Bull. Kyushu Inst. Tech.
Pure Appl. Math. No. 63, 2016, pp. 15-26

MUTUALLY DEPENDENT DECISION PROCESSES MODELS

Toshiharu Fuita

Abstract

We introduce a new framework for dynamic programming called mutually dependent decision
processes (MDDPs). Each MDDPs model is constructed from two or more finite-stage deterministic
decision processes. At each stage, the reward in one process depends on the optimal values of the other
processes, whose initial state is determined by the current state and decision of the original process. We
formulate the MDDPs models and derive their mutually dependent recursive equations by dynamic
programming.

1. Introduction

Dynamic programming [1] is a powerful tool for solving various problems. How-
ever, it cannot be denied that plenty of problems which cannot be handled by dynamic
programming still exist. Here, we propose a novel framework of dynamic programming
theory that extends the applicability of dynamic programming methods. In this frame-
work, called mutually dependent decision processes (MDDPs), each MDDPs model is
constructed from at least two finite-stage deterministic decision processes. At each
stage, the reward in one process depends on the optimal values of the other processes.
The initial state is determined by the current state and the decision of the original
process. To some extent, the transition structure yielded by our models can be regarded
as a nonserial system [10, 2]. However, the emergence of a mutually dependent
structure through reward functions is an entirely novel concept. Here, the MDDPs
are newly constructed on a nonserial transition system.

Section 2 introduces our basic model involving two decision processes. Each
decision process is an ordinary additive process. We also introduce mutual dependency
and derive the mutually dependent recursive equations. Section 3 discusses the asso-
ciative reward systems, whose recursive equations are derived by an invariant embedding
technique. Section 4 formulates our general model. Specifically, we state the recursive
equations of the MDDPs with more than two processes and generalize the model
criteria.

Our models enable easier treatment of some classes of complex multi-stage decision
processes.

2. Basic model

In this section, we formulate our basic model of MDDPs. This model comprises
two additive decision processes; the main-process and sub-process. The main-process

16 Toshiharu Funta

P(xo) is formulated as follows:
Maximize r(xo,up) + r(xp,uy) + -+ r(xy_1,un—1) + re(xn)
subject to Xne1 = fxx (Xn,up) n=0,1,... . N—1
u, €eU(x,) n=0,1,....N—1
(N = N(xo,uo,x1,ui,...) =max{n:x, ¢ Ty} +1),

where

1. X is a nonempty finite set called the state space and Ty — X denotes the
terminal state set. The transition is terminated if x, € Tx. x, (€ X) repre-
sents the state of the process at time n, with n =0,1,..., N. The initial state
xo € X\Ty is specified at the beginning of the process.

2. U is a nonempty finite set called the decision space. u, (€ U) represents the
selected action at time n, with n=0,1,...,N — 1. The power set of U is
denoted by 2Y:

2V ={A4:a set| 4 c U}.
Furthermore, we denote a point-to-set valued mapping from X\Ty to 2Y\{¢}

by U. U(x), called the feasible decision space, represents the set of all feasible
actions in state x. Let G,(U) denote the graph of U(-):

G, (U) ={(x,u)|lue U(x),xe X\Tx}.

3. r:G,(U) — R is the reward function, where R = (—o0,o0). At each stage, an
action u selected in state x confers a reward r(x,u). The function rg: X — R
is the terminal reward function.

4. fyx: X x U — X is a deterministic transition law. If a process in state x
selects action u, it deterministically proceeds to the next state fyx(x,u).

Similarly, the sub-process Q(yo) is formulated as follows:
Maximize q(yo,v0) +q(y1,01) + -+ g(yn-1,08-1) + q6(¥n)
subject to Yn+1 ~ fyy(Ynyvn) n=0,1,....N—1
vpeV(yy) n=0,1,...,N—1
(N = N(yo,vo, y1,01,...) =max{n: y, ¢ Ty} + 1),

where
1’. Y is a nonempty finite set called the state space, and Ty = Y denotes the
terminal state set. The transition is terminated if y, € Ty. y, (€Y) repre-
sents the state of the process at time n, with n =0,1,..., N. The initial state
yo € Y\Ty is specified at the beginning of the process.

Mutually Dependent Decision Processes Models 17

2’. V is a nonempty finite set called the decision space. v, (e V) represents the
action chosen at time n, n =0,1,..., N — 1. Furthermore, we denote a point-
to-set valued mapping from Y\Ty to 2"\{#} by V. V(p), called the feasible
decision space, represents the set of all feasible actions in state y.

3. ¢q:G,(V)— R is the reward function. At each stage, an action v selected in
state y confers a reward ¢(y,v). The function g : Y — R is the terminal
reward function.

4'. fyy: Y xV — Y is a deterministic transition law.

We now introduce two transition laws that connect the state spaces X and Y:
fxleXU—>Y, fYXYXV—>X

The initial state of a sub-process problem is given by the transition fyy, which depends
on the state x, and decision u, of the main-process at time n. Conversely, the initial
state of a main-process problem is given by the transition fyy, which depends on the
state y, and decision v, of the sub-process at time n.

The rewards r and ¢ are then defined as follows:

q6(o) Yo = fxv(x,u) € Ty,

_ max J00) + -+ _1,0n—1) + = x,u) ¢ Ty,
r(x,u) = y”“:fw(ymvn)[CI(yo 0) q(yn-1,o8-1) +96(yn)] yo = fxv(x,u) ¢ Ty
vn €V ()
n=0,1,.... N—1

rG(xo) xo = fyx(y,v) € Ty,

q(y,v) = xwl:%%é%un)[r()(o,uo) + Aoy uv-) +re(xw)] xo = frx(y,0) € Tx.
I/,,GU(X,,)

n=0,1,.., N—1

In this fromulation, r(x,u) is the maximum value of the sub-process problem with the
corresponding initial state yy = fyy(x,u). In particular, when y, is a terminal state,
r(x,u) equals the terminal reward ¢g(yo). Similarly, ¢(y,v) is the maximum value of
the main-process problem with initial state xp = fyx(y,v). We assume a finite maxi-
mum length of all state sequences along the alternating processes.

The goal is to get the maximum value of the main-process problem P(xX;), where
Xo € X\Ty is a given initial state. This problem is denoted by (P,Q, Xo).

We now give recursive equations for (P,Q,Xj). Each process is an ordinary
additive decision process. Therefore, both processes are treated in the standard way
[3]. The optimal values v(xg) of the main-process with initial state xo € X are given by

v(x0) = rg(xo) xo € Ty,
v(xg) = max [F(x0,u0) + -+ r(xnv—1,un—1) + re(xy)] xo ¢ Ty,
xn+l:jXX(xl1~,un)
M,lEU(.’C”)
n=0,1,...,N—1

and the recursive equation is obtained as follows:

18 Toshiharu Funta

Recursive equation (main-process)
v(x) = rg(x) x €Ty,

0(x) = max [r(x.0) + o(frr(x0)] % T

Similarly, the optimal value w(yy) of the sub-process with initial states yoe Y is
computed as:

w(yo0) = g6(»o) yo€ Ty,
w(y) = max [g(yo,v0) +---+q(yn-1,on-1) +q6(yn)] o ¢ Ty.
Yue1=JvY (Y, 0n)
o€V ()
n=0,1,...,.N—1

and the recursive equation is given as follows:

Recursive equation (sub-process)

w(y) = q6(») yeTy,

w(3) = max [g(r.0) +w(fir ()] pETy.

Furthermore, specifying the reward functions r and ¢ as w and v respectively, we
obtain

(e, u) = w(fxy(x,u), q(y,0) = o(frx(y,0)).
These formulations are collected into the following theorem.

THEOREM 2.1. We have the following mutually dependent recursive equations.

v(x) = rg(x) xe Ty,
v(x) = ufengé)[w(fw(M u)) + v fxx (x,u))] x¢ Ty,
w(y) =qq(») yeTy,
W) = max [o(foe(30) + (i (0))] 2 é Ty,

The above recursive equations yield the desired optimal value v(Xy) of (P,Q,Xo).

Then, letting

my(x) € arggza)x[w(fxy(x, u)) + v(fxx (x,u))] x¢ Ty,

ny(y) € argmax(v(fyx (,0)) + wlfyy(y,0))] v ¢ Ty,

veV(y)

Mutually Dependent Decision Processes Models 19

we obtain a pair of optimal Markov policies (n}, 7}) for the target MDDPs problem

(Pa va())'

3. Associative reward

We now introduce associative reward systems into the MDDPs. The notations
are those of the preceding section, and sets C and D are subsets of R. We note that
decision process with additive reward system has an optimal solution in Markov policy
class [3]. However, a decision process with an associative reward system might yield no
optimal solution in the Markov policy class. By generalizing the policy class, we can
guarantee an optimal policy in any associative reward system [4, 5, 7, §].

In the main-process, Pa(x9) and Qu(yo) are respectively given as follows:

Pa(xo) Maximize r(xo,up) o r(x1,u1)o---or(xy-1,un-1) o rG(xy)
subject to x,41 = fyx(Xu,u,) n=0,1,..., N —1
o= (00,01,...,0n8 1) €ZX
(N = N(xo,up, x1,u,...) =max{n:x, ¢ Tx} +1),

where
5. 0:Cx C— C is a binary operator that satisfies the associative law:

ao(boc)=(aob)oc a,b,ce C.
We assume that there exists a left identity element A in C:
loa=a aeD.

6. 0,: X" - U, n=0,1,...,N — 1 is an nth general decision function that gives
decision u, = g,(x0,x1,...,X,) € U(x,) at time n. Therefore, each decision at
time n depends on the sequence of states up to time n. The sequence o =
(00,01,...,0n-1) is called a general policy and the set of all general policies is
denoted by 2.

Qa(y0) Maximize ¢(yo,v0) ® g(y1,v1) - @ q(yn-1,un-1) ® 4G(VN)
subject to yur1 ~ fyy(Yn,on) n=0,1,...,N—1
7= o715 7n1) €T
(N = N(yo, v, y1,01,...) =max{n: y, ¢ Ty} + 1),

where

5. e:Dx D — D is a binary operator satisfying the associative law. We assume
that D contains a left identity element .

20 Toshiharu Funra

6. y,: Y™ - U n=0,1,...,N—1 is an nth general decision function that
gives decision v, = y,(yo, ¥1,-..,Vu) € V(yu) at stage n. The set of all general
policies is denoted by I

The reward functions are given as follows:

q6(yo) Yo = fxy(x,u) €Ty,
r(x,u) = max [q(yo,v0) ® -0 g(yn-1,0n-1) @ g6 (¥N)] Yo = fxv(x,u) ¢ Ty,
Ver:}’n+l:/YY(yn:vn)
n=0,1,.... N—
r6(xo) xo = frx(y,v) € T,
q(y,v) = max [r(xo,up) 0 -+~ or(xn-1,un-1) orG(xn)] X0 = frx(y,v) ¢ Tx.
”ezvxr(x)+11:.fXI/\Y/(x{1= ”n)
n=0,1,.... N—

We now introduce the recursive equations of (Pa,Qa,Xo). First we imbed the
main-process problem P4 (xg) into the following problem with a parameter 1 € C and its
optimal value is denoted by V(xp,4) as follows:

V(x0,4) = Ao rg(xo) xoe Ty, LeC,
V(xo,4) = max [Lor(xp,up)o---or(xy_1,un_1) o rg(xy)] xo¢ Ty, LeC.
an,x,(,; I]:f}(/)\(l(x{,.u,,)
n=0,1,...,N—

Similarly, we consider the following imbedded problem with a parameter x € D for the
sub-process with initial state yp € ¥ and optimal value function W.

W (yo, 1) = e qe(yo) voeTy, ueD,
W (yo,) = max (e g(yo,v0) e - oq(yn_i,un—1)®qG(yn)] yo¢ Ty, peD.
V€ Fﬁi’rgrll:f)’](,(j’in Uu)

The recursive equations of the imbedded problems are obtained as follows [6, 8]:

Recursive Equation (Imbedded Main-process)

V(x,2) = Aorg(x) xeTy, LeC,
(1) V(x,A) = m{ajl(x)[V(fXX(x, u), Aor(x,u))] x¢ Ty, LeC.

Recursive Equation (Imbedded Sub-process)

W(y,u) = peqs(y) yeTy, peD,
(2) W(y,/l) :Ulglg'();)[W(fYY(y7U)7u.q(yav))] yéTY7IUED

These formulations are collected into the following theorem.

Mutually Dependent Decision Processes Models 21

THEOREM 3.1. The mutually dependent recursive equations for (Pa,Qpu,Xo) are
given by

Vi(x,A) = Aorg(x) xeTy, LeC,
B V)= max [V{fuln). ko W (s 0)] x# Ty AeC
W(y,p) = peqe(y) yeTy, ueD,
(4) W(yvﬂ) :vrenlil();)[W(fYY(yav)7ﬂ. V(fYX(y’ULi))} y¢ TYHUED~

The optimal value of (Pa,Qa,Xo) is given by V(Xp,A).

PROOF. It is easy to show that V(xp,4) and W(yo,4) are the optimal values of
the original main-process problem Pa(xp) and original sub-process problem Qa (o),
respectively. Thus, from the definition of the reward functions, we have r(x,y) =
W (fxy(x,u),) and ¢(y,v) = V(fyx(y,v),4). Therefore, Egs. (1) and (2) are obviously
equivalent to Eqgs. (3) and (4), respectively. O

Moreover, letting

n;(xa A’) € arggza')X[V(fXX(xv u)v;L © W(fXY(xa u)a/j))] X ¢ TX7 reC

and

n’;,(y,,u) € argII'/I(la)X[W(fYy(y,U>,ﬂ. V(fYX(% U)ai))] y ¢ TY7 HE D7
veV(y

we obtain a pair of parameterized optimal Markov policies (7}, n}) for the imbedded
MDDPs.

Optimal general policies ¢* = {o;,0/,..., 08} and »* = {y5,7],...,vy_1} for
(Pa,Qa,Xo) are then constructed from (n}y,n}) by the following procedures.

PROCEDURE A. Let xo = Xy and execute Procedure B with xq.

PROCEDURE B (Input: initial state xo). Let Ao =4 and put
ay(x0) = 7y (X0, 40).
Next, let x; = fxx(xo0,05(x0)), 41 = 4o o ¥(x0,0;(x0)) and put

oy (x0,x1) = wy(x1,41).

22 Toshiharu Funra

Generally, for n=1,2,3,... such that (x,xi,...,x,1) € (X\Tx)",

Xn = .fXX(xnfla O-;zk—l(xov Xlyenny xnfl))a
In = A1 01(Xp_1,0,_ (X0, X1, .., Xu—1)),
G (X0, X1,y Xn) = Ty (X, An).
For each state sequence xg,X1,...,X, (m=0,1,...) generated in this procedure, if
vo = fxy(Xm, 0 (x0,x1,...,X,)) 18 not a terminal state, then execute Procedure C

with yy.
ProceDURE C (Input: initial state yg). Let g, =g and put
70 (v0) = 7y (Yo, o)
For n=1,2,3,... such that (yo, y1,-..,yu1) € (Y\Ty)",
Yn = Jry(Yn1: 7,100, 215 Yn))

/ln - ,Un71 ° l](J/n—laV;:fl(J’Oa Yi,-- '7yn71))7

In (Y0, Y1y vy Yn) = Ty (Vs)

For each state sequence yo,yi,..., m (m=0,1,...) generated in this procedure,
if xo = fyx(Ym, (Yo, ¥1,...,¥m)) 1s not a terminal state, then execute Procedure B
with xg.

Note that Procedures B and C are recursively executed until the terminal state is
reached.

4. General model

In this section, we generalize the above model to more than two decision
processes. Furthermore, all objective functions are functions of an associative reward,
and each reward function of one process is a function of the optimal values of the other
decision processes. The first process Pj(xp) (xo € X1\71) and the ith process P;(xo,c)
(xo € X\T;, ce D;, i=2,3,...,m) are respectively given by

Py (x0) Maximize g (r;(xo,uo) o1 r1(x1,u1) o1 -+ oy ri(xy—1,un—1) o1 k1(xn))

subject to x,41 = fii(xp,u,) n=0,1,... N—1

o1 = (010,011, - - -, Oy (n-1)) € 21

(N = N(xq,up,x1,ui,...) =max{n:x, ¢ T} + 1),

Mutually Dependent Decision Processes Models 23

Pi(xo, ¢) Maximize g;(c,ri(xo,uo) o; ri(X1,u1) 0; - - - 0; ri(Xn_1, Un—1) 0; ki(xn))
subject to x,41 = fi(xp,uy) n=0,1,...,.N—1
o = (00,011, ...,0qn-1)) € Z;

(N = N(xo,uo,x1,u1,...) =max{n:x, ¢ Ti} +1),

where the components of the ith process (i=1,2,...,m) are defined as follows:
i. X; (a nonempty finite set) is the state space and 7; = X; denotes the terminal
state set.
ii. U; (a nonempty finite set) is the decision space. u, (¢ U;) represents the
selected action at time n, with n =0,1,...,N — 1. Furthermore, we denote a

point-to-set valued mapping from X;\7; to 2Y\{¢} by U;. Uj(x) is called the
feasible decision space.

iii. The functions r; : G.(U;) — D; and k; : X; — D; are the reward and terminal
reward functions, respectively, where D; < R.

iv. fi:Xix U; — X; is a deterministic transition law.

v. The operator o; : D; x D; — D; is an associative binary operator:

ao;(bojc)=(ao;b)o;c a,b,ceD;.
The binary operator is assumed to have a left identity element e;:
ejoja=a aeD;.

The function g; : D; — R is a utility function.

Vi. o : Xi’“rl — U, n=0,1,...,N — 1 is the nth general decision function. The
sequence g; = (0i, i1, - .. ,0;n-1)) is called a general policy and the set of all
general policies is denoted by 2.

The optimal values of P(xg) (xo € X1\71) and P;(x¢,¢) (xo € X\Tj, ce D;, i=2,3,...,
m) are denoted by Vi(x) and V;(xy, ¢), respectively. Especially, if x(is a terminal state
of the ith process, we have

Vi(x0) = g1(k1(x0)), Vi(xo,¢) = gi(c, ki(x0)) i=23,...,m.
The following transition laws connect the state space X; to state space X;:
fi XixUi— X, i,j=1,2,....mi#]
Then, the reward function for the ith process is given by
ri(x,u) = Ri(x,u, Vi(fi(x,u), Va(fo(x,u), co(x,u)), ...,
Viet(fii—y (x, 1), i1y (X, 1)), Vit (i) (X, 1), Ciginy (X, 1)), - - -
Vin(fim (3, 1), Cim(x, 1)) i=1,2,...,m,

24 Toshiharu Funta

where
R :G(U)xR" ' =D, i=12...,m,
¢ G(U;) — D, i=1,2,...,m; j=2,3,...,m;i+#j.

We assume a finite maximum length of all state sequences along the recursive processes.
The aim is to get the maximum value of P;(X), where Xy € X;\T) is a given initial
state. This problem is denoted by ({P:}!",,Xo).

The recursive equations are induced by the following imbedded problems, where W;
denotes the optimal value function of the imbedded ith process problem. Fori=1, W;
is defined as follows:

Wi(x0, 2) = g1 (701 kit (o)) e T, Ae Dy,
Wi(xo, 4) = max [91(2 01 71(x0,u0) 01 - - o1 i (XN -1, Un-1) 01 K1 (xn))]
01 €21, Xps1 =11 (Xn, tn)
n=0,1,.... N—1 xo ¢ T, A€ Dy,
and for i =2,3,...,m,
VV,‘(X(), Caj') = gi(cai Oj ki(x())) Y0 € T'i’ re D,
Wi(xo,¢,2) = b ma);()[gi(C,/loi ri(Xo,uo) 0 -+ 0 ri(N1, un—1) ©i ki(xn))]
Gi €2, Xpt1=1ii(Xn, Uy
n=0.1,...N-1 xo ¢ T}, 2 eD;.

LeEMMA 4.1. The imbedded ith process problems are solved by the following recursive
equations. For i =1, we have

Wi(x,4) = g1(4A o1 ki(x)) xeTy, Ae Dy,
(5) Wi(x,4) = mc.;:lm[Wl(ﬁl(x,u),)bo] ri(x,u))] x¢ Ty, Ae Dy.
ue Uy (x

and for i=2,3,...,m,

m(x7ca}*) :gi(C7)~Oi kl(x)) X € T'[, AED[,
(6) Wi(x,c,A) = mgzc)[l/l/i(ﬁi(x, u), ¢, Ao;ri(x,u))) x¢T;, LeD;.

Proor. Given that ¢ is constant through all stages in the ith process P;(xo,c)
(i=2,3,...,m), Egs. (5) and (6) are essentially equivalent. Therefore, it is sufficient
to show that Eq. (5) holds. Furthermore, although P;(xy) appears superficially dif-
ferent from Pa(xp) (or Qa(y0)) in the previous section, Eqs. (1) and (5) are of the
same form. Therefore, the truth of Eq. (5) can be demonstrated as described in [6].

O

Mutually Dependent Decision Processes Models 25

THEOREM 4.1. We have the following mutually dependent recursive equations.

Wl(x,/l):gl(lol k](x)) XGT],;LEDl,

W](X,/l)z 211??>[W1(f11(x,u),/101Rl(x,u, Wz, W3,...,I/Vm))] X¢T1,/l€D1,
u 1(x

Wi(x,¢,4) = gi(e, 4o ki(x)) xeT;, ue D,

i=2,3....,m,

Wi(x,c,A) = max [Wi(fi(x,u),Ao; Ri(x,u, Wi, Wa, ...,

ue U(x)

VVi717VVi+17"~7 VVm))} X¢Tj,;LEDi

i=23,....,m,

where
Wy = Wi (fa(x,u),er), W; = W;(fii(x,u), cij(x,u),e) j=2,3,....m.
The optimal value of ({P;}",X0) is given by Wi(Xo,e).
PrOOF. Since
Vi(fir(x,u)) = Wh(fa(x,u), er)
and
Vi(fii(x,u), ci(x,u)) = Wil fii(x,u), cij(x, u), e;) j=23,...,m

are hold, we have

ri(x,u) = Ry (x,u, Wa, Wi, ..., W),

ri(x,u) = Ri(x,u, Wy, Wa, ..., Wist, Wity oo, W) i=23...,m.
Thus, the result follows directly from Lemma 4.1. O

We remark that the optimal general policy for ({P;}",,Xo) is similarly constructed
to ¢* and y* in Section 3.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
23654038, 15K05004.

References

[1] R. E. Bellman, Dynamic Programming, NIJ: Princeton Univ. Press, 1957.

[2] U. Bertelé and F. Brioschi, Nonserial Dynamic Programming, Academic Press, New York, 1972.

[3] T. Fujita, Re-examination of Markov Policies for Additive Decision Process, Bulletin of Informatics
and Cybernetics, 29 (1997), 51-65.

26

[4]
[5]

(7]
(8]

(9]

(10]
(1]

Toshiharu Fuita

T. Fujita and K. Tsurusaki, Stochastic Optimization of Multiplicative Functions with Negative
Value, Journal of Operations Research Society of Japan, 41 (1998), 351-373.

T. Fujita, On policy classes in dynamic programming theory, Proceedings of the 9th Bellman
Continuum International Workshop on Uncertain System and Soft Computing, Series of Information
& Management Sciences, 2 (2002), 39-43.

S. Iwamoto, Associative dynamic programs, Journal of Mathematical Analysis and Applications,
201 (1996), 195-211.

S. Iwamoto, K. Tsurusaki and T. Fujita, On Markov policies for minimax decision processes, Journal
of Mathematical Analysis and Applications, 253 (2001), 58-78.

S. Iwamoto, T. Ueno and T. Fujita, Controlled Markov Chains with Utility Functions, Eds. H.
Zhenting, J. A. Filar and A. Chen, Markov Processes and Controlled Markov Chains, Chap. 8, 135-148,
Kluwer, 2002.

A. Kira, T. Ueno and T. Fujita, Threshold probability of non-terminal type in finite horizon Markov
decision processes, Journal of Mathematical Analysis and Applications, 386 (2012), 461-472.

G. L. Nemhauser, Introduction to Dynamic Programming, Wiley, New York, 1966.

M. Sniedovich, Dynamic Programming, Marcel Dekker, Inc. NY, 1992.

Toshiharu Fujita
Graduate School of Engineering
Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail: fujita@mns.kyutech.ac.jp

