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Abstract
This thesis deals with the problem of finding a maximum vertex-subset S of a given a

graph such that the subgraph induced by S is r-regular and the pairwise distance among

the connected components in S is at least d for a prescribed degree r and a distance d.

The problem includes a lot of famous graph optimization problems as special cases such as

Matching, Independent Set, Induced Matching, Two Factor, Hamiltonian Cycle, Induced

Longest Cycle problems. In this thesis we mainly consider two variants of the problem,

Maximum r-Regular Induced Subgraph and Distance-d Independent Set problems, and we

focus on the tractability / intractability, and the approximability / inapproximability of the

problems on subclasses of graphs.

(1) First, we study the Maximum r-Regular Induced Subgraph problem, whose goal is to

find a maximum vertex-subset S of an unweighted given graph G such that the subgraph

G[S ] induced by S is r-regular for a prescribed degree r ≥ 0. We also consider a variant of

the problem which requires G[S ] to be r-regular and connected. Both problems are known

to be NP-hard even to approximate for a fixed constant r. In this thesis, we thus consider

the problems whose input graphs are restricted to some special classes of graphs. (i) We first

show that the problems are still NP-hard to approximate even if r is a fixed constant and the

input graph is either bipartite or planar. On the other hand, (ii) both problems are tractable

for graphs having tree-like structures, as follows. We give linear-time algorithms to solve the

problems for graphs with bounded treewidth; we note that the hidden constant factor of our

running time is just a single exponential of the treewidth. Furthermore, (iii) both problems

are solvable in polynomial time for chordal graphs.

(2) Next, we study the Distance-d Independent Set problem, which is a generalization of

the Independent Set problem (IS for short). A distance-d independent set for an integer d ≥ 2

in an unweighted graph G = (V, E) is a subset S ⊆ V of vertices such that for any pair of

vertices u, v ∈ S , the distance between u and v is at least d in G. Given an unweighted graph G

and a positive integer k, the Distance-d Independent Set problem (DdIS for short) is to decide
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whether G contains a distance-d independent set S such that |S | ≥ k. D2IS is identical to

the original IS. Thus D2IS isNP-complete even for planar graphs, but it is in P for bipartite

graphs and chordal graphs. In this thesis we investigate the computational complexity of

DdIS, its maximization version MaxDdIS, and its parameterized version ParaDdIS(k), where

the parameter is the size of the distance-d independent set: (i) We first prove that for any

ε > 0 and any fixed integer d ≥ 3, it is NP-hard to approximate MaxDdIS to within a factor

of n1/2−ε for bipartite graphs of n vertices, and for any fixed integer d ≥ 3, ParaDdIS(k)

is W[1]-hard for bipartite graphs. Then, (ii) we prove that for every fixed integer d ≥

3, DdIS remains NP-complete even for planar bipartite graphs of maximum degree three.

Furthermore, (iii) we show that if the input graph is restricted to chordal graphs, then DdIS

can be solved in polynomial time for any even d ≥ 2, whereas DdIS is NP-complete for

any odd d ≥ 3. Also, we show the hardness of approximation of MaxDdIS and theW[1]-

hardness of ParaDdIS(k) on chordal graphs for any odd d ≥ 3.



Acknowledgments

First, and foremost, I am deeply indebted to my academic advisor, Professor Miyano, for be-

ing enthusiastic supervisor. I am grateful to Eiji for his perceptiveness, and his deep insights

over the year on my research. He provided me a great source of inspiration. Eiji have been

extremely generous in giving me a great deal of his valuable time and sharing with me his

ideas and insights. This research would have been impossible without his help.

I thank Professor Yuichi Asahiro and Professor Takehiro Ito for fruitful collaborations and

discussions in the areas related to this thesis. Furthermore, I thank Professor Katsuhiro Inoue,

Professor Eitaku Nobuyama, and Professor Akihiro Fujiwara for many valuable comments.

1



CONTENTS

1 Introduction 1

2 Preliminaries 8

3 Regular Induced Subgraphs 13

3.1 Introducion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Our problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Hardness of Approximating r-MaxRICS . . . . . . . . . . . . . . . . . . . 19

3.2.1 Reduction for r = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Proof of Condition (C1) . . . . . . . . . . . . . . . . . . . . . . . 24

Proof of Condition (C2) . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Reduction for r ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Improved Hardness of Approximating r-MaxRICS . . . . . . . . . . . . . 27

3.3.1 Reduction for r = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Proof of Condition (C1) . . . . . . . . . . . . . . . . . . . . . . . 30

Proof of Condition (C2) . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Reduction for r ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Further Improved Hardness Inapproximability of r-MaxRIS . . . . . . . . . 34

2



CONTENTS 3

3.4.1 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Graphs with Bounded Treewidth . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Algorithm for r-MaxRIS . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 Algorithm for r-MaxRICS . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Definitions and key lemma . . . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Algorithm for r-MaxRICS . . . . . . . . . . . . . . . . . . . . . . 54

3.6.3 Algorithm for r-MaxRIS . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Distance d independent set 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Conclusion 75



Chapter 1

Introduction

This thesis deals with the problem of finding a maximum vertex-subset S of a given a graph

such that the subgraph induced by S is r-regular and the pairwise distance among the con-

nected components in S is at least d for a prescribed degree r and a distance d. The problem

includes a lot of famous graph optimization problems as special cases such as Matching,

Independent Set, InducedMatching, Two Factor, Hamiltonian Cycle, Induced Longest Cy-

cle problems. In this thesis we mainly consider two variants of the problem, Maximum

r-Regular Induced Subgraph and Distance-d Independent Set problems, and we focus on

the tractability / intractability, and the approximability / inapproximability of the problems

on subclasses of graphs.

The problem Maximum Induced Subgraph for a fixed property Π is the following class

of problems [17, GT21]: Given a graph G, find a maximum vertex-subset such that its in-

duced subgraph of G satisfies the property Π. The problem Maximum Induced Subgraph

is very universal; a lot of graph optimization problems can be formulated as Maximum In-

duced Subgraph by specifying the property Π appropriately. For example, if the property Π

is “bipartite,” then we wish to find the largest induced bipartite subgraph of a given graph

G. Therefore, Maximum Induced Subgraph is one of the most important problems in the

fields of graph theory and combinatorial optimization, and thus has been extensively studied
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CHAPTER 1. INTRODUCTION 2

over the past few decades. Unfortunately, however, it has been shown that Maximum In-

duced Subgraph is intractable for a large class of interesting properties. For example, Lund

and Yannakakis [30] proved that Maximum Induced Subgraph for natural properties, such

as planar, outerplanar, bipartite, complete bipartite, acyclic, degree-constrained, chordal and

interval, are all NP-hard even to approximate.

Furthermore, one of the most important problems is the Independent Set problem, i.e., the

property Π is “induced subgraph is an independent set.” The input of Independent Set is an

unweighted graph G = (V, E) and a positive integer k ≤ |V |. An independent set of G is a

subset S ⊆ V of vertices such that, for all u, v ∈ S , the edge {u, v} is not in E. Independent

Set asks whether G contains an independent set S having |S | ≥ k. Independent Set is among

the first problems ever to be shown to beNP-complete, and has been used as a starting point

for proving the NP-completeness of other problems [17]. Moreover, it is well known that

Independent Set remains NP-complete even for substantially restricted graph classes such

as cubic planar graphs [16], triangle-free graphs [34], and graphs with large girth [32].

In Maximum Induced subgraph problem, the distance of each vertices in each induced sub-

graph is at least 2. Furthermore, the problems when r = 0 correspond to the well studied

Maximum Independent Set problems. In this thesis, we consider a generalization of Maxi-

mum Independent Set, named the Maximum r-Regular Induced Subgraph problem and the

Distance-d Independent Set problem. Maximum r-Regular Induced Subgraph problem for

an integer r ≥ is r-regular and distance at least 2. Furthermore, Distance-d Independent Set

problem for an integer d ≥ 2 is 0-regular and distance at least d.

In Chapter 3, we consider Maximum r-Regular Induced Subgraph problem.

Maximum r-Regular Induced Subgraph (r-MaxRIS)

Input: A graph G = (V, E).

Goal: Find a maximum vertex-subset S ⊆ V such that the subgraph

induced by S is r-regular.

The optimal value (i.e., the number of vertices in an optimal solution) to r-MaxRIS for a

graph G is denoted by OPTRIS(G). Consider, for example, the graph G in Fig. 3.7(a) as an
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input of 3-MaxRIS. Then, the three connected components induced by the white vertices

have the maximum size of 12, that is, OPTRIS(G) = 12. Notice that r-MaxRIS for r = 0

and r = 1 correspond to the well-studied problems maximum independent set [17, GT20] and

maximum induced matching [9], respectively.

(a) (b)

Fig. 1.1 Optimal solutions for (a) 3-MaxRIS and (b) 3-MaxRICS.

We also study the following variant which requires the connectivity property in addition to

the regularity property. (This variant can be seen as the special case of the problem maximum

induced connected subgraph for a fixed property Π [17, GT22].)

Maximum r-Regular Induced Connected Subgraph (r-MaxRICS)

Input: A graph G = (V, E).

Goal: Find a maximum vertex-subset S ⊆ V such that the subgraph

induced by S is r-regular and connected.

The optimal value to r-MaxRICS for a graph G is denoted by OPTRICS(G). For the graph

G in Fig. 3.7(b), which is the same as one in Fig. 3.7(a), the subgraph induced by the white

vertices has the maximum size of six for 3-MaxRICS, that is, OPTRICS(G) = 6. Notice that

r-MaxRICS for r = 0, 1 is trivial for any graph; it simply finds one vertex for r = 0, and

one edge for r = 1. On the other hand, 2-MaxRICS is known as the longest induced cycle

problem which is NP-hard [17, GT23].

We prove that the inapproximability result of n1/6−ε in the case r ≥ 3 can be improved to
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n1/2−ε.Also, we show the following parameterized complexity of r-ParaRICS by use similar

with a small mofdification from the gap-preserving reduction to an fpt reduction.

Furthermore, we study the problems r-MaxRIS and r-MaxRICS from the viewpoint of

graph classes: Are they tractable if input graphs have special structures? We first show

that r-MaxRIS and r-MaxRICS are NP-hard to approximate even if the input graph is either

bipartite or planar. Then, we consider the problems restricted to graphs having “tree-like”

structures. More formally, we show that both r-MaxRIS and r-MaxRICS are solvable in

linear time for graphs with bounded treewidth; we note that the hidden constant factor of

our running time is just a single exponential of the treewidth. Furthermore, we show that the

two problems are solvable in polynomial time for chordal graphs. The formal definitions of

these graph classes will be given later, but it is important to note that they have the following

relationships (see, e.g., [8]): (1) there is a planar graph with n vertices whose treewidth

is Ω(
√

n); and (2) both chordal and bipartite graphs are well-known subclasses of perfect

graphs. As a brief summary, our results show that both problems are still intractable for

graphs with treewidth Ω(
√

n), while they are tractable if the treewidth is bounded by a fixed

constant. Since our problems are intractable for bipartite graphs, they are intractable for

perfect graphs, too; but the “chordality” makes the problems tractable.

It is known that any optimization problem that can be expressed by Extended Monadic

Second Order Logic (EMSOL) can be solved in linear time for graphs with bounded treewidth [11].

However, the algorithm obtained by this method is hard to implement, and is very slow since

the hidden constant factor of the running time is a tower of exponentials of unbounded height

with respect to the treewidth [28]. On the other hand, our algorithms are simple, and the hid-

den constant factor is just a single exponential of the treewidth.

Our main results are summarized in the following list:

(i) Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r ≥ 3 and bipartite graphs of maximum degree r+1, r-MaxRIS and

r-MaxRICS admit no polynomial-time approximation algorithm within a
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factor of ρ(n) unless P = NP.

(ii) For every fixed constant r ≥ 0, r-MaxRIS is solvable in linear time for

graphs with bounded treewidth.

(iii) For every fixed constant r ≥ 0, r-MaxRICS is solvable in linear time for

graphs with bounded treewidth.

(iv) Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r, 3 ≤ r ≤ 5, r-MaxRIS and r-MaxRICS for planar graphs admit

no polynomial-time approximation algorithm within a factor of ρ(n) unless

P = NP.

(v) For every integer r ≥ 0, r-MaxRIS can be solved in time O(n2) for chordal

graphs, where n is the number of vertices in a given graph.

(vi) For every integer r ≥ 0, r-MaxRICS is solvable in polynomial time for

chordal graphs.

In Chapter 4, we consider a generalization of IS, named the Distance-d Independent Set

problem (DdIS for short). A distance-d independent set for an integer d ≥ 2 in an unweighted

graph G = (V, E) is a subset S ⊆ V of vertices such that for any pair of vertices u, v ∈ S , the

distance between u and v is at least d in G. For a fixed constant d ≥ 2, DdIS considered in

this thesis is formulated as the following class of problems [1]:

Distance-d Independent Set (DdIS)

Input: An unweighted graph G = (V, E) and a positive integer k ≤ |V |.

Question: Does G contain a distance-d independent set of size k or more?

The maximization version of DdIS can be also defined:
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Maximum Distance-d Independent Set (MaxDdIS)

Input: An unweighted graph G = (V, E).

Output: A distance-d independent set of the maximum size.

The problem parameterized by the solution size k is as follows:

Parameterized Distance-d Independent Set (ParaDdIS(k))

Input: An unweighted graph G = (V, E).

Parameter A positive integer k ≤ |V |.

Question: Does G contain a distance-d independent set of size k or more?

It is important to note that D2IS is identical to the original IS, and DdIS is equivalent to IS

on the (d − 1)th power graph Gd−1 of the input graph G as pointed out in [1].

Even when d = 2, DdIS (i.e., D2IS) is NP-complete, and thus it would be easy to show

that DdIS is NP-complete in general. Fortunately, however, it is known that if the input

graph is restricted to, for example, bipartite graphs [22], chordal graphs [18], circular-arc

graphs [19], comparability graphs [20], and many other classes [31, 29, 7], then D2IS admits

polynomial-time algorithms. Furthermore, Agnarsson, Damaschke, Halldórsson [1] show

the following tractability of DdIS by using the closure property under taking power [14, 15,

35]:

Fact 1 ([1]) Let n denote the number of vertices in the input graph G. Then, for every integer

d ≥ 2, DdIS is solvable in O(n) time for interval graphs, in O(n(log log n + log d)) time for

trapezoid graphs, and in O(n) time for circular-arc graphs.

This tractability suggests that if we restrict the set of instances to, for example, subclasses

of bipartite graphs and chordal graphs, then DdIS for a fixed d ≥ 3 might be also solvable
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efficiently. On the other hand, however, we have a “negative” fact that if G is planar/bipartite,

then the (d − 1)th power graph Gd−1 is not necessarily planar/bipartite. From those points of

view, this thesis investigates DdIS, namely, our work focuses on the computational complex-

ity of DdIS and/or the inapproximability of MaxDdIS on (subclasses of) bipartite graphs and

chordal graphs.

Our main results are summarized in the following list:

(i) For every fixed integer d ≥ 3, DdIS is NP-complete even for bipartite

graphs.

(ii) For any ε > 0 and fixed integer d ≥ 3, it is NP-hard to approximate

MaxDdIS to within a factor of n1/2−ε for bipartite graphs of n vertices.

(iii) For every fixed integer d ≥ 3, ParaDdIS(k) is W[1]-hard for bipartite

graphs.

(iv) For every fixed integer d ≥ 3, DdIS remains NP-complete even for planar

bipartite graphs of maximum degree three.

(v) For every fixed even integer d ≥ 2, DdIS is in P for chordal graphs.

(vi) For every fixed odd integer d ≥ 3, DdIS is NP-complete for chordal

graphs.

(vii) For any ε > 0 and fixed odd integer d ≥ 3, it is NP-hard to approximate

MaxDdIS to within a factor of n1/2−ε for chordal graphs of n vertices.

(viii) For every fixed odd integer d ≥ 3, ParaDdIS(k) isW[1]-hard for chordal

graphs.



Chapter 2

Preliminaries

For the maximization problems, an algorithm ALG is called a σ-approximation algorithm and

the approximation ratio of ALG is σ if OPT (G)/ALG(G) ≤ σ holds for every input G, where

ALG(G) and OPT (G) are the number of vertices of obtained subsets by ALG and the number

of vertices of an optimal solution, respectively.

Let MaxP1 and MaxP2 be maximization problems. A gap-preserving reduction, say, Γ,

from MaxP1 to MaxP2 comes with four parameter functions, g1, α, g2 and β. Given an in-

stance x of MaxP1, the reduction Γ computes an instance y of MaxP2 in polynomial time such

that if OPTMaxP1(x) ≥ g1(x), then OPTMaxP2(y) ≥ g2(y), and if OPTMaxP1(x) < g1(x)/α(|x|),

then OPTMaxP2(y) < g2(y)/β(|y|), where OPTMaxP1(x) and OPTMaxP2(y) denote the objective

function values of optimal solutions to the instances x and y, respectively. Note that α(|x|)

is the approximation gap, i.e., the hardness factor of approximation for MaxP1 and the gap-

preserving reduction Γ shows that there is no β(|y|) factor approximation algorithm for MaxP2

unless P = NP (see, e.g., Chapter 29 in [36]).

A parameterized problem is a pair (Q, k) where Q ⊆ Σ∗ is a decision problem over some

alphabet Σ, and k : Σ∗ → N is a parameterization of the problem, assigning a parameter to

each instance of Q. An algorithm is fixed-parameter tractable or fpt if it has a running time

at most f (k) ·nc for some computable function f and a constant c, where n is the input length

8
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and k is the parameter assigned to the input. Given two parameterized problems (Q1, k1)

and (Q2, k2) over the alphabet Σ, an fpt-reduction from (Q1, k1) to (Q2, k2) is a function g :

Σ∗ → Σ∗, computable by an fpt-algorithm, such that I ∈ Q1 if and only if g(I) ∈ Q2 and

k2(g(I)) ≤ f (k1(I)) for some computable function f , for every I ∈ Σ∗.

Now, we define graph theoretic notations that need in this thesis. The definitions of graph

classes are from [8] and [21]:

Regular. A graph is r-regular if the degree of every vertex is exactly r.

Distance. For a pair of vertices u and v, the length of a shortest path from u to v, i.e.,

the distance between u and v is denoted by distG(u, v), and the diameter G is defined as

diam(G) = maxu,v∈V distG(u, v).

Planar Graph. An undirected graph G is planar if and only if it does not contain a subdivi-

sion of K5 or K3,3.

Bipartite graph. An undirected graph G = (V, E) is bipartite if its vertices can be partitioned

into two disjoint independent sets V = S 1 + S 2, i.e., every edge has one endpoint in S 1 and

the other in S 2.

Split graph. An undirected graph G = (V, E) is defined to be split if there is a partition V =

S + K of its vertex set into an independent set S and complete set K. There is no restriction

on edges between vertices of S and vertices of K. In general, the partition V = S + K of

split graph will not be unique; neither will S (resp.K) necessarily be a maximal independent

set(resp.clique).

Chrdal graph and Cliquetree. A graph G is chordal if every cycle in G of length at least

four has at least one chord, which is an edge joining non-adjacent vertices in the cycle [8].

(See Fig. 3.19(a) as an example.)
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v1, v2, v3, v4, v5

(a)                                                           (b)

v1

v2

v3v4

v5

v7

v8 v9 v10

v6

v3, v4, v10v4, v5, v7

v4, v7, v9v7, v8

v1, v2, v3, v6

Fig. 2.1 (a) Chordal graph G and (b) its clique tree T .

Let KG be the set of all maximal cliques in a graph G, and let Kv ⊆ KG be the set of all

maximal cliques that contain a vertex v ∈ V(G). It is known that G is chordal if and only if

there exists a tree T = (KG, E) such that each node of T corresponds to a maximal clique in

KG and the induced subtree T [Kv] is connected for every vertex v ∈ V(G) [5]. (See Fig. 3.19

as an example.) Such a tree is called a clique tree of G, and it can be constructed in linear

time [5]. Indeed, a clique tree of a chordal graph G is a tree-decomposition of G.

Treewidth and Tree-decomposition. Let G be a graph with n vertices. A tree-decomposition

of G is a pair ⟨{Xi | i ∈ VT },T ⟩, where T = (VT , ET ) is a rooted tree, such that the following

four conditions (1)–(4) hold [6]:

(1) each Xi is a subset of V(G), and is called a bag;

(2)
∪

i∈VT
Xi = V(G);

(3) for each edge (u, v) ∈ E(G), there is at least one node i ∈ VT such that u, v ∈ Xi; and

(4) for each vertex v ∈ V(G), the set {i ∈ VT | v ∈ Xi} induces a connected component in T .

We will refer to a node in VT in order to distinguish it from a vertex in V(G). The width of a

tree-decomposition ⟨{Xi | i ∈ VT },T ⟩ is defined as max{|Xi| − 1 : i ∈ VT }, and the treewidth of

G is the minimum k such that G has a tree-decomposition of width k.

In particular, a tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of G is called a nice tree-decomposition

if the following four conditions (5)–(8) hold [4]:

(5) |VT | = O(n);

(6) every node in VT has at most two children in T ;
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(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr; and

(8) if a node i ∈ VT has only one child j, then one of the following two conditions (a) and

(b) holds:

(a) |Xi| = |X j| − 1 and Xi ⊂ X j (such a node i is called a forget node); and

(b) |Xi| = |X j| + 1 and Xi ⊃ X j (such a node i is called an introduce node.)

Figure 2.2(b) illustrates a nice tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of the graph G in

Fig. 2.2(a) whose treewidth is three. It is known that any graph of treewidth k has a nice

tree-decomposition of width k [4]. Since a nice tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of a

graph G with bounded treewidth can be found in linear time [4], we may assume without

loss of generality that G and its nice tree-decomposition are both given.

v6 v7
v2

v8v4

v3

v5v1

(a) G

v6 v7
v2

v8

v3

v1

(c) Gi

v1,v2,v3,v4

v1,v2,v3,v4 v1,v2,v3,v4

v1,v2,v4

v1,v2,v4,v5

v1,v2,v3

v2,v3

v2,v3

v2,v3,v6

v2,v3

v2,v7

v2,v7,v8

v2

i

0

(b) ⟨{Xi | i ∈ VT },T ⟩

Fig. 2.2
(a) Graph G, (b) a nice tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of G, and (c) the
subgraph Gi of G for the node i ∈ VT .

Each node i ∈ VT corresponds to a subgraph Gi of G which is induced by the vertices

that are contained in the bag Xi and all bags of descendants of i in T . Therefore, if a node

i ∈ VT has two children l and r in T , then Gi is the union of Gl and Gr which are the
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subgraphs corresponding to nodes l and r, respectively. Clearly, G = G0 for the root 0

of T . For example, Fig. 2.2(c) illustrates the subgraph Gi of the graph G in Fig. 2.2(a)

which corresponds to the node i ∈ VT in Fig. 2.2(b). By definitions (3) and (4) of a tree-

decomposition, we have the following proposition.

Proposition 1 For each node i ∈ VT , there is no edge joining a vertex in Gi \ Xi and one in

G \Gi.



Chapter 3

Regular Induced Subgraphs

3.1 Introducion

Recall from Chapter 1 that the problem Maximum Induced Subgraph (MaxIS) for a fixed

property Π is the following class of problems [17, GT21]: Given a graph G, find a maximum

vertex-subset such that its induced subgraph of G satisfies the property Π. The problem

MaxIS is very universal; a lot of graph optimization problems can be formulated as MaxIS

by specifying the property Π appropriately. For example, if the property Π is “bipartite,”

then we wish to find the largest induced bipartite subgraph of a given graph G. Therefore,

MaxIS is one of the most important problems in the fields of graph theory and combinatorial

optimization, and thus has been extensively studied over the past few decades. Unfortunately,

however, it has been shown that MaxIS is intractable for a large class of interesting properties.

For example, Lund and Yannakakis [30] proved that MaxIS for natural properties, such as

planar, outerplanar, bipartite, complete bipartite, acyclic, degree-constrained, chordal and

interval, are all NP-hard even to approximate.

13
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(a) (b)

Fig. 3.1 Optimal solutions for (a) 3-MaxRIS and (b) 3-MaxRICS.

3.1.1 Our problems

In this chapter, we consider another natural and fundamental property, that is, the regularity

of graphs. A graph is r-regular if the degree of every vertex is exactly r ≥ 0. We study the

following variant of MaxIS:

Maximum r-Regular Induced Subgraph (r-MaxRIS)

Input: A graph G = (V, E).

Goal: Find a maximum vertex-subset S ⊆ V such that the subgraph

induced by S is r-regular.

The optimal value (i.e., the number of vertices in an optimal solution) to r-MaxRIS for a

graph G is denoted by OPTRIS(G). Consider, for example, the graph G in Fig. 3.7(a) as an

input of 3-MaxRIS. Then, the three connected components induced by the white vertices

have the maximum size of 12, that is, OPTRIS(G) = 12. Notice that r-MaxRIS for r = 0

and r = 1 correspond to the well-studied problems maximum independent set [17, GT20] and

maximum induced matching [9], respectively.

We also study the following variant which requires the connectivity property in addition to

the regularity property. (This variant can be seen as the special case of the problem maximum

induced connected subgraph for a fixed property Π [17, GT22].)
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Maximum r-Regular Induced Connected Subgraph (r-MaxRICS)

Input: A graph G = (V, E).

Goal: Find a maximum vertex-subset S ⊆ V such that the subgraph

induced by S is r-regular and connected.

The optimal value to r-MaxRICS for a graph G is denoted by OPTRICS(G). For the graph

G in Fig. 3.7(b), which is the same as one in Fig. 3.7(a), the subgraph induced by the white

vertices has the maximum size of six for 3-MaxRICS, that is, OPTRICS(G) = 6. Notice that

r-MaxRICS for r = 0, 1 is trivial for any graph; it simply finds one vertex for r = 0, and

one edge for r = 1. On the other hand, 2-MaxRICS is known as the longest induced cycle

problem which is NP-hard [17, GT23].

Furthermore, we consider the parameterized variant of r-MaxRICS:

Parameterized r-Regular Induced Connected Subgraph (r-ParaRICS)

Input: A graph G = (V, E) and an integer k.

Parameter: k

Problem: Decide whether there is a subset of vertices S ⊆ V with |S | ≥

k such that the induced subgraph G[S ] on S is connected and

r-regular.

3.1.2 Related Work

Both r-MaxRIS and r-MaxRICS include a variety of well-known problems, and hence they

have been widely studied in the literature. Below, let n be the number of vertices in a given

graph and assume that P , NP.

For r-MaxRIS, as mentioned above, two of the most well-studied and important problems

must be maximum independent set (i.e., 0-MaxRIS) and maximum induced matching (i.e.,

1-MaxRIS). Unfortunately, however, they are NP-hard even to approximate. Håstad [23]

proved that 0-MaxRIS cannot be approximated in polynomial time within a factor of n1/2−ε

for any ε > 0. Orlovich, Finke, Gordon and Zverovich [33] showed the inapproximability
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of a factor of n1/2−ε for 1-MaxRIS for any ε > 0. Moreover, for any fixed integer r ≥ 3,

Cardoso, Kamiński and Lozin [10] proved that r-MaxRIS is NP-hard.

For r-MaxRICS, that is, the variant with the connectivity property, Kann [27] proved that

longest induced cycle (i.e., 2-MaxRICS) cannot be approximated within a factor of n1−ε for

any ε > 0.

A related problem is finding a maximum subgraph which satisfies the regularity property

but is not necessarily an induced subgraph of a given graph. This problem has been also

studied extensively: for example, it is known to be NP-complete to determine whether there

exists a 3-regular subgraph in a given graph [17, GT32]. Furthermore, Stewart proved that it

remains NP-complete even if the input graph is either planar [24, 25] or bipartite [26].

3.1.3 Contributions

First we study the problemr-MaxRICS in general graphs. we prove that the inapproximabil-

ity result of n1/6−ε in the case r ≥ 3 can be improved to n1/2−ε.Also, we show the following

parameterized complexity of r-ParaRICS by use similar with a small mofdification from the

gap-preserving reduction to an fpt reduction.

Furthermore, we study the problems r-MaxRIS and r-MaxRICS from the viewpoint of

graph classes: Are they tractable if input graphs have special structures? We first show

that r-MaxRIS and r-MaxRICS are NP-hard to approximate even if the input graph is either

bipartite or planar. Then, we consider the problems restricted to graphs having “tree-like”

structures. More formally, we show that both r-MaxRIS and r-MaxRICS are solvable in

linear time for graphs with bounded treewidth; we note that the hidden constant factor of

our running time is just a single exponential of the treewidth. Furthermore, we show that the

two problems are solvable in polynomial time for chordal graphs. The formal definitions of

these graph classes will be given later, but it is important to note that they have the following

relationships (see, e.g., [8]): (1) there is a planar graph with n vertices whose treewidth

is Ω(
√

n); and (2) both chordal and bipartite graphs are well-known subclasses of perfect
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graphs. As a brief summary, our results show that both problems are still intractable for

graphs with treewidth Ω(
√

n), while they are tractable if the treewidth is bounded by a fixed

constant. Since our problems are intractable for bipartite graphs, they are intractable for

perfect graphs, too; but the “chordality” makes the problems tractable.

It is known that any optimization problem that can be expressed by Extended Monadic

Second Order Logic (EMSOL) can be solved in linear time for graphs with bounded treewidth [11].

However, the algorithm obtained by this method is hard to implement, and is very slow since

the hidden constant factor of the running time is a tower of exponentials of unbounded height

with respect to the treewidth [28]. On the other hand, our algorithms are simple, and the hid-

den constant factor is just a single exponential of the treewidth.

Our main results are summarized in the following list:

(i) Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r ≥ 3 and bipartite graphs of maximum degree r+1, r-MaxRIS and

r-MaxRICS admit no polynomial-time approximation algorithm within a

factor of ρ(n) unless P = NP.

(ii) For every fixed constant r ≥ 0, r-MaxRIS is solvable in linear time for

graphs with bounded treewidth.

(iii) For every fixed constant r ≥ 0, r-MaxRICS is solvable in linear time for

graphs with bounded treewidth.

(iv) Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r, 3 ≤ r ≤ 5, r-MaxRIS and r-MaxRICS for planar graphs admit

no polynomial-time approximation algorithm within a factor of ρ(n) unless

P = NP.

(v) For every integer r ≥ 0, r-MaxRIS can be solved in time O(n2) for chordal

graphs, where n is the number of vertices in a given graph.

(vi) For every integer r ≥ 0, r-MaxRICS is solvable in polynomial time for

chordal graphs.
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3.1.4 Notation

Let G = (V, E) be a graph; we sometimes denote by V(G) and E(G) the vertex set and edge

set of G, respectively. By (u, v) we denote an edge with endpoints u and v. For a vertex u,

the set of vertices adjacent to u in G is denoted by N(G, u) or simply by N(u), and (u,N(u))

denotes the set {(u, v) | v ∈ N(u)} of edges. Let the degree of a vertex u be denoted by d(G, u)

or deg(u), i.e., deg(u) = |N(u)|. For a subset V ′ of V(G), we denote by G[V ′] the subgraph

of G induced by V ′; recall that a subgraph of G is said to be induced by V ′ if it contains

all edges in E(G) whose endpoints are both in V ′. We denote simply by G \ V ′ the induced

subgraph G[V \ V ′]. For a subgraph G′ of G, let G \G′ = G \ V(G′).

A (simple) path P of length ℓ from a vertex v0 to a vertex vℓ is represented as a sequence

of vertices such that P = ⟨v0, v1, · · · , vℓ⟩, and |P| denotes the length of P. A cycle C of

length ℓ is similarly denoted by C = ⟨v0, v1, · · · , vℓ−1, v0⟩, and |C| denotes the length of C. A

chord of a path (cycle) ⟨v0, · · · , vℓ⟩ (⟨v0, · · · , vℓ−1, v0⟩) is an edge between two vertices of the

path (cycle) that is not an edge of the path (cycle). A path (cycle) is chordless if it contains

no chords, i.e., an induced cycle must be chordless. Let G1, G2, · · ·, Gℓ be ℓ graphs and

also let vi and v′i be two vertices in Gi for 1 ≤ i ≤ ℓ. Then, ⟨G1,G2, · · · ,Gℓ⟩ denotes a graph

G = (V(G1)∪V(G2)∪· · ·∪V(Gℓ), E(G1)∪E(G2)∪· · ·∪E(Gℓ)∪{(v′1, v2), (v′2, v3), · · · , (v′ℓ−1, vℓ)}).

That is, two adjacent graphs Gi−1 and Gi are connected by only one edge (v′i−1, vi) and G

roughly forms a path, which will be called path-like structure. Similarly, ⟨G1,G2, · · · ,Gℓ,G1⟩

roughly forms a cycle, which will be called cycle-like structure.

Let MaxP1 and MaxP2 be maximization problems. A gap-preserving reduction, say, Γ,

from MaxP1 to MaxP2 comes with four parameter functions, g1, α, g2 and β. Given an in-

stance x of MaxP1, the reduction Γ computes an instance y of MaxP2 in polynomial time such

that if OPTMaxP1(x) ≥ g1(x), then OPTMaxP2(y) ≥ g2(y), and if OPTMaxP1(x) < g1(x)/α(|x|),

then OPTMaxP2(y) < g2(y)/β(|y|), where OPTMaxP1(x) and OPTMaxP2(y) denote the objective

function values of optimal solutions to the instances x and y, respectively. Note that α(|x|)

is the approximation gap, i.e., the hardness factor of approximation for MaxP1 and the gap-
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preserving reduction Γ shows that there is no β(|y|) factor approximation algorithm for MaxP2

unless P = NP (see, e.g., Chapter 29 in [36]).

3.2 Hardness of Approximating r-MaxRICS

In this section we give the proofs of Theorem 1 and Corollary 1. The hardness of approxi-

mating r-MaxRICS for r ≥ 3 is shown via a gap-preserving reduction from Longest Induced

Cycle problem, i.e., 2-MaxRICS. Consider an input graph G = (V(G), E(G)) of 2-MaxRICS

with n vertices and m edges. Then, we construct a graph H = (V(H), E(H)) of r-MaxRICS.

First we show the n1/6−ε inapproximability of 3-MaxRICS and then the same n1/6−ε inapprox-

imability of the general r-MaxRICS problem for r ≥ 4.

Let OPT2(G) (and OPTr(H), respectively) denote the number of vertices of an optimal so-

lution for G of 2-MaxRICS (and H of r-MaxRICS, respectively). Let V(G) = {v1, v2, · · · , vn}

of n vertices and E(G) = {e1, e2, · · · , em} of m edges. Let g(n) be a parameter function of the

instance G. Then we provide the gap preserving reduction such that (C1) if OPT2(G) ≥ g(n),

then OPTr(H) ≥ 4(n3 + 1) × g(n), and (C2) if OPT2(G) < g(n)
n1−ε for a positive constant ε, then

OPTr(H) < 4(n3 + 1) × g(n)
n1−ε . As we will explain it, the number of vertices in the reduced

graph H is O(n6). Hence the approximation gap is n1−ε = Θ(|V(H)|1/6−ε) for any constant

ε > 0. By redefining |V(H)| = n, we obtain the n1/6−ε inapproximability of r-MaxRICS.

Theorem 1 3-MaxRICS cannot be approximated in polynomial time within a factor of n1/6−ε

for any constant ε > 0 unless P = NP,where n is the number of vertices in the input graph.

Furthermore, by using additional ideas to the reduction, we show the same inapproxima-

bility of r-MaxRICS for any fixed integer r ≥ 4.

Corellary 1 For any fixed integer r ≥ 4, r-MaxRICS cannot be approximated in polynomial

time within a factor of n1/6−ε for any constant ε > 0 unless P = NP,where n is the number

of vertices in the input graph.
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The proofs of Theorem 1 and Corollary 1 will be given in Subsection 3.2.1 and 3.2.2.

3.2.1 Reduction for r = 3

Without loss of generality, we can assume that there is no vertex whose degree is one in the

input graph G of 2-MaxRICS. The reason is that such a vertex does not contribute to any

feasible solution, i.e., a cycle, of 2-MaxRICS and can be removed from G.

v1 v2

v5

v3 v4

e1

e3

e2 e4

e5

e6

G

H

H1

H3
H4

H2

H5

u1,2 u2,1

u1,3

u3,1

u3,4
u4,3

u4,5

u5,4

u5,2

u2,5

u2,4

u4,2

α1

α3

α4

α2

α5

γ1

γ2

P3,4,5

P1,2,5

P1,3,4

P2,1,3

P2,5,4

P2,4,3

P1,2,4 P4,2,5

P2,4,5

Fig. 3.2 Input graph G (left) and reduced graph H (right)

The constructed graph H consists of (i) n subgraphs, H1 through Hn, which are associated

with n vertices, v1 through vn, respectively, and (ii) m edge sets, E1 through Em, which are

associated with m edges, e1 through em, respectively. Now we only give a rough outline of

the construction and explain the details later. See Figure 3.2. If an input instance G of 2-

MaxRICS is the left graph, then the reduced graph H of 3-MaxRICS is illustrated in the right

graph, where some details are omitted due to the space. Since the graph G has five vertices,

v1 through v5, the graph H has five subgraphs, H1 through H5, each of which is illustrated by
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Hi

ui,i1

ui,i2

ui,i3

ui,i4

αi
Pi1,i,i4

P 1

i1,i,i4

P 2
i1,i,i4

P n3

i1,i,i4

ui,ideg(vi)

β1

i1,i,i4

β2

i1,i,i4

β3

i1,i,i4

w
p,1
i1,i,i4

w
p,3
i1,i,i4

w
p,2
i1,i,i4

γ
p
i1,i,i4

Pi2,i,i3

Pi1,i,i2

P
p
i1,i,i4

Pi1,i,ideg(vi)

Pi3,i,i4

Fig. 3.3 Subgraph Hi

a dotted oval. One can see that each Hi roughly consists of
(

deg(vi)
2

)
= deg(vi)(deg(vi) − 1)/2

path-like structures. For example, since two vertices v1 and v2 are connected via the edge e1

in G, u1,2 in H1 is connected to u2,1 in H2. Similarly to e2 through e6, there are five edges,

(u1,3, u3,1), (u3,4, u4,3), (u2,4, u4,2), (u2,5, u5,2), and (u4,5, u5,4) in H. The edge (γ1, γ2) between

path-like structures labeled by P1,2,5 in H2 and by P3,4,5 in H4 plays an important role as

described later.

(i) Here we describe the construction of the ith subgraph Hi in detail for every i (1 ≤ i ≤

n). See Figure 3.3, which illustrates Hi. Suppose that the set of vertices adjacent to vi is

N(vi) = {vi1 , vi2 , . . . , videg(vi)
}, where i j ∈ {1, 2, · · · n} \ {i} for 1 ≤ j ≤ deg(vi). The subgraph

Hi = (V(Hi), E(Hi)) includes deg(vi) vertices, ui,i1 through ui,ideg(vi)
that correspond to the

vertices adjacent to vi, and deg(vi)(deg(vi) − 1)/2 path gadgets, Pi1,i,i2 , Pi1,i,i3 , · · ·, Pi1,i,ideg(vi)
,

Pi2,i,i3 , · · ·, Pideg(vi)−1,i,ideg(vi)
, where two vertices ui,i j and ui,ik are connected via the path gadget
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ui,j uj,i

Hi Hj

ui,i2

ui,i3

ui,i4

uj,j2

uj,j3
γ

(j−1)n2
+1

i2,i,i3

γ
(j−1)n2

+2

i2,i,i3

γ
(j−1)n2

+3

i2,i,i3

γ
(i−1)n2

+1

j2,j,j4

uj,j4

γ
(i−1)n2

+1

j3,j,j4

Fig. 3.4 Ek connecting Hi and H j

Pi j,i,ik for vi j , vik ∈ N(vi). As an example, in Figure 3.3, the top vertex ui,i1 and the bottom ui,i4

are connected via Pi1,i,i4 . Each path gadget Pi j,i,ik includes n3 subgraphs, P1
i j,i,ik

through Pn3

i j,i,ik
,

where, for each 1 ≤ p ≤ n3,

V(Pp
i j,i,ik

)= {wp,1
i j,i,ik
,wp,2

i j,i,ik
,wp,3

i j,i,ik
, γ

p
i j,i,ik
},

E(Pp
i j,i,ik

)= (γp
i j,i,ik
, {wp,1

i j,i,ik
,wp,2

i j,i,ik
,wp,3

i j,i,ik
})

∪{(wp,1
i j,i,ik
,wp,2

i j,i,ik
), (wp,2

i j,i,ik
,wp,3

i j,i,ik
)}.

Note that the above number “n3” of the subgraphs Pp
i j,i,ik

’s comes from the upper bound of

the total number of path gadgets: Each Hi contains deg(vi)(deg(vi) − 1)/2 path gadgets and

thus, in total, deg(vi)(deg(vi) − 1)/2 × n path gadgets in H1 through Hn, which is bounded

above by n3. Thus, we want to prepare n3 subgraphs Pp
i j,i,ik

’s (or, more precisely, we want to

prepare n3 γ-vertices which are defined later).

In the path gadget Pi j,i,ik , two vertices w1,1
i j,i,ik

and wn3,3
i j,i,ik

are respectively identical to the

vertices ui,i j and ui,ik prepared in the above. For 2 ≤ p ≤ n3, contiguous two subgraphs

Pp−1
i j,i,ik

and Pp
i j,i,ik

are connected by one edge (wp−1,3
i j,i,ik
,wp,1

i j,i,ik
) except for a pair Pq−1

i j,i,ik
and Pq

i j,i,ik
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for some q: the two subgraphs Pq−1
i j,i,ik

and Pq
i j,i,ik

are connected by a path of length four

⟨wq−1,3
i j,i,ik
, β1

i j,i,ik
, β2

i j,i,ik
, β3

i j,i,ik
,wq,1

i j,i,ik
⟩. This q can be arbitrary since we just want to insert the

path of length four into the path gadget, and as an example, q = 3 in the path gadget Pi1,i,i4 in

Fig. 3.3. Finally, we prepare a special vertex αi, and αi is connected to all {β1
ii,i,ik
, β2

ii,i,ik
, β3

ii,i,ik
}’s.

In the following, α1, α2, · · ·, αn are called α-vertices. Similarly, β-vertices and γ-vertices

mean the vertices labeled by β and γ, respectively. Since each path gadget has 4n3 + 3 ver-

tices (two of which are shared with other path gadgets), the total number of vertices in Hi

is

|V(Hi)| =
deg(vi)(deg(vi) − 1)(4n3 + 1)

2
+ deg(vi) + 1,

i.e., there are O(n5) vertices in Hi.

(ii) Next we explain construction of the edge sets E1 through Em. Now suppose that ek

connects vi with v j for i , j. Also suppose that the sets of vertices adjacent to vi and v j are

N(vi) = { j, i2, · · · , ideg(vi)} and N(v j) = {i, j2, · · · , jdeg(v j)}, respectively. Then, (ui, j, u j,i) ∈ Ek

where ui, j ∈ V(Hi) in the ith subgraph Hi and u j,i ∈ V(H j) in the jth subgraph H j. Further-

more, by the following rules, γ-vertices in the path gadgets are connected: See Figure 3.4.

No vertex other than ui, j in the path gadget Px,i,y for x = j or y = j in Hi is connected to any

vertex in H j. Similarly, no vertex other than u j,i in the path gadget Ps, j,t for s = i or t = i

in H j is connected to any vertex in Hi. For a path gadgets Px,i,y in Hi, where j < {x, y} we

prepare a set of edges as follows. Let D = mink∈{i, j}{deg(vk)(deg(vk) − 1)/2 − (deg(vk) − 1)}.

• In Px,i,y, there are n3 γ-vertices, γ1
x,i,y through γn3

x,i,y. Consider D γ-vertices among those

n3 γ-vertices, the (( j− 1)n2 + 1)th vertex γ( j−1)n2+1
x,i,y through the (( j− 1)n2 +D)th vertex

γ
( j−1)n2+D
x,i,y .

• Next take a look at the jth subgraph H j and the path gadgets Ps, j,t’s for i < {s, t}. Note

that the number of such gadgets is deg(v j)(deg(v j) − 1)/2 − (deg(v j) − 1) and hence at

least D. Then, consider the ((i − 1)n2 + 1)th vertex γ(i−1)n2+1
s, j,t in each Ps, j,t. Here, the
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term “+1” in the superscript of γ comes from the assumption that j1 = i; if jk = i, we

consider the ((i − 1)n2 + k)th γ-vertex.

• Then, we can choose any function f which assigns each element in {1, . . . ,D} to a

string s, j, t such that i < {s, t} and it holds f (b) , f (c) if b , c. Finally, we connect

γ
( j−1)n2+k
x,i,y with γ(i−1)n2+1

f (k) for 1 ≤ k ≤ D. It is important that the path gadget Px,i,y is

connected to Ps, j,t via only one edge.

Each subgraph Hi has O(n5) vertices and thus the total number of vertices |V(H)| = O(n6).

Clearly, this reduction can be done in polynomial time. In the next two subsections, we show

that both conditions (C1) and (C2) are satisfied by the above reduction.

Proof of Condition (C1)

Without loss of generality, suppose that a longest induced cycle in G is C∗ = ⟨v1, v2, · · · , vℓ, v1⟩

of length ℓ, and thus OPT2(G) = |C∗| = ℓ ≥ g(n). Then we select the following subset S of

4(n3 + 1) × ℓ vertices and the induced subgraph G[S ]:

S = V(Pℓ,1,2) ∪ {α1} ∪ V(P1,2,3) ∪ {α2}

∪ · · · ∪ V(Pℓ−1,ℓ,1) ∪ {αℓ}.

For example, take a look at the graph G illustrated in Figure 3.2 again. One can see that

the longest induced cycle in G is ⟨v1, v3, v4, v2, v1⟩. Then, we select the connected subgraph

induced on the following set of vertices:

V(P2,1,3) ∪ {α1} ∪ V(P1,3,4) ∪ {α3}

∪V(P2,4,3) ∪ {α4} ∪ V(P1,2,4) ∪ {α2}

It is easy to see that the induced subgraph is 3-regular and connected. Hence, the reduction

satisfies the condition (C1).
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Kr−2 Kr−2 Kr−2

α

β1, β2, · · · , βr−2γp,1, γp,2, · · · , γp,r−2

β0 βr−1

Fig. 3.5 Modified path gadget in the proof of Corollary 1

Proof of Condition (C2)

We show that the reduction satisfies the condition (C2) by showing its contraposition. Sup-

pose that OPT3(H) ≥ 4(n3 + 1) · g(n)
n1−ε holds for a positive constant ε, and S ∗ is an optimal set

of vertices such that the subgraph H[S ∗] induced on S ∗ is connected and 3-regular. In the

following, one of the crucial observations is that we can select at most one path gadget from

each subgraph Hi into the optimal set S ∗ of vertices, and if a portion of the path gadget is

only selected, then the induced subgraph cannot be 3-regular.

(I) See Figure 3.3 again. Suppose for example that two path gadgets Pi1,i,i4 and Pi2,i,i3 are

selected, and put their vertices into S ∗. In order to make the degree of β-vertices three, we

need to also select αi. However, the degree of α1 becomes six. This implies that we can

select at most three β-vertices from each subgraph Hi.

(II) From the above observation (I), we consider the case that at most two of β1
j,i,k, β

2
j,i,k,

and β3
j,i,k are selected for some i, j, k. Let us assume that we select β1

j,i,k and β2
j,i,k (β1

j,i,k and

β3
j,i,k, resp.) are put into S ∗, but β3

j,i,k (β2
j,i,k, resp.) is not selected. Then, the degree of β2

j,i,k

(β1
j,i,k and β3

j,i,k, resp.) is at most 2 even if we select αi, i.e., the induced subgraph cannot be

3-regular. By a similar reason, we cannot select only one of the β-vertices. Hence, if we

select β-vertices, all of the three β-vertices in one path gadget must be selected.

As for w-vertices, a similar discussion can be done: For example, if we select wp,1
j,i,k and

wp,3
j,i,k for some i, j, k, p, but wp,2

j,i,k (γp
j,i,k, resp.) is not selected, then the degree of γp

j,i,k (wp,2
j,i,k,

resp.) is only 2. Thus, we need to select all the vertices of the part Pp
k,i, j if we select some
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vertices from it.

Combining two observations above, one can see that the edges connecting Pp−1
k,i, j and Pp

k,i, j,

or w-vertices and β-vertices are necessary to make the degrees of the vertices three. As a

result, we can conclude that if only a part of one path gadget is chosen, then the induced

subgraph obtained cannot be 3-regular.

(III) From (I) and (II), we can assume that if some vertices of a path gadget are selected

into S ∗, it means that all vertices of the path gadget are selected. For example, suppose that

Pi1,i,i4 is selected. Since the degree of the endpoint ui,i1 (ui,i4) of Pi1,i,i4 is only 2, we have to put

at least one vertex into S ∗ from another subgraph adjacent to Hi, say, a vertex u j,i in H j. This

implies that the induced subgraph H[S ∗] forms a cycle-like structure ⟨Hi1 ,Hi2 , · · · ,Hi j ,Hi1⟩

connecting Hi1 ,Hi2 , · · · ,Hi j ,Hi1 in order, where {i1, i2, · · · , i j} ⊆ {1, 2, · · · , n}.

We mention that such an induced subgraph H[S ∗] is 3-regular if and only if the correspond-

ing subgraph in the original graph G is an induced cycle. The if-part is clear by the discussion

of the previous section. Let us look at the induced subgraph H[V(P2,1,3)∪V(P1,3,4)∪V(P3,4,5)∪

V(P2,5,4) ∪ V(P1,2,5)] in the right graph H shown in Figure 3.2. Then, the induced subgraph

includes the edge (γ1, γ2) and thus the degrees of γ1 and γ4 are 4. The reason why the in-

duced subgraph cannot be 3-regular comes from the fact that the cycle ⟨v1, v3, v4, v5, v2, v1⟩

includes the chord edge (v1, v4) in the original graph G. The edges between γ-vertices are

placed because there is an edge between their corresponding vertices in G. As a result, the

assumption that H[S ∗] is an optimal solution, i.e., 3-regular, implies that the corresponding

induced subgraph in the original graph G forms a cycle ⟨vi1 , vi2 , · · · , vi j , vi1⟩.

Since the number of vertices in each path gadget is 4(n3 + 1), OPT2(G) ≥ g(n)
n1−ε holds by the

assumption OPT3(H) ≥ 4(n3 + 1) · g(n)
n1−ε . Therefore, the condition (C2) is also satisfied.

3.2.2 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to prove Corollary 1, i.e., the O(n1/6−ε)

inapproximability for r-MaxRICS for any fixed integer r ≥ 4.
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The proof is very similar to that of Theorem 1. The main difference between those proofs

is the structure of each path gadget. See Figure 3.8, which shows the modified path gadget.

(i) We replace each of γ-vertices in Figure 3.3 with the complete graph Kr−2 of r−2 vertices,

and then connect one γ-vertex in Hi and one γ-vertex in H j for i , j by a similar manner

to the reduction for the case r = 3. (ii) As for β-vertices, we prepare Kr−2 of r − 2 vertices,

say, β1, · · · , βr−2, and two vertices, say, β0 and βr−1, such that each of the two vertices β0

and βr−2 is adjacent to all the vertices in Kr−2. Then, all of the β-vertices are connected to

the α-vertex similar to the reduction for r = 3. Since the reduction requires n3 γ-vertices to

connect all the pairs of Hi’s, which is independent of the value of r, the path gadget consists

of ⌈ n3

r−2⌉ subgraphs, say, P1
j,i,k through P⌈n

3/(r−2)⌉
j,i,k . As a result, the total number of vertices in

the constructed graph remains O(n6). This completes the proof and thus we can obtain the

n1/6−ε inapproximability of the general r-MaxRICS problem for r ≥ 4.

3.3 Improved Hardness of Approximating r-MaxRICS

In this section we give the proof of Theorem 2. The hardness of approximating r-MaxRICS

for r ≥ 3 is shown via a gap-preserving reduction from MaxIS. First we show the O(n1/2−ε)-

inapproximability of 3-MaxRICS and then the same O(n1/2−ε)-inapproximability of the gen-

eral r-MaxRICS problem for any fixed integer r ≥ 4. Consider an input graph G = (V(G), E(G))

of MaxIS with n vertices. Then, we construct a graph H = (V(H), E(H)) of 3-MaxRICS with

(4n + 8) × n = 4n2 + 8n vertices.

Let OPT1(G) (and OPT2(H), respectively) denote the number of vertices of an optimal

solution for G of MaxIS (and H of 3-MaxRICS, respectively). Let V(G) = {v1, v2, · · · , vn} of

n vertices and E(G) = {e1, e2, · · · , em} of m edges. Let g(n) be a parameter function of the

instance G. Then we provide the gap-preserving reduction such that (C1) if OPT1(G) ≥ g(n),

then OPT2(H) ≥ (4n + 8) × g(n), and (C2) if OPT1(G) < g(n)
n1−ε for a positive constant ε, then

OPT2(H) < (4n + 8) × g(n)
n1−ε . As we will explain later, the number of vertices in the reduced
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graph H is O(n2). Hence the approximation gap is n1−ε = O(|V(H)|1/2−ε) for any constant

ε > 0.

Theorem 2 For any fixed integer r ≥ 3, r-MaxRICS on graphs of n vertices cannot be

approximated in polynomial time within a factor of n1/2−ε for any constant ε > 0 if P , NP.

3.3.1 Reduction for r = 3

ui,1,1 ui,2,1

ui,1,2

ui,1,3

ui,1,4

ui,2,2

ui,2,4
ui,2,3

ui,n,1

ui,n,2

ui,n,3

αi,1

γi,1

Hi,1

wi,1

βi

ui,n,4 wi,2 wi,3

wi,4

αi,2
γi,2

γi,3

γi,n

Hi,2

Hi,3

Fig. 3.6 Subgraph Hi

(1) The constructed graph H consists of n subgraphs, H1 through Hn, where every subgraph

Hi = (V(Hi), E(Hi)) is identical. Here we describe the construction of the ith subgraph Hi in

detail for some i (1 ≤ i ≤ n). Figure 3.14 illustrates Hi, which is further divided into three

subgraphs, Hi,1, Hi,2, and Hi,3.

(i) The leftmost subgraph Hi,1 forms a diamond-path, which is called a path gadget, and it

includes the following 4 × n = 4n vertices:

V(Hi,1) = {ui,1,1, ui,1,2, ui,1,3, ui,1,4} ∪ {ui,2,1, ui,2,2, ui,2,3, ui,2,4} ∪

· · · ∪ {ui,n,1, ui,n,2, ui,n,3, ui,n,4}
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For j = 1, 2, · · · , n, the subgraph induced on four vertices {ui, j,1, ui, j,2, ui, j,3, ui, j,4} is a diamond

graph, i.e., it has five edges, (ui, j,1, ui, j,2), (ui, j,1, ui, j,3), (ui, j,2, ui, j,3), (ui, j,2, ui, j,4) and (ui, j,3, ui, j,4).

For j = 1, 2, · · · , n − 1, ui, j,4 is connected to ui, j+1,1.

(ii) The middle subgraph Hi,2 is called a vertex gadget and it is a diamond graph including

4 vertices and 5 edges, i.e.,

V(Hi,2) = {wi,1, αi,1, βi,wi,2},

E(Hi,2) = {(wi,1, αi,1), (wi,1, βi), (αi,1, βi), (αi,1,wi,2), (βi,wi,2)}.

(iii) The leftmost subgraph Hi,3 is called a connector gadget and has the following 3 + n

vertices:

V(Hi,3) = {wi,3,wi,4, αi,2} ∪ {γi,1, γi,2, · · · , γi,n}

There are three edges (wi,3, αi,2), (αi,2,wi,4) and (wi,4,wi,3) in E(Hi,3). Furthermore, for j =

1, 2, · · · , n, the vertices αi,2 and wi,4 are connected to γi, j. Here, the subgraph induced on four

vertices {wi,3,wi,4, αi,2, γi, j} for every j is again a diamond graph.

(iv) The path gadget Hi,1 and the vertex gadget Hi,2 are connected by an edge (ui,n,4,wi,1)

and Hi,2 and the connector gadget Hi,3 are connected by an edge (wi,2,wi,3).

(2) Next we explain how we connect n subgraphs H1 through Hn. (i) The leftmost vertex

ui,1,1 in the ith subgraph Hi is connected to the rightmost n vertices γ1,i ∈ V(H1), γ2,i ∈ V(H2),

· · ·, γn,i ∈ V(Hn) for each i = 1, 2, · · · , n. (ii) If edge (vi, v j) ∈ E(G), then we add an edge

(βi, β j) for any pair i and j. Note that the induced graph G[{β1, β2, · · · , βn}] is identical to the

input graph G of MaxIS. This completes the reduction. It is clear that the reduction can be

done in polynomial time.

Just to make the above construction clear, see Figure 3.7. For example, if an input instance

G is illustrated in Figure 3.7-(a), then the reduced graph H is in Figure 3.7-(b), where some

details are omitted due to the space. (i) The leftmost vertex u1,1,1 in the top subgraph in

H is connected to the rightmost vertices γ1,1 in the top one, γ2,1 in the second one, and so

on. The vertex u5,1,1 in the bottom is connected to five vertices γ1,5 through γ5,5. (ii) For
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example, since two vertices v1 and v2 are connected by an edge (v1, v2) in G, the vertex β1

in the top vertex gadget H1,2 is connected to the vertex β2 in the second vertex gadget H2,2.

Also, according to an edge (v1, v5) in G, we add an edge (β1, β5) between H1,2 and H5,2.

Proof of Condition (C1)

Suppose that the graph G of MaxIS has the maximum independent set IS ∗ = {v1∗ , v2∗ , · · · , vk∗}

of size k, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n} and 1∗ < 2∗ < · · · < k∗. Also suppose that

OPT1(G) = |IS ∗| = k ≥ g(n) holds. Then we select the following subset S = S 1∗ ∪ S 2∗ ∪

· · · ∪ S k∗ of (4n + 8) × k ≥ (4n + 8) × g(n) vertices and the induced subgraph H[S ] from the

constructed graph H:

S 1∗ = V(H1∗,1) ∪ {α1∗,1,w1∗,1,w1∗,2, β1∗} ∪ {w1∗,3,w1∗,4, α1∗,2, γ1∗,2∗},

S 2∗ = V(H2∗,1) ∪ {α2∗,1,w2∗,1,w2∗,2, β2∗} ∪ {w2∗,3,w2∗,4, α2∗,2, γ2∗,3∗},
...

S k∗ = V(Hk∗,1) ∪ {αk∗,1,wk∗,1,wk∗,2, βk∗} ∪ {wk∗,3,wk∗,4, αk∗,2, γk∗,1∗}.

That is, for every i ∈ {1∗, 2∗, · · · , k∗}, all the 4n vertices in the path gadget Hi,1, one diamond

of 4 vertices in the vertex gadget Hi,2, and one diamond of 4 vertices in the connector gadget

Hi,3 are selected.
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Fig. 3.7 (a) graph G of MaxIS, and (b) reduced graph H from G

For example, take a look at the graph G illustrated in Figure 3.7 again. One can see that

the subset {v1, v3} is one of the maximum independent sets in G. Then, we set 1∗ = 1 and

2∗ = 3 and thus select the connected subgraph induced on the following set S of 8n + 16

vertices:
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S = V(H1,1) ∪ {α1,1,w1,1,w1,2, β1} ∪ {α1,2,w1,3,w1,4, γ1,3} ∪

V(H3,1) ∪ {α3,1,w3,1,w3,2, β3} ∪ {α3,2,w3,3,w3,4, γ3,1}

It is easy to see that the induced subgraph H[S ] is a diamond-cycle. It follows that H[S ] is

3-regular and connected. Hence, the reduction satisfies the condition (C1).

Proof of Condition (C2)

We show that the above reduction satisfies the condition (C2) by showing its contraposition,

i.e., if OPT2(H) ≥ (4n + 8) × g(n)
n1−ε , then OPT1(G) ≥ g(n)

n1−ε for a positive constant ε. Now

suppose that OPT2(H) ≥ (4n + 8) · g(n)
n1−ε holds for a positive constant ε, and S ∗ is an optimal

set of vertices such that the subgraph H[S ∗] induced on S ∗ is connected and 3-regular. Let

|S ∗| = (4n + 8) × k = (4n + 8) · ⌈ g(n)
n1−ε ⌉.

(1) Consider the ith subgraph Hi. For example, if we select 4n vertices in the path gadget

Hi,1, four vertices αi,1, w1,1, w1,2, βi in the vertex gadget Hi,2, and four vertices αi,2, wi,3,

wi,4, γi,i in the connector gadget Hi,3, then the subgraph induced on those 4n + 8 vertices is

3-regular and connected. Therefore, |S ∗| ≥ 4n + 8 always holds.

(2) Take a look at the ith path gadget Hi,1. The degree of every vertex, say, u, in Hi,1

except for the head vertex ui,1,1 and the tail vertex ui,n,4 is 3. Thus, if S ∗ includes the vertex

u such that deg(u) = 3 in Hi,1, then S ∗ includes the whole set V(Hi, 1) of 4n vertices, i.e,

V(Hi,1) ⊆ S ∗ holds. Furthermore, the neighbor vertex wi,1 of the tail ui,n,4 also must be in S ∗

since deg(ui,n,4) = 3.

(3) Next consider the vertex gadget Hi,2. Similarly to the above observation (2), if at least

one vertex in {αi,1,wi,1,wi,2} is in the solution S ∗, then four vertices αi,1, βi, wi,1 and wi,2 must

be selected into S ∗ since deg(αi,1) = deg(wi,1) = deg(wi,2) = 3. In the case that V(Hi,2) ⊆ S ∗,

the vertex βi ∈ V(Hi,2) cannot be connected to any other vertices in the different subgraph,

say, H j,2 such that i , j. Even if only βi is selected into S ∗, the total number of vertices

selected from {β1, β2, · · · , βn} is at most n.
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(4) It can be shown that exactly four vertices which form a diamond graph can be selected

from the connector gadget Hi,3 into S ∗ in order to make the degree of vertices 3.

From the above observation (1) through (4), we can select at most 4n + 4 + 4 = 4n + 8

vertices from each subgraph Hi into the solution S ∗, where 4n, 4 and 4 come from the path

gadget Hi,1, the vertex one Hi,2 and the connector one Hi,2, respectively, and the subgraph

induced on those 4n + 8 vertices is a diamond-path. By the assumption |S ∗| = (4n + 8) × k,

we must select at least k diamond-paths of 4n + 8 vertices as an induced subgraph of H[S ∗].

Recall that the diamond-path of 4n + 8 vertices in each subgraph Hi surely includes βi.

Here, it is important to note that the vertex βi has three neighbors αi,1, wi,1, and wi,2 as

mentioned before. That is, in the induced subgraph H[S ∗], we can find an independent set of

k vertices labeled by β’s, which corresponds to an independent set of k vertices in the input

graph G of MaxIS. As are result, OPT1(G) ≥ k ≥ g(n)
n1−ε holds for a positive constant ε by the

assumption OPT2(H) = (4n + 8) × k ≥ (4n + 8) × g(n)
n1−ε . Therefore, the condition (C2) is also

satisfied.

3.3.2 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to prove the O(n1/2−ε) inapproximability for

r-MaxRICS for any fixed integer r ≥ 4. The proof is very similar to that of r = 3. The main

difference between those proofs is the structure of each subgraph Hi. See Figure 3.8, which

shows the modified subgraph Hi. (i) We replace the previous vertex ui,1,2 in Figure 3.14 with

a complete graph Kr−2 of r − 2 vertices, labeled by Ui,1,2. The three vertices ui,1,1, ui,1,3 and

ui,1,4 are connected to all the r − 2 vertices in Ui,1,2, respectively. Also ui,2,2 is replaced with

a complete graph of r − 2 vertices, and so on. But, we now prepare only ⌈ 4n
r+1⌉ “modified”

diamonds of (r− 2)+ 3 = r+ 1 vertices. Namely, 4n ≤ |V(Hi,1)| ≤ 5n holds. (ii) In the vertex

gadget Hi,2, the previous αi,1 is replaced with a complete graph Ai,1 of r − 2 vertices. Thus,

the number of vertices in V(Hi,2) is r+1 ≤ n. The three vertices wi,1, wi,2 and βi are connected

to all the r − 2 vertices, respectively. (iii) In the connector gadget Hi,3, αi,2 is replaced with
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a complete graph Ai,2 of r − 2 vertices. Thus, |V(Hi,3)| ≤ 2n. As a result, the number of

vertices in the modified subgraph Hi remains O(n), which means that |V(H)| = O(n2). This

completes the proof and thus we can obtain the n1/2−ε inapproximability of the general r-

MaxRICS problem for r ≥ 4.

Hi,1
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Hi,2

Hi,3

Kr−2

Ui,1,2

Kr−2

Ui,⌈ 4n

r+1⌉,2

Kr−2

Ai,1

Kr−2

Ai,2

ui,1,1

ui,1,3

ui,1,4
wi,1 wi,2 wi,3

wi,4

Fig. 3.8 Modified subgraph Hi in the case of r ≥ 4

3.4 Further Improved Hardness Inapproximability of r-MaxRIS

In sections 3.4, 3.5 and 3.6, we thus consider the problems whose input graphs are restricted

to some special classes of graphs. In the rest of this section, we give the complexity results.

We first show that the problems are still NP-hard to approximate even if r is a fixed constant

and the input graph is either bipartite or planar. Indeed, we consider the decision problem,

called r-OneRIS, which determines whether a given graph G contains at least one r-regular

induced subgraph or not. Note that r-OneRIS simply asks the existence of an r-regular in-

duced subgraph in G, and hence this is a decision version of both r-MaxRIS and r-MaxRICS

in the sense that the problem determines whether OPTRIS(G) > 0 and OPTRICS(G) > 0 hold

or not. Clearly, r-OneRIS for r = 0, 1, 2 can be solved in linear time for any graph, because

it simply finds one vertex, one edge and one induced cycle, respectively.



CHAPTER 3. REGULAR INDUCED SUBGRAPHS 35

3.4.1 Bipartite graphs

In this subsection, we give the complexity result for bipartite graphs. Since r-OneRIS for

r = 0, 1, 2 can be solved in linear time, the following theorem gives the dichotomy result for

bipartite graphs.

Theorem 3 For every fixed integer r ≥ 3, r-OneRIS is NP-complete for bipartite graphs of

maximum degree r + 1.

Proof of Theorem 3.

It is obvious that r-OneRIS belongs to NP. Therefore, we show that r-OneRIS is NP-hard

for bipartite graphs of maximum degree r + 1 by giving a polynomial-time reduction from

the following decision problem (in which the induced property is not required): the problem

r-OneRS is to determine whether a given graph H contains at least one r-regular subgraph

or not. It is known that r-OneRS is NP-complete even if r = 3 and the input is a bipartite

graph of maximum degree four [26].

[Main ideas of our reduction]

We now explain our ideas of the reduction. Let H be a bipartite graph of maximum degree

four as an instance of 3-OneRS, and let GH be the bipartite graph of maximum degree

r + 1 which corresponds to H as the instance of r-OneRIS. The construction of GH will be

given later, but GH is constructed so that H contains a 3-regular subgraph if and only if GH

contains an r-regular induced subgraph. In r-OneRS, we can decide whether an edge of H

is contained in a solution or not. On the other hand, since r-OneRIS requires the induced

property, we are not given such a choice for edges in r-OneRIS; we can select only vertices

of GH to construct an r-regular induced subgraph. Therefore, the key point of our reduction

is how to simulate a selection of an edge of H by choosing vertices of GH.

We first show that 3-OneRIS is NP-hard for bipartite graphs of maximum degree four, and

then modify the reduction for r = 3 to general r ≥ 4.
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Fig. 3.9
(a) Input graph H of 3-OneRS, (b) three gadgets Gvi , Ge j and Gvk corresponding to
an edge e j = (vi, vk) in E(H), and (c) the corresponding graph GH of 3-OneRIS.

[Reduction for r = 3]

Let V(H) = {v1, v2, . . . , vn} of n vertices, and E(H) = {e1, e2, . . . , em} of m edges. The

corresponding graph GH consists of

(i) n subgraphs Gv1 ,Gv2 , . . . ,Gvn , called vertex-gadgets, which are associated with n ver-

tices v1, v2, . . . , vn in V(H), respectively;

(ii) m subgraphs Ge1 ,Ge2 , . . . ,Gem , called edge-gadgets, which are associated with m edges
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e1, e2, . . . , em in E(H), respectively; and

(iii) the set of edges which connect vertex-gadgets and edge-gadgets.

Below we construct each gadget and the corresponding graph GH. (See Fig. 3.9.)

(i) For each i, 1 ≤ i ≤ n, the i-th vertex-gadget Gvi consists only of two isolated vertices

ui and wi, and hence E(Gvi) = ∅.

(ii) For each j, 1 ≤ j ≤ m, the j-th edge-gadget Ge j can be obtained from a complete

bipartite graph K3,3 by deleting two edges, as follows: suppose that, in K3,3, one side

consists of three vertices p j,1, p j,2, p j,3 and the other side consists of three vertices

q j,1, q j,2, q j,3; then, delete the two edges (p j,1, q j,1) and (p j,3, q j,3).

(iii) For each edge e j = (vi, vk) in E(H) such that i < k, we connect the gadgets Gvi , Ge j and

Gvk by four edges, as follows: add two edges (ui, q j,1) and (wi, p j,1) between Gvi and

Ge j , and also add two edges (q j,3, uk) and (p j,3,wk) between Ge j and Gvk .

This completes the construction of the corresponding graph GH. Clearly, this reduction can

be done in polynomial time. Furthermore, GH is bipartite. (See Fig. 3.9(c) as an example;

the set of white vertices and the set of black vertices form a bipartition of V(GH).)

By the construction, we have the following lemma.

Lemma 1 The graph GH satisfies the following (a) and (b).

(a) Consider an edge-gadget Ge j corresponding to an edge e j = (vi, vk) in E(H) such that

i < k. If a 3-regular induced subgraph in GH contains a vertex in Ge j , then all vertices

in Gvi , Ge j and Gvk are contained in the subgraph.

(b) For a vertex-gadget Gvi , 1 ≤ i ≤ n, the vertex ui ∈ V(Gvi) is contained in a 3-regular

induced subgraph in GH if and only if the vertex wi ∈ V(Gvi) is contained in the

subgraph.

proof 1 (a) Note that every vertex v in the j-th edge-gadget Ge j is of degree exactly three

in GH, that is, d(GH, v) = 3. Therefore, if a vertex v ∈ V(Ge j) is contained in a 3-regular

(induced) subgraph, then all vertices in N(GH, v) must be also contained in the subgraph.
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Then, since ui ∈ N(GH, q j,1), wi ∈ N(GH, p j,1), uk ∈ N(GH, q j,3) and wk ∈ N(GH, p j,3), all

vertices in Gvi , Ge j and Gvk are contained in the subgraph.

(b) Suppose that ui ∈ V(Gvi) is contained in a 3-regular induced subgraph G′H of GH. (The

proof for the other direction is the same.) Since d(G′H, ui) = 3, exactly three vertices incident

to ui are contained in G′H. Recall that d(Gvi , ui) = 0, and hence they must be vertices in

edge-gadgets incident to Gvi . Then, Lemma 1(a) implies that wi is also contained in G′H. □

Lemma 1(a) implies that a selection of an edge e j of H can be simulated by choosing vertices

of the corresponding edge-gadget Ge j in GH. Note that the vertices in Ge j are not necessarily

selected even if the vertices in V(Gvi) ∪ V(Gvk) are selected; since each vertex in V(Gvi) ∪

V(Gvk) is of degree at most four, it can be incident to three edge-gadgets other than Ge j .

We now show that the graph H of 3-OneRS contains a 3-regular subgraph if and only if

the corresponding graph GH of 3-OneRIS contains a 3-regular induced subgraph.

Suppose that H contains a 3-regular subgraph H′. Then, we simply choose all vertices in

the gadgets in GH that correspond to the vertices in V(H′) and the edges in E(H′). Notice

that d(Gvi , v) = 0 for each vertex v in a vertex-gadget Gvi , 1 ≤ i ≤ n, and d(GH, v) = 3 for

each vertex v in an edge-gadget Ge j , 1 ≤ j ≤ m. Then, the subgraph of GH induced by the

chosen vertices is clearly 3-regular.

Conversely, suppose that GH contains a 3-regular induced subgraph G′H. Lemma 1 implies

that G′H contains either all vertices or none of the vertices of each gadget in GH. There-

fore, one can obtain a subgraph H′ of H which corresponds to G′H. Recall that d(Gvi , ui) =

d(Gvi ,wi) = 0 for the two vertices ui and wi in each vertex-gadget Gvi , 1 ≤ i ≤ n. Since G′H is

3-regular, d(G′H, ui) = d(G′H,wi) = 3 if the two vertices ui and wi are contained in G′H. Then,

exactly three edge-gadgets incident to Gvi must be contained in G′H. This means that exactly

three edges are incident to vi in the subgraph H′. Therefore, H′ is also 3-regular.

This completes the proof for r = 3.

[Reduction for r ≥ 4]
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Fig. 3.10
Vertex-gadgets Gr

vi
for (a) r = 4 and (b) r ≥ 5. The internal graph of Gr

vi
, r ≥ 5, is

shaded.

In the following, we show that the reduction for r = 3 can be modified for r ≥ 4. Let G3
H

be the graph GH constructed above for r = 3; we denote by Gr
H the corresponding graph for

r-OneRIS, r ≥ 4.

The reduction for r ≥ 4 is also given from 3-OneRS. Let H be a graph as an instance of 3-

OneRS such that V(H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em}. The main differences

between the reductions for r = 3 and r ≥ 4 are the structures of vertex-gadgets Gr
vi

and

edge-gadgets Gr
e j

.

(i) For each i, 1 ≤ i ≤ n,

• if r = 4, the vertex-gadget G4
vi

consists of a single edge (ui,wi) joining two vertices

ui and wi, as illustrated in Fig. 3.10(a); and

• if r ≥ 5, the vertex-gadget Gr
vi

consists of two vertices ui and wi together with

the internal graph between them, as illustrated in Fig. 3.10(b): the internal graph

can be obtained from a complete bipartite graph Kr,r by deleting (r − 3) edges

(wi,4, ui,1), (wi,5, ui,2), . . . , (wi,r, ui,r−3) forming a matching (they are illustrated as

dotted lines in Fig. 3.10(b)); and then ui is connected to every vertex in {wi,4, wi,5, . . . ,wi,r}

and wi is connected to every vertex in {ui,1, ui,2, . . . , ui,r−3}. Notice that all the ver-

tices in the internal graph are of degree exactly r in Gr
vi

.

(ii) For each j, 1 ≤ j ≤ m, the edge-gadget Gr
e j

is a simple extension of G3
e j

: it can

be obtained by deleting two edges (p j,1, q j,1) and (p j,r, q j,r) from a complete bipartite
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graph Kr,r of bipartition {p j,1, p j,2, . . . , p j,r} and {q j,1, q j,2, . . . , q j,r}.

(iii) The connections between the vertex-gadgets and the edge-gadgets in Gr
H are the same

as in G3
H.

By the same arguments as in r = 3, the counterpart of Lemma 1 holds and hence we can

simulate a selection of an edge e j of H by choosing vertices of the j-th edge-gadget Gr
e j

. We

thus focus on the vertex-gadgets Gr
vi

such that d(H, vi) = r + 1 below. (The arguments for

d(H, vi) ≤ r are similar.)

For r = 4, the vertices ui and wi in the vertex-gadget G4
vi

are of degree exactly 5, and hence

only one edge is missing around ui (or around wi) in any 4-regular induced subgraph which

contains ui (resp., wi). The counterpart of Lemma 1(b) implies that both ui and wi are always

selected at the same time, and hence the missing edge cannot be the edge (ui,wi) due to the

induced property. Therefore, it must be one of the four edges connecting to edge-gadgets;

this ensures that the corresponding subgraph in H is 3-regular.

The arguments for r ≥ 5 are almost the same. We now show that the counterpart of

Lemma 1(b) holds for r ≥ 5, that is, if one vertex in a vertex-gadget Gr
vi

is contained in an r-

regular induced subgraph of Gr
H, then all vertices in Gr

vi
are contained in the subgraph. Firstly,

if one vertex is selected from the internal graph of Gr
vi

, then all vertices in Gr
vi

(including ui

and wi) must be also selected; remember that all vertices in the internal graph are of degree

exactly r. Secondly, consider the case where either ui or wi is selected. Recall that each

of ui and wi is incident with exactly (r + 1) edges, (r − 3) of which are connecting to the

internal graph of Gr
vi

. Since r − 3 ≥ 2 and we have only one missing edge around ui (or wi),

any r-regular induced subgraph in Gr
H contains at least one edge connecting to the internal

graph of Gr
vi

. Then, the subgraph contains one vertex from the internal graph, and hence it

must contain all vertices in Gr
vi

. In this way, the counterpart of Lemma 1(b) holds for r ≥ 5.

Therefore, the missing edge around ui (or wi) must be one of the four edges connecting to

edge-gadgets; this ensures that the corresponding subgraph in H is 3-regular.

This completes the proof for r ≥ 4. □



CHAPTER 3. REGULAR INDUCED SUBGRAPHS 41

Theorem 3 implies the following corollary.

Corellary 2 Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r ≥ 3 and bipartite graphs of maximum degree r + 1, r-MaxRIS and r-MaxRICS

admit no polynomial-time approximation algorithm within a factor of ρ(n) unless P = NP.

proof 2 We only give a proof for r-MaxRIS. (The proof for r-MaxRICS is the same.) Sup-

pose for a contradiction that r-MaxRIS admits a polynomial-time ρ(n)-approximation al-

gorithm for some polynomial-time computable function ρ(n) > 0. Then, the algorithm can

compute a solution in polynomial time such that the objective value APXRIS(G) satisfies

APXRIS(G) ≤ OPTRIS(G) ≤ ρ(n) · APXRIS(G).

Therefore, one can distinguish either OPTRIS(G) > 0 or OPTRIS(G) = 0 in polynomial time

using the algorithm. This is a contradiction unless P = NP, because Theorem 3 implies that

it is NP-complete to determine whether OPTRIS(G) > 0 or not if r ≥ 3. □

3.4.2 Planar graphs

In this subsection, we give the complexity result for planar graphs. Notice that Euler’s for-

mula implies that any 6-regular graph is not planar, and hence the answer to r-OneRIS is

always “No” for planar graphs if r ≥ 6. Therefore, the following theorem gives the di-

chotomy result for planar graphs.

Theorem 4 For every fixed integer r, 3 ≤ r ≤ 5, r-OneRIS is NP-complete for planar

graphs.

proof 3 Since r-OneRIS belongs to NP, we show that r-OneRIS is NP-hard for planar

graphs by giving a polynomial-time reduction from r-OneRS. For every fixed integer r,

3 ≤ r ≤ 5, it is known that r-OneRS is NP-complete for planar graphs [24, 25]. It is

important to notice that the reduction is made for the same value r.
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Fig. 3.11 Edge-gadgets (a) G3
e j

for r = 3, (b) G4
e j

for r = 4, and (c) G5
e j

for r = 5.

Let r be a fixed integer such that 3 ≤ r ≤ 5, and let H be a planar graph as an instance

of r-OneRS. Then, the planar graph Gr
H corresponding to H is constructed as follows: for

each edge e j = (vi, vk) in E(H),

• we replace the edge e j with the j-th edge-gadget Gr
e j

which is given in Fig. 3.11; and

• connect Gr
e j

to the two vertices vi and vk by two edges (vi, p j) and (q j, vk).

Since H is planar, Gr
H is also planar. This construction can be clearly done in polynomial

time. This completes the construction of the corresponding graph Gr
H.

Similarly as in the proof of Theorem 3, the key point of our reduction is to simulate a

selection of an edge e j = (vi, vk) of H by choosing vertices of the j-th edge-gadget Gr
e j

. It

is important to notice that each vertex in Gr
e j

is of degree exactly r in Gr
H. Therefore, if we

select one vertex in Gr
e j

, then all vertices in V(Gr
e j

)∪{vi, vk}must be also selected. In contrast,

the vertices in Gr
e j

are not necessarily selected even if a vertex in {vi, vk} is selected; it may

be incident to r edge-gadgets other than Gr
e j

. Then, similar arguments as in the proof of

Theorem 3 prove that the graph H for r-OneRS contains an r-regular subgraph if and only

if the corresponding graph Gr
H for r-OneRIS contains an r-regular induced subgraph.

This completes the proof of Theorem 4. □

The same arguments as in Corollary 2 establish the following corollary.

Corellary 3 Let ρ(n) ≥ 1 be any polynomial-time computable function. For every fixed

integer r, 3 ≤ r ≤ 5, r-MaxRIS and r-MaxRICS for planar graphs admit no polynomial-time

approximation algorithm within a factor of ρ(n) unless P = NP.
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3.5 Graphs with Bounded Treewidth

In this section, we consider the problems restricted to graphs with bounded treewidth. We

first introduce the notion of treewidth in Section 3.5.1. Then, Section 3.5.2 gives a linear-

time algorithm for r-MaxRIS. Section 3.5.3 shows that the algorithm for r-MaxRIS can be

modified for r-MaxRICS.

3.5.1 Definitions

Let G be a graph with n vertices. A tree-decomposition of G is a pair ⟨{Xi | i ∈ VT },T ⟩, where

T = (VT , ET ) is a rooted tree, such that the following four conditions (1)–(4) hold [6]:

(1) each Xi is a subset of V(G), and is called a bag;

(2)
∪

i∈VT
Xi = V(G);

(3) for each edge (u, v) ∈ E(G), there is at least one node i ∈ VT such that u, v ∈ Xi; and

(4) for each vertex v ∈ V(G), the set {i ∈ VT | v ∈ Xi} induces a connected component in T .

We will refer to a node in VT in order to distinguish it from a vertex in V(G). The width of a

tree-decomposition ⟨{Xi | i ∈ VT },T ⟩ is defined as max{|Xi| − 1 : i ∈ VT }, and the treewidth of

G is the minimum k such that G has a tree-decomposition of width k.

In particular, a tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of G is called a nice tree-decomposition

if the following four conditions (5)–(8) hold [4]:

(5) |VT | = O(n);

(6) every node in VT has at most two children in T ;

(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr; and

(8) if a node i ∈ VT has only one child j, then one of the following two conditions (a) and

(b) holds:

(a) |Xi| = |X j| − 1 and Xi ⊂ X j (such a node i is called a forget node); and

(b) |Xi| = |X j| + 1 and Xi ⊃ X j (such a node i is called an introduce node.)

Figure 3.12(b) illustrates a nice tree-decomposition ⟨{Xi | i ∈ VT },T ⟩ of the graph G in
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Fig. 3.12(a) whose treewidth is three. It is known that any graph of treewidth k has a nice

tree-decomposition of width k [4]. Since a nice tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of a

graph G with bounded treewidth can be found in linear time [4], we may assume without

loss of generality that G and its nice tree-decomposition are both given.

v6 v7
v2

v8v4

v3

v5v1

(a) G

v6 v7
v2

v8

v3

v1

(c) Gi

v1,v2,v3,v4

v1,v2,v3,v4 v1,v2,v3,v4

v1,v2,v4

v1,v2,v4,v5

v1,v2,v3

v2,v3

v2,v3

v2,v3,v6

v2,v3

v2,v7

v2,v7,v8

v2

i

0

(b) ⟨{Xi | i ∈ VT },T ⟩

Fig. 3.12
(a) Graph G, (b) a nice tree-decomposition ⟨{Xi | i ∈ VT },T ⟩ of G, and (c) the
subgraph Gi of G for the node i ∈ VT .

Each node i ∈ VT corresponds to a subgraph Gi of G which is induced by the vertices

that are contained in the bag Xi and all bags of descendants of i in T . Therefore, if a node

i ∈ VT has two children l and r in T , then Gi is the union of Gl and Gr which are the

subgraphs corresponding to nodes l and r, respectively. Clearly, G = G0 for the root 0

of T . For example, Fig. 3.12(c) illustrates the subgraph Gi of the graph G in Fig. 3.12(a)

which corresponds to the node i ∈ VT in Fig. 3.12(b). By definitions (3) and (4) of a tree-

decomposition, we have the following proposition.

Proposition 2 For each node i ∈ VT , there is no edge joining a vertex in Gi \ Xi and one in

G \Gi.
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(a)                                                     (b)

Xi
v1 v2 v3 v4 v5 v6 Xi

Gi

Fig. 3.13
(a) A 2-regular induced subgraph F of a graph G such that V(F) ∩ Xi = ∅, and (b)
the (K, ϕ)-subgraph Fi of Gi, where Xi = {v1, v2, . . . , v6} and K = ∅.

3.5.2 Algorithm for r-MaxRIS

In this subsection, we give the following theorem.

Theorem 5 For every fixed constant r ≥ 0, r-MaxRIS is solvable in linear time for graphs

with bounded treewidth.

As a proof of Theorem 5, we give such an algorithm. Indeed, we give a linear-time al-

gorithm which simply computes OPTRIS(G) for a given graph G; it is easy to modify our

algorithm so that it actually finds an r-regular induced subgraph with the maximum number

OPTRIS(G) of vertices.

Main ideas.

We first give our main ideas. Let G be a graph whose treewidth is bounded by a fixed

constant k, and let ⟨{Xi | i ∈ VT },T ⟩ be a nice tree-decomposition of G. Consider an arbitrary

r-regular induced subgraph F of G, and consider the subgraph Fi of F which is induced by

the vertices in V(F) ∩ V(Gi) for a node i ∈ VT . Then, there are the following two cases (a)

and (b) to consider.

Case (a): V(F) ∩ Xi = ∅. (See Fig. 3.13 as an example for r = 2.)

In this case, Proposition 2 implies that Fi is either empty or an r-regular induced subgraph

of Gi. Note that, in the latter case, Fi = F does not necessarily hold, but Fi consists of
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G

(a)                                                     (b)

Xi v1
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v4 v5 v6 Xi v1
v2 v3

v4 v5 v6

Gi

Fig. 3.14
(a) A 2-regular induced subgraph F of a graph G such that V(F) ∩ Xi , ∅, and
(b) the (K, ϕ)-subgraph Fi of Gi, where Xi = {v1, v2, . . . , v6}, K = {v1, v2, v3, v5, v6},
ϕ(v1) = ϕ(v2) = 1, ϕ(v3) = 0 and ϕ(v5) = ϕ(v6) = 2.

connected components that are contained in F.

Case (b): V(F) ∩ Xi , ∅. (See Fig. 3.14 as an example for r = 2.)

In this case, each connected component in Fi is not necessarily r-regular if it contains a

vertex in Xi, since some vertices in Xi will be joined with vertices in G \Gi. (See the vertices

v1, v2, v3 in Fig. 3.14.) On the other hand, Proposition 2 implies that every vertex in V(Fi)\Xi

must be of degree exactly r. Note that Case (b) includes the case where both Fi = F and

V(F) ∩ Xi , ∅ hold.

Motivated by Cases (a) and (b) above, we characterize induced subgraphs of Gi with re-

spect to the degree (regularity) property on the vertices in Xi. For a node i ∈ VT , let K ⊆ Xi

and let ϕ : K → {0, 1, . . . , r}; as we will describe later, the set K will represent the vertices in

Xi that are contained in an induced subgraph of Gi, and ϕ will maintain the degree property

on K. We call such a pair (K, ϕ) a pair for Xi. Then, an induced subgraph F′ of Gi is called

a (K, ϕ)-subgraph of Gi if the following two conditions (i) and (ii) hold:

(i) d(F′, v) = r for every vertex v in V(F′) \ Xi; and

(ii) V(F′) ∩ Xi = K, and d(F′, v) = ϕ(v) for each vertex v ∈ K.

For the sake of convenience, we say that an empty graph (containing no vertex) is an (∅, ϕ)-

subgraph of Gi. Then, an (∅, ϕ)-subgraph F′ of Gi is either empty or an r-regular induced
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subgraph of Gi containing no vertex in Xi. Therefore, the pairs (K, ϕ) for Xi correspond to

Case (a) above if K = ∅. Clearly, the following lemma holds.

Lemma 2 A (K, ϕ)-subgraph F′ of Gi is an r-regular induced subgraph of Gi if and only if

K = ∅ or ϕ(v) = r for all vertices v ∈ K.

We now define a value f (i; K, ϕ) for a node i ∈ VT and a pair (K, ϕ) for Xi, as follows:

f (i; K, ϕ) = max{|S | : S ⊆ V(Gi) and G[S ] is a (K, ϕ)-subgraph of Gi}.

If Gi has no (K, ϕ)-subgraph, then we let f (i; K, ϕ) = −∞. Our algorithm computes f (i; K, ϕ)

for each node i ∈ VT and all pairs (K, ϕ) for Xi, from the leaves of T to the root of T , by

means of dynamic programming. Then, since G0 = G for the root 0 of T , by Lemma 2 one

can compute OPTRIS(G) for a given graph G, as follows:

OPTRIS(G) = max f (0; K, ϕ),(3.1)

where the maximum above is taken over all pairs (K, ϕ) for X0 such that K = ∅ or ϕ(v) = r

for all vertices v ∈ K.

Algorithm and its running time.

We first estimate the number of all pairs (K, ϕ) for each bag Xi. Recall that a given graph

G is of treewidth bounded by a fixed constant k, and hence each bag Xi of T contains at most

k + 1 vertices. Since K ⊆ Xi and ϕ : K → {0, 1, . . . , r}, the number of all pairs (K, ϕ) for Xi

can be bounded by

k+1∑
p=0

(
k + 1

p

)
· (r + 1)p ≤ 2k+1 · (r + 1)k+1 = O(1). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.2)

Notice that this is a single exponential with respect to k, as we have discussed in Introduction.

We now explain how to compute f (i; K, ϕ) for each node i ∈ VT and all pairs (K, ϕ) for Xi,

from the leaves of T to the root of T .
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Fig. 3.15
Case (1): a (K, ϕ)-subgraph of Gi with K = {v1, v3, v4} and ϕ(v1) = ϕ(v4) = 1,
ϕ(v3) = 2 which is obtained by merging a (Kl, ϕl)-subgraph of Gl with a (Kr, ϕr)-
subgraph of Gr, where Kl = Kr = K = {v1, v3, v4} and ϕl(v1) = ϕl(v3) = 1, ϕl(v4) = 0,
ϕr(v1) = 0, ϕr(v3) = ϕr(v4) = 1.

[The node i is a leaf of T ]

For each leaf i of T , a simple brute-force algorithm can compute f (i; K, ϕ) for each pair

(K, ϕ) for Xi. Since Gi = G[Xi] contains at most k + 1 vertices, the number of induced

subgraphs of Gi is 2k+1. Therefore, this brute-force algorithm takes time O(1) for each leaf

i of T and all pairs (K, ϕ) for Xi. There are O(n) leaves in T , and hence f (i; K, ϕ) can be

computed in linear time for all leaves i ∈ VT and all pairs (K, ϕ) for Xi.

[The node i is an internal node of T ]

We then compute f (i; K, ϕ) for each internal node i of T and each pair (K, ϕ) for Xi. Since

⟨{Xi | i ∈ VT },T ⟩ is a nice tree-decomposition of G, there are three cases to consider, that is,

i has two children, is a forget node, and is an introduce node.

Case (1): The node i has two children l and r. (See Fig. 3.15 as an example for r = 2.)

In this case, Xi = Xl = Xr. By Proposition 2 there is no edge joining a vertex in Gl \ Xl

and one in Gr \ Xr. Then, for a pair (K, ϕ) for Xi, a (K, ϕ)-subgraph of Gi can be obtained by

merging a (Kl, ϕl)-subgraph of Gl with a (Kr, ϕr)-subgraph of Gr such that Kl = Kr = K and

ϕl(u) + ϕr(u) = ϕ(u) for all vertices u ∈ K. Therefore, we have

f (i; K, ϕ) = max{ f (l; Kl, ϕl) + f (r; Kr, ϕr)} − |K|,

where the maximum above is taken over all pairs (Kl, ϕl) for Xl and (Kr, ϕr) for Xr such that

(a) Kl = Kr = K; and

(b) ϕl(u) + ϕr(u) = ϕ(u) for all vertices u ∈ K.
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Fig. 3.16
Case (2): a (K, ϕ)-subgraph of Gi with K = {v1, v4} and ϕ(v1) = ϕ(v4) = 1 which
is obtained from a (K′, ϕ′)-subgraph of G j such that K′ = {v1, v3, v4} and ϕ′(v1) =
ϕ′(v4) = 1, ϕ′(v3) = 2, where v′ = v3.

Note that, since Kl = Kr = K, the vertices in K are counted exactly twice in f (l; Kl, ϕl) +

f (r; Kr, ϕr).

Case (2): The node i is a forget node. (See Fig. 3.16 as an example for r = 2.)

In this case, the node i has exactly one child j in T such that |Xi| = |X j| − 1 and Xi ⊂ X j.

Notice that Gi = G j in this case. Let v′ be the vertex in X j \ Xi. It should be noted that v′

is forgotten here, and hence Proposition 2 implies that there is no edge joining a vertex in

G \ Gi and v′. Therefore, if v′ is contained in an induced subgraph of G j, then v′ must be

incident to exactly r vertices in G j = Gi. For each pair (K, ϕ) for Xi, we thus have

f (i; K, ϕ) = max f ( j; K′, ϕ′),

where the maximum above is taken over all pairs (K′, ϕ′) for X j such that

(a) K′ \ {v′} = K;

(b) ϕ′(u) = ϕ(u) for all vertices u ∈ K′ \ {v′}; and

(c) ϕ′(v′) = r if v′ ∈ K′.

Case (3): The node i is an introduce node. (See Fig. 3.17 as an example for r = 2.)

In this case, the node i has exactly one child j in T such that |Xi| = |X j| + 1 and Xi ⊃ X j.

Let v′ be the vertex in Xi \ X j. Since v′ is introduced by Xi, every edge in Gi incident to v′ is

contained in Xi, that is, N(Gi, v′) ⊆ Xi. Then, for each pair (K, ϕ) for Xi such that v′ < K, we

have
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Fig. 3.17
Case (3): a (K, ϕ)-subgraph of Gi with K = {v1, v2, v4} and ϕ(v1) = ϕ(v2) = ϕ(v4) = 2
which is obtained from a (K′, ϕ′)-subgraph of G j such that K′ = {v1, v2} and ϕ′(v1) =
ϕ′(v2) = 1, where v′ = v4.

f (i; K, ϕ) = f ( j; K, ϕ).

On the other hand, for each pair (K, ϕ) for Xi such that v′ ∈ K, we let

f (i; K, ϕ) = −∞

if ϕ(v′) , d(G[K], v′); otherwise

f (i; K, ϕ) = 1 +max f ( j; K′, ϕ′),

where the maximum above is taken over all pairs (K′, ϕ′) for X j such that

(a) K′ = K \ {v′};

(b) for each vertex u ∈ K′,

ϕ′(u) =

 ϕ(u) − 1 if u ∈ N(Gi, v′);

ϕ(u) otherwise.

Remember that both r and k are assumed to be fixed constants, and that the number of

all pairs (K, ϕ) for each bag Xi is O(1). Therefore, all the update formulas in Cases (1)–(3)

above can be computed in time O(1) for all pairs (K, ϕ) for Xi.

Since T has O(n) nodes, the values f (0; K, ϕ) can be computed in linear time for all pairs

(K, ϕ) for the root 0 of T . By Eq. (3.1) the optimal value OPTRIS(G) can be computed in time

O(1) from the values f (0; K, ϕ). In this way, our algorithm runs in linear time.

This completes the proof of Theorem 5. □
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3.5.3 Algorithm for r-MaxRICS

In this subsection, we give the following theorem.

Theorem 6 For every fixed constant r ≥ 0, r-MaxRICS is solvable in linear time for graphs

with bounded treewidth.

Our algorithm for r-MaxRICS is almost the same as one for r-MaxRIS, but we take the

connectivity property into account. Let G be a graph whose treewidth is bounded by a fixed

constant k, and let ⟨{Xi | i ∈ VT },T ⟩ be a nice tree-decomposition of G. For a node i ∈ VT , let

K ⊆ Xi, and let ϕ : K → {0, 1, . . . , r}, π : K → {0, 1, . . . , k}; π will maintain the connectivity

property on K. We call such a triple (K, ϕ, π) a triple for Xi. Then, an induced subgraph F′ of

Gi, which is not necessarily connected, is called a (K, ϕ, π)-subgraph of Gi if the following

three conditions hold (see also Fig. 3.18 as an example for r = 2):

(i) d(F′, v) = r for every vertex v in V(F′) \ Xi;

(ii) V(F′) ∩ Xi = K, and d(F′, v) = ϕ(v) for each vertex v ∈ K; and

(iii) if K = ∅, then F′ is an empty graph or consists of exactly one connected component

(having no vertex in Xi); otherwise

(a) each connected component in F′ contains at least one vertex in K;

(b) two vertices v,w ∈ K are contained in the same connected component in F′ if

and only if π(v) = π(w).

Notice that the condition (iii) above maintains the connectivity property: Condition (iii)-(a)

ensures that the distinct components in F′ can be merged into a single connected component

(recall Proposition 2); and by Condition (iii)-(b) the value π(v) identifies the connected com-

ponent containing v. Note that, since each bag Xi contains at most k + 1 vertices, there are at

most k + 1 different connected components in F′. Then, the following lemma clearly holds.

Lemma 3 A (K, ϕ, π)-subgraph F′ of Gi is an r-regular induced connected subgraph of Gi

if K = ∅, or ϕ(v) = r for all vertices v ∈ K and |{π(v) : v ∈ K}| = 1.
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G

(a)                                                     (b)

Xi v1
v2 v3

v4
v5 v6 Xi v1

v2 v3
v4
v5 v6

Gi

Fig. 3.18
(a) A 2-regular induced connected subgraph F of a graph G, and (b) the (K, ϕ, π)-
subgraph F′ of Gi, where Xi = {v1, v2, . . . , v6}, K = {v1, v2, v3, v4}, ϕ(v1) = ϕ(v2) =
ϕ(v3) = ϕ(v4) = 1, π(v1) = π(v2) and π(v3) = π(v4) with π(v1) , π(v3).

As the counterpart of f (i; K, ϕ) for r-MaxRIS, we define a value g(i; K, ϕ, π) for a node

i ∈ VT and a triple (K, ϕ, π) for Xi, as follows:

g(i; K, ϕ, π) = max{|S | : S ⊆ V(Gi) and G[S ] is a (K, ϕ, π)-subgraph of Gi}.

If Gi has no (K, ϕ, π)-subgraph, then we let g(i; K, ϕ, π) = −∞. Similarly as in Section 3.5.2,

our algorithm computes g(i; K, ϕ, π) for each node i ∈ VT and all triples (K, ϕ, π) for Xi, from

the leaves of T to the root of T , by means of dynamic programming. Then, since G0 = G for

the root 0 of T , by Lemma 3 one can compute OPTRICS(G) for a given graph G, as follows:

OPTRICS(G) = max g(0; K, ϕ, π),

where the maximum above is taken over all triples (K, ϕ, π) for X0 such that either K = ∅, or

ϕ(v) = r for all vertices v ∈ K and |{π(v) : v ∈ K}| = 1.

Note that the number of all triples (K, ϕ, π) for each bag Xi can be bounded by

k+1∑
p=0

(
k + 1

p

)
· (r + 1)p · (k + 1)p ≤ 2k+1 · (r + 1)k+1 · (k + 1)k+1 = O(1). · · · · · · · · · · · · (3.3)

Therefore, by similar arguments as in Section 3.5.2, we can conclude that our modified

algorithm solves r-MaxRICS in linear time for graphs with bounded treewidth. □
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Fig. 3.19 (a) Chordal graph G and (b) its clique tree T .

3.6 Chordal Graphs

In this section, we consider the problems restricted to chordal graphs. A graph G is chordal

if every cycle in G of length at least four has at least one chord, which is an edge joining

non-adjacent vertices in the cycle [8]. (See Fig. 3.19(a) as an example.)

3.6.1 Definitions and key lemma

Let KG be the set of all maximal cliques in a graph G, and let Kv ⊆ KG be the set of all

maximal cliques that contain a vertex v ∈ V(G). It is known that G is chordal if and only if

there exists a tree T = (KG, E) such that each node of T corresponds to a maximal clique in

KG and the induced subtree T [Kv] is connected for every vertex v ∈ V(G) [5]. (See Fig. 3.19

as an example.) Such a tree is called a clique tree of G, and it can be constructed in linear

time [5]. Indeed, a clique tree of a chordal graph G is a tree-decomposition of G. Therefore,

we call a clique in KG also a node of T , and refer to the subgraph GC corresponding to a

node C defined as in Section 3.5.1. For the sake of notational convenience, each node C of

T simply indicates the vertex set V(C); we represent the clique corresponding to C by G[C].

For a node C ∈ KG, we denote by p(C) the parent of C in T ; let p(C0) = ∅ for the root node

C0 of T .

We now give the key lemma to design our algorithms.

Lemma 4 Every regular induced subgraph of a chordal graph is a clique.
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proof 4 Assume for a contradiction that a chordal graph G has a regular induced subgraph

G′ which is not a clique. Since G′ is an induced subgraph of a chordal graph, G′ is also

chordal and hence there is a clique tree T ′ = (KG′ , E′) for G′. In addition, since G′ is not a

clique, T ′ has at least two nodes. Consider any leaf node C in T ′, and let P = p(C). Recall

that both of C and P correspond to different maximal cliques in G′. We thus have C \ P , ∅

and P \C , ∅. Furthermore, P ∩C , ∅ since C and P are adjacent in T .

Let vc ∈ C \ P and vpc ∈ P ∩ C. Since vc belongs only to the node C and G′[C] forms a

clique, we have d(G′, vc) = |C| − 1. On the other hand, since vpc belongs to (at least) two

cliques G′[C] and G′[P], its degree in G′ is

d(G′, vpc) ≥ |C \ P| + |P \C| + (|C ∩ P| − 1) = |C| + |P \C| − 1 ≥ |C|,

where the last inequality comes from the fact that P \ C , ∅, i.e., |P \ C| ≥ 1. Therefore, we

obtain d(G′, vc) = |C| − 1 and d(G′, vpc) ≥ |C|, which contradicts the assumption that G′ is

regular. □

3.6.2 Algorithm for r-MaxRICS

Based on Lemma 4, we give the following theorem. Note that the degree constraint r is not

necessarily a fixed constant.

Theorem 7 For every integer r ≥ 0, r-MaxRICS is solvable in polynomial time for chordal

graphs.

proof 5 Lemma 4 implies that r-MaxRICS for a chordal graph G is equivalent to finding a

clique of size r + 1 in G, which can be done in polynomial time by utilizing a polynomial-

time algorithm to find a maximum clique in chordal graphs [18]: Find a maximum clique

of G; if the maximum clique is of size at least r + 1, then OPTRICS(G) = r + 1; otherwise

OPTRICS(G) = 0. □
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3.6.3 Algorithm for r-MaxRIS

In this subsection, we give the following theorem.

Theorem 8 For every integer r ≥ 0, r-MaxRIS can be solved in time O(n2) for chordal

graphs, where n is the number of vertices in a given graph.

As a proof of Theorem 8, we give such an algorithm. Similarly as for r-MaxRICS,

Lemma 4 implies that r-MaxRIS for a chordal graph G is equivalent to finding the maxi-

mum number of “independent” cliques of size r + 1 in G. From now on, we call a clique of

size exactly r + 1 an (r + 1)-clique. We say that (r + 1)-cliques in G are independent if no

two vertices in different (r + 1)-cliques are adjacent in G. For an induced subgraph G′ of a

chordal graph G, we denote by #r+1(G′) the maximum number of independent (r+1)-cliques

in G′. Then,

OPTRIS(G) = (r + 1) · #r+1(G).

C

p(C)

GC

Fig. 3.20 Subgraph GC and the parent p(C) for a node C of a clique tree T .

Main idea and our algorithm.

Let T be a clique tree for a given chordal graph G. Since each node of T corresponds to

a maximal clique of G, for any (r + 1)-clique K there exists at least one node C of T such

that G[C] contains K. Therefore, roughly speaking, our algorithm determines whether the

vertices in a node of T can be selected as an (r + 1)-clique or not, by traversing the nodes

from the leaves of T to the root of T , so that the number of independent (r + 1)-cliques in G

is maximized.
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Note that, however, there are several vertices that are contained in more than one nodes

of T , and hence we need to be careful for keeping the independency of (r + 1)-cliques when

we select (r + 1)-cliques. Such a vertex must be in C ∩ p(C) for every two adjacent nodes C

and p(C) of T . (See Fig. 3.20.) Therefore, we can select one (r + 1)-clique from GC \ p(C)

without collision with any (r+1)-clique in G\GC. (This claim will be proven formally later.)

We label a node C of T as small if and only if GC \ p(C) contains no (r + 1)-clique; namely,

the subgraph GC \ p(C) is too small to select an (r + 1)-clique. It should be noted that, even

if C is labeled with small, there may exist an (r + 1)-clique in GC which must contain some

vertices in C ∩ p(C).

We describe our algorithm for r-MaxRIS below. For the sake of convenience, we regard

that each leaf of a clique tree has one dummy child which is labeled with small; then, Step 2

will be executed for each unlabeled original leaf node. Remember that p(C0) = ∅ for the root

node C0 of a clique tree.

Initialization. S := ∅, G′ := G and construct a clique tree T ′ for G′.

Step 1. If G′ is empty or all nodes of T ′ are labeled with small, then output S .

Step 2. Pick any unlabeled node C of T ′ whose all children are labeled with small.

(a) If GC \ p(C) contains an (r + 1)-clique, then add its r + 1 vertices to

S . Set G′ := G′ \GC, and modify the clique tree for the new graph G′.

Then, goto Step 1.

(b) Otherwise label C as small, and goto Step 1.

Note that, if Step 2(a) results in a disconnected chordal graph G′, then we apply our algorithm

to each connected component in G′. This algorithm runs in time O(n2), where n = |V(G)|,

because

(1) a clique tree T has O(n) nodes;

(2) each step can be done in time O(n); and

(3) one execution of Step 2 deletes at least one node, or labels one node.

To complete the proof of Theorem 8, we now show that our algorithm above correctly
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solves r-MaxRIS for chordal graphs. Notice that (r+1)-cliques are selected only in Step 2(a),

and hence it suffices to show the following lemma.

Lemma 5 For an unlabeled node C of T ′, suppose that all children of C in T ′ are labeled

with small, and that GC \ p(C) contains an (r + 1)-clique. Then,

#r+1(G′) = #r+1(G′ \GC) + 1.

Proof of Lemma 5.

We first show an important property on clique trees. For a vertex subset V ′ of a connected

graph G, we say that V ′ separates two vertices u and v if u and v belong to different connected

components in G \ V ′.

Lemma 6 ([5]) For every two adjacent nodes C and p(C) in T ′, the set C ∩ p(C) separates

any vertex in GC \ p(C) and any vertex in G′ \GC.

Lemma 6 implies that any (r + 1)-clique in GC \ p(C) is independent from any (r + 1)-

clique in G′ \ GC, and vice versa. (See also Fig. 3.20.) Therefore, if GC \ p(C) contains an

(r + 1)-clique, then we have

#r+1(G′) ≥ #r+1(G′ \GC) + 1.

To complete the proof of Lemma 5, we thus verify #r+1(G′) ≤ #r+1(G′\GC)+1 in Lemma 8.

We now show the following auxiliary lemma.

Lemma 7 For an unlabeled node C of T ′, suppose that all children of C in T ′ are labeled

with small. Let S be an arbitrary subset of V(G′) such that G′[S ] forms independent (r + 1)-

cliques. If S contains an (r + 1)-clique K such that V(K) ∩ V(GC) , ∅, then no other vertex

in V(GC) is contained in S , that is, (S \ V(K)) ∩ V(GC) = ∅.

proof 6 Since each child Ci of C is labeled with small, the subgraph GCi \ p(Ci) = GCi \ C

contains no (r + 1)-clique. Furthermore, by Lemma 6 no vertex in GCi \ C is connected to a
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vertex in G′ \GCi . Therefore, if S contains an (r + 1)-clique K such that V(K) ∩ V(GC) , ∅,

then K must contain at least one vertex in C.

Suppose for a contradiction that (S \ V(K)) ∩ V(GC) , ∅. Then, there exists another

(r + 1)-clique K′ such that K′ , K and V(K′) ∩ V(GC) , ∅. The same argument implies

that K′ contains at least one vertex in C. However, since G′[C] is a (maximal) clique, this

contradicts the independency of (r + 1)-cliques in G′[S ]. □

We finally give the following lemma, and complete the proof of Lemma 5.

Lemma 8 For an unlabeled node C of T ′, suppose that all children of C in T ′ are labeled

with small. Then, #r+1(G′) ≤ #r+1(G′ \GC) + 1.

proof 7 Let X∗ ⊆ V(G′) be an arbitrary optimal solution for G′. Then,

#r+1(G′) = #r+1(G′[X∗]). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.4)

By Lemma 7 there exists at most one clique K in X∗ which contains a vertex in GC. Let G
′−

be the induced subgraph of G′ \GC which is obtained from G′ by deleting all vertices in GC

and in K (if there exists). Then, X∗ \ V(K) forms independent (r + 1)-cliques in G
′−, and

hence we have

#r+1(G′[X∗ \ V(K)]) ≤ #r+1(G
′−). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.5)

By Eqs. (3.4) and (3.5) we have

#r+1(G′) = #r+1(G′[X∗]) = #r+1(G′[X∗ \ V(K)]) + 1 ≤ #r+1(G
′−) + 1. · · · · · · · · · · · · · (3.6)

Since G
′− is an induced subgraph of G′ \GC, we have #r+1(G

′−) ≤ #r+1(G′ \GC). Therefore,

by Eq. (3.6) we have #r+1(G′) ≤ #r+1(G
′−) + 1 ≤ #r+1(G′ \GC) + 1. □
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3.7 Concluding Remarks

In this chapter, we studied the complexity statuses of the r-MaxRIS and r-MaxRICS prob-

lems from the viewpoint of graph classes, and analyzed which graph property makes the

problems tractable/intractable.

We remark that both of our algorithms for graphs with bounded treewidth run in polyno-

mial time even if the degree constraint r is not a fixed constant; see Eqs. (3.2) and (3.3).

Furthermore, these algorithms can be easily modified so that they solve more general prob-

lems, defined as follows: Given a bounded treewidth graph G and two integers l and u with

l ≤ u, we wish to find a maximum vertex-subset S of G such that every vertex in G[S ]

is of degree at least l and at most u; as a variant, we may consider the problem which re-

quires G[S ] to be connected. Then, these two problems are generalization of r-MaxRIS and

r-MaxRICS; consider the case where l = u = r.



Chapter 4

Distance d independent set

4.1 Introduction

Recall from Chapter 1 that one of the most important and most investigated computational

problems in theoretical computer science and combinatorial optimization is the Independent

Set problem (IS for short) because of its many applications in scheduling, computer vision,

pattern recognition, coding theory, map labeling, computational biology, and some other

fields. The input of IS is an unweighted graph G = (V, E) and a positive integer k ≤ |V |. An

independent set of G is a subset S ⊆ V of vertices such that, for all u, v ∈ S , the edge {u, v}

is not in E. IS asks whether G contains an independent set S having |S | ≥ k. IS is among the

first problems ever to be shown to be NP-complete, and has been used as a starting point

for proving the NP-completeness of other problems [17]. Moreover, it is well known that

IS remainsNP-complete even for substantially restricted graph classes such as cubic planar

graphs [16], triangle-free graphs [34], and graphs with large girth [32].

In this chapter, we consider a generalization of IS, named the Distance-d Independent Set

problem (DdIS for short). A distance-d independent set for an integer d ≥ 2 in an unweighted

graph G = (V, E) is a subset S ⊆ V of vertices such that for any pair of vertices u, v ∈ S , the

distance between u and v is at least d in G. For a fixed constant d ≥ 2, DdIS considered in

60
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this chapter is formulated as the following class of problems [1]:

Distance-d Independent Set (DdIS)

Input: An unweighted graph G = (V, E) and a positive integer k ≤ |V |.

Question: Does G contain a distance-d independent set of size k or more?

The maximization version of DdIS can be also defined:

Maximum Distance-d Independent Set (MaxDdIS)

Input: An unweighted graph G = (V, E).

Output: A distance-d independent set of the maximum size.

The problem parameterized by the solution size k is as follows:

Parameterized Distance-d Independent Set (ParaDdIS(k))

Input: An unweighted graph G = (V, E).

Parameter A positive integer k ≤ |V |.

Question: Does G contain a distance-d independent set of size k or more?

It is important to note that D2IS is identical to the original IS, and DdIS is equivalent to IS

on the (d − 1)th power graph Gd−1 of the input graph G as pointed out in [1].

Even when d = 2, DdIS (i.e., D2IS) is NP-complete, and thus it would be easy to show

that DdIS is NP-complete in general. Fortunately, however, it is known that if the input

graph is restricted to, for example, bipartite graphs [22], chordal graphs [18], circular-arc

graphs [19], comparability graphs [20], and many other classes [31, 29, 7], then D2IS admits

polynomial-time algorithms. Furthermore, Agnarsson, Damaschke, Halldórsson [1] show

the following tractability of DdIS by using the closure property under taking power [14, 15,

35]:
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Fact 2 ([1]) Let n denote the number of vertices in the input graph G. Then, for every integer

d ≥ 2, DdIS is solvable in O(n) time for interval graphs, in O(n(log log n + log d)) time for

trapezoid graphs, and in O(n) time for circular-arc graphs.

This tractability suggests that if we restrict the set of instances to, for example, subclasses

of bipartite graphs and chordal graphs, then DdIS for a fixed d ≥ 3 might be also solvable

efficiently. On the other hand, however, we have a “negative” fact that if G is planar/bipartite,

then the (d − 1)th power graph Gd−1 is not necessarily planar/bipartite. From those points of

view, this chapter investigates DdIS, namely, our work focuses on the computational com-

plexity of DdIS and/or the inapproximability of MaxDdIS on (subclasses of) bipartite graphs

and chordal graphs.

Our main results are summarized in the following list:

(i) For every fixed integer d ≥ 3, DdIS is NP-complete even for bipartite

graphs.

(ii) For any ε > 0 and fixed integer d ≥ 3, it is NP-hard to approximate

MaxDdIS to within a factor of n1/2−ε for bipartite graphs of n vertices.

(iii) For every fixed integer d ≥ 3, ParaDdIS(k) is W[1]-hard for bipartite

graphs.

(iv) For every fixed integer d ≥ 3, DdIS remains NP-complete even for planar

bipartite graphs of maximum degree three.

(v) For every fixed even integer d ≥ 2, DdIS is in P for chordal graphs.

(vi) For every fixed odd integer d ≥ 3, DdIS is NP-complete for chordal

graphs.

(vii) For any ε > 0 and fixed odd integer d ≥ 3, it is NP-hard to approximate

MaxDdIS to within a factor of n1/2−ε for chordal graphs of n vertices.

(viii) For every fixed odd integer d ≥ 3, ParaDdIS(k) isW[1]-hard for chordal

graphs.



CHAPTER 4. DISTANCE D INDEPENDENT SET 63

One can see that the complexity of DdIS depends on the parity of d if the set of input graphs

is restricted to chordal graphs.

The organization of the chapter is as follows: Section 4.2 is devoted to our notation and

terminology. In Section 4.3 we prove the NP-hardness, the hardness of approximation, and

theW[1]-hardness of the problem for bipartite graphs. In Section 4.4, we provide tractable

and intractable cases for chordal graphs.

4.2 Notation

Let G = (V, E) be an unweighted graph, where V and E denote the set of vertices and the

set of edges, respectively. V(G) and E(G) also denote the vertex set and the edge set of G,

respectively. We denote an edge with endpoints u and v by {u, v}. For a pair of vertices u and

v, the length of a shortest path from u to v, i.e., the distance between u and v is denoted by

distG(u, v), and the diameter G is defined as diam(G) = maxu,v∈V distG(u, v).

A graph GS is a subgraph of a graph G if V(GS ) ⊆ V(G) and E(GS ) ⊆ E(G). For a subset

of vertices U ⊆ V , let G[U] be the subgraph induced by U. For a subgraph GS = (VS , ES )

of G, if ES = VS × VS , then GS (or G[VS ]) and VS are called a clique and a clique set,

respectively.

For a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by Gd =

(V(G), Ed), is the graph formed from V(G), where all pairs of vertices u, v ∈ G such that

distG(u, v) ≤ d are connected by an edge {u, v}. Note that E(G) ⊆ Ed, i.e., the original edges

in E(G) are retained.

A path of length ℓ, denoted by Pℓ, from a vertex v0 to a vertex vℓ is represented as a

sequence of vertices such that Pℓ = ⟨v0, v1, · · · , vℓ⟩. A cycle of length ℓ, denoted by Cℓ, is

similarly written as Cℓ = ⟨v0, v1, · · · , vℓ−1, v0⟩. A chord of a path (cycle) is an edge between

two vertices of the path (cycle) that is not an edge of the path (cycle).

A graph G = (V, E) is bipartite if there is a partition of V into two disjoint independent

sets V1 and V2 such that V1 ∪ V2 = V . A planar bipartite graph is a bipartite graph that can



CHAPTER 4. DISTANCE D INDEPENDENT SET 64

be drawn in the plane without edge crossings. A graph G is chordal if each cycle in G of

length at least four has at least one chord. A graph G = (V, E) is split if there is a partition

of V into a clique set V1 and an independent set V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V .

Note that the split graphs are a subclass of the chordal graphs. A graph is star if it is a rooted

tree of height one. See, e.g., [8], for the definitions of interval, trapezoid, circular-arc, and

comparability graphs, and inclusion relations among the graph classes.

For the maximization problems, an algorithm ALG is called a σ-approximation algorithm

and the approximation ratio of ALG is σ if OPT (G)/ALG(G) ≤ σ holds for every input G,

where ALG(G) and OPT (G) are the number of vertices of obtained subsets by ALG and the

number of vertices of an optimal solution, respectively.

A parameterized problem is a pair (Q, k) where Q ⊆ Σ∗ is a decision problem over some

alphabet Σ, and k : Σ∗ → N is a parameterization of the problem, assigning a parameter to

each instance of Q. An algorithm is fixed-parameter tractable or fpt if it has a running time

at most f (k) ·nc for some computable function f and a constant c, where n is the input length

and k is the parameter assigned to the input. Given two parameterized problems (Q1, k1)

and (Q2, k2) over the alphabet Σ, an fpt-reduction from (Q1, k1) to (Q2, k2) is a function g :

Σ∗ → Σ∗, computable by an fpt-algorithm, such that I ∈ Q1 if and only if g(I) ∈ Q2 and

k2(g(I)) ≤ f (k1(I)) for some computable function f , for every I ∈ Σ∗.

4.3 Bipartite Graphs

In this section we consider the class of bipartite graphs and its subclasses. As mentioned

in Section 4.1, D2IS is solvable in polynomial time by using a polynomial time algorithm

which finds the maximum matching in a given bipartite graph [22]. Unfortunately, however,

we can show theNP-hardness of DdIS, the hardness of approximation of MaxDdIS, and the

W[1]-hardness of ParaDdIS(k) on bipartite graphs when d ≥ 3.

Theorem 9 For every fixed integer d ≥ 3, DdIS is NP-complete even for bipartite graphs.
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Fig. 4.1 (Left) graph G2 of D2IS and (Right) reduced graph G3 of D3IS from G2.

proof 8 We first show the NP-completeness of D3IS and then one of the general DdIS for

d ≥ 4 in order to make the basic ideas of this proof clear. It is obvious that DdIS is in NP

for every d ≥ 3. To show that D3IS is NP-hard, we reduce the NP-hard problem D2IS on

any general graphs to D3IS on bipartite graphs. That is, given a graph G2 = (V2, E2) of

D2IS with n vertices, V2 = {v1, v2, · · · , vn}, and m edges, E2 = {e1, e2, · · · , em}, we construct

a new bipartite graph G3 in the following way. The constructed graph G3 consists of (i) n

vertices, u1 through un, each ui of which is corresponding to vi ∈ V2, (ii) m vertices, w1

through wm, each wi of which is corresponding to ei ∈ E2, and (iii) two special vertices α

and β. (iv) The vertex α is connected to each vertex in {β} ∪ {w1, · · · ,wm}, i.e., the induced

graph G[{α, β} ∪ {w1, · · · ,wm}] is star. (v) If ei = {v j, vk} ∈ E2, then we add two edges {wi, u j}

and {wi, uk}. Since there is a partition of V3 into two disjoint independent sets {β,w1, · · · ,wm}

and {α, u1, · · · , un}, the reduced graph G3 must be bipartite. See Figure 4.1. For example, if

the instance G2 is the left graph, then the reduced graph G3 is illustrated in the right graph.

It is clear that this reduction can be done in polynomial time.

For the above construction of G3, we show that G3 has a distance-3 independent set S 3

such that |S 3| ≥ k+1 if and only if G2 has a distance-2 independent set S 2 such that |S 2| ≥ k.
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(If part) Suppose that the graph G2 of D2IS has the distance-2 independent set S 2 =

{v1∗ , v2∗ , · · · vk∗} in G2, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we select a subset of ver-

tices S 3 = {u1∗ , u2∗ , · · · , uk∗}∪{β} of size k+1. Note that the distance distG3(β, ui) for every i is

at least three. Since the distance distG2(vi∗ , v j∗) for any pair of vertices vi∗ , v j∗ ∈ S 2 (i∗ , j∗) is

at least two, the shortest path from ui∗ to u j∗ contains at least two vertices in {w1,w2, · · · ,wm}.

This means that the distance distG3(ui∗ , u j∗) for any i∗ , j∗ is at least four. Thus, the selected

vertex set S 3 of size k + 1 is a distance-3 independent set in G3.

(Only-if part) Conversely, suppose that the constructed graph G3 has the distance-3 inde-

pendent set S 3 such that |S 3| ≥ k + 1. First, take a look at the induced subgraph G[{α, β} ∪

{w1, · · · ,wm}]. Since its diameter diamG3(G[{α, β} ∪ {w1, · · · ,wm}]) is two, |S 3 ∩ V(G[{α, β} ∪

{w1, · · · ,wm}])| ≤ 1 holds, i.e., |S 3∩{u1, u2, · · · , un}| ≥ k must be satisfied. Let {u1∗ , u2∗ , · · · , uk∗}

be a subset of k vertices in S 3 ∩ {u1, u2, · · · , un}. Then, the pairwise distance of vertices in

{v1∗ , v2∗ , · · · , vk∗} of G2 corresponding to {u1∗ , u2∗ , · · · , uk∗} in G3 is surely at least 2, i.e., G2

has a distance-2 independent set S 2 such that |S 2| ≥ k. This completes the proof of the

NP-hardness of D3IS.

To prove theNP-hardness of DdIS for d ≥ 4, we add the following two small modifications

to the constructed graph G3 in the above reduction, and construct a new bipartite graph Gd.

Let L = (d − 3) − ⌈ d−1
4 ⌉ and let L = ⌈d−1

4 ⌉. Note that L + L = d − 3. (1) The top vertex β in

Figure 4.1 is replace with a simple path of length L say, ⟨β, β1, · · · , βL⟩, and (2) every bottom

vertex u j is replaced with a simple path of length L, say, ⟨u j, u j,1, · · · , u j,L⟩ for 1 ≤ j ≤ n.

Then, we can again show that Gd has a distance-d independent set S d such that |S d| ≥ k + 1

if and only if G2 has a distance-2 independent set S 2 such that |S 2| ≥ k.

(If part for d ≥ 4) If G2 of D2IS has a distance-2 independent set S 2 = {v1∗ , v2∗ , · · · vk∗} in

G2 as before, then Gd has a subset of vertices S d = {u1∗,L, u2∗,L, · · · , uk∗,L} ∪ {βL} of size k + 1,

which must be a distance-d independent set since distGd (βL, ui∗,L) = L+L+3 = (d−3)+3 = d

and distGd (ui∗,L, u j∗,L) = 4(L + 1) = 4⌈ d−1
4 ⌉ + 4 ≥ d for any i∗ , j∗.

(Only-if part for d ≥ 4) Conversely, suppose that the constructed graph Gd has the
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distance-d independent set S d such that |S d| ≥ k + 1. Similarly to the case of d = 3, since

diamGd (G[{α, β, β1, · · · , βL} ∪ {w1, · · · ,wm}]) ≤ d, which means that |S d ∩ ({α, β, β1, · · · , βL} ∪

{w1, · · · ,wm})| ≤ 1 holds, |S d ∩ {u1, u1,1, · · · , u1,L, u2, u2,1, · · · , u2,L, · · · , un, · · · , un,L}| ≥ k must

be satisfied. Now we can assume that (at least) those k vertices in S d are in the set of bottom

vertices {u1,L, u2,L, · · · , un,L}, because |S d ∪ {u j,L} \ {u j,L′}| ≥ |S d| even if u j,L′ ∈ S d for L′ < L.

Let {u1∗,L, u2∗,L, · · · , uk∗,L} be a subset of k vertices in S d ∩ {u1,L, · · · , un,L}. Then, the pairwise

distance of vertices in {v1∗ , v2∗ , · · · , vk∗} of G2 corresponding to {u1∗,L, · · · , uk∗,L} in Gd is surely

at least 2, i.e., G2 has a distance-d independent set S 2 such that |S 2| ≥ k. This completes the

proof of the theorem. □

Next, we consider the maximization version MaxDdIS of DdIS, which asks for a distance-

d independent set of the maximum size in an input graph G. Since MaxD2IS is equivalent

to Maximum Independent Set, it cannot be approximated within a factor of n1−ε [37]. In the

following, we will show that the above reduction can preserve the approximation-gap and

thus gives us the following inapproximability of MaxDdIS for d ≥ 3.

Corellary 4 For any ε > 0 and a fixed integer d ≥ 3, it isNP-hard to approximate MaxDdIS

to within a factor of n1/2−ε for bipartite graphs of n vertices.

proof 9 Let OPT (G2) denote the number of vertices of an optimal solution for an n-vertex

input graph G2 of MaxD2IS. Let OPT ′(Gd) denote the number of vertices of an optimal

solution for a ν-vertex input bipartite graph Gd of MaxDdIS for a fixed d ≥ 3. Let g(n) be

a parameter function of the instance G2 of D2IS. Note that the reduction described in the

proof of Theorem 9 is the following gap-preserving reduction: (1) If OPT (G2) ≥ g(n), then

OPT ′(Gd) ≥ g(n) + 1, and (2) if OPT (G2) < g(n)
n1−ε for a positive constant ε, then OPT ′(Gd) <

g(n)
n1−ε + 1.

The constructed graph Gd has at most n × n
4 vertices labeled “u”, m ≤ n2

2 vertices labeled

“w”, at most n vertices labeled “β”, and one vertex α, i.e., |V(Gd)| = ν = O(n2). Hence

the approximation-gap is n1−ε = Θ(ν1/2−ε) for any ε > 0. By renaming ν to n, we obtain the

n1/2−ε-inapproximability of MaxDdIS on bipartite graphs of n vertices. □
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Also, the reduction in the proof of Theorem 9 shows the following fixed-parameter in-

tractability of ParaDdIS(k):

Corellary 5 For every fixed integer d ≥ 3, ParaDdIS(k) isW[1]-hard for bipartite graphs.

proof 10 It is known [12] that ParaD2IS(k) on general graphs isW[1]-hard. Let (G2, k) and

(Gd, k′) be the instances of ParaD2IS(k) and ParaDdIS(k′) on bipartite graphs, respectively.

Then, the reduction in the proof of Theorem 9 is the fpt-reduction such that (i) k′ ≤ k + 1,

and (ii) (G2, k) is a yes-instance of ParaD2IS(k) if and only if (Gd, k′) is a yes-instance of

ParaDdIS(k′) on bipartite graphs. □

Even if the input graph is restricted to planar bipartite graphs of maximum degree three,

DdIS remains intractable for d ≥ 3. Note that a planar bipartite graph is of course bipartite,

and therefore D2IS on planar bipartite graphs is tractable.

Theorem 10 For every fixed integer d ≥ 3, DdIS is NP-complete even for planar bipartite

graphs of maximum degree three.

proof 11 We first show the NP-completeness of D3IS and then one of the general DdIS for

d ≥ 4. Obviously, DdIS is in NP for every d ≥ 3. To show that D3IS is NP-complete, we

reduce theNP-complete problem D2IS on any cubic planar graph G2 = (V2, E2) to D3IS on

a new planar bipartite graph G3 = (V3, E3) of maximum degree three.

Let V2 = {v1, v2, · · · , vn} and E2 = {e1, e2, · · · , em} be vertex and edge sets of the planar

graph G2. We construct the planar bipartite graph G3 which consists of (i) n vertices, u1

through un, which are associated with n vertices in V2, v1 through vn, respectively, and (ii) m

subgraphs, S G3,1 through S G3,m, which are associated with m edges in E2, e1 through em,

respectively. For every i (1 ≤ i ≤ m), the ith subgraph S G3,i contains three vertices, wi,0, wi,1,

and wi,2 and two edges, {wi,0,wi,1} and {wi,1,wi,2} such that S G3,i forms a path P2 of length 2.

(iii) If ei = {v j, vk} ∈ E2, then we introduce two edges {wi,0, u j} and {wi,0, uk}. Note that every

simple path S G3,i of length two becomes a single vertex by applying the edge-contraction
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Fig. 4.2 An illustration of the construction when d = 3.

twice, and also every path ⟨u j,wi,0, uk⟩ becomes back an edge {u j, uk} by applying one edge-

contraction for 1 ≤ i ≤ m and 1 ≤ j, k ≤ n. Namely, the constructed graph G3 is a minor of

the planar graph G2 and thus it must be planar. The maximum degree is clearly three. The

construction can be accomplished in polynomial time. For example, if the cubic planar graph

G2 is the left graph in Figure 4.1, then the reduced graph G3 is illustrated in Figure 4.2.

For the above construction of G3, we will show that G3 has a distance-3 independent set

S 3 such that |S 3| ≥ k + m if and only if G2 has a distance-2 independent set S 2 such that

|S 2| ≥ k.

(If part) Suppose that the graph G2 of D2IS has a distance-2 independent set S 2 =

{v1∗ , v2∗ , · · · vk∗} in G2, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we select two subsets

of vertices S ′3 = {u1∗ , u2∗ , · · · , uk∗} and S ′′3 = {w1,2,w2,2,w3,2, · · · ,wm,2} such that |S ′3| = k and

|S ′′3 | = m. One can verify that S 3 = S ′3 ∪ S ′′3 is a distance-3 independent set in G3 since the

pairwise distance in S ′3 is at least four, the pairwise distance in S ′′3 is at least six, and the

distance between wi,2 in S ′′3 and every vertex in S ′3 is at least three for each i.
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(Only-if part) Conversely, suppose that the graph G3 has the distance-3 independent set S 3

such that |S 3| ≥ k +m. First, from each subgraph S G3,i which is the path of length 2, we can

select at most one vertex as the distance-3 independent set since its diameter is two. Thus,

the maximum size of the distance-3 independent set in V(S G3,1)∪V(S G3,2)∪· · ·∪V(S G3,m) is

at most m, which means that |S 3∩{u1, u2, · · · , un}| ≥ k holds. Let {u1∗ , u2∗ , · · · , uk∗} be a subset

of k vertices in S 3 ∩ {u1, u2, · · · , un}. Then, the pairwise distance in the corresponding subset

of vertices {v1∗ , v2∗ , · · · , vk∗} of G2 is surely at least two, i.e., G2 has a distance-2 independent

set S 2 such that |S 2| ≥ k. This completes the proof of the NP-hardness of D3IS.

In the following, we give a brief sketch of the ideas to prove theNP-hardness of DdIS for

d ≥ 4. In the case of D4IS, all we have to do is replace the 2-length path S G3,i corresponding

to the edge ei with a 3-length path S G4,i = ({wi,0,wi,1,wi,2,wi,3}, {(wi,0,wi,1), (wi,1,wi,2), (wi,2,wi,3)})

for each i. See the left graph in Figure 4.3. In the case of D5IS, S G3,i is replaced with

S G5,i = (V(S G5,i), E(S G5,i)):

V(S G5,i) = {w0
i,0,w

1
i,0,w

2
i,0,wi,1,wi,2,wi,3}

E(S G5,i) = {{}w0
i,0,w

1
i,0}, {w1

i,0,w
2
i,0}, {w1

i,0,wi,1}, {wi,1,wi,2}, {wi,2,wi,3}}.

Then, u j (uk) corresponding to the vertex v j (vk) is connected to w0
i,0 (w2

i,0) if ei = {v j, vk} ∈ E2

(see the center graph in Figure 4.3). For d = 6, we connect one vertex wi,4 to the top vertex

wi,3 of S G5,i (see the right graph in Figure 4.3). Similarly, for a general d ≥ 7, such a ⊥-

shape subgraph consists of one horizontal path of length 2⌈ d
4⌉ − 2 and one vertical path of

d − ⌈ d
4⌉. Since the diameter of S Gd,i is less than d, we can select at most one vertex as the

distance-d independent set from each subgraph S Gd,i as before. Also, if {vi, v j} ∈ E2, then

distGd (ui, u j) < d; on the other hand if distG2(vi, v j) ≥ 2, then distGd (ui, u j) = 2× 2⌈ d
4⌉ ≥ d. □

4.4 Chordal Graphs

In this section we restrict the instances to chordal graphs. In [18], Gavril shows that D2IS

admits an efficient algorithm for chordal graphs:
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(Left) subgraphs S G4,i for d = 4, (Center) S G5,i for d = 5, and (Right) S G6,i for
d = 6.

Lemma 9 ([18]) D2IS is in P for chordal graphs.

Recall that if the dth power graph Gd is interval (trapezoid, or circular-arc, resp.), then the

(d + 1)th power Gd+1 is also interval [35] (trapezoid [14], or circular-arc [15], resp.) for any

integer d ≥ 1. The class of chordal graphs does not satisfy the closure property under the

graph power operation, i.e., the square G2 of a chordal graph G is not necessarily chordal,

but it does satisfy the closure property under the graph odd power operation:

Lemma 10 ([2, 3]) Let do ≥ 1 be an odd integer. If G is a chordal graph, then Gdo is also

chordal.

Together with Lemma 9, this yields:

Theorem 11 For every fixed even integer de ≥ 2, DdeIS is in P for chordal graphs.

proof 12 Given a chordal graph G, we first construct the odd power graph Gde−1 from G in

polynomial time, which must be chordal by Lemma 10. Then, by using a polynomial-time

algorithm for D2IS in Lemma 9, we can obtain a solution of DdeIS in polynomial time. □

For an odd do, DdoIS is hard:
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Theorem 12 For every fixed odd do ≥ 3, DdoIS is NP-complete for chordal graphs.

proof 13 Obviously, DdoIS on chordal graphs is in NP for every odd do ≥ 3. To show that

DdoIS on chordal graphs is NP-complete, we reduce D2IS on any graph G2 = (V2, E2) to

DdoIS on a new chordal graph Gdo = (Vdo , Edo).

Given the graph G2 = (V2, E2) of D2IS with n vertices, V2 = {v1, v2, · · · , vn}, and m edges,

E2 = {e1, e2, · · · , em}, we construct the following chordal graph Gdo: (i) We prepare n paths of

length (do−3)/2, S Gdo,1 = ⟨u1,1, u1,2, · · · , u1,(do−1)/2⟩ through S Gdo,n = ⟨un,1, un,2, · · · , un,(do−1)/2⟩,

each S Gdo,i of which is corresponding to vi ∈ V2, and (ii) m vertices, w1 through wm, each wi

of which is corresponding to ei ∈ E2. (iii) All the vertices w1 through wm are connected such

that G[{w1, · · · ,wm}] forms a clique of m vertices. (iv) If ei = {v j, vk} ∈ E2, then we connect

wi to two vertices u j,1 and uk,1.

Figure 4.4 illustrates the reduced graph G7 from G2 which is illustrated in Figure 4.1

when d = 7. The constructed graph Gdo is chordal since all C4’s in the clique graph

G[{w1, · · · ,wm}] have chords and also G[{w1, · · · ,wm} ∪ {vi,0}] contains only cycles C3’s for

every i. Gdo can be constructed in polynomial time from G2.

We show that the reduction satisfies that if Gdo has a distance-do independent set S do such

that |S do | ≥ k if and only in G2 has a distance-2 independent set S 2 such that |S 2| ≥ k.

In the remaining of this proof, the crucial observations are: (1) The distance between

any vertex v in Vdo \ {u1,(do−1)/2, u2,(do−1)/2, · · · , un,(do−1)/2} and another vertex u in Vdo \ {v}

is at most do − 1. On the other hand, (2) the pairwise distance of any two vertices in

{u1,(do−1)/2, u2,(do−1)/2, · · · , un,(do−1)/2} is at most do. The two observations (1) and (2) imply that

the distance-do independent set S do in Gdo must be a subset of outside vertices {u1,(do−1)/2, u2,(do−1)/2, · · · , un,(do−1)/2}.

(3) If v j and vk are two endpoints of single edge ei in G2, then there must be a path

⟨u j,(do−1)/2, u j,(do−3)/2, · · · , u j,1,wi, uk,1, uk,2, · · · , uk,(do−1)/2⟩

by the above reduction rules. Thus, the distance between u j,do and uk,do in Gdo is (do − 1)/2 ×

2 = do − 1.
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Fig. 4.4 An illustration of the construction when d = 7.

(If part) Now suppose that the graph G2 of D2IS has a distance-2 independent set S 2 =

{v1∗ , v2∗ , · · · vk∗} in G2, where {1∗, 2∗, · · · , k∗} ⊆ {1, 2, · · · , n}. Then, we select a subset S do =

{u1∗,(do−1)/2, u2∗,(do−1)/2, · · · , uk∗,(do−1)/2} of size k. It is easy to verify that the pairwise distance

in S do is exactly do.

(Only-if part) Conversely, suppose that the reduced graph Gdo has the distance-do inde-

pendent set S do = {u1∗,(do−1)/2, u2∗,(do−1)/2, · · · , uk∗,(do−1)/2} of size k. Then, the pairwise distance

in the corresponding subset of vertices {v1∗ , v2∗ , · · · , vk∗} of G2 is surely at least two, i.e., G2

has a distance-2 independent set S 2 such that |S 2| ≥ k. □

Corellary 6 D3IS is NP-complete for split graphs.

proof 14 When d = 3 in the proof of Theorem 12, the constructed graph G3 is a split graph

since there is a partition of V(G3) into a clique set {w1,w2, · · · ,wm} and an independent set

{u1,1, u2,1, · · · , un,1}. □
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Similarly to the previous section, it can be shown that the reduction in the proof of Theo-

rem 12 can preserve the approximation-gap, and also it is an fpt-reduction:

Corellary 7 For any ε > 0 and fixed odd integer do ≥ 3, it is NP-hard to approximate

MaxDdoIS to within a factor of n1/2−ε for chordal graphs.

proof 15 The proof is very similar to the proof of Corollary 4. Now, let OPT ′(Gdo) denote the

number of vertices of an optimal solution for a ν-vertex input chordal graph Gdo of MaxDdoIS

for a fixed do ≥ 3. Then, we can show that (1) if OPT (G2) ≥ g(n), then OPT ′(Gdo) ≥ g(n),

and (2) if OPT (G2) < g(n)
n1−ε for a positive constant ε, then OPT ′(Gdo) <

g(n)
n1−ε . Hence the

corollary follows from ν = O(n2). □

Corellary 8 For every fixed odd integer do ≥ 3, ParaDdoIS(k) is W[1]-hard for chordal

graphs.

proof 16 Let (G2, k) and (Gdo , k
′) be the inputs of ParaD2IS(k) and ParaDdoIS(k′) on chordal

graphs, respectively. Then, the reduction in the proof of Theorem 12 satisfies the condition

k′ ≤ k. □

4.5 Concluding Remarks

In the conference version [13] of this chapter we claimed that the reduced graph Gd in the

proof of Theorem 9 is chordal bipartite and thus DdIS on chordal bipartite graphs is NP-

hard. However, Gd is not chordal bipartite since it includes an induced cycle of length six or

more (for example, actually G3 in Figure 4.1 contains an induced cycle ⟨u1,w1, u2,w3, u3,w2, u1⟩

of length six). Therefore, the computational complexity of DdIS on chordal bipartite graphs

is still open.



Chapter 5

Conclusion

In the chapter 3, we studied the complexity statuses of the r-MaxRIS and r-MaxRICS

problems from the viewpoint of graph classes, and analyzed which graph property makes

the problems tractable/intractable. We remark that both of our algorithms for graphs with

bounded treewidth run in polynomial time even if the degree constraint r is not a fixed con-

stant; see Eqs. (3.2) and (3.3). Furthermore, these algorithms can be easily modified so that

they solve more general problems, defined as follows: Given a bounded treewidth graph

G and two integers l and u with l ≤ u, we wish to find a maximum vertex-subset S of G

such that every vertex in G[S ] is of degree at least l and at most u; as a variant, we may

consider the problem which requires G[S ] to be connected. Then, these two problems are

generalization of r-MaxRIS and r-MaxRICS; consider the case where l = u = r.

Furthermore, we studied the Distance-d Independent Set problem, that is a generaliza-

tion of the Independent Set problem. In the conference version [13] of the chapter 4, we

claimed that the reduced graph Gd in the proof of Theorem 9 is chordal bipartite and thus

DdIS on chordal bipartite graphs is NP-hard. However, Gd is not chordal bipartite since it

includes an induced cycle of length six or more (for example, actually G3 in Figure 4.1 con-

tains an induced cycle ⟨u1,w1, u2,w3, u3,w2, u1⟩ of length six). Therefore, the computational

complexity of DdIS on chordal bipartite graphs is still open.
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