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Abstract:
We have been proposing a framework Rough Non-deterministic In-
formation Analysis (RNIA), which considers granular computing
concepts in tables with incomplete and non-deterministic informa-
tion, as well as rule generation. We have recently de�ned an ex-
pression named division chart with respect to an implication and
a subset of objects. Each division chart takes the role of the min-
imum granule for rule generation, and it takes the role of contin-
gency table in statistics. In this paper, we at �rst de�ne a division
chart in Deterministic Information Systems (DISs), and clarify the
relation between a division chart and a corresponding implication.
We also consider a merging algorithm for two division charts, and
extend the relation in DISs to Non-deterministic Information Sys-
tems (NISs). The relation gives us the foundations of rule genera-
tion in tables with non-deterministic information.

Keywords: Granular computing; Rough sets; Division charts; Con-
tingency table; Non-deterministic information; Rule generation
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1 Introduction

Rough set theory o�ers a mathematical approach to vagueness and
uncertainty, and the rough sets based concepts have been recog-
nized to be very useful [3,10,12]. This theory usually handles ta-
bles with deterministic information, which we call Deterministic
Information Systems (DISs). Many applications of this theory to
information analysis, data mining, rule generation, machine learn-
ing and knowledge discovery have been investigated [14,15].

Granular computing [5,13], which covers several computing frame-
works, is now investigated about its possibility and applicability.
Rough sets seem a special case of granular computing, and it is
very important research to extend several useful concepts in rough
sets to concepts in granular computing.

Non-deterministic Information Systems (NISs) and Incomplete In-
formation Systems (IISs) were proposed for handling information
incompleteness in DISs [2,4,6�8,10]. NISs and IISs are known as
the important framework for handling information incompleteness
in tables, and a lot of theoretical work has been reported. We fol-
lowed this robust framework, and we have been developing algo-
rithms and software tools. We are simply calling this work Rough
Non-deterministic Information Analysis (RNIA) [18�20].

In this paper, we newly de�ne an expression, which we name Di-
vision Chart. For any descriptors [A, valA] and [B, valB], we de-
�ne a division chart DC([A, valA], [B, valB]), and this division
chart shows us most of information for an implication [A, valA] ⇒
[B, valB]. Namely, this division chart takes the role of the con-
tingency table in statistics, and we may see a division chart is a
contingency table in rule generation. We also de�ne a division chart
DC(∧i[Ai, vali], [B, valB]) recursively.

For this recursive de�nition, we propose a merging algorithm to
obtain a division chart DC([A, valA] ∧ [C, valC ], [B, valB]) from
DC([A, valA], [B, valB]) andDC([C, valC ], [B, valB]). This will be
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useful to know information for rule generation, namely we can han-
dle each attribute independently. When we need to consider a set
of attributes, we employ this merging algorithm.

The paper is organized as follows: Section 2 considers division
charts in DISs, and clari�es the concept of consistency by division
charts. Furthermore, we newly introduce a merge of two division
charts. Section 3 extends each issue inDISs toNISs, and consider
rule generation by division charts instead of previously de�ned inf
and sup blocks. Finally, Section 4 concludes this paper. In the ap-
pendix, we show examples by the current software tool for division
charts.

2 Preliminary and Division Charts in DISs

This section reviews DISs and some de�nitions, then we consider
division charts in DISs.

2.1 De�nitions in DISs

A Deterministic Information System (DIS ) [9,12,11] ψ is a quadru-
plet:

ψ = (OB,AT, {V ALA| A ∈ AT}, f),

where OB is a �nite set whose elements are called objects, AT is a
�nite set whose elements are called attributes, V ALA is a �nite set
whose elements are called attribute values and f is such a mapping:

f : OB × AT → ∪A∈ATV ALA.

We usually consider tabular representation of ψ like Table 1.

A pair [A, v] (A ∈ AT , v ∈ V ALA) is called a descriptor, and each
candidate of rule is de�ned by these descriptors. For a descriptor
[A, v], let [x][A,v] denote an equivalence class below:
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Table 1
An Exemplary Deterministic Information System ψ1.

OB temperature headache nausea flu

1 very_high yes yes yes

2 high yes yes yes

3 normal yes yes no

4 very_high yes no yes

5 very_high yes yes yes

6 high no no no

7 normal no yes no

8 high no no no

[x][A,v] = {y ∈ OB | f(y, A) = f(x,A) = v}.

An equivalence class [x]∧i[Ai,vi] for a conjunction of descriptors is
de�ned by ∩i[x][Ai,vi].

We often consider two disjoint sets: CON ⊆ AT which we call
condition attributes and DEC ⊆ AT which we call decision at-
tributes. Usually, DEC is a singleton set {Dec}. An implication
for attributes CON and DEC = {Dec} is generally a formula τ
in the following form:

τ : ∧A∈CON [A, valA] ⇒ [Dec, val],
(valA ∈ V ALA, DEC = {Dec} ⊆ AT, val ∈ V ALDec).

In most of work on rule generation, we try to obtain a set of ap-
propriate implications de�ned above. For simplifying the notation,
let [CON, valCON ] denote ∧A∈CON [A, valA], and we handle an im-
plication τ : [CON, valCON ] ⇒ [Dec, val].

An object x ∈ OB is consistent with any y ∈ OB,

if f(x,A) = f(y, A) for every A ∈ CON
implies f(x,Dec) = f(y,Dec).

If object x is consistent, we also say an implication τ de�ned by
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object x is consistent. In order to specify an object x de�ning τ ,
we may employ a notation τx.

In [9,12,11], a rule is de�ned by a consistent implication, and the
problem of rule generation is converted to the problem on reduc-
tion of attributes and attribute values. However, the de�nition by
consistency is slightly strong, therefore the following criteria were
also introduced into each implication τx.

support(τx) = |[x][CON,valCON ] ∩ [x][Dec,val]|/|OB|,
accuracy(τx) = |[x][CON,valCON ] ∩ [x][Dec,val]|/|[x][CON,valCON ]|.

For threshold values α and β (0 < α, β ≤ 1.0), if support(τx) ≥ α

and accuracy(τx) ≥ β hold, we de�ne that this τx is a rule. The
case β = 1.0 corresponds to the rule de�nition by consistency,
namely the rule de�nition by two criteria is more general than that
by consistency. This paper follows these de�nitions of rules.

Proposition 1 In a DIS, let τx and ηy be implications for x, y ∈
[x]CON∪{Dec}. Then, η is equal to τ . Furthermore, the following
holds.

support(ηy) = support(τx), accuracy(ηy) = accuracy(τx).

(Proof)
y ∈ [x]CON∪{Dec} means that f(y, A) = f(x,A) for each A ∈
CON ∪ {Dec}. Therefore,

ηy = (∧A∈CON [A, f(y, A)] ⇒ [Dec, f(y,Dec)])
= (∧A∈CON [A, f(x,A)] ⇒ [Dec, f(x,Dec)]) = τx.

According to the above equation, two equations on support and
accuracy clearly hold. 2

Proposition 1 seems trivial in DISs. Since x and y belong to
[x]CON∪{Dec}, we may consider any τ y for calculating support and
accuracy. However this property may not hold in NISs.
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2.2 Division Charts in DISs

Now, we consider to divide each equivalence class [x][CON,valCON ] by
[Dec, val]. Here, we can consider the next two types of implications
for each y ∈ [x][CON,valCON ] in Table 2.

Table 2
A table for obtainable implications from [x][CON,valCON ] with respect to [Dec, val].
Here, valCON ⇒ val means [CON, valCON ] ⇒ [Dec, val].

Case CON {Dec} Implications

1 valCON val τ : valCON ⇒ val

2 valCON val′ (val′ ̸= val) η : valCON ⇒ val′

For two cases 1 and 2 in Table 2, we de�ne 1⃝ and 2⃝ below, and
we name them components.

1⃝ = {y ∈ [x][CON,valCON ]| y defines τ},
2⃝ = {y ∈ [x][CON,valCON ]| y defines η}.

Clearly, [x][CON,valCON ] = 1⃝∪ 2⃝ holds.

Fig. 1 shows this division, and we name this �gure Division Chart
DC([CON, valCON ], val) of [x][CON,valCON ] by [Dec, val].

Fig. 1. A division chart DC([CON, valCON ], val) of [x][CON,valCON ] by [Dec, val] in
a DIS.

As for criteria support(τx) and accuracy(τx) (x ∈ 1⃝), we easily
obtain the following by using components.

Proposition 2 We have the following.
support(τx) = | 1⃝|/|OB|, (| 1⃝| : cardinality),
accuracy(τx) = | 1⃝|/(| 1⃝|+ | 2⃝|).

6



Furthermore, we can characterize the following property of the con-
sistency in DISs by using the condition of division charts, which
show us visual information.

Proposition 3 [20,21] For descriptors [CON, valCON ] and [Dec,
val] in a DIS, (1), (2), (3) and (4) in the following are equivalent.
(1) Each object y ∈ [x][CON,valCON ] is consistent.
(2) [x][CON,valCON ] ⊆ [x][Dec,val].
(3) The component 2⃝ = ∅ in DC([CON, valCON ], val).
(4) accuracy(valCON ⇒ val)=1.0.

Remark 1 In rough sets and granular computing, we often em-
ploy equivalence classes, and division charts also take the role of
equivalence classes according to Proposition 3. We try to employ
division charts for handling rough sets-based concepts instead of
equivalence classes.

2.3 A Merged Division Chart by Two Division Charts in DISs

Now, we consider merging two division charts. Let us consider de-
scriptors [CON1, valCON1], [CON2, valCON2] (CON1∩CON2=∅)
and [Dec, val]. For two division charts with the same decision at-
tribute values DC([CON1, valCON1], val), DC([CON2, valCON2],
val), we generate DC([CON1, valCON1]∧ [CON2, valCON2], val).
This merged division chart means a chart with respect to an im-
plication below:

τ : [CON1, valCON1] ∧ [CON2, valCON2] ⇒ [Dec, val].

In this case, we have Table 3 related to obtainable implications.

Table 3
A table for obtainable implications from [x][CON1,valCON1]∧[CON2,valCON2] with re-
spect to [Dec, val].

Case CON DEC Implications

1 (valCON1, valCON2) val τ : (valCON1, valCON2) ⇒ val

2 (valCON1, valCON2) val′ (val′ ̸= val) η : (valCON1, valCON2) ⇒ val′
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In Table 3, we also de�ne 1⃝, 2⃝ and DC([CON1, valCON1] ∧
[CON2, valCON2], val) in Fig. 2.

Fig. 2. A merged division chart of [x]valCON1∧valCON2
by [Dec, val] in a DIS.

For this merged division chart, we have the following proposition.

Proposition 4 For DC([CON1, valCON1]∧[CON2, valCON2], val)
in Fig.2, the following holds.

1⃝ = 1⃝1 ∩ 1⃝2,
2⃝ = ([x][CON1,valCON1] ∩ [x][CON2,valCON2]) \ 1⃝.

Since Proposition 2 and 3 also holds in this merged division chart in
Fig. 2, we can recursively apply this merging process for obtaining
rules.

Example 1 Let us consider ψ1 in Table 1, and we �x α = 0.0 and
β = 0.9.
(CASE 1) For DC([temperature, high], yes) corresponding to an
implication τ1 : [temperature, high] ⇒ [flu, yes], 1⃝1 = {2} and
2⃝1 = {6, 8} holds. Here, support(τ1) = | 1⃝1|/8 = 1/8 > α and
accuracy(τ1) = | 1⃝1|/(| 1⃝1|+ | 2⃝1|) = 1/3 < β. Therefore, this τ1
is not recognized as a rule.
(CASE 2) Similarly, for DC([headache, yes], yes) corresponding
to an implication τ2 : [headache, yes] ⇒ [flu, yes], 1⃝2 = {1, 2, 4, 5}
and 2⃝2 = {3} holds. Here, accuracy(τ2) = | 1⃝2|/(| 1⃝2|+ | 2⃝2|) =
4/5 < β. Thus, τ2 is not recognized as a rule, either.
(CASE 3) Then, we consider a merged division chart corresponding
to an implication τ1,2 : [temperature, high] ∧ [headache, yes] ⇒
[flu, yes]. Here, [2][temperature,high]∧[headache,yes] = {2}, 1⃝ = 1⃝1 ∩
1⃝2 = {2} ∩ {1, 2, 4, 5} = {2}, 2⃝ = {2} \ 1⃝ = ∅, support(τ1,2) =

8



| 1⃝|/8 = 1/8 > α, accuracy(τ1,2) = | 1⃝|/(| 1⃝| + | 2⃝|) = 1/1 > β.
Like this, we examine the criterion values of rules by using each
merged division chart.

Remark 2 In a DIS ψ, we consider the following set GR(ψ):

GR(ψ) = {DC([A, valA], val) | A ∈ AT, valA ∈ V ALA,
val ∈ V ALDec}.

We may see each division chart a granule for rule generation in ψ,
and we can pick up any rule by using the merging process of these
granules. This process is similar to Apriori algorithm [1] de�ned
in the transaction data.

In the following sections, we extend the property of division charts
in DISs to the property in NISs.

3 Division Charts in NISs and Rule Generation

This section reviews NISs and some de�nitions, then we consider
division charts in NISs and rule generation.

3.1 De�nitions in NISs

A Non-deterministic Information System (NIS) [8,10] Φ is also a
quadruplet:

Φ = (OB,AT, {V ALA|A ∈ AT}, g),

where g is such a mapping:

g : OB × AT → P (∪A∈ATV ALA)
(a power set of ∪A∈AT V ALA).

Every set g(x,A) is interpreted as that there is an actual value in
it but it is not known. We usually consider tabular representation
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of Φ like Table 4.

Table 4
An Exemplary Non-deterministic Information System Φ1.

OB temperature headache nausea flu

1 {very_high} {yes, no} {yes} {yes}

2 {high, very_high} {yes} {yes} {yes}

3 {normal, high} {yes} {yes} {yes, no}

4 {very_high} {yes} {yes, no} {yes}

5 {very_high} {yes, no} {yes} {yes}

6 {high} {no} {yes, no} {yes, no}

7 {normal} {no} {yes} {no}

8 {normal, high} {no} {yes, no} {no}

For Φ=(OB,AT, {V ALA|A ∈ AT}, g) and a set ATR ⊆ AT , we
name the following DIS a derived DIS (for ATR from a NIS Φ).

ψ = (OB,ATR, {V ALA|A ∈ ATR}, h), (h(x,A) ∈ g(x,A)).

In Table 4, there are 1024 (=210) derived DISs. Fig. 3 is another
example of a NIS.

Fig. 3. An example of Φ2 and a set of derived DISs DD(Φ2).

For a NIS Φ, let DD(Φ) denote a set {ψ | ψ is a derived DIS
from Φ}, and let ψactual denote a derivedDIS with actual attribute
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values. For NIS Φ2, a set DD(Φ2) consists of 24 derived DISs.
Then, we have the following modal concepts.

(Certainty) If a formula α holds in each ψ ∈ DD(Φ), α also holds
in ψactual. In this case, we say α certainly holds in ψactual.
(Possibility) If a formula α holds in some ψ ∈ DD(Φ), there exists
such a possibility that α holds in ψactual. In this case, we say α
possibly holds in ψactual.

In order to handle two modalities, we de�ned two blocks inf and
sup below.

De�nition 1 [18,19] In Φ = (OB,AT, {V ALA|A ∈ AT}, g), we
de�ne the following two sets of objects, i.e., inf and sup blocks,
for each descriptor [A, valA] (A ∈ ATR ⊆ AT , valA ∈ V ALA).

(1) inf([A, valA]) = {x ∈ OB| g(x,A) = {valA}},
(2) inf(∧A∈ATR[A, valA]) = ∩A∈ATR inf([A, valA]),
(3) sup([A, valA]) = {x ∈ OB| valA ∈ g(x,A)},
(4) sup(∧A∈ATR[A, valA]) = ∩A∈ATR sup([A, valA]).

Clearly, an equivalence class [x][A,valA] de�ned in ψ ∈ DD(Φ) sat-
is�es the following:

inf([A, valA]) ⊆ [x][A,valA] ⊆ sup([A, valA]).

Intuitively, inf and sup blocks de�ne the minimum set and the
maximum set with respect to a descriptor [A, valA], respectively.
By using inf and sup blocks, we considered how to compute two
modalities depending upon DD(Φ). The number of all derived
DISs increases in exponentially, therefore an explicit method,
such that every de�nition is sequentially computed in each ψ ∈
DD(Φ), is not suitable. We have proposed some algorithms which
do not depend upon |DD(Φ)|, especially NIS-Apriori rule gener-
ation algorithm [19].

However, the calculation depending upon inf and sup is very com-
plicated. Furthermore, we also noticed Proposition 3 and Remark
1, namely division charts will take the role of equivalence classes.
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Therefore in the subsequent sections, we move the role of De�ni-
tion 1 to division charts, because division charts give us visual and
more comprehensive information.

3.2 A Division Chart in NISs

In NISs, a block sup([CON, valCON ]) is the maximum set for
[x][CON,valCON ], so we consider a division of sup([CON, valCON ])( ̸=
∅) by a descriptor [Dec, val]. In this case, we have obtainable im-
plications in Table 5, and we have the following division chart
DC([CON, valCON ], val) in Figure 4.

Table 5
A table for obtainable implications from sup([CON, valCON ]) with respect to
[Dec, val]. Here, valCON ⇒ val means [CON, valCON ] ⇒ [Dec, val].

CON DEC Implications

1 valCON ∈ inf val ∈ inf valCON ⇒ val

2 valCON ∈ inf val ∈ sup \ inf valCON ⇒ val, valCON ⇒ val′

(val ̸= val′)

3 valCON ∈ inf val ̸∈ sup valCON ⇒ val′

4 valCON ∈ sup \ inf val ∈ inf valCON ⇒ val, val′CON ⇒ val

(valCON ̸= val′CON )

5 valCON ∈ sup \ inf val ∈ sup \ inf valCON ⇒ val, valCON ⇒ val′,

val′CON ⇒ val, val′CON ⇒ val′

6 valCON ∈ sup \ inf val ̸∈ sup valCON ⇒ val′, val′CON ⇒ val′

Fig. 4. A division chart DC([CON, valCON ], val) of sup([CON, valCON ]) by
[Dec, val] in a NIS. Clearly, j⃝∩ k⃝ = ∅ (j ̸= k).
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For each case in Table 5, let k⃝ denote the component de�ned by
kth case (k = 1, 2, · · · , 6). Here, the implication valCON ⇒ val is
obtainable in 1⃝, 2⃝, 4⃝, and 5⃝. In 3⃝ and 6⃝, this implication is
not obtainable.

Remark 3 In Table 5, we have an implication τ : valCON ⇒ val
from four components 1⃝, 2⃝, 4⃝, and 5⃝. Therefore in NISs,
each τx (x ∈ j⃝, j = 1, 2, 4, 5) has the di�erent character. An
implication τx (x ∈ 1⃝) appears in each ψ ∈ DD(Φ), but τx (x /∈
1⃝) appears in a subset of DD(Φ). In NISs, there may be τx

satisfying the condition of a rule and there may be τ y (y ̸= x) not
satisfying the condition of a rule. We de�ne that an implication τ
is a rule, if there is an implication τx (for an object x) satisfying
the condition of a rule. We see this τx is a piece of evidence of a
rule τ . Like this, Proposition 1 in DISs may not hold in NISs.

In Table 3, the obtainable implication is unique. However in Ta-
ble 5, the obtainable implication may not be unique, the concept
of consistency and support, accuracy values are variable accord-
ing to the choice of an implication. Intuitively, this choice of an
implication causes to reduce a set DD(Φ). We have the following
proposition.

Proposition 5 [20] For every NIS, (1), (2) and (3) in the fol-
lowing are equivalent.
(1) An object x ∈ sup([CON, valCON ]) ∩ sup([Dec, val]) (̸= ∅) is
consistent in each ψ ∈ DD(Φ).
(2) g(x,CON) = {valCON}, g(x, {Dec}) = {val}, and
sup([CON, valCON ]) ⊆ inf([DEC, val]) hold.
(3) Components 2⃝, 3⃝, 5⃝ and 6⃝ are all empty sets.

Proposition 5 is an extension from Proposition 3 in DISs. We
have previously employed (2) in Proposition 5 for proving theorems,
however (3) in Proposition 5 seems more comprehensive.
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3.3 Criterion Values Calculation by Division Charts

In NISs, support(τx) and accuracy(τx) (τ de�ned by object x)
are variable according to derived DISs. Therefore, we consider
the following criterion values. The actual value exists between the
minimum and the maximum values [19].

minsupp(τx) =Minψ∈DD(Φ){support(τx) in ψ},
minacc(τx) =Minψ∈DD(Φ){accuracy(τx) in ψ},
maxsupp(τx) =Maxψ∈DD(Φ){support(τx) in ψ},
maxacc(τx) =Maxψ∈DD(Φ){accuracy(τx) in ψ}.

In the above de�nition, each value depends upon |DD(Φ)|, but we
can easily calculate them by using a division chart corresponding
to τx.

Example 2 Let us consider Φ1 in Table 4.
For DC([headache, yes], yes) corresponding to an implication τ1 :
[headache, yes] ⇒ [flu, yes], sup([headache, yes]) = {1, 2, 3, 4, 5},
1⃝ = {2, 4}, 2⃝ = {3}, 3⃝ = ∅, 4⃝ = {1, 5}, 5⃝ = ∅ and 6⃝ = ∅
holds. In components 2⃝, 4⃝, 5⃝ and 6⃝, we may choose one of
implications, and this choice causes the variation of support and
accuracy.
(CASE 1: minsupp(τ 2) (2 ∈ 1⃝))
In order to reduce support, we should not choose valCON ⇒ val.
We choose valCON ⇒ val′ from 3 ∈ 2⃝, val′CON ⇒ val from
4, 5 ∈ 4⃝. Then, τx occurs twice, and we have minsupp(τ 1) = 2/8.
(CASE 2: minacc(τ 2) (2 ∈ 1⃝))
Since M/N ≤ (M + 1)/(N + 1) for natural numbers N and M
(M ≤ N), we also should not choose valCON ⇒ val. Furthermore,
we should choose valCON ⇒ val′ as much as possible. If we have
the same choice as CASE 1, accuracy is the minimum and we
have minacc(τ 2) = 2/3.
(CASE 3: maxsupp(τ 2) (2 ∈ 1⃝))
In order to increase support, we should choose valCON ⇒ val. We
choose valCON ⇒ val from 3 ∈ 2⃝, valCON ⇒ val from 4, 5 ∈ 4⃝.
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Then, τx occurs 5 times, and we have maxsupp(τ 1) = 5/8.
(CASE 4: maxacc(τ 2) (2 ∈ 1⃝))
Since M/N ≤ (M + 1)/(N + 1) for natural numbers N and M
(M ≤ N), we also should choose valCON ⇒ val. If we have the
same choice as CASE 3, accuracy is the maximum and we have
maxacc(τ 2) = 5/5.

Like Example 2, we examine the criterion values of rules by us-
ing a division chart. In each proposition in the following, we con-
sider a division chart DC([CON, valCON ], val) corresponding to
τ : [CON, valCON ] ⇒ [Dec, val].

Proposition 6 For τx (x ∈ 1⃝), the following holds.
minsupp(τx) = | 1⃝|/|OB|,

minacc(τx) = | 1⃝|/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 5⃝|+ | 6⃝|),

maxsupp(τx) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/|OB|,

maxacc(τx) = (| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)
(| 1⃝|+| 2⃝|+| 3⃝|+| 4⃝|+| 5⃝|).

(Proof)
We choose valCON ⇒ val′ in components 2⃝, 5⃝, 6⃝ and choose
val′CON ⇒ val in 4⃝. In this selection, support(τx) is the min-
imum. Since M/N ≤ (M + 1)/(N + 1) for natural numbers N
and M (M ≤ N), the accuracy value is reduced by choosing
valCON ⇒ val′. Namely, accuracy(τx) is also the minimum in
the above selection of implications.
On the other hand, We choose valCON ⇒ val in components 2⃝, 4⃝
5⃝ and select val′CON ⇒ val in 6⃝. In this selection, support(τx)
is the maximum, and accuracy(τx) is also the maximum. 2

Proposition 7 For τx (x ∈ 2⃝∪ 5⃝), the following holds.
minsupp(τx) = (| 1⃝|+ 1)/|OB|,

minacc(τx) = (| 1⃝|+ 1)/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 5⃝|+ | 6⃝|),
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maxsupp(τx) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/|OB|,

maxacc(τx) = (| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)
(| 1⃝|+| 2⃝|+| 3⃝|+| 4⃝|+| 5⃝|).

(Proof)
Since x ∈ 2⃝ ∪ 5⃝, this object x is counted in the numerator. As
for the maximum values, we choose the same as Proposition 6, and
we have the same formulas. 2

Proposition 8 For τx (x ∈ 4⃝), the following holds.
minsupp(τx) = (| 1⃝|+ 1)/|OB|,

minacc(τx) = (| 1⃝|+ 1)/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 5⃝|+ | 6⃝|+ 1),

maxsupp(τx) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/|OB|,

maxacc(τx) = (| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)
(| 1⃝|+| 2⃝|+| 3⃝|+| 4⃝|+| 5⃝|).

(Proof)
In the previous propositions for the minimum, we chose val′CON ⇒
val in 4⃝. However, x ∈ 4⃝ holds, therefore this object x is counted
in the numerator and denominator. As for the maximum values,
we choose the same as Proposition 6, and we have the same for-
mulas. 2

Proposition 6, 7, 8 in NISs are extensions from Proposition 2 in
DISs. Proposition 6, 7, 8 show us how to calculate criterion values
by using division charts, and this calculation does not depend upon
|DD(Φ)|.

3.4 A Merged Division Chart by Two Division Charts in NISs

Now, we extend a merged division chart in DISs (Fig. 2) to that in
NISs. In NISs, let us consider two descriptors [CON1, valCON1],
[CON2, valCON2] (CON1∩CON2=∅) and [Dec, val], again. Fur-
thermore, let us consider Fig. 5.
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Fig. 5. A division chart of sup([CON1, valCON1] ∧ [CON2, valCON2]) by [Dec, val]
in a NIS.

By using each component, we newly generate 1⃝, 2⃝, · · ·, 6⃝ for
DC([CON1, valCON1] ∧ [CON2, valCON2], val). We have the fol-
lowing equation.

sup([CON1, valCON1] ∧ [CON2, valCON2])
= sup([CON1, valCON1]) ∩ sup([CON2, valCON2])
= ( 1⃝1 ∪ 2⃝1 ∪ · · · ∪ 6⃝1) ∩ ( 1⃝2 ∪ 2⃝2 ∪ · · · ∪ 6⃝2)
= Σ1≤s,t≤6 s⃝1 ∩ t⃝2=Σ1≤s,t≤6 Cst,
( s⃝1 ∩ t⃝1 = ∅, s⃝2 ∩ t⃝2 = ∅ for s ̸= t).

According to the above equation, we sequentially consider each Cst
in Table 6. Since [Dec, val] is unique in two division charts, we can
reduce the number of combinations.

Table 6
A combination of components Cst= s⃝1 ∩ t⃝2 (1 ≤ s, t ≤ 6).

1⃝2 2⃝2 3⃝2 4⃝2 5⃝2 6⃝2

1⃝1 C11 C12 C13 C14 C15 C16

2⃝1 C21 C22 C23 C24 C25 C26

3⃝1 C31 C32 C33 C34 C35 C36

4⃝1 C41 C42 C43 C44 C45 C46

5⃝1 C51 C52 C53 C54 C55 C56

6⃝1 C61 C62 C63 C64 C65 C66
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Proposition 9 C12=C13=C15=C16=∅.

(Proof) For any y ∈ 1⃝1,
g(y, CON1)={valCON1} and g(y,DEC)={val}

hold by the de�nition of components. Similarly, in each y ∈ t⃝2

(t=2, 3, 5, 6), g(y,DEC) ̸= {val}. Therefore, there is no y satisfy-
ing y ∈ 1⃝1 and y ∈ t⃝2 (t=2, 3, 5, 6). Therefore, C12=C13=C15=
C16=∅. 2

According to Proposition 9, we similarly have the following.

Proposition 10 The following holds.
(1) C21=C23=C24=C26=∅,
(2) C31=C32=C34=C35=∅,
(3) C42=C43=C45=C46=∅,
(4) C51=C53=C54=C56=∅,
(5) C61=C62=C64=C65=∅.

Proposition 11 C11 (= 1⃝1 ∩ 1⃝2) belongs to component 1⃝ in
DC([CON1, valCON1] ∧ [CON2, valCON2], val).

(Proof) For any y ∈ 1⃝1 ∩ 2⃝1,
g(y, CON1)={valCON1}, g(y,DEC)={val},
g(y, CON2)={valCON2}, g(y,DEC)={val} hold.
Therefore, this y satis�es
g(y, CON1∪CON2) = {(valCON1, valCON2)}, g(y,DEC)={val}.
Namely,
y ∈ 1⃝ in DC([CON1, valCON1] ∧ [CON2, valCON2], val). 2

Proposition 12 C14 (= 1⃝1 ∩ 4⃝2) belongs to component 4⃝ in
DC([CON1, valCON1] ∧ [CON2, valCON2], val).

(Proof) For any y ∈ 1⃝1 ∩ 4⃝2,
g(y, CON1)={valCON1}, g(y,DEC)={val},
valCON2 ∈ g(y, CON2) (|g(y, CON2)| ̸= 1|) hold.
Therefore, this y satis�es
(valCON1, valCON2) ∈ g(y, CON1 ∪ CON2), g(y,DEC)={val}.
Namely,
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y ∈ 4⃝ in DC([CON1, valCON1] ∧ [CON2, valCON2], val). 2

Proposition 13 C22 (= 2⃝1 ∩ 2⃝2) belongs to component 2⃝ in
DC([CON1, valCON1] ∧ [CON2, valCON2], val).

(Proof) For any y ∈ 2⃝1 ∩ 2⃝2,
g(y, CON1)={valCON1}, g(y, CON2)={valCON2}, val ∈ g(y,DEC)
hold. Therefore, this y satis�es
g(y, CON1∪CON2) = {(valCON1, valCON2)}, val ∈ g(y,DEC).
Namely,
y ∈ 2⃝ in DC([CON1, valCON1] ∧ [CON2, valCON2], val). 2

Similarly, we have the next proposition.

Proposition 14 The following holds for each component 3⃝, 4⃝,
5⃝ and 6⃝ in DC([CON1, valCON1] ∧ [CON2, valCON2], val).
(1) C33 belongs to component 3⃝.
(2) C41 and C44 belong to component 4⃝.
(3) C25, C52 and C55 belong to component 5⃝.
(4) C36, C63 and C66 belong to component 6⃝.

As a result, we have the next theorem.

Theorem 1 We can calculate each component in
DC([CON1, valCON1] ∧ [CON2, valCON2], val)
from DC([CON1, valCON1], val) and DC([CON2, valCON2], val).
Namely,

1⃝ = 1⃝1 ∩ 1⃝2, 2⃝ = 2⃝1 ∩ 2⃝2, 3⃝ = 3⃝1 ∩ 3⃝2,
4⃝ = ( 1⃝1 ∩ 4⃝2) ∪ ( 4⃝1 ∩ 1⃝2) ∪ ( 4⃝1 ∩ 4⃝2),
5⃝ = ( 2⃝1 ∩ 5⃝2) ∪ ( 5⃝1 ∩ 2⃝2) ∪ ( 5⃝1 ∩ 5⃝2),
6⃝ = ( 3⃝1 ∩ 6⃝2) ∪ ( 6⃝1 ∩ 3⃝2) ∪ ( 6⃝1 ∩ 6⃝2).

Theorem 1 is an extension from Proposition 4. Proposition 6, 7
and 8 are also applicable to this merged division chart. Since each
merged division chart is corresponding to an implication τ , we can
calculate support(τ) and accuracy(τ) easily. We have the next
Remark 4, which is extended from Remark 2.
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Remark 4 In a NIS Φ, we consider the following set GR(Φ):

GR(Φ) = {DC([A, valA], val) | A ∈ AT, valA ∈ V ALA,
val ∈ V ALDec}.

We may see each division chart a granule for rule generation in Φ,
and we can pick up any rule by using the merging process of these
granules. We think this process is useful for improving previously
proposed NIS-Apriori algorithm [16,19]. Formerly, we employed
inf and sup blocks for handling rules, however we can generate
rules by using GR(Φ) and merging algorithm with Theorem 1.

3.5 Computational Complexity on Division Charts

We brie�y consider the computational complexity.

(1) As for generating GR(Φ), we at �rst prepare each array for
a division chart DC([A, valA], val), then we sequentially examine
the tuple of each object in OB. Namely, the order depends upon
the size in the following:

|OB| × (ΣA∈AT\{Dec}|V ALA| × |V ALDec|).

The procedure for generating GR(Φ) seems not time-consuming.

(2) As for merging two division charts, we obtain 1⃝1 · · · 6⃝1 and
1⃝2 · · · 6⃝2 from GR(Φ), and apply Theorem 1 to them. This pro-
cedure is not time-consuming, either. However, the number of the
combination of two division charts may become large. The number
is the following:

(ΣA,B∈AT, A̸=B|V ALA| × |V ALB|)× |V ALDec|.

In rule generation, this process of handling each combination is the
most time-consuming. We are adding constraint support(τ) ≥ α
to each DC([A, valA], val) (τ : [A, valA] ⇒ [Dec, val]), and we
are reducing the number of the combination. It is also the same
situation as the Apriori algorithm [1].

20



4 Concluding Remarks

We proposed division charts over a DIS and a NIS, and consid-
ered how to merge two division charts in a DIS and a NIS. Espe-
cially, we clari�ed the property for merging two division charts. Due
to this property, we can easily generateDC((valCON1, valCON2), val)
fromDC(valCON1, val) andDC(valCON2, val). Previously, we have
proved the calculation ofminsupp(τx),minacc(τx),maxsupp(τx),
maxacc(τx) by using inf and sup blocks in De�nition 1. However,
the proofs by inf and sup were complicated and not comprehen-
sive. On the other hand, division charts give us visual and com-
prehensive information. Furthermore, GR(Φ) in Remark 4 and the
merging algorithm with Theorem 1 can be applicable to improve
our previously implemented NIS-Apriori [16,19]. Thus, we con-
clude that division charts a�ord new granular computing-based
framework for rule generation. We are now implementing a soft-
ware tool depending upon division charts.
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Appendix 1
The following is the logging data for obtaining a set of all division
charts DC({2, 3}, {4}) (2:headache, 3:nausea, 4:�u) in Table 4.

?-init.

File Name for Read Open:flu.pl.

[DIS:1 or NIS:2]:2.

EXEC_TIME=0.0(sec)

yes

?- dct([2,3],4).

dc(1,[yes,yes,yes],[2],[3],[],[1,4,5],[],[]).

dc(2,[yes,yes,no],[],[3],[2],[],[],[1,4,5]).

dc(3,[yes,no,yes],[],[],[],[4],[],[]).

dc(4,[yes,no,no],[],[],[],[],[],[4]).

dc(5,[no,yes,yes],[],[],[7],[1,5],[6],[8]).

dc(6,[no,yes,no],[7],[],[],[8],[6],[1,5]).

dc(7,[no,no,yes],[],[],[],[],[6],[8]).

dc(8,[no,no,no],[],[],[],[8],[6],[]).

EXEC_TIME=0.0(sec)

yes

The �rst dc(1, [yes, yes, yes], [2], [3], [], [1, 4, 5], [], []) is correspond-
ing to an implication [headache, yes]∧ [nausea, yes] ⇒ [flu, yes].
(CASE 1) dc([headache, yes], [flu, yes]) : 1⃝1 = {2, 4}, 2⃝1 = {3},

3⃝1 = {}, 4⃝1 = {1, 5}, 5⃝1 = {}, 6⃝1 = {}.
(CASE 2) dc([nausea, yes], [flu, yes]) : 1⃝2 = {1, 2, 5}, 2⃝2 = {3},

3⃝2 = {7}, 4⃝2 = {4}, 5⃝2 = {6}, 6⃝2 = {8}.
(CASE 3) Due to Theorem 1, we can obtain
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dc([headache, yes] ∧ [nausea, yes], [flu, yes]) below:
1⃝ = 1⃝1 ∩ 1⃝2 = {2}, 2⃝ = 2⃝1 ∩ 2⃝2 = {3},
3⃝ = 3⃝1 ∩ 3⃝2 = {},
4⃝ = ( 1⃝1 ∩ 4⃝2) ∪ ( 4⃝1 ∩ 1⃝2) ∪ ( 4⃝1 ∩ 4⃝2) = {1, 4, 5},
5⃝ = ( 2⃝1 ∩ 5⃝2) ∪ ( 5⃝1 ∩ 2⃝2) ∪ ( 5⃝1 ∩ 5⃝2) = {},
6⃝ = ( 3⃝1 ∩ 6⃝2) ∪ ( 6⃝1 ∩ 3⃝2) ∪ ( 6⃝1 ∩ 6⃝2) = {}.

Appendix 2
The following is a DC([shape, 1], [severity, 0]) in Mammographic
data (960 objects, 6 attributes, 180 missing values and the num-
ber of derived DISs is more than 10 power 90) in UCI machine
learning repository [22]. This division chart (in a list expression)
divides sup([shape, 1]) by [severity, 0], and any object appears in
the following obtained division chart is related to an implication
[shape, 1] ⇒ [severity, 0].

dc(1,[1,0],

[3,5,7,12,15,19,22,26,30,33,34,41,42,47,52,66,75,77,85,87,88,

92,94,96,104,105,108,115,121,123,127,138,142,143,149,152,167,

171,174,182,183,187,190,194,196,199,210,215,217,227,229,242,243,

249,250,252,261,273,281,298,301,303,305,308,309,318,322,324,325,

327,331,342,343,344,349,353,364,365,371,372,373,380,383,384,400,

416,421,422,423,430,442,446,447,454,460,461,463,465,468,470,472,

473,474,475,477,479,481,483,484,497,503,511,515,516,518,524,545,

572,573,577,580,582,585,586,604,607,608,615,617,631,634,636,644,

658,667,680,682,702,704,706,711,719,720,732,735,739,743,750,754,

770,775,777,779,780,781,784,794,809,816,817,822,825,828,840,841,

844,845,852,855,867,868,869,882,886,894,902,905,909,911,916,919,

927,929,934,938,943],· · · 1⃝
[],· · · 2⃝
[1,4,8,10,18,76,82,89,106,166,193,212,247,278,280,283,341,420,426,

444,445,492,521,564,598,603,616,670,673,678,689,701,785,791,823,

891,935,944],· · · 3⃝
[6,48,83,128,157,163,236,255,387,388,389,394,476,519,531,561,581,

661,778],· · · 4⃝
[],· · · 5⃝
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[9,20,54,74,496,537,554,614,660,662,752,824]). · · · 6⃝
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