (Nodes: 922, Edges: 1290). Four types of the hybrid layout algorithms (SA, KK,
FR, and GA) are used. Random layout (R), our grid layout (GL), LucidDraw (LD), and Cerebral (CE) are employed as reference algorithms. Here, their
network maps are drawn by simple representation using circles and lines in the MATLAB program. GL in the network (B) does not build any network
map due to the calculation complexity.
doi:10.1371/journal.pone.0037739.g002
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the ratio of node-edge crossings was characterized as shown in

Figure 3C. For most of the networks, the ratios of node-edge

crossings by FR and GA were comparable to those by LD and CE.

Second, the ratio of edge-edge crossings was characterized as

shown in Figure 3B. R indicated the largest ratios (approx-

imately 0.39) for all the networks (data not shown). The ratios of

Figure 3. Characterization of hybrid layout algorithms. (A) calculation speed, (B) ratio of edge-edge crossings, (C) ratio of node-edge
crossings, (D) relative edge length, (E) connectivity F-measure, and (F) functional F-measure. Four types of the hybrid layout algorithms (SA, KK, FR,
and GA) are used. As reference methods, a random layout (R), our original grid layout (GL), LucidDraw (LD), and Cerebral (CE) are employed.
doi:10.1371/journal.pone.0037739.g003
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the edge-edge crossings by FR and GA were less than that by LD.

The ratios by FR and CE were greatly reduced to a comparable

level. FR could greatly reduce the ratio of edge-edge crossings.

Third, the ratio of node-edge crossings was characterized as

shown in Figure 3C. For most of the networks, the ratios of

node-edge crossings by FR and GA were comparable to those by

LD and CE.

Fourth, the relative edge length was characterized as shown in

Figure 3D. R indicated the largest length (approximately 0.52)

for all the networks (data not shown). For most of the networks, the

relative edge lengths by KK, FR, and GA were as short as that by

LD, while they were less than that by CE. KK, FR and GA

present a short relative edge length, showing well-balanced

layouts.

Fifth, the connectivity F-measure was evaluated as shown in

Figure 3E. R showed the lowest value for all the networks, as

had been expected. LD presented the highest connectivity F-

measure. For all the networks, the connectivity F-measures by FR

and GA were comparable to it and higher than those by CE,

respectively. Finally, the functional F-measure was evaluated in

terms of biologically functional modules annotated by KEGG

(Glycolysis, TCA cycle, Pentose phosphate, etc.), as shown in

Figure 3F. For most of the networks, the functional F-measures

by KK, FR and GA were higher than those by CE. GA presented

the highest functional F-measure. To visually demonstrate how

the drawn network maps by GA are related to biological

functions, the amino acid and nucleotide metabolism network

(the network of number 13 in the Table 2) was illustrated in

Figure 5. The nodes are marked by BNV2.0 in different colors

according to biological functions, clearly presenting biologically

related cluster structures. It presents the highest score (0.49) for

the functional F-measure.

In summary, selection of the preprocessor algorithms affected

the calculation speed and topology of the resultant layouts. The

calculation speeds of FR and GA are faster than other existing

methods. FR and GA show high or comparable performances for

the other topological measures compared with CE. GL and LD

present high performances for some topological measures, but

their calculation speeds are very slow.

Time Complexity of the Hybrid Layout Algorithms
The time complexity of the pattern matching and preprocessor

is estimated separately. When the entire area with N points (nodes)

is divided by axis-parallel lines into subsections with at most k

points, the number of stages which halves each subsection is no

greater than log2N½ �{ log2k½ �ƒ1zlog2

N

k
. Since all N points are

processed at every division stage, the time complexity to divide the

entire area into subsections with at most k points is:

O Nlog2

N

k

� �� �
;

and equals to O(Nlog2N) if k is independent of the number of

nodes N or constant. Since finding the best pattern matching for k

points for each subsection requires time proportional to k! and the

number of subsections is given by two to the power of the number

of depths of division stages, the total time complexity for pattern

matching is:

O 2
1zlog2

N
k :k!

	 

~O(N:k!)~O(N):

The time complexity for pattern matching of all N points is:

O(Nlog2NzN)~O(N log N):

On the other hand, time complexity of FR is O(N2). Therefore,

the total time complexity of the hybrid layout with FR is provided

by O(N2).

When the division number is large, i.e., the number of points

within each subsection (k) is small, the calculation speed for the

pattern matching is greatly enhanced as shown in Figure S2.

It is important to determine the division number so as to

Figure 4. Computational time of hybrid grid layout algorithms. Left panel: The calculation time required for the pattern matching with
respect to the number of nodes. Right panel: Time composition of the hybrid layouts calculating a network with 4198 nodes and 5682 edges (the
network of number 16 in the Table2).
doi:10.1371/journal.pone.0037739.g004
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enhance the calculation speed without losing readability of

graph layouts.

Comparison with a Non-Grid Layout Algorithm
We focus on the grid layouts, while many scientists would be

interested in the performance of fast, non-grid layout algorithms

that avoid the overlapping of node labels. As well as the proposed

hybrid layout algorithm, the Dwyer’s method consists of two

processes: the preprocessor and the subsequent algorithm to avoid

node-overlapping [45]. The Dwyer’s method employs a layout

adjustment algorithm instead of pattern-matching algorithms. The

layout adjustment by Dwyer et al. is known to be very fast. Its time

complexity is O(N log N) to produce a set of constraints necessary

for non-overlapping. An exponential time is theoretically required

Figure 5. An amino acid and nucleotide metabolism network map (Nodes: 922, Edges: 1290) drawn by BNV2.0. The node coordinates
are calculated by the hybrid layout algorithm (GA), which presents the best score (0.49) of the functional F-measure. There are 24 modules in the
map, where the nodes in each module are marked in different colors.
doi:10.1371/journal.pone.0037739.g005
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to solve the constraint satisfaction problem. Actually the problem

can quickly be solved when the number of overlapping nodes is not

extremely high. We compared the hybrid layout method with the

Dwyer’s method while using the same preprocessor algorithm (GA),

as shown in Text S1, Figure S8 and Figure S9. The proposed

hybrid layout algorithm was slower than the Dwyer’s method, but a

second-order fast algorithm. It is practically feasible enough. The

hybrid grid layout still takes an advantage in topological perfor-

mances (short relative edge length, high functional F-measure, well-

shaped outline), or orderly, well-balanced drawings.

Conclusions
In order to enhance the understanding or traceability of

biochemical networks it is practically important to avoid the

overlapping of node labels and to arrange them in a geometrically

aesthetic manner. Out of many algorithms, we focused on the grid

layout algorithms [22–25,42,43,56], because they arranged all the

nodes to geometrically aesthetic grid points to provide orderly and

balanced network map. The proposed hybrid grid layout algorithm

consists of a widely-used, non-grid, fast layout (preprocessor)

algorithm and an approximate pattern matching algorithm that

redistributes the resultant preprocessed nodes on square grid points,

while preserving the topological relationships among the nodes. To

demonstrate the outstanding performance of the hybrid grid layout

algorithm, it is compared with other existing grid layout methods

(GL, LD, and CE) in terms of the calculation time, edge-edge and

node-edge crossings, edge length, and connectivity and functional F-

measure. The hybrid layout algorithms FR and GA not only enhance

the calculation speed, but also improved geometric performances.

There can be many candidates of preprocessor algorithms, but

the investigation of all candidates is not practical. Four typical

algorithms (SA, KK, FR, and GA) are used to demonstrate the

feasibility of the hybrid grid layouts. Use of latest algorithms [60–

64] as the preprocessors would be a next task to investigate if

they further improve the performance of the hybrid layout

algorithms.
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