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ABSTRACT

In this paper, we provide a real nursing data set for mo-
bile activity recognition that can be used for supervised ma-
chine learning, and big data combined the patient medical
records and sensors attempted for 2 years, and also propose
a method for recognizing activities for a whole day utilizing
prior knowledge about the activity segments in a day. Further-
more, we demonstrate data mining by applying our method
to the bigger data with additional hospital data. In the pro-
posed method, we 1) convert a set of segment timestamps
into a prior probability of the activity segment by exploiting
the concept of importance sampling, 2) obtain the likelihood
of traditional recognition methods for each local time win-
dow within the segment range, and, 3) apply Bayesian esti-
mation by marginalizing the conditional probability of esti-
mating the activities for the segment samples. By evaluating
with the dataset, the proposed method outperformed the tradi-
tional method without using the prior knowledge by 25.81%
at maximum by balanced classification rate. Moreover, the
proposed method significantly reduces duration errors of ac-
tivity segments from 324.2 seconds of the traditional method
to 74.6 seconds at maximum. We also demonstrate the data
mining by applying our method to bigger data in a hospital.
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INTRODUCTION

In the field of healthcare, the standardization of care pro-
cesses, termed Clinical or Critical pathways, has been at-
tempted [37, 40, 12, 41, 29, 21]. In meeting such an objective,
the recognition and data mining of nursing activities can lead
to a better understanding and improvements in medical care,
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and they can help prevent unnecessary activities and exces-
sive work. At the same time, these approaches are beneficial
to patients because the overall care process is optimized, thus
resulting in shorter hospitalization times and lower costs.

Recently, researchers have explored the possibility of hu-
man activity recognition with mobile sensors; for example,
accelerometers, gyroscopes, and low-frequency audio have
been explored [8, 44, 50, 26, 28, 31, 24, 3, 30, 1, 39]. In
addition, several researchers have applied such technology to
domain-specific applications in nursing activities [34, 45, 36].
However, in the available methods, several unclear points still
remain:

The nature of the real activities is not clear

In the application of nursing activity recognition, the ac-
tivity classes — the types of activities — are defined in a
domain-specific manner (as listed in Table 1. Here, the ac-
tivities are not always easy to recognize because the table in-
cludes feature value varieties even for single classes, such as
blood pressure measurements starting by attaching the cor-
responding equipment to a patient, followed by pushing air
pumps periodically, and finishing with detaching the equip-
ment. Moreover, such activities have imbalance varieties,
such as the number of occurrences among classes, starting
times in a day, and duration. For example, complex activities,
such as capturing X-ray, require dozens of minutes, whereas
other activities are completed more quickly. Because the tra-
ditional approach normally assumes that activity classes have
similar probabilities of being performed, similar probabilities
any time in a day, and similar durations, the way in which
accuracy changes when we consider such imbalances is not
known.

The application is not clear

In the application of nursing activity analysis, we can set up
clear goals, such as improving nursing activities effectively
for timing, duration, and patient satisfaction, or optimizing
the costs of the nursing process. For such goals, the techni-
cal objective is not only improving recognition accuracy each
time, derived from the traditional recognition from the cur-
rent time window or those in the vicinity (called local time
windows),but also estimating the segment — the range where
the activity is performed continuously — attached with cor-
rect timestamps and durations. Thus, by clarifying the appli-



cation, we could choose the recognition aspects to which to
assign importance, but this is not case with the existing work.

No dataset with clear goals

To overcome the aforementioned challenges, we require real
data to evaluate or input into a machine learning algorithm.
However, there is extreme shortage of such open datasets ob-
tained from multiple subjects, and a set of entire days with
densely annotated labels. In the literature, there are several
datasets, such as [2, 5, 38] that provide data with longer times,
but because they do not intend clear application, it is not clear
what accuracy aspects to pursue.

For this paper, we collected 1) (labled data) actual activi-
ties from nurses wearing accelerometers in a hospital for ap-
proximately 2 weeks and combined them with training la-
bels, which resulted in 25 activity classes with 5,743 labels
from 22 nurses, and 2) (unlabeled data) the open big data for
60 nurses for 442 [days x people] in the trial for almost 2-
years with the duty days which could obtain agreements from
the nurses and up to 100 patients, combined with patients’
wearable, vital, and environmental sensor data and medical
records. From the obtained labeled data, we observed that
the activities have imbalances in the number of occurrences
for each activity class, the starting times in a day, and the du-
ration of each activity class, as explained in Section “Sensor
Data Collection for Nursing Activities”.

Then, we propose a method for recognizing wholeday activ-
ities using prior knowledge on the information of a sequence
of activity segments which are obtained from wholeday train-
ing dataset, such as the daily timestamps, duration, and im-
balances among activity classes, as explained in Section “Ac-
tivity Recognition for a Whole Day”.

In the proposed method, we 1) convert the set of timestamps
of the training data into the prior probability of the activity
segment by exploiting the concept of importance sampling, 2)
obtain the likelihood for the test data with a traditional recog-
nition methods for each local time window within the range of
the segments, and 3) apply Bayesian estimation by marginal-
izing the conditional probability of estimating the activities
for the segment samples.

By evaluating with the nursing dataset in Section
“Evaluation”, the proposed method outperformed the
naive method without using prior knowledge by 25.81% at
maximum through the balanced classification rate. Moreover,
the proposed method significantly reduces the duration of
errors of activity segments from 324.2 seconds of the naive
method to 74.6 seconds in k-NN, from 173.5 seconds to
90.33 seconds in NaiveBayes, and from 122.2 seconds to
7.88 seconds in RandomForest.

In order to demonstrate research probabilities with ubiquitous
healthcare research to the community, we introduce an analy-
sis of the unlabeled data utilizing the machine-learning result
of the labeled data, combined with nurses profiles and medi-
cal records.
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The contribution of our paper is four-fold: 1) provide the real
dataset! of nursing activities that can be used for supervised
machine learning, and also big data combined with patient
medical records and sensors, 2) propose a method for utiliz-
ing prior knowledge on activity segments in a day, 3) evaluate
the proposed method for improvements to the accuracy of ac-
tivity recognition and the durations of activity segments, and
4) demonstrate data mining by applying our method to bigger
data in a hospital merged with additional hospital data.

SENSOR DATA COLLECTION FOR NURSING ACTIVITIES
We collected mobile-sensor data from the nurses of a hospi-
tals cardiovascular center [35]. The experiment was exclusive
to those nurses who agreed to usage of the sensor data, and to
the duties related to patients who consented to participate in
the experiment.

It includes labeled data for 2 weeks, and unlabelled data for
the duty days which we could obtain agreements from up to
100 patients in 2 years. In this section, we describe the pro-
tocols for data collection and review both of the labelled and
the unlabelled datasets.
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Figure 1. Start time for each activity in a day range. Each row corre-
sponds to an activity class (the number corresponds to the No. in Table
1), and the x-axis is the hour in a day. The dots are the recorded starting
time of an activity. We can see imbalances between activity classes and
times in a day.

Protocol

We requested the nurses to wear mobile devices (iPod
touches) that record accelerations in their breast pockets in
a generally fixed direction. They also attached a small ac-
celerometer device on their right wrist, and another on the
back of their waist. Fig. 3 illustrates the attachments. Each
sensor measured accelerations on three axes in the range of
+2G.

'http://nurseact.sozolab. jp
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Figure 2. Durations of each activity label in the dataset

Labelled data collection

The daytime duties of 22 selected nurses over the period over
two weeks on Feb. 2014 were labeled with mobile tablets
by other nurses who acted as observers. Before the trial, we
defined 41 activity classes from the clinical path, and asked
the observers to record them.

Annotating labels for real activities requires careful design.
In real nursing activities, nursing the patient has the highest
priority, and there occur a lot of missing labels or incorrect
timestamps. Therefore, another nurse acted as an observer,
and operated another iPod device to record the activities of
the subject nurse. On the software on the iPod, the observer

Figure 3. Nurses with three accelerometers: one on their right wrist, one
attached to their breast pocket, and one on the back hip.
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selects the activity class which the subject nurse is about to
start, and pushes the finish icon when the subject finishes.

In reality, if the observer waits for the subject nurse to start
the activity, the start timestamp will have a latency than the
correct one. Therefore, they collaborated with each other to
have correct start timestamps, such that the subject nurse de-
clares the observer the activity before s/he will start it.

Unlabelled data collection

In the same department of the hospital as above, we collected
unlabeled sensor data for 2 years from the nurses who wear
three accelerometers in the same way as the labelled data col-
lection.

Since we also collected the patients’ sensor and medical data
associated with the nurses’ mobile sensor data, — which are
out of the main scope of this paper — we specifically col-
lected the nurses’ sensor data for the duty days which could
obtain agreements. The data we used are collected carefully
to be able to be open data, by obtaining agreements from the
subject nurses and the patients.

Formatting the dataset

To interoperate the data sets for labelled and unlabeled data,
they were formatted uniformly as well as possible. The ID for
the nurses are consistent, then an ID for a nurse is the same
for both data sets.

Moreover, even the each sensor on each position on the body
stores their sensor data separately on the device, it is useful
for data analysis to be merged into one multi-column table.
Therefore, we joined the data for 3 devices’ data of a duty date
to a single table in an off-line manner. We firstly generated
timestamps increasing by 20 Hz, which means 0.05 seconds,
and adopted the closest sample within 0.025 seconds for each
timestamp. If there are no samples within 0.025 seconds, we
reused the last timestamp value.

Since each device has its own clock and they have no interac-
tion for time synchronization with each other, there is a risk
that the clock is not synchronized. To avoid this, we shook
the devices together periodically — once in a day on average
— as a reference timestamp, and used the relative time from
the shaking time as well as possible.

Overview of the dataset
As the result of the experiment, we collected 346.5 [hours
x people] of sensor data from 22 nurses by the labeled data
collection, and 1,655 [day x people] from 60 nurses by the
unlabeled data collection.

To review the collected labels, we review the labels obtained
by the labelled data collection in the following.

After the trial, the activity classes actually observed were 25,
listed in Table 1. The total number of labels was 5,743. The
labels for each activity class are also listed in Table 1.

Fig. 1 shows the plot of the start times for each activity in a
day range. Fig. 2 shows the duration of each activity class.

As shown in Fig. 1, the number of activities varies among ac-
tivity classes. Moreover, we can see that not all the activities



Table 1. Observed activity classes and numbers of labels

No. | Activity class # labels
1 Anamnese (patient sitting) 2
4 Measure height 45
5 Measure weight (dorsal) 8
8 Measure blood pressure (dorsal) 529
10 | Sample blood (dorsal) 16
12 | Start intravenous injection 61
13 | Finish intravenous injection 40
15 | Change drip / line 38
18 | Assist doctor 19
19 | Find artery 257
20 | Examine edema (lie on back) 118
22 | Check bedsore (sacrum / back heel) 10
23 | Measure ECG 22
24 | Attach ECG 54
25 | Remove ECG 5
27 | Attach bust bandage 29
28 | Portable X-ray (prone) 5
29 | Changebandage 30
31 | Change posture 77
32 | Clean body 27
36 | Assist wheelchair 86
37 | Assist walk 35
38 | Move bed 19
39 | Wash hands 117
41 | Record work (PC) 912

occur at any time uniformly. Some activities, such as No. 27,
occur only during several hours in the morning or afternoon,
and others occur continuously, such as No. 12. Compared
with traditional experiment settings where the training data
are collected in a balanced way or in a short time without con-
sidering the time of day, this may result in difficulties during
activity recognition.

Moreover, as shown in Fig. 2, activity duration also varies
considerably. For example, the maximum median dura-
tion in the dataset we collected was 9.35 minutes for clean
body, whereas the minimum was 0.03 minutes for “measure
height.” The variances within a class are large, such that mea-
sure weight has a standard deviation of 8.40 minutes, and
other has 8.09. These phenomena are considered more signif-
icant than other research fields, such as segmentation in voice
recognition [49, 33, 32, 6], and chunking in natural language
processing [4, 11].

In summary, the real activity dataset attempted for several
entire days has imbalances in several aspects, such as class-
wise, times of day, and activity duration. If such information
is obtained in the training phase, we can expect it to be in-
structive for improving activity recognition.

ACTIVITY RECOGNITION FOR A WHOLE DAY

In this section, we propose a method for recognizing the ac-
tivities of an entire day. propose a method for recognizing
activities of a whole day.
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Approach

As shown in Fig. 1, nursing activities have different possi-
bilities, depending on the time of day. If we have training
data with labels and timestamps, we can convert the set of
timestamps into the prior probability of the activity being
performed. In addition, if we use both the starting and end-
ing times of an activity, we can obtain information on the
activity’s duration. As explained in Section “Sensor Data
Collection for Nursing Activities”, such information of when
and how long nursing activities are performed is important
for analysis. In our approach, in addition to the traditional
method for estimating activities from the sensor input of
neighborhood time windows, we exploit the timestamp infor-
mation in order to construct a prior probabilistic distribution
on the activities of an entire day, implement them based on
importance sampling, and utilize them for the Bayesian esti-
mation of activities.

Preliminary

As a preliminary step, we introduce the mathematical expres-
sions used throughout this paper. Table 2 provides a summary
of expressions, and Fig. 4 shows an overview of the expres-
sion for a single activity class c.
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Figure 4. Overview of one-day activities for single activity class c € C.

Table 2. Basic expressions used in the paper

Symbol \ Summary

C The set of activity classes to be
recognized

1:T:=(,2,---,T) | The time sequence in a day.

Ty The feature vector at time ¢ (¢t € 1 :
7).

ag Whether the activity at time ¢ is c or
not (c € C).

Le The number of segments for activ-
ityce C.

s§ = (b(),e(l)) The I'th segment (I € 1 : L°).

bl)el:T The start time of the !th segment.

e(lyel:T The end time of the {’th segment.

For simplicity, we assume that the time of day is expressed as
an integer between one and 7. We abbreviate the sequence
(1,2,---,T)as 1 : T. For each t, we assume that a feature
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vector is extracted t. For each ¢, we assume that a feature
vector is extracted that contains several statistic values from
the time window of the sensor input around t. We specify the
sequence of feature vectors (z1, T2, -, ZT) as Z1.7.

Moreover, C refers to the set of activity classes to be recog-
nized. We assume that at any time ¢ multiple activities might
be included, either because the nurse is performing several
activities concurrently, or because the activity-recognition al-
gorithm conducts fuzzy estimations. Therefore, we define
whether the activity at time ¢ is ¢ € C' or not as the binary
value ay.

In the remainder of the section, we focus on the recognition
of a single activity ¢ € C. In reality, we could apply the
proposed method for each activity ¢ € C, and adopt either
the most probable class arg, max P (af), or adopt all classes
estimated for a time t. In Sec , we evaluated the accuracy
using the latter strategy.

We use the term segment as the continuous time range where
the activity c is performed, and represent it as a pair of start
and end times. When we assume that L° segments are re-
peated for activity c in a day, the /th segment from time b(l)
to e(l) is defined as:

sp = (b(D),e(l)), where 1 <b(l) <e(l) <T.

Traditional activity recognition such as that from Bao et
al.[1], can be modeled as the problem of obtaining the maxi-
mum argument ¢ € C of

P(af|zy) (D

for the local time window t only. Note that obtaining
P(x¢]a$) is easy following Bayes’ theorem. For the rest of
this paper, we call P(x:|a$) a local time likelihood.

In contrast, our goal can be represented as the problem of
obtaining the probability of an entire day’s activities

P(ai.plr1.r).

For the remainder of this section, we describe the method
used to conduct this.

Proposed method
We assume the Bayesian network as shown in Fig. 5.

Fig. 5 represents the conditional probabilities for one segment
s7. We assume that the probabilities between any segments s
and sj, (I # l') are independent.

The marginal probability of the figure is written as
P(zp(1)-e)s ai(z);e(z)a sT)
=P(sp) [ Pladdad)Plafls)

teb(l):e(l)

s7) . Accordingly,

When s7 is fixed, then af for b(
ward, and we can eliminate P (a

H P (z]af)

teb(l)ze(l)

) <t < e(l) is straightfor-
il

= P(s7)
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An activity segment

Activity of a time window

wue Input features of a time window

Local-time
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(traditional)

Figure 5. Overview of the proposed method

To obtain the conditional probability between ag(l):e( 0 and
Tp(1):e(1), W€ marginalize s¢, then

ZPSZ) II P@ila). @

teb(l):e(l)

P(ab(z) ce(1) Th(l): e(l

Next, we divide the time sequence 1 : T" to the segments

{6(1) s e(D)}, {b(2) : e(2)}, -+, {b(LY) : e(L7))}

and consider the marginal probability for all the times 1 : T’
as

P(af.p, z1:1)

=P( Ap(1):e(1)> Th(1):e(1)s
Up(2):e(2) Tb(2):e(2))
ag(LC):e(LC)’ Th(Le):e(Le) )
Assuming any pairs of segments are independent each other,

The formula is written as the product of the segment marginal
probabilities, as

H P(ag).e(1) To1):et))-
lel:Le

Substituting (2),

IT DoPGs)

lel:Le sy

[[ Pla)}

teb(l):e(l)

Therefore, given the input x1.7,

P(ai.r|r1.T)

< T {>P6H I Plad)} 3)

lel:Le sy teb(l):e(l)

This formula utilizes not only the local time likelihood
P(x¢]a$) as the traditional approach in Eq. (1), but also the



prior probability of the segments P(sf). We use the local
time likelihood P (z:|a$) from the result of the naive method,
and also prepare and utilize the prior probability P(s{) using
the samples from the training data. Because P(s{) can be in-
formative when we obtain training data for an entire day, our
method can lead to accuracy improvement for activity recog-
nition of an entire day.

Implementation

In the implementation, we calculate Eq. (3) according to the
following steps, where we adopt the logarithmic probability
to avoid underflows, and exploit the idea of importance sam-
pling to obtain those samples weighted by the prior knowl-
edge of the segments.

1. Train local time log likelihood
logP(x¢]ay) foreacht e 1:T
with the naive method, and store the results.

2. Construct P(sf) from the training data. This probability is
implemented as a set of k samples from the training data.
We represent the i’th sample as slc[i], where 1 < ¢ < k.

3. For each slcm in Step 2, calculate
exp( Y.
teb(l[z]):e(l]])
using the result of Step 1).

log P(xt|af)) )

4. The average of Eq. (4) for I[1],1[2],--- ,[k] can be re-
garded as importance sampling for Eq. (4), and as an ap-
proximation of Eq. (2) accordingly. Because Eq. (2) is the
same function for any [ € 1 : L¢, we can utilize this func-
tion directly to estimate sj rather than completely calculate
Eq. (3). In practice, to simplify the calculation of the av-
erage for day wise, we can pick up some [ € 1 : L¢ with
larger Eq. (2) values by a threshold such as the average of
Eq. (2).

Note that log P(x¢|a$) can be used multiple times for differ-
ent slc[ il in Step 3, and thus they are pre-calculated and stored

in Step 1 to avoid redundant calculations.

EVALUATION

In this section, we describe the dataset collected from ac-
tual nurses wearing accelerometers in a hospital for approxi-
mately two weeks, and we evaluate our proposed method by
applying it to this collected data.

Objective
The goal of the evaluation is to answer the following ques-
tions:

1. Can the proposed method improves the recognition accu-
racy?

2. Can the proposed method estimate better segments?

3. Can we obtain knowledge about nursing activities or clini-
cal pathways from the real data?
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For Question 1, we evaluate accuracy compared with the
naive method indicated in points 1 and 2 of Section “Results”.
For Question 2, we evaluate the activity durations indicated
in point 3 of the same section. Moreover, for Question 3, we
discover knowledge about the nursing activities by applying
our method to the two years of data collected, and explore
correlations with the medical data.

Preprocessing

We extracted feature vectors from the three axes using the
accelerometer data. For the sensor data, time windows of 5
seconds were extracted, shifting every 2.5 seconds, as in Bao
et al. [1]. For each time window, we calculated 47 feature
values, following the literature of [52, 53].

We reduced the 47 feature variables to 27 by applying
stepwise-feature selection [13] to 1,000 randomly sampled
vectors over ten iterations. The feature variables that were
selected are listed in Table 3.

Applying the method

In order to evaluate our proposed method, we compared the
proposed method with the prior knowledge about P (s{), and
the naive method without the prior knowledge. As under-
lying machine learning algorithms for P(x¢|a$), which is
the same as the naive method after applying the Bayes’ the-
orem, we adopted k-Nearest Neighborhood (k-NN), naive
Bayes (NaiveBayes) and RandomForest, and evaluated each
of them. We adopted a Gaussian distribution for the naive
Bayes method, which is a parametric model of probabilities.
Because it assumes specific probability function, it may lead
to incorrect modelling of the probability. Therefore, we also
adopt k-NN, which can non-parametrically approximate the
probability by using the powered inverse of distances with
the k’th samples, as addressed in many literatures. Random
forest does not have such proven approximation, as far as we
know, but we can apply Bayes’ rule to the majority rate ob-
tained from each weak-decision tree. Random forest is pop-
ular and achieves better accuracy in many papers, then we
adopted this to demonstrate to use high-performance base-
line.

The detail of the methods are described in the following: In
order to evaluate the accuracy of real usage where the training
and usage data are different, we applied 1-duty-day-left-out
cross validation, which means testing each nurse’s working
day with the model trained with the data that have either dif-
ferent days or different nurses.

Evaluation method

To evaluate the proposed method, precisions, recalls, and F-
measures for each time window are not necessary for the fol-
lowing reasons:

1. The targeted real data are imbalanced, as discussed pre-
viously. Standard measures, such as precision and F-
measure, are affected by these imbalances. Thus, it is
preferable to use imbalance-independent measures.

2. Activity duration is also important. The traditional mea-
sures do not consider the fragmentation of estimated ac-
tivities. If fragmentation remains in the estimated activity
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Table 3. List of feature variables after feature selection

No. Feature Sensor Axis (if any)
1 Mean intensity Chest

2 Mean intensity Right wrist

3 Mean Chest Y

4-6 Mean Waist X,Y,and Z
7-9 Mean Right wrist X,Y,and Z
10 Variance of intensity Right wrist

11-13 | Variance Right wrist X,Y,and Z
14-15 | Variance Chest YandZ

16 Variance Right wrist Z

17-18 | Mean FFT-domain energy Chest YandZ
19-20 | Mean FFT-domain energy Right wrist XandZ

21 Mean sum of the absolute values of each axis Chest

22 Mean sum of the absolute values of each axis Waist

23 Number of samples out of mean intensity +0.1G Right wrist

24 Number of samples out of mean intensity +£0.1G Waist

25 Number of crosses of the zone of the mean intensity £0.1G | Waist

26 Number of crosses of the zone of the mean intensity +0.1G | Right wrist

27 Covariance between intensities Chest and Waist

sequences, this can result in many segments of shorter du-
rations. In order to analyze nursing activities, duration is
one of the critical values.

To overcome these problems, we adopted the evaluation
methods introduced in this section.

With regard to point 1, we adopted BCR, a measure used by
[10, 9] and define as follows:

TP-rate + TN-rate
2

where TP-rate is defined as TP/(F N + T P), and TN-rate is
defined as TN/(T'N + FP), where TP (FP, TN, FN)is
the number of true positives (false positives, true negatives, or
false negatives, respectively). In contrast with other measures
such as recall and F-measure, these values are not affected by
imbalanced positive and negative samples at the ground truth
level, and accordingly, BCR — the mean of them — is also
imbalance independent.

BCR =

With regard to point 2, we evaluate the difference between
the mean durations of the estimated and true labels for each
activity. If the value is smaller, the estimated segments have
closer durations to the true segments.

Results

Following the evaluation approach discussed above, we ex-
plain the results shown in Fig. 6 and Fig. 7. From here, to
easily visualize the result, we omit the result of the activity
classes for no more than 5 labels (activity class No. 25 and
28) and "Other” class. Note that these samples were used in
the evaluation for reality, but just removed when showing the
result.

Accuracy by the balanced classification rate
Fig. 6 shows the results for k-NN, NaiveBayes, and Random-
Forest as the underlying machine learning algorithm.

As we can see from the figure, most of the activity classes
improve with our method. Averaging all activity classes,
when we adopt k-NN as the underlying algorithm, BCR for
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naive method is 56.10% (o0 = 9.6), and for the proposed
method, it is 73.18% (0 = 14.2). When we adopt Naive
Bayes as the underlying algorithm, BCR for the naive method
is 55.15% (o0 = 15.8), and for the proposed method, it is
80.96% (0 = 14.5). Moreover, when we adopt RandomFor-
est as the underlying algorithm, BCR for the naive method
is 59.03% (o0 = 17.3), and for the proposed method, it is
67.83% (o = 13.4).

Accuracy of activity durations

Fig. 7 shows the mean error for activity durations for the naive
and proposed methods for each activity. Because the y-axis
is the error, the smaller the y-axis, the better is the accuracy.
From the figure, in any activity class, the proposed method
greatly outperforms the naive method. The mean errors are
324.2 seconds for the naive method and 74.6 seconds for the
proposed method, with k-NN. When using NaiveBayes, they
are 173.5 seconds for the naive method and 90.33 seconds
for the proposed method. Moreover, when we use Random-
Forest, they are 122.2 seconds for the naive method and 7.88
seconds for the proposed method.

Discussion

As aresult of the evaluations with BCR, our proposed method
outperformed the naive method by 17.08 (25.81, 8.8)% with
k-NN (NaiveBayes, Random Forest, respectively). Although
the best absolute accuracy of the naive methods is by Ran-
domPForest, the best improvement and absolute accuracy of
the proposed method is by NaiveBayes, and the second is
k-NN. The reason why RandomForest was not improved so
much would be because the probability modeling of it is not
perfect, compared with other probabilistic methods.

On the other hand, the accuracy of activity durations was the
best in RandomForest even in the absolute error value. Com-
pared with the prior knowledge about the timestamps of seg-
ments, that about the activity durations seems to be effective
in any underlying algorithms.

Although we achieved improvements for BCR, further work
for other types of improvements such as precision and F-
measure, are important. This is inherently difficult to achieve,
for example, prediction of disasters or diseases that hardly
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Figure 6. BCR for naive / proposed methods for each activity with k-NN
(NaiveBayes, RandomForest) (Average: 56.10 (55.15, 59.03)% for the
naive method and 73.18 (80.96, 67.83, respectively)% for the proposed
method.)

occur, but other approaches, such as feature engineering, and
considering state-transition probabilities, such as [48] can be
effective.

Instead of the prior knowledge about the timestamps, it is
possible to use the time-of-day as a feature. However, the
prior knowledge about the activity duration cannot be uti-
lized. Since the activity duration is only known when the
segment is defined, it is not applicable for the features in the
traditional method. The activity durations are drastically im-
proved on our method as in Fig. 7, it would be an advantage
of our method.

We assume that we can obtain a multiple activity classes si-
multaneously. If we assume that we can restrict to a single
activity class at a time, the problem is more difficult. Ap-
proaches such as optimizing multi-class ROC [14, 43] can be
the candidates for solving this problem.

In this paper, we adopt k-NN, NaiveBayes, and RandomFor-
est as the underlining algorithms. Nonetheless, our approach
can be used as a post-process of any type of estimation algo-
rithm that can output local-time likelihood.
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Applying to bigger data

Using our method, we demonstrate an example of recogniz-
ing and analyzing bigger datasets, such as correlation with
nurses’ experience, correlation with patients’ levels of nurs-
ing needs, and the relationship between delays of discharges.

For the unlabelled data, we extracted 265,002 time windows,
which corresponded to 771 duty days x nurses, and applied
our proposed method in order to estimate the real activities
involved in nursing duties. Although RandomForest can be
used to deduce higher accuracy, to balance the accuracy of
BCR and activity durations, and to make the probability dis-
tribution of the result natural, we adopted the k-NN algorithm
instead of NaiveBayes and RandomForest.

Nursing times in a day
For 658 daytime duties, the average time for the defined care
time is 277.8 minutes with o = 55.7.

Fig. 8 is the estimated care times for each activity class in
one daytime. From the figure, we can see the types of activ-
ity on which the nurses spend more time, such as “Examine
edema”, and “Measure blood pressure”. We can also see that
the nurses spend significant time recording their work on a
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PC, which were introduced after the electronic medical record
system was introduced, and hence there is an opportunity for
reducing this time.
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Figure 8. The nursing times for each activity class in one daytime

Correlation with the nurse’ experience

If we join the results with additional data, such as nurse’ pro-
file, we can data mine further knowledge. To demonstrate
this, we joined the results with the number of experienced
years for each nurse. The mean experienced years is 7.36
years with o = 5.65, the minimum is 1, and maximum is 25.

Then, we applied Poisson regression to explain the experi-
enced years with the duration of each activity in a day. Ta-
ble 4 lists the activities whose total time in a day is statisti-
cally significant by Poisson regression under the level of p =
0.05. From the table, “Measure blood pressure” can explain
the experienced years with a coefficient of exp(0.002) =
1.002, “Examine edema” can explained with a coefficient
of exp(0.046) = 1.005, and “Record work (PC)” can ex-
plain with exp(—0.003) = 0.997. Statistically, this implies
that experienced nurses measure blood pressures and examin
edema slightly longer, and spend slightly less time for record-
ing work with a PC.

Table 4. Nursing activities whose total time in a day is statistically sig-
nificant by Poisson regression under the level of p = 0.05.

Coefficient Std. Error  p-value

Measure blood pressure 0.002 0.00  0.00006
Examine edema 0.046 0.02 0.00393
Record work (PC) -0.003 0.00 0.00471

Correlation with the level of nursing needs
In a hospital, patient status is assessed in a standardized man-
ner, based on the level of nursing needs. After joining the
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patient nursing needs data with the amount of time spent by
nurses for each activity by dates, we applied Poisson regres-
sion to explain the nursing needs with the duration of each
activity in a day. The number of patients is 55 and the num-
ber of samples after joining with the nurse activities is 189.

As aresult, “Measure blood pressure” could explain the nurs-
ing needs with coefficient of exp(0.017) = 0.98. This im-
plies that patients with high nurseing needs take slightly less
time for blood pressure and could spend more time for other
activities.

Differences with regard to discharge delays

We compared the amount of time spent by nurses for each
activity between those who had duty dates when there are
patients with delay in the discharges (more than 4 inpatient
days) and those who had duty dates when there are patients
with no delay. The number of patients after joining with the
patient record is 24 and the number of samples is 155.

As a result, the amount of time for “Finish intravenous injec-
tion” in a day has statistically significant difference between
delayed patients and those with no delay with p = 0.019. The
mean time spent in this activity is 221.0 minutes (¢ = 0) for
delayed patients, and 203.6 minutes (o = 58.64).

We can observe that intravenous injection takes longer times
for patients who cause delays of discharges.

As shown in this section, by linking our proposed method
with additional data which already exist in hospitals, we can
produce a valuable knowledge for reflecting and improving
medical processes.

RELATED WORK

In the literature, many works attempted mobile activity recog-
nition [8, 44, 50, 26, 28, 31, 24, 3, 30, 1, 39]. A few papers
also attempted to apply nursing activity recognition and ap-
plication [34, 45, 36].

Because activity recognition manages sequential data, tech-
niques for sequential data such as Hidden Markov Model
(HMM) [7, 24] and Conditional Random Fields (CRF) [17,
27, 25, 7], used in speech recognition and natural language
processing, are related. Some works have attempted to apply
these techniques to mobile activity recognition [46, 47, 42,
51]. Here, we claim that using HMM and CRF are indepen-
dent of our contribution. Basically, HMM and CRF are not
segmenting wise, but the time window wise if we use them
straightforwardly. Then, we can apply our method to utilize
prior knowledge independently. Applying HMM and CRF
for segment wise is not straightforward since they are not de-
termined from the first. And, HMM and CRF are complex to
estimate the parameter, but our method can simply integrate
and utilize other popular methods of non-sequential machine
learning.

Another approach that is applicable to sequential data is Bag-
of-Features (BoF), which makes histograms of feature values
and utilizes their statistic features [53, 52]. However, this
can only be applicable to data that is already segmented. The



segmentation technique is common in speech recognition [11,
4] and natural language processing [33, 6, 49, 32].

However, among the aforementioned work, to the best of our
knowledge, none addresses the challenges real-world applica-
tions, nor try to utilize the prior knowledge on the daily basis,
such as our method. Class-wise prior probability, timestamps
in a day, and activity durations have large variances. These
can difficulties in activity recognition when applying the ex-
isting work.

With regard to activity durations, [48] adopts the CRF model
that can integrate the knowledge of activity duration us-
ing Semi-CRF, which learns segmentation in addition to the
Markov transitions, as well as the traditional CRFs. More-
over, it improves computation costs by considering omitting
“other” activities. This work generates promising results in
accuracy, although the computation and parameter estima-
tion often becomes complex in such high-dimensional ap-
proach. Our method manages the duration and segments as
a prior knowledge obtained from the training dataset, and in-
fers the activities considering them by Bayesian network and
importance sampling approaches, which is demonstrated to
be tractable in real nursing big data.

In addition, the challenge lies in recognizing complex
domain-specific activities such as nursing activities which,
we resolve in our paper.

For machine learning from imbalanced data, problems and
approaches are addressed in the literature. Classification for
imbalanced data is highly important in the area of risk man-
agement, such as medical decision domains, where a positive
instance, such as a specific disease, hardly occurs. [16] in-
troduced several assessment metrics, such as ROC that is ro-
bust for imbalanced data, and reviewed several approaches,
such as importance sampling, cost-sensitive methods, and ac-
tive learning. It also addresses the effectiveness of one-class
learning, a binary classification of positive or negative. [22]
applied empirical evaluation of RandomForest algorithm for
imbalanced data. [18] proposed sampling method for bag-
ging, and evaluated their method using AUC. [23] evaluated
several boosting and bagging algorithms comprehensively for
noisy and imbalanced data, and concluded that bagging gen-
erally outperforms boosting. In this paper, we incorporate the
robustness of one-class learning to our method.

In the literature, several datasets for mobile activity recogni-
tion are available. [15], with their large-scale activity collec-
tion, collected over 35,000 activities from more than 200 peo-
ple over approximately 13 months. [19] provided a dataset
that consists of 28 days of sensor data from a single person
with annotations added by their proposed system. [20] was
a unique trail to collect activity recognition datasets from the
laboratories of multiple universities. In the 5 years, the total
number of activities reached over 50,000 samples. [5] pro-
vided a dataset with varieties of sensor displacement status
for 33 fitness activities from 17 participants. [2, 38] provided
an activity dataset with sensor-rich environment where the
subjects wore multiple sensors on the body, with more than
27,000 activities from 12 subjects. Among them, [2, 5, 38]

1278

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

provided an entire day data / multi-day data as a part of them.
However, the activity classes are common types, such as those
that appear in Activity in Daily Life (ADL) records, and not
similar to our dataset, which is closely coupled with the ap-
plication domain and domain data, such as medical records.

CONCLUSION

In this paper, we collected a real nursing dataset for mobile
activity recognition that can be used for supervised machine
learning, and proposed a method for recognizing activities for
an entire day utilizing prior knowledge about the activity seg-
ments in a day. The results showed accuracy improvement
compared with the baseline method that did not employ our
method; in particular, there were significant improvements in
activity durations. It implies that the dataset are valid, and
that the proposed method is confident.

We also demonstrated data mining by applying our method to
bigger data combined with 2 years of patient medical records,
and demonstrated the value of linking with additional day.
The future work includes expanding the data mining in order
to explore the knowledge about clinical paths, such as find-
ing important activities that lead to earlier discharge from the
hospital.

Because activity recognition in nursing domain is new and
challenging, there is no statement or reference how much ac-
curacy is required, and our method cannot be proven whether
they have enough accuracy. However, we believe the result
of the paper can be a reference of how challenging it is, and
moreover, we claim that we could achieve non-negligible im-
provement for the durations of activities, and demonstrated
the durations could be used for nursing activity analysis.

The data we used were collected carefully to be used as open
data by obtaining agreements from the subject nurses and
patients. The data are also related to RFID tag data in or-
der to recognize nurses’ entry into patients’ rooms, vital data
from hospitalized patients (e.g., cardiograms, bed sensors to
measure heart rate/breathing/body movements), accelerome-
ter, in-room sensors, and medical information recorded in the
electronic clinical pathways, and indirectly, inpatient sensor
data. As future work, data mining these whole data com-
bined with the activity recognition result and extracting valu-
able knowledge which contributes to efficient clinical path-
ways and better health care will be important.
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