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Abstract

In this paper, we consider the partial gathering problem of mobile agents in
asynchronous unidirectional ring networks. The partial gathering problem
is a generalization of the (well-investigated) total gathering problem, which
requires that all the k agents distributed in the network terminate at a single
node. The partial gathering problem requires, for a given positive integer
g (< k), that all the agents terminate in a configuration such that either

IThe conference version of this paper is published in the proceedings of 26th Interna-
tional Colloquium on Structural Information and Communication Complexity (SIROCCO
2019).

IIThis work was partially supported by JSPS KAKENHI Grant Number 17K19977,
18K18000, 18K18031, 18K11167, 19H04085, and 19K11826, and Japan Science and Tech-
nology Agency (JST) SICORP.

∗Corresponding author. Tel.:+81-9-4829-7656.
Email addresses: shibata@cse.kyutech.ac.jp (Masahiro Shibata),

n-kawata@ist.osaka-u.ac.jp (Norikazu Kawata), y-sudou@ist.osaka-u.ac.jp
(Yuichi Sudo), f-oosita@is.naist.jp (Fukuhito Ooshita),
kakugawa@rins.ryukoku.ac.jp (Hirotsugu Kakugawa), masuzawa@ist.osaka-u.ac.jp
(Toshimitsu Masuzawa)

Preprint submitted to Theoretical Computer Science March 25, 2020

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



at least g agents or no agent exists at each node. The requirement for the
partial gathering problem is strictly weaker than that for the total gathering
problem, and thus it is interesting to clarify the difference on the move com-
plexity between them. In this paper, we aim to solve the partial gathering
problem for agents without identifiers or any global knowledge such as the
number k of agents or the number n of nodes. We consider deterministic
and randomized cases. First, in the deterministic case, we show that the set
of unsolvable initial configurations is the same as that for the case of agents
with knowledge of k. In addition, we propose an algorithm that solves the
problem from any solvable initial configuration in a total number of O(gn)
moves. Next, in the randomized case, we propose an algorithm that solves
the problem in a total number of O(gn) moves in expectation from any ini-
tial configuration. Note that g < k holds and agents require a total number
of Ω(gn) (resp., Ω(kn)) moves to solve the partial (resp., total) gathering
problem. Thus, our algorithms can solve the partial gathering problem in
asymptotically optimal total number of moves without identifiers or global
knowledge, and the total number of O(gn) moves is strictly smaller than that
for the total gathering problem.

keywords: distributed system, mobile agent, gathering problem, partial
gathering problem

1. Introduction

1.1. Background and related works

A distributed system consists of a set of computing entities (nodes) con-
nected by communication links. As a promising design paradigm of dis-
tributed systems, (mobile) agents have attracted much attention [9, 2]. The
agents can traverse the system, carrying information collected at visited
nodes and execute tasks at each node using the information. In other words,
agents can encapsulate the process code and data, which simplifies design of
distributed systems [13, 3].

The total gathering problem (or rendezvous problem) is a fundamental
problem for agents’ coordination. When a set of k agents are arbitrarily
placed at nodes, this problem requires that all the k agents in the system
terminate at a single node in finite time. By meeting at a single node, all
agents can share information or synchronize behaviors among them. The
total gathering problem has been considered in various kinds of networks
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such as rings [12, 6, 8, 11, 14], trees [7, 1], tori networks [10], and arbitrary
networks [4, 5]. Kranakis et al. [12] introduced the total gathering problem
in ring networks for the first time, and they considered the problem for two
agents. The number of agents is extended to any number in [6, 8]. Flocchini
et al. [6] showed that the lower bound on memory space per agent to solve
the total gathering problem is Ω(log k + log log n), where n is the number of
nodes. Later, Gasieniec et al. [8] give a space-optimal (i.e., O(log k+log log n)
memory space per agent) algorithm that solves the problem. These results
[12, 6, 8] are summarized by Kranakis et al. [11]. While the above results
[12, 6, 8] considered deterministic algorithms, Ooshita et al. [14] considered
a randomized algorithm for anonymous agents without any global knowledge
and clarified solvability.

Recently, a variant of the total gathering problem, called the g-partial
gathering problem [16], has been considered. This problem does not require
all the k agents to meet at a single node, but allows the agents to meet
partially at several nodes. Concretely, the problem requires, for a given
positive integer g (< k), that all the agents terminate in a configuration
such that either at least g agents or no agent exists at each node (e.g.,
Fig. 1). From a practical point of view, the g-partial gathering problem
is still useful especially for monitoring large-scale networks. For example,
we assume that several areas in the network have some problems and they
are distant from each other. When agents achieve total gathering and they
meet at a single node near some area, they take a lot of time to treat the
other areas. On the other hand, when agents achieve g-partial gathering
so that k agents are partitioned into groups each of which has at least g
agents and the groups are distributed uniformly in the network, they can
treat each area quickly. Thus, meeting partially enables agents to monitor
the network collaboratively and efficiently. The g-partial gathering problem
is interesting also from a theoretical point of view. Clearly, if k/2 < g < k
holds, the g-partial gathering problem is equivalent to the total gathering
problem. On the other hand, if 2 ≤ g ≤ k/2 holds, the requirement for
the g-partial gathering problem is strictly weaker than that for the total
gathering problem. Thus, it is possible that the g-partial gathering problem
can be solved with a strictly smaller total number of moves (i.e., lower costs)
compared to the total gathering problem.

3



Figure 1: An example of the g-partial gathering problem (g = 3).

1.2. Previous works on partial gathering

So far, the g-partial gathering problem has been considered in rings [16],
trees [18], and arbitrary networks [17]. In [16], Shibata et al. considered the
g-partial gathering problem in unidirectional ring networks with whiteboards
(or memory spaces that agents can read and write) at nodes. They considered
two problem settings about agents: distinct agents (i.e., agents with distinct
IDs) and anonymous agents (i.e., agents without IDs) with knowledge of
k. For distinct agents, they give a deterministic algorithm that solves the g-
partial gathering problem in a total number of O(gn) moves. For anonymous
agents with knowledge of k, they considered deterministic and randomized
cases. In the deterministic case, they showed that there exist unsolvable
initial configurations. In addition, they give an algorithm that solves the
g-partial gathering problem from any solvable initial configuration in a total
number of O(kn) moves. In the randomized case, they give an algorithm that
solves the g-partial gathering problem in a total number of O(gn) moves in
expectation. Note that in the above three results agents do not have any
other global knowledge such as n. In addition, the g-partial (resp., the total)
gathering problem in ring networks requires a total number of Ω(gn) (resp.,
Ω(kn)) moves. Thus, the first and third results are asymptotically optimal
in terms of a total number of moves, and the total number of O(gn) moves
is strictly smaller than that for the total gathering problem when g = o(k).

In [18], Shibata et al. considered the g-partial gathering problem in tree
networks. Since trees have lower symmetry than rings and some problems
considered in trees are easily solved compared to rings, they considered the
problem in weaker models than those for rings and clarified what condition is
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needed to achieve g-partial gathering with the same performance as that for
rings. To do this, they considered agents that are anonymous and have no
knowledge of k or n, and they considered three model variants. In the first
two models, they consider nodes with no memory space (or whiteboards),
but different multiplicity detection capability of agents are considered in the
two models. Here, multiplicity detection capability means the capability
of agents to detect the existence of agents staying at the same node, and
whether the exact number of agents can be counted or not depends on the
strength of the capability. In the first model, they consider agents with the
weak multiplicity detection where each agent can detect whether another
agent exists at the current node or not but cannot count the exact number
of the agents. Then, they showed that, for asymmetric trees agents can solve
the g-partial gathering problem in a total number of O(kn) moves, and for
symmetric trees agents cannot solve the g-partial gathering problem for the
case of g ≥ 5. In the second model, they consider agents with the strong
multiplicity detection where each agent can count the exact number of agents
staying at the current node. In this case, they showed that agents require a
total number of Ω(kn) moves to solve the g-partial gathering problem from
some initial configurations and they give a deterministic algorithm that solves
the problem in a total number of O(kn) (i.e., optimal) moves regardless of
the initial configuration. In the third model, they consider agents with the
weak multiplicity detection, and with removable identical tokens. In this
token model, each agent represents its existence in the initial configuration
using 1-bit memory on the whiteboard (this memory is called a token), and
agents can remove any owner’s token during the execution of the algorithm.
In this case, they give a deterministic algorithm that solves the g-partial
gathering problem in a total number of O(gn) moves. This result shows that
it is sufficient to use weak multiplicity detection and removable tokens to
achieve g-partial gathering in a total number of O(gn) moves, which is the
strictly weaker assumption than the whiteboard model for rings.

In [17], Shibata et al. considered the g-partial gathering problem in arbi-
trary networks under the assumption that agents have distinct IDs and each
node has a whiteboard. Then, they showed that agents require a total num-
ber of Ω(gn+m) moves, where m is the number of communication links, and
give a deterministic algorithm that solves the problem in a total number of
O(gn+m) moves. Thus, they showed that agents can achieve move-optimal
g-partial gathering also in arbitrary networks.
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Table 1: Results of g-partial gathering for anonymous agents in unidirectional ring net-
works (n: #nodes, k: #agents)

Previous results [16] Results of this paper

Result 1 Result 2 Result 1 (Sec. 3) 　 Result 2 (Sec. 4)

Deter./Rand. Deter. Rand. Deter. Rand.

Knowledge of k Available Available No No

Unsolvable configurations Exist None Exist None

Agents can
detect unsolvability

Yes - No -

Total number of moves O(kn) Θ(gn) Θ(gn) Θ(gn)

1.3. Our contribution

In this paper, for the case of 2 ≤ g ≤ k/2, we consider the g-partial
gathering problem in asynchronous unidirectional ring networks with white-
boards at nodes as in [16]. In this paper, we aim to solve the problem in
weaker models than those of [16] while maintaining the optimality of move
complexity. That is, while the previous work [16] achieved move-optimal g-
partial gathering by the deterministic algorithm for agents with distinct IDs
or the randomized algorithm for anonymous agents with knowledge of k, in
this paper we aim to achieve this only using knowledge of g (i.e., they do not
require distinct IDs or knowledge of k).

In Table 1, we compare our contributions with the results for anonymous
agents in unidirectional ring networks [16]. We consider deterministic and
randomized cases. First, in the deterministic case, we show that, unlike the
case of [16], agents cannot detect whether the given initial configuration is
one of unsolvable configurations shown in [16] or not. In addition, we propose
an algorithm that solves the g-partial gathering problem from any solvable
initial configuration in a total number of O(gn) moves. Thus, we can show
that the set of unsolvable configurations is the same as that of [16] (i.e., for
the case of agents with knowledge of k). Next, in the randomized case, we
propose an algorithm that solves the problem with probability 1 in a total
number of O(gn) moves in expectation from any initial configuration. Thus,
our algorithms can solve the g-partial gathering problem in an asymptotically
optimal total number of moves without distinct IDs or global knowledge.
These results are improvements of previous results in [16].
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2. Preliminaries

2.1. Network and agent models

We use almost the same model as that in [16]. A unidirectional ring
network R is defined as 2-tuple R = (V,E), where V = {v0, v1, . . . , vn−1}
is a set of nodes and E = {e0, e1, . . . , en−1} (ei = (vi, v(i+1) mod n)) is a set
of directed links. In the following, we call “unidirectional rings” simply
“rings”. We denote by n (= |V |) the number of nodes. For simplicity, we
denote v(i+j) mod n by vi+j for any integers i and j. The distance from node
vi to vj is defined to be (j− i) mod n. We define the direction from vi to vi+1

(resp., vi−1) as the forward (resp., backward) direction. We call node vi+1 the
next node of vi.

In this paper, we assume that nodes are anonymous, i.e., they do not
have IDs. Every node vi ∈ V has a whiteboard that agents at node vi can
read from and write on.

Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) anonymous agents. Agents
can move through directed links, that is, they can move from vi to vi+1 (i.e.,
move forward) for any i. Agents have knowledge of g but they do not have
knowledge of k or n. In addition, agents cannot detect whether other agents
exist at the current node or not (or no multiplicity detection capability).

We consider two models. In the first model, agents execute a deterministic
algorithm. An agent ai is a deterministic finite automaton (S, W , δ, sinitial,
sfinal, winitial, w

′
initial). The first element S is the set of all states of an agent,

including two special states, initial state sinitial and final state sfinal. The
second elementW is the set of all states (contents) of a whiteboard, including
two special initial states winitial and w

′
initial. We explain the meanings of winitial

and w′
initial in the next subsection. The third element δ : S×W 7→ S×W×M

is the state transition function that decides, from the current states of ai and
the current node’s whiteboard, the next states of ai and the whiteboard, and
whether ai moves to the next node or not. The last element M = {1, 0} in
δ represents whether ai makes a movement or not. The value 1 represents
movement to the next node and 0 represents stay at the current node. We
assume that δ (sfinal, wi) = (sfinal, wi, 0) holds for any state wi ∈ W , which
means that ai never changes its state, updates the contents of a whiteboard,
or leaves the current node once it reaches state sfinal. We say that an agent
terminates when its state changes to sfinal.

In the second model, we consider agents executing a randomized algo-
rithm. An agent ai in this model is a probabilistic automaton (S, W , R, δ,
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sinitial, sfinal, winitial, w
′
initial). The third element R is a set of random num-

bers. Since we treat a randomized algorithm, δ is a mapping S ×W ×R 7→
S×W ×M . If the state of ai is sfinal, then δ (sfinal, wi, r) = (sfinal, wi, 0) holds
for any state wi ∈ W and any random number r ∈ R. The other elements in
the automaton are the same as those in the deterministic model. Note that
for both the models all the agents are modeled by the same state machine
since they are anonymous.

2.2. System configuration and execution

In an agent system, a (global) configuration is defined as the Cartesian
product S × W × L, where S ∈ Sk represents the states of all the agents,
W ∈ W n represents the states (whiteboard’ contents) of all the nodes, and
L ∈ {0, 1, . . . n−1}k represents the current locations of agents. The locations
of agents L =(l0, l1, . . . lk−1) implies that each agent ai is located at node vli .
We define C as a set of all configurations. In an initial configuration c0 ∈ C,
we assume that all the agents are in the same state sinitial and deployed
arbitrarily at mutually distinct nodes (or no two agents start at the same
node), and the states of whiteboards are winitial or w

′
initial depending on the

existence of an agent. That is, when an agent exists at node v, the initial
state of v′s whiteboard is winitial. Otherwise, the state is w′

initial.
During an execution of the algorithm, we assume that agents move instan-

taneously, that is, agents always exist at nodes (do not exist on links). Each
agent executes the following four operations in an atomic step: 1) reads the
contents of its current node’s whiteboard, 2) executes local computation (or
changes its state), 3) updates the contents of the current node’s whiteboard,
and 4) moves to the next node or stays at the current node. A configura-
tion changes to the next one when a scheduler activates some agents and the
activated agents perform atomic steps as mentioned before. Concretely, in
the deterministic case, letting Ai be a non-empty sequence of the activated
agents, configuration ci changes to ci+1 when each agent aj ∈ Ai performs
an atomic step. If multiple agents at the same node are included in Ai, the
agents perform atomic steps one by one following the order of sequence Ai.

We denote the transition by ci
Ai−→ ci+1. In the randomized case, in addition

to Ai, a set Ri of k random numbers is used and the transition from config-

uration ci to ci+1 is denoted by ci
Ai,Ri−−−→ ci+1. We explain the detail of Ri in

the next paragraph.
In the deterministic case, given a sequence of non-empty agent sequences
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ψ = A0, A1, . . . such that ci
Ai−→ ci+1 holds for any i ≥ 0, a sequence of

configurations EA(c0, ψ) = c0, c1, . . . is called an execution of algorithm A
from an initial configuration c0 under ψ. Execution EA(c0, ψ) is infinite, or
ends in final configuration cfinal where every agent’s state is sfinal. In cfinal,
all the agents give the same output that whether the g-partial gathering
problem is solved or it is not solvable from the given initial configuration.
In the randomized case, define an infinite sequence ϕ = R0, R1, . . ., where
Ri = ri0, r

i
1, . . . r

i
k−1 is a sequence of k random numbers such that each rij

is chosen uniformly at random from R by agent aj. Then, given c0 ∈ C
and ψ = A0, A1, . . ., a probabilistic execution of algorithm A is defined as

EA(c0, ψ) = c0, c1, . . . where ci
Ai,Ri−−−→ ci+1 holds for any i ≥ 0. That is, in the

execution, each number in Ri is chosen randomly and configurations change
deterministically. Note that the scheduler cannot choose ϕ but can choose ψ
depending on ϕ in an adversarial way. In both the cases, we assume that the
scheduler is fair, that is, each agent is activated infinitely often. In addition,
when all the agents are activated and they perform steps in every configura-
tion, that is, Ai = A holds for every i, the execution is called synchronous.
Otherwise, i.e., if Ai = A may not necessarily hold, the execution is called
asynchronous. In this paper, we consider asynchronous executions. Note
that a synchronous execution is a special case of asynchronous executions.

Moreover, we define periodic initial configurations as follows. These def-
initions are used in Section 3. At first, we define the i-th (i̸=0) forward
(resp., backward) agent a′ of agent a as the agent such that i−1 agents exist
between a and a′ in a’s forward (resp., backward) direction. We call the a’s
1-st forward and backward agents nearest agents of a. For convenience, we
define the 0-th forward (or backward) agent of a as a itself. Then, for an
initial configuration c0 we assume that agents a0, a1, . . . , ak−1 exist in this
order, that is, ai is the i-th forward agent of a0 in c0. Then, we define the
distance sequence of agent ai in c0 as Di(c0) = (di0(c0), . . . d

i
k−1(c0)), where

dij(c0) is the distance from the j-th forward agent of ai to the (j + 1)-st
forward agent of ai in c0. Note that the k-th forward agent of ai is ai it-
self (i.e., dik−1(c0) is the distance from a(i−1) mod k to ai). In addition, we
define the distance sequence D(c0) of configuration c0 as the lexicographi-
cally minimum sequence among {Di(c0)|ai ∈ A}. Moreover, let shift(D, x) =
(dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) for sequenceD = (d0, d1, . . . , dk−1). Then,
we say that a configuration c0 is periodic if D(c0) = shift(D(c0), x) holds for
some x (0 < x < k). Otherwise, we say c0 is aperiodic. For an initial con-
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Figure 2: (a): An example of an aperiodic configuration, (b): An example of a periodic
configuration

figuration c0, we define the period peri(c0) of c0 as the minimum positive
integer x satisfying D(c0) = shift(D(c0), x). Note that peri(c0) = k holds for
any aperiodic initial configuration c0. For example, Fig. 2 (a) is an aperiodic
configuration with D(c0) = (1, 3, 2, 2, 2, 2) and peri(c0) = 6 (= k), and Fig. 2
(b) is a periodic configuration with D(c0) = (1, 1, 4, 1, 1, 4) and peri(c0) = 3.

2.3. Partial gathering problem

The requirement of the partial gathering problem is that, for a given
integer g (2 ≤ g ≤ k/2), agents terminate in a configuration such that either
at least g agents or no agent exists at each node. Formally, we define the
g-partial gathering problem as follows.

Definition 1. Execution E solves the g-partial gathering problem when the
following conditions hold:

• Execution E is finite (i.e., all agents terminate in state sfinal).

• In the final configuration, at least g agents exist at any node where an
agent exists.

Definition 2. A deterministic algorithm A solves the g-partial gathering
problem if EA(c0, ψ) solves the problem for any c0 and ψ.

Definition 3. A randomized algorithm A solves the g-partial gathering prob-
lem with probability 1 if EA(c0, ψ) solves the problem with probability 1 for
any c0 and ψ.
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In [16], the following lower bound on a total number of agent moves for
the g-partial gathering problem in ring networks is shown. This theorem
holds for both deterministic and randomized algorithms.

Theorem 1. [16] The total number of agent moves required to solve the
g-partial gathering problem in ring networks is Ω(gn) if g ≥ 2.

3. Deterministic g-partial gathering

In this section, we consider the deterministic case. First, we show that
agents cannot detect whether the given initial configuration is one of unsolv-
able configurations shown in [16] (i.e., for the case of agents with knowledge
of k) or not. Then, we propose an algorithm that solves the problem from
any initial configuration other than the unsolvable initial configurations men-
tioned above. Thus, the set of unsolvable configurations is the same as that
of [16].

3.1. Impossibility result

In this section, we show that agents cannot detect whether the given
initial configuration is one of unsolvable configurations shown in [16] or not.

Theorem 2. There exists no algorithm that solves the g-partial gathering
problem from a periodic initial configuration c0 with peri(c0) less than g. In
addition, there exists no algorithm such that an agent terminates execution
of the algorithm and detects whether the initial configuration has peri(c0) less
than g or not.

Proof. We can directly derive the former argument from [16]. In the proof
of [16], agents are anonymous and they have knowledge of k. Intuitively, the
argument holds as the following reason. In the case of anonymous agents,
they can break symmetry only by using distance sequences of the initial
configuration. However, in a (periodic) initial configuration with peri(c0),
for each q (0 ≤ q ≤ peri(c0)− 1), agents aq, aq+peri(c0), . . ., aq+ℓ×peri(c0)−1 (ℓ =
k/peri(c0)) always execute the same action simultaneously in the synchronous
execution (i.e., the execution such that the scheduler activates all the agents
and makes them execute actions in each step). Then, they cannot break the
symmetry (or periodicity) and any pair of them cannot gather at the same
node. That is, there exist at least ℓ nodes where at least one agent exists in
the finial configuration. Then, if peri(c0) < g holds, the value of ℓ is large and
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Figure 3: Simple examples of c0 and c′0.

there exist many nodes where at least one agent exists, and agents cannot
g-partial gathering however the remaining (= k − ℓ) agents behave.

In the following, we show that agents cannot detect whether the given
initial configuration c0 has peri(c0) less than g or not. Intuitively, this
argument holds when we consider a periodic initial configuration c0 with
peri(c0) ≤ g − 1 and an aperiodic initial configuration c′0 (or a larger ring)
with peri(c′0) = k (> g) that consecutively includes c0 sufficiently many times
as a part of c′0 (see Fig. 3). Then, there exists some pair of agents a and a′

such that a (resp., a′) starts execution of the algorithm from c0 (resp., c′0)
and the algorithm execution of a′ is the exactly same as that of a. Then,
a′ detects that c′0 has peri(c′0) ≤ g − 1 and the g-partial gathering problem
cannot be solved from c′0, nevertheless it is solvable from c′0. Thus, agents
cannot terminate execution of the algorithm with correctly detecting whether
the given initial configuration c0 has peri(c0) less than g or not.

From the two paragraphs, we show the concrete proof of the above idea.
We prove it by contradiction. We use a similar idea to that in [14], which
considers the total gathering problem and shows that agents without any
knowledge cannot terminate execution of the algorithm with correctly de-
tecting whether the total gathering problem can be solvable from the given
initial configuration or not. For simplicity, we assume that agents move
in a synchronous manner. At first, let us consider an n-node ring R =
(V,E) and a periodic initial configuration c0 such that its peri(c0) is less
than g. We assume that k agents a0, a1, . . . , ak−1 exist in this order. Let
V = {v0, v1, . . . , vn−1}. Then, from the first argument of this theorem,
the g-partial gathering problem cannot be solved from c0, and agents can

12



detect the fact by the hypothesis. Let ER be the execution until all the
agents detect unsolvability of the problem from c0. In addition, we de-
fine T (ER) as the length of ER and denote ER = c0, c1, . . . , cT (ER). Then,
the number of nodes where at least one agent exists in cT (ER) is either of
k/peri(c0), 2k/peri(c0), . . . , k because (i) for each q (0 ≤ q ≤ peri(c0) − 1),
agents aq, aq+peri(c0), . . ., aq+ℓ×peri(c0)−1 (ℓ = k/peri(c0)) always execute the
same action simultaneously and any pair of them never gathers at the same
node, and (ii) if the number of nodes where either of agents a0, a1, . . . , aperi(c0)
exists in cT (ER) is h

′ (1 ≤ h′ ≤ peri(c0)), the number of nodes where either of
agents aperi(c0)×ℓ′ , aperi(c0)×ℓ′+1, . . . , aperi(c0)×ℓ′+peri(c0)−1 (1 ≤ ℓ′ ≤ k/peri(c0) −
1) exists in cT (ER) is also h

′ for each ℓ′. We assume that there exist hk/peri(c0)
(1 ≤ h ≤ peri(c0)) nodes where at least one agent exists in cT (ER). Then, at
most peri(c0)− (h− 1) agents exist at each node.

Next, let us consider an aperiodic initial configuration c′0 such that (i)
consecutively includes c0 sufficiently many times as a part of c′0 using kq+kp
agents for some large integer q and a relatively small integer p, and (ii)
includes one node where no agents exists (this makes c′0 aperiodic). An ab-
stract expression of c′0 is shown in Fig. 4 (a). Then, each of the kq agents
executes the exactly same action as one of the k agents in c0, there exist
hkq/peri(c0) nodes where at least one of the kq agents exists in c′T (ER), and

at most peri(c0) − (h − 1) agents exist at each of the hkq/peri(c0) nodes.
In this case, we show that, however the remaining kp agents behave, it is
impossible that at least g agents gather at each of the hkq/peri(c0) nodes.
More concretely, we consider the ring R′ = (V ′, E ′) consisting of pn+ qn+1
nodes, where p is the minimum integer satisfying pn ≥ T (ER) and q is the
minimum integer satisfying p/q < (g−peri(c0)−(h−1))×peri(c0)/h, respec-
tively. The inequality p/q < (g−peri(c0)− (h− 1))×peri(c0)/h follows from
kp/(hkq/peri(c0)) < g − (peri(c0)− (h− 1)). The construction of R′ from R
is shown in Fig. 4 (b). Let V ′ = {v′0, v′1, . . . , v′pn+qn}. We consider the initial
configuration c′0 such that kq + kp agents a′0, a

′
1, . . . , a

′
kq−1, a

′
kq, . . . a

′
kq+kp−1

exist in this order in R′. In addition, we define the initial position of each
agent in R′ as follows. Let vf(i) be the node where agent ai initially stays in
R. Then, we assume that agent a′i initially stays at node v′f(i mod k)+n·⌊i/k⌋.
That is, the initial positions for R are repeated from v′0 to v′pn+qn−1, and
there is no agent at node v′pn+qn. Then, we can show later that each agent
a′i (0 ≤ i ≤ kq− 1) always executes the same action as agent ai in R and ter-
minates execution of the algorithm with recognizing that the value of peri(c′0)

13
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Figure 4: (a): Abstract expression of c′0, (b): Construction of R from R′

is less than g and the g-partial gathering problem cannot be solved from c′0.
Actually, agents cannot achieve g-partial gathering after the kq agents exe-
cute such behaviors because (i) there exist hkq/peri(c0) nodes where at least
one of the kq agents exists, (ii) at most peri(c0)− (h−1) agents exist at each
of hkq/peri(c0) nodes, and (iii) however the remaining kp agents behave, it
is impossible that at least g agents gather at each of the hkq/peri(c0) nodes
since p/q < (g−peri(c0)− (h−1))×peri(c0)/h holds. However, the g-partial
gathering problem is solvable from c′0 since c′0 is an aperiodic initial configu-
ration and the value of peri(c′0) is kq + kp (> g), which is a contradiction.

To complete the proof, we need to show that each agent a′i (0 ≤ i ≤ kq−1)
in R′ always executes the same action as agent ai in R. To show this, for
each node v′j in R

′, we define cv(v
′
j) = vj mod n as the corresponding node of

v′j in R. We also define the local configuration of node v as the 2-tuple that
consists of the state of v and the states of all agents at v. Then, the following

14



lemma holds.

Lemma 1. Let us consider execution ER′ = c′0, c
′
1, . . . , c

′
T (ER), . . . for ring R

′.

We define V ′
t = {v′t, v′t+1, . . . , v

′
pn+qn−2}. For any t ≤ T (ER), configuration

c′t satisfies the following condition: for each v′j ∈ V ′
t , the local configuration

of v′j in c′t is the same as that of cv(v
′
j) in ct.

Proof. We prove the lemma by induction on t. For t = 0, Lemma 1 holds
from the definition of R′. Next, we show that when Lemma 1 holds for
t (t < T (ER)), Lemma 1 holds also for t+ 1.

From the hypothesis, for each v′j ∈ V ′
t+1 the local configurations of v′j−1

and v′j in c′t are the same as those of cv(v
′
j−1) and cv(v

′
j) in ct, respectively.

Since agents have no knowledge of k or n, agents staying at v′j−1 and v
′
j in c

′
t

execute the same actions as those at cv(v
′
j−1) and cv(v

′
j) in ct, respectively.

Since only agents staying at nodes v′j−1 and v′j can change the local config-
uration of v′j in unidirectional rings1, the local configuration of v′j in c′t+1 is
the same as that of cv(v

′
j) in ct+1. Therefore the lemma follows.

Now we complete the proof of the theorem using Lemma 1. In c′T (ER)

local configuration of each node in V ∗ = {v′pn, v′pn+1, . . . , v
′
qn+pn−2} ⊆ V ′

T (ER)

is the same as that of the corresponding node in cT (ER). That is, the states of
agents staying at nodes in V ∗ is equal to those of the corresponding agents in
V . Hence, every agent in V ∗ (kq agents in total) recognizes that the value of
peri(c′0) is less than g and the g-partial gathering problem cannot be solved
in configuration c′T (ER), and it terminates execution of the algorithm. Then,

there exist hkq/peri(c0) nodes where an agent exists. However, it is impos-
sible that at least g agents gather at each of the hkq/peri(c0) nodes because
p/q < (g − peri(c0) − (h − 1)) × peri(c0)/h holds, which is a contradiction.
Therefore the theorem holds.

3.2. Proposed algorithm

In this section, we propose a deterministic algorithm that solves the g-
partial gathering problem in a total number of O(gn) moves from any initial
configuration other than unsolvable configurations discussed in Section 3.1
(i.e., any initial configuration c0 with peri(c0) ≥ g). The algorithm comprises
two parts. In the first part, some agents are elected as leader agents by

1Recall that there is no in-transit agent in the synchronous execution we are considering.
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executing a leader agent election algorithm partially. In the second part, the
leader agents tell the other agents their meeting points, and the other agents
move to that node.

3.2.1. The first part: leader election

The aim of this part is similar to [16], that is, to elect some leaders that
satisfy the following properties: 1) At least one agent is elected as a leader,
and 2) at least g−1 non-leader agents exist between two leaders. Each agent
takes a status from the following three statuses:

• active: the agent is performing leader agent election as a candidate for
leaders.

• inactive: the agent has dropped out from the set of the leader candi-
dates.

• leader: the agent has been elected as a leader.

Initially, all agents are active. At first, we explain the idea of leader
election in [16] because the proposed algorithm this time is based on the idea
in [16]. In [16], the network is a unidirectional ring, agents have distinct
IDs, and each node has a whiteboard. The leader election in [16] comprises
several phases. In each phase, each active agent ai moves in the ring until it
observes IDs of two active agents by using whiteboards. Then, ai observes
IDs of three successive active agents including ai itself, say id1, id2, id3 in this
order. Note that id1 is the ID of ai. Thereafter, ai compares the value of id2
and the values of id1 and id3. If id2 is the largest among the three IDs, ai
remains active (as a candidate for leaders) in the next phase. Otherwise, it
becomes inactive and drops out from the set of leader candidates. By this
behavior, we can guarantee that, if ai remains active, its nearest forward and
backward active agents never remain active because of distinct IDs2. Hence,
at least half of the current active agents become inactive in each phase, that
is, the number of inactive agents between two active agents at least doubles
in each phase. Then, from [15], after executing j phases, at least 2j − 1
inactive agents exist between any two active agents. Thus, after executing

2There may exist several agents executing different phases since we consider an asyn-
chronous execution. Agents treat this problem by controlling phases through whiteboards
(the detail is described in the pseudocode part).
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Figure 5: An example of a virtual ID.

⌈log g⌉ phases, the following properties are satisfied: 1) At least one agent
remains active, and 2) the number of inactive agents between any two active
agents is at least g − 1. Therefore, all the remaining active agents become
leaders.

In the following, we explain the way to apply the above leader election
to anonymous agents. In this section, agents use virtual IDs. Then, similar
to the above idea, in each phase active agents this time compare virtual IDs
and determine whether they remain active in the next phase or not. To
define the virtual ID, we introduce active nodes and inactive nodes. At the
beginning of each phase, there exists an active agent, an inactive agent, or
no agent at each node. Then, we call a node where an active (resp., an
inactive) agent exists at the beginning of the phase an active node (resp., an
inactive node). Note that it is not possible that some node is both an active
node and an inactive node in some phase because agents occupy different
nodes at the beginning of each phase. Then, a virtual ID is given in the
form of (disArray[ ], nInactive), where disArray[ ] and nInactive are a distance
sequence and the number of inactive nodes between active nodes, respectively.
Concretely, we assume that active agent ai starts some phase at node vj and
vj′ is vj’s forward active node. Here, we say that vj′ is vj’s forward (resp.,
backward) active node if no active node exists from vj to vj′ (resp., vj′ to vj).
In addition, let v1ina, v

2
ina, . . . , v

ℓ
ina be inactive nodes between vj and vj′ . That

is, nodes vj (= v0ina), v
1
ina, v

2
ina, . . . , v

ℓ
ina, vj′ (= vℓ+1

ina ) exist in this order. Then,
when ai moves from vj to vj′ , it observes a distance sequence (d0, d1, . . . , dℓ),
where dm (0 ≤ m ≤ ℓ) is the distance from vmina to vm+1

ina . Then, ai gets
disArray[ ] = (d0, d1, . . . , dℓ) and nInactive = ℓ as its virtual ID. For example,
in Fig. 5 (a), we assume that active agents ai and ai′ exist at node vj and vj′
at the beginning of some phase, respectively, and ai′ already left vj′ . From
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Figure 6: An example of comparison of virtual IDs.

(a) to (b), active agent ai moves twice to visit an inactive node, moves once
to visit the next inactive node, and moves three times to visit the next active
node vj′ . Hence, it gets its virtual ID ((2,1,3),2). Note that each active agent
can detect whether the current node is an active node, an inactive node, or
another node using whiteboards. Each active agent moves until it observes
such three virtual IDs. Note that multiple agents may have the same virtual
ID since agents use distance sequences and numbers of inactive agents as
virtual IDs. We explain the behavior in this case next.

After observing three virtual IDs id1, id2, id3, each active agent ai com-
pares the virtual IDs by the lexicographical order and decides whether it
remains active (as a candidate for leaders) in the next phase or not. Differ-
ent from [16], multiple agents may have the same virtual ID. To treat this,
when at least one virtual ID differs from other IDs, if id2 > max(id1, id3)
or id2 = id3 > id1 holds, ai remains active. Otherwise, ai becomes inactive.
When all the three virtual IDs are the same (i.e., id1 = id2 = id3 holds), ai
compares the value of nInactive with the value of g. If nInactive ≥ g − 1
holds, it still remains active. Otherwise, it becomes inactive. Note that
even if ai becomes inactive, it does not happen that all the active agents
become inactive because we consider an aperiodic initial configuration c0
(peri(c0) = k) or a periodic configuration with peri(c0) ≥ g (the detail is de-
scribed in Lemma 2). For example, in Fig. 6 when an active agent ai moves
to node vj, it observes three virtual IDs and the value of the IDs are the
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Table 2: Global variables used in the proposed algorithm
Variables for agent ai
type name meaning initial value

int
ai.id1
ai.id2
ai.id3

virtual ID 0

int ai.phase phase number of ai 0

int
ai.nInactive1
ai.nInactive2
ai.nInactive3

number of inactive agents
in a virtual ID

0

array
ai.disArray1[ ]
ai.disArray2[ ]
ai.disArray3[ ]

distance sequence
in a virtual ID

⊥

Variables for node vj
type name meaning initial value

int vj .phase phase number of vj 0

boolean vj .initial existence of an agent at vj in c0
true if an agent exists in c0
false otherwise

boolean vj .inactive
existence of an inactive agent at vj
(this value is set to true if
an inactive agent exists at vj)

false

same ((3,1,2),2). Then, a1 remains active if the value 2 of nInactive is g − 1
or larger (or g ≤ 3), and becomes inactive if the value is smaller than g − 1
(or g ≥ 4).

To summarize, in each phase active agents move in the ring and get three
virtual IDs, and determine whether they remain active in the next phase
or not. They execute such a phase ⌈log g⌉ times and complete the leader
election. Then, we can show that at least g− 1 inactive agents exist between
any two active agents (Lemma 2). Intuitively, this is because 1) when three
IDs have different values, nearest active agents never remain active, and 2)
when at least two IDs have the same value and two nearest active agents ai
and aj remain active, at least g − 1 inactive agents already exist between ai
and aj. Thus, all the remaining active agents become leaders.

The pseudocode of the proposed algorithm in the first part is described in
Algorithm 1. Global variables used in the algorithm are summarized in Table
2. In addition, in Algorithm 1, agents use procedure NextActive() to move to
the next active node and get a virtual ID. The pseudocode of NextActive()
is described in Procedure 1. In line 6 of Procedure 1, variables ai.pahse and
vj.phase are used to treat asynchrony (i.e., to avoid agents from overtaking
other agents). Note that, there exists no inactive agent in the first phase (i.e.,
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Algorithm 1 Behavior of active agent ai in the first part (vj is the current
node of ai.)

Main Routine of Agent ai
1: while true do
2: ai.phase := ai.phase+ 1, vj.phase := ai.phase
3: (ai.disArray1[ ], ai.nInactive1):=NextActive()
4: ai.id1:=(ai.disArray1[ ], ai.nInactive1)
5: (ai.disArray2[ ], ai.nInactive2):=NextActive()
6: ai.id2:=(ai.disArray2[ ], ai.nInactive2)
7: (ai.disArray3[ ], ai.nInactive3):=NextActive()
8: ai.id3:=(ai.disArray3[ ], ai.nInactive3)
9: if (ai.id2 > max(ai.id1, ai.id3))∨ (ai.id2 = ai.id3 > ai.id1)∨((ai.id1 =

ai.id2 = ai.id3)∧(ai.nInactive2 ≥ g − 1)) then
10: if ai.phase = ⌈log g⌉ then terminate the first part and enter the

second part with a leader status
11: else
12: vj.inactive := true
13: terminate the first part and enter the second part with an inactive

status
14: end if
15: end while

all the agent are active), and lines 13 – 16 are mainly executed in Procedure
1. Thus, when an active agent visits the next active node, lines 18 – 19 are
executed and the agent gets a virtual ID ((d), 0), where d is the distance
between two active nodes.

Concerning leader election, we have the following lemmas.

Lemma 2. Algorithm 1 eventually terminates and satisfies the following two
properties when it terminates.

• At least one leader agent exists.

• At least g − 1 inactive agents exist between any two leader agents.

Proof. Termination of Algorithm 1. When an active agent ai does not satisfy
the condition of line 9, it becomes inactive. If ai satisfies the condition ⌈log g⌉
times, it becomes a leader. Thus, all the agents eventually change their
statuses to an inactive status or a leader status, and Algorithm 1 eventually
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Procedure 1 int NextActive() (vj is the current node of ai.)

Variables for Agent ai
int h = 0;
int distance = 0;
int nInactive = 0;
array disArray[ ];
Behavior of Agent ai
1: let l be the maximum integer such that disArray[l] ̸= 0 holds
2: for (int m = 0, m ≤ l; m++) disArray[m] := 0
3: move to the next node (that becomes new vj)
4: distance := distance+ 1
5: while (vj.initial = false) ∨ (vj.inactive = true) ∨ ((vj.initial = true) ∧

(vj.inactive = false) ∧ (vj.phase ̸= ai.phase)) do
6: if (vj.initial = true)∧(vj.inactive = false)∧(vj.phase ̸= ai.phase) then

wait at the current node vj until (vj.inactive = true) ∨ (vj.phase =
ai.phase) holds

7: if vj.inactive = true then
8: disArray[h] := distance
9: nInactive := nInactive+ 1

10: distance := 0
11: h := h+ 1
12: end if
13: if (vj.initial = false) ∨ (vj.inactive = true) then
14: move to the next node (that becomes new vj)
15: distance := distance+ 1
16: end if
17: end while
18: disArray[h] := distance
19: return (disArray[ ], nInactive)

terminates.

Existence of at least one leader agent. In order to show this, we define
Y 1 = Y and Y l+1 = Y l · Y (concatenation) for sequence Y . We show this
first for the case that the initial configuration is aperiodic, and then the
case that the initial configuration is periodic but solvable. If the initial
configuration is aperiodic, D(c0) = shift(D(c0), x) does not holds for any
x(0 < x < k) by the definition of aperiodic initial configurations. Thus, there
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exists no way to partition the whole distance sequence into subsequences
with the same elements. Therefore, when at least two active agents exist in
some phase, there exists an agent ai such that ai.id2 > max(ai.id1, ai.id3) or
ai.id2 = ai.id3 > ai.id1 holds and such an agent remains active. In addition,
when there exists exactly one active agent in some phase, the active agent
ai observes three IDs such that ai.id1 = ai.id2 = ai.id3 and ai.nInactive =
k − 1 > g − 1 hold, and thus ai remains active. The second equality follows
from the fact that all the agents other than ai are inactive in the phase.
Thus, after executing ⌈log g⌉ phases, at least one active agent exists and it
becomes a leader.

Next, we consider the case that the initial configuration c0 is periodic and
peri(c0) ≥ g − 1 holds. In this case, k = ℓ× peri(c0) holds for some positive
integer ℓ. Let D′ be the aperiodic distance sequence such that D(c0) = (D′)ℓ

holds. Then, agent ai′ (0 ≤ i′ ≤ peri(c0) − 1) and each of ai′+q×peri(c0) (1 ≤
q ≤ ℓ − 1) execute the same action. Hence, without loss of generality, we
consider the behavior of the agent set A′ = {a0, a1, . . . , aperi(c0)−1}. Then,
since D′ is aperiodic, when at least two active agents exist among A′ at the
beginning of some phase, there exists at least one agent ai′ such that ai′ .id2 >
max(ai′ .id1, ai′ .id3) or ai′ .id2 = ai′ .id3 > ai′ .id1 holds since D′ is aperiodic,
and such an agent keeps an active status at the end of the phase. Thus,
it does not happen that all the agents in A′ become inactive. In addition,
when exactly one agent ai′ remains active among A′ at the beginning of some
phase, due to the periodicity of the initial configuration, it observes three IDs
ai′ .id1, ai′ .id2, and ai′ .id3 such that 1) ai′ .id1 = ai′ .id2 = ai′ .id3 holds, and 2)
ai′ .nInactive of each ID is peri(c0) ≥ g − 1. Thus, ai′ still remains active
at the end of the phase. Moreover, once ai′ observes such IDs, it continues
to observe the same ID until the leader election is completed. Thus, after
executing ⌈log g⌉ phases, at least one agent remains active and such an agent
becomes a leader.

Existence of at least g − 1 inactive agents between two leaders. We show
this for both the cases that the initial configuration is aperiodic and pe-
riodic (but solvable) together. Let ai.id1, ai.id2, ai.id3 be IDs that ai ob-
serves in some phase. If ai remains active in the phase, either of (i) ai.id2 >
max(ai.id1, ai.id3), (ii) ai.id2 = ai.id3 > ai.id1, or (iii) (ai.id1 = ai.id2 =
ai.id3)∧ (nInactive ≥ g− 1) holds. In the case of (iii), at least g− 1 inactive
agents already exist between two active agents. Hence, in the following we
assume that ai remains active by satisfying case (i) or (ii).
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Let ai be an active agent and ai′ (resp., ai′′) be the ai’s backward (resp.,
forward) active agent. At first, we show that if ai remains active in some
phase, either of the following conditions is satisfied: (a) Both ai′ and ai′′ drop
out from the set of leader candidates, or (b) agent ai′ drops out from the set
of leader candidates, but ai′′ remains active in the phase and at least g − 1
inactive agents already exist between ai and ai′′ . If ai.id2 > max(ai.id1, ai.id3)
holds and ai remains active (i.e., case (i)), ai′ and ai′′ clearly drop out from
the set of leader candidates and condition (a) is satisfied. In the following,
we consider case (ii), that is, ai.id2 = ai.id3 > ai.id1 holds and ai remains
active. Let ai′ .id1, ai′ .id2, ai′ .id3 be IDs observed by ai′ . Then, ai′ .id2 = ai.id1
and ai′ .id3 = ai.id2 hold. Since ai′ .id2 < ai′ .id3 holds, ai′ does not satisfy the
condition to remain active and it drops out from the set of leader candidates.
Next, let ai′′ .id1, ai′′ .id2, ai′′ .id3 be IDs observed by ai′′ . Then, ai′′ .id1 = ai.id2
and ai′′ .id2 = ai.id3 hold. If ai′′ .id3 ̸= ai′′ .id2 holds, or ai′′ .id3 = ai′′ .id2 holds
and the value of nInactive in each ID is less than g−1, ai′′ does not satisfy the
condition to remain active and it drops out from the set of leader candidates.
Hence, condition (a) is satisfied. If ai′′ .id3 = ai′′ .id2 holds and the value of
nInactive in each ID is at least g − 1, ai′′ satisfies the condition to remain
active and then at least g − 1 inactive agents already exist between ai and
ai′′ . Hence, condition (b) is satisfied.

Now, we show that at least g − 1 inactive agents exist between any two
leader agents. We first show that after executing j phases, at least 2j −
1 inactive agents exist between any two active agents. We show this by
induction. For the case of j = 1, there exists at least 21 − 1 = 1 inactive
agent between any two active agents as mentioned above. For the case of
j = l (≤ ⌈log g⌉ − 1), we assume that at least 2l − 1 inactive agents exist
between any two active agents. Let ai be an active agent and ai′ (resp., ai′′)
be the ai’s backward (resp., forward) active agent. After executing phase
l + 1, if ai remains active by satisfying condition (a), ai′ and ai′′ become
inactive. Then, the number of inactive agents between any two active agents
is at least (2l − 1)+ 1+ (2l − 1) = 2l+1 − 1. If ai remains active by satisfying
condition (b), ai′ similarly becomes inactive, and ai′′ also becomes inactive
or remains active but at least g − 1 inactive agents already exist between ai
and ai′′ . Then, since g > l holds, the number of inactive agents between any
two active agents is at least 2l+1− 1. Thus, after executing j phases, at least
2j − 1 inactive agents exist between any two active agents. Therefore, after
executing ⌈log g⌉ phases, at least g−1 inactive agents exist between any two
leader agents.
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Lemma 3. Algorithm 1 requires a total number of O(n log g) moves.

Proof. From lines 3 – 8 in Algorithm 1, in each phase each active agent moves
until it visits three active nodes and gets three IDs of active agents. This
requires an O(n) moves in total because each communication link is passed
by three times. Since each agent executes such a phase ⌈log g⌉ times, the
lemma follows.

3.2.2. The second part: leaders’ instructions and agents’ movement

After leader election, agents achieve g-partial gathering by leader agents’
instructions. At the beginning of this part, there exists a leader agent, an
inactive agent, or no agent at each node. We call a node where a leader agent
exists a leader node. We use the same technique as in [16]. We assume that a
leader agent ai starts this part at leader node vj, vj′ is vj’s next leader node,
and inactive nodes v1ina, v

2
ina, . . . v

ℓ
ina exist between vj and vj′ . That is, nodes

vj, v
1
ina, v

2
ina, . . . , v

ℓ
ina, vj′ exist in this order. Then, in brief, leader agent ai at

vj moves to the next leader node vj′ . During the movement, ai marks node
vtina as a non-gathering node (resp., a gathering node) if (t + 1) mod g ̸= 0
(resp., (t + 1) mod g = 0). That is, each leader continues to mark some
consecutive g − 1 inactive nodes as non-gathering nodes and mark the next
inactive node as a gathering node until it visits the next leader node. Note
that vj and vj′ are marked as non-gathering nodes by leader agents. Then,
there exist at least g − 1 non-gathering nodes between any two gathering
nodes. Thus, agents can achieve g-partial gathering by the way that each
agent moves to the nearest gathering node. The proof of correctness is shown
in [16]. Intuitively, this is because 1) at least g − 1 inactive agents exist
between two leader agents by Lemma 2, and 2) after each leader moves in
the ring with marking some consecutive g − 1 nodes as non-gathering nodes
and marking the next node as a gathering node, at least g− 1 non-gathering
nodes also exist between two gathering nodes. Also, this part can be achieved
in a total number of O(gn) moves since each link is passed by at most 2g
times. By this fact and Lemma 3, we have the following theorem.

Theorem 3. From any solvable initial configuration, the proposed algorithm
solves the g-partial gathering problem in a total number of O(gn) moves.

4. Randomized g-partial gathering

In this section, for the case of 2 ≤ g ≤ k/2, we propose a randomized
algorithm that solves the g-partial gathering problem with probability 1 in a
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total number of O(gn) (i.e., optimal) moves in expectation from any initial
configuration. The basic idea is the same as that of the previous section,
that is, agents elect multiple leaders by comparing (virtual) IDs. In this
section, since we consider a randomized algorithm, agents can use random
numbers as IDs. In addition, each agent compares 2g − 1 random IDs at
one time instead of comparing three IDs as in the previous section3. By
this behavior, if there exists a unique maximum ID among the consecutive
2g − 1 IDs, agents can make a configuration such that at least g − 1 non-
leader agents exist between two leaders. However, if two or more IDs have
the same maximum value among the 2g − 1 IDs, agents cannot make such
a configuration. Agents treat this case by additional behaviors explained in
the following subsections.

The algorithm comprises two parts. In the first part, agents determine
some candidate nodes for g-partial gathering using random IDs. In the second
part, agents determine gathering nodes from the candidate nodes and achieve
g-partial gathering.

4.1. The first part: determination of candidate nodes for g-partial gathering

In this part, agents determine candidate nodes for gathering using ran-
dom IDs. In the following, we refer to “candidate nodes for gathering” as
“candidate nodes”. Each agent takes a status from the following three sta-
tuses:

• active: the agent moves in the ring to determine candidate nodes.

• leader: the agent elects the current node as a candidate node.

• waiting: the agent is staying at a candidate node and waiting for the
next instruction.

Initially, all agents are active. This part comprises several (or possibly
infinite) phases. At the beginning of each phase, each active agent ai creates
a ⌈7 log g⌉-bit random ID, and writes the ID and the current phase number on

3Although agents in the previous section can elect multiple leaders by comparing 2g−1
virtual IDs at one time, we did not follow the same method because (i) simulating the
leader election of [16] (i.e., agents compare three IDs at one time) is a simple way and (ii)
it is complicated to treat the case that an agent observes multiple (four or more) same
virtual IDs in a deterministic manner.
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the current whiteboard. Thereafter, ai moves until it observes 2g−1 random
IDs (including the one it creates) of the current phase. Let id1, id2, . . . , id2g−1

be the IDs. Then, ai compares idg (or the ID at the middle of the ID sequence)
with the other observed IDs. If idg is the unique maximum ID among the
2g − 1 IDs, it becomes a leader. Different from the behavior of a leader in
the previous section, a leader agent ai in this section sets the flag vj.candi
to declare that the current node vj is a candidate node and waits at vj until
at least g agents gather at vj. Note that ai can check the number of agents
staying at vj by the whiteboard. The reason why leaders execute such a
behavior is that, even if some two agents ai and ai′ become leaders, it is
possible that only less than g − 1 non-leader agents exist between ai and
ai′ (such a case does not happen in Section 3.2). In this case, there exists
another leader ah such that at least g − 1 non-leader agents exist between
ah and ah’s backward leader agent and ah treats this situation (the detail
is explained in the next part). If idg is not the unique maximum ID, that
is, idg is not the maximum or idg is the maximum but another ID has the
same value as idg, ai additionally moves until it observes g IDs of the current
phase to check whether a candidate node exists within this range or not.
If ai visits a candidate node vj (or vj.candi = true) during the movement,
it enters a waiting status there. Otherwise, ai executes the next phase.
Each active agent repeats such a behavior until it becomes a leader and sets
vj.candi = true, or visits some candidate node vj (or vj.candi = true) and
enters a waiting status.

An example is given in Fig. 7. Each number represents a random ID
written on the whiteboard. For simplicity, we assume that there exists an
agent at each node in the initial configuration and random IDs are already
written in (a). We consider behaviors of agents a1, a2, a3, and a4. From (a)
to (b), each active agent moves until it observes five (= 2g− 1) random IDs.
Since agent a3 observes random IDs (3,1,5,4,4) and the middle ID 5 is the
unique maximum, it becomes a leader and sets a candidate flag at vj. On
the other hand, the other agents continue to move in the ring. From (b)
to (c), agents a1, a2, and a4 move to observe additional three (= g) random
IDs. During the movement, since agents a1 and a2 observe a candidate flag
at vj, they enter a waiting status there. On the other hand, since a4 does
not observe a flag, it updates a random ID and proceeds to the next phase
(the four IDs from the rightmost node are similarly updated). From (c) to
(d), since a4 observes five random IDs (2,3,5,2,4) and the middle ID 5 is
the unique maximum, it becomes a leader and sets the candidate flag at vj′ .
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Figure 7: Behavior outlines of the first part for the case of g = 3.

However, no agent exists between vj and vj′ . This situation is handled in the
second part.

The pseudocode of active agents in the first part is described in Algo-
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Table 3: Global variables used in the proposed algorithm
Variables for agent ai
type name meaning initial value

int ai.phase phase number of aj 0

int ai.nIDs
number of random IDs that
ai has observed

0

array ai.id[ ]
sequence of random IDs that
ai has observed

⊥

int ai.nAgentsTemp
number of agents that
eventually visit and stay at the current node

0

Variables for node vj
type name meaning initial value

int vj .phase phase number of vj 0

int vj .nAgents number of agents staying at vj 0

int vj .id random ID stored by vj ⊥
int vj .nVisited number of agents that visited vj 0

boolean vj .candi whether vj is a candidate node or not false

boolean vj .activeExist existence of an active agent false

boolean vj .lVisited whether vj is visited by a leader agent or not false

rithm 2. Global variables used in the algorithm are summarized in Table 3.
In addition, in Algorithm 2, agents use procedure NextActive2 () to move to
the next active node, and to enter a waiting status when visiting a candidate
node vj (or vj.candi = true). The pseudocode of NextActive2 () is described in
Procedure 2. In lines 9 – 10 of Procedure 2, variables ai.nIDs and vj.nVisited
are used to treat asynchrony (i.e., to avoid agents from overtaking other
agents). In addition, node vj has a boolean variable vj.activeExist repre-
senting whether an active agent exists at vj or not. This variable is used to
ensure that an agent executing the second part does not overtake an active
agent that is still executing the first part (the detail is described in Section
4.2). When an active agent ai completes the first part, it begins the second
part by executing procedure Realization(), whose explanation is described in
the next section. We have the following lemmas concerning Algorithm 2.

Lemma 4. Algorithm 2 eventually terminates with probability 1 and all
agents enter a leader status or a waiting status.

Proof. We prove the lemma by contradiction, that is, we assume that some
agent ai retains the active status and continues to move in the ring. This
implies that ai does not visit a candidate node vj (or vj.candi = true) even
if ai continues to move in the ring. Thus, by Algorithm 2, all agents need to
retain the active status and at least two random IDs need to have the same
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Algorithm 2 Behavior of active agent ai in the first part (vj is the current
node of ai.)

Main Routine of Agent ai
1: while true do
2: ai.phase := ai.phase+ 1, vj.phase := ai.phase
3: ai.id[0] := random(⌈7 log g⌉), vj.id := ai.id[0]
4: ai.nIDs := 1, vj.nVisited := 1
5: while ai.nIDs < 2g − 1 do
6: NextActive2 ()
7: ai.id[ai.nIDs] := vj.id
8: ai.nIDs := ai.nIDs+ 1, vj.nVisited := vj.nVisited+ 1
9: end while

10: if ∀h ∈ [0, 2g − 2] \ {g − 1}; ai.id[g − 1] > ai.id[h] then
11: vj.activeExist := false
12: vj.candi := true
13: vj.nAgents := 1
14: terminate the first part and enter the second part by executing

Realization (leader)
15: else
16: while ai.nIDs < 3g − 1 do
17: NextActive2 ()
18: ai.nIDs := ai.nIDs+ 1, vj.nVisited := vj.nVisited+ 1,
19: end while
20: end if
21: end while

value among any consecutive 2g − 1 random IDs. Otherwise, some active
agent sets vj.candi = true, and ai observes the flag and enters a leader or
waiting status. Note that, since 2 ≤ g ≤ k/2 and 2g − 1 < k hold, when
some two random IDs have the same value among some consecutive 2g − 1
random IDs, it means that the IDs are created by mutually different agents.
Since each active agent selects its random ID from ⌈7 log g⌉-bits by line 2 in
Algorithm 2, the probability that two random IDs have the same value is at
most (1/2)7⌈log g⌉ ≤ (1/g)7. Thus, the probability that at least two random
IDs have the same value among some 2g − 1 consecutive IDs is at most(
2g−1
2

)
(1/g)7 < 2g2/g7 = 2/g5. Since g ≥ 2 holds, the probability is at most

1/16. This means that, by repeatedly executing phases, eventually no two
IDs have the same value among some 2g−1 consecutive IDs with probability
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Procedure 2 void NextActive2() (vj is the current node of ai.)

Behavior of Agent ai
1: vj.activeExist := false
2: move to the next node (that becomes new vj)
3: vj.activeExist := true
4: while vj.initial = false do
5: vj.activeExist := false
6: move to the next node (that becomes new vj)
7: vj.activeExist := true
8: end while
9: if (vj.phase ̸= ai.phase) ∧ (vj.candi = false) then wait until (vj.phase =
ai.phase) ∨ (vj.candi = true) holds

10: if (ai.nIDs ̸= vj.nVisited) ∧ (vj.candi = false) then wait at vj until
ai.nIDs = vj.nVisited holds

11: if vj.candi = true then
12: vj.activeExist := false
13: vj.nAgents := vj.nAgents+ 1
14: terminate the first part and enter the second part by executing Real-

ization(waiting)
15: end if

1. However, this contradicts the assumption and the lemma follows.

Lemma 5. After all the agents complete execution of Algorithm 2, at least
one candidate node has at least g agents.

Proof. Let ai be the first agent that becomes a leader and sets a candidate flag
among all the agents, vj be the node where ai sets the flag, and id0, . . . id2g−2

be the random 2g−1 IDs observed by ai. Then, by lines 10 – 14 in Algorithm
2, idg−1 is the unique maximum among the 2g−1 IDs and thus ai sets a can-
didate flag at vj. We assume that agents ai−(g−1), ai−(g−2), . . . , ai−1, ai exist in
this order. Then, agents ai−(g−1), ai−(g−2), . . . , ai−1 do not set a candidate flag
since the value of idh (0 ≤ h ≤ g − 2) is smaller than that of idg−1, and they
move until they observe g IDs or a candidate flag. During the movement, they
observe a candidate flag at node vj and enter waiting statuses there. Then,
there exist one leader agent ai and g − 1 agents ai−(g−1), ai−(g−2), . . . , ai−1

at vj. Thus, at least g agents exist at a candidate node vj and the lemma
follows.
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4.2. The second part: achievement of g-partial gathering

In this part, agents achieve g-partial gathering based on the candidate
nodes. Each agent takes a status from the following three statuses:

• leader: the agent checks whether the current candidate node finally
becomes a gathering node or not. If the node becomes a gathering
node, the agent instructs waiting agents where they should move.

• waiting: the agent is waiting for the leader’s instruction.

• moving: the agent moves to its gathering node.

We consider a situation such that all agents complete the first part, stay
at some candidate nodes, and never move from the beginning of this part4.
Then, there exist some (possibly one) candidate nodes, and at least one
of them has at least g agents (Lemma 5) and some candidate nodes may
have less than g agents each. Note that at each candidate node exactly one
leader agent exists and the other agents are waiting agents. We denote a set
of candidate nodes with at least g (resp., less than g) agents in the above
situation by V more

candi (resp., V
less
candi). Then, the basic movement of this part is as

follows. Each leader agent ai at a node in V more
candi moves to the next candidate

node vj ∈ V more
candi . During the movement, when ai visits a candidate node

vj′ ∈ V less
candi, it sets a flag vj′ .lVisited to declare that vj′ is visited by a leader.

Then, all the agents at vj′ move to the nearest candidate node vj′′ such that
the number of agents existing between vj′ and vj′′ is at least g. After the
movement, agents achieve g-partial gathering.

First, we explain the behavior of leader agents. Each leader agent ai first
waits at the current node vj until either (i) at least g agents gather at vj or
(ii) vj.lVisited is set to true. Note that ai can count the number of agents
staying at vj using variable vj.nAgents (i.e., ai need not have the capability
to count the number of agents staying at the same node). Then, (i) if at
least g agents gather at vj, a leader agent ai moves to the next candidate
node vj′ (or vj′ .candi = true) and sets vj′ .lVisited = true. If at least g − 1
waiting agents exist at vj′ (i.e., vj′ ∈ V more

candi ), ai terminates the algorithm at
vj′ because each of the at least g − 1 agents at vj′ eventually terminates the
algorithm there and this guarantees that at least g agents gather at vj′ . If less

4We consider the situation for explanation, and it is possible that some agents are
executing the second part while the other agents are still executing the first part.
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than g− 1 waiting agents exist at vj′ (i.e., vj′ ∈ V less
candi), ai stores the number

of the waiting agents at vj′ to a variable ai.nAgentsTemp. This operation
means that ai.nAgentsTemp (possibly 0) agents move to the next candidate
node. Thereafter, ai moves to the next candidate node vj′′ and updates the
number of agents that are to stay at vj′′ (or agents that will eventually gather
at vj′′) using ai.nAgentsTemp. If the updated number of agents at vj′′ is at
least g, vj′′ eventually becomes a gathering node regardless of whether vj′′ is
in V more

candi or V
less
candi. In this case, ai resets ai.nAgentsTemp to 0. If the updated

number is less than g, vj′′ becomes a non-gathering node and ai stores the
number of agents that will eventually gather at vj′′ to ai.nAgentsTemp. After
updating the value of ai.nAgentsTemp, ai moves to the next candidate node.
Each leader agent repeats such a behavior until it visits a candidate node vj
in V more

candi . On the other hand, (ii) if vj.lVisited is set to true at node vj where
a leader agent ai starts this part, this means that another leader agent ai′
visits vj and vj is in V less

candi. In this case, ai enters a waiting status, whose
behavior is described next.

Next, we explain the behaviors of waiting agents and moving agents.
Each waiting agent ai stays at the current node vj until some leader agent
visits vj and sets vj.lVisited = true. Then, it checks (from the whiteboard
content) whether at least g agents will eventually gather at vj or not. If
at least g agents gather, ai terminates the algorithm there. Otherwise, ai
enters a moving status. Each moving agent ai moves to the next candidate
node vj′ and enters a waiting status there. Then, the number of agents that
will eventually gather at vj′ is the sum of agents that will visit vj′ from vj
and agents that already stay at vj′ . Thus, if the number of agents that
will eventually gather at vj′ is at least g, ai terminates the algorithm there.
Otherwise, ai enters a moving status again. Each moving agent repeats such
a behavior until it visits a candidate node vj such that at least g agents
eventually gather at vj. When all agents terminate the algorithm, the final
configuration is a solution of the g-partial gathering problem.

An example is given in Fig. 8. For simplicity, we omit nodes where agents
do not exist. From (a) to (b), since each number of agents at nodes v1candi
and v4candi is 4 (≥ g), leader agent a1 (resp., a4) moves to the next candidate
node v2candi (resp., the next candidate node of v4candi). On the other hand,
since each number of agents at v2candi and v

3
candi is less than g, leader agents

a2 and a3 keep staying at the current nodes. Then, the system reaches the
configuration of (c) and a flag declaring that the node is visited by a leader
agent is set at v2candi. Since the number of agents at v2candi except for a1
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Figure 8: Behavior outlines of the second part for the case of g = 4.

is 3 < g, all the agents (including a leader a2) at v2candi move to the next
candidate node v3candi (d). Then, the system reaches the configuration of (e)
and a flag is set by a1. Since the number of agents at v3candi except for a1 is
5 > g, a1 moves to the next candidate node v4candi and the other agents at
v3candi terminate the algorithm there. In (f), a1 sets a flag at v4candi. Since the
number of agents that set the flag (i.e., a1) or already stay at v4candi is 4 = g,
all the agents at v4candi terminate the algorithm there.

Agents achieve the second part (or g-partial gathering) by procedure Re-
alization(), whose pseudocode is described in Procedure 3. The behavior of
leader agents is described in lines 1 – 23. Note that, since at least g agents
gather to at least one candidate node by Lemma 5, at least one leader agent
executes lines 6 – 23. In addition, in Procedure 3, if an active agent exe-
cuting the first part exists at the current node vj, a leader agent waits at vj
until the active agent leaves vj (lines 9 – 18). This is realized by variable
vj.ActiveExist, whose usage is described in Procedure NextActive2(). The
behavior of waiting (resp., moving) agents is described in lines 24 – 27 (resp.,
lines 28 – 32). We have the following lemmas for the proposed algorithm.

Lemma 6. The proposed algorithm solves the g-partial gathering problem

33



Procedure 3 void Realization (int: status) (vj is the current node of ai.)

Main Routine of Agent ai
1: if status = leader then
2: wait at vj until (vj.lVisited = true) ∨ (vj.nAgents ≥ g) holds
3: if vj.lVisited = true then
4: // another leader agent visits vj
5: enter a waiting status and execute Realization (waiting)
6: else
7: // at least g agents gather at vj
8: move to the next node (that becomes new vj)
9: if vj.activeExist = true then wait at vj until vj.activeExist = false

holds
10: while (vj.candi = false) ∨ (vj.nAgents < g) do
11: if (vj.candi = true) ∧ (vj.nAgents < g) then
12: // ai visits a candidate node in V less

candi

13: vj.lVisited := true, vj.nAgents := vj.nAgents+ ai.nAgentsTemp
14: if vj.nAgents ≥ g then ai.nAgentsTemp := 0
15: else ai.nAgentsTemp := vj.nAgents
16: end if
17: move to the next node (that becomes new vj)
18: if vj.activeExist = true then wait at vj until vj.activeExist = false

holds
19: end while
20: // ai reaches a candidate node in V more

candi

21: vj.lVisited := true
22: terminate the algorithm
23: end if
24: else if status = waiting then
25: wait at vj until vj.lVisited = true holds
26: if vj.nAgents ≥ g then terminate the algorithm
27: else enter a moving status and execute Realization (moving)
28: else if status = moving then
29: move to the next node (that becomes new vj)
30: while vj.candi = false do move to the next node (that becomes new

vj)
31: enter a waiting status and execute Realization (waiting)
32: end if
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with probability 1 from any initial configuration.

Proof. By lemma 5, there exists at least one candidate node after executing
Algorithm 2. Let v1candi, v

2
candi, . . . v

ℓ
candi be the candidate nodes. Note that

exactly one leader agent stays at each vjcandi (1 ≤ j ≤ ℓ) at the beginning
of Algorithm 3. We assume that v1candi, v

2
candi, . . . , v

ℓ
candi exist in this order.

In addition, let najcandi (1 ≤ j ≤ ℓ) be the number of agents staying at
vjcandi. When najcandi ≥ g holds (i.e., vjcandi ∈ V more

candi ), leader agent ai at v
j
candi

moves to the next candidate node vj+1
candi by lines 6 – 23 in Procedure 3.

If naj+1
candi ≥ g holds, at least g agents exist at vj+1

candi including ai, and all
the agents at vj+1

candi terminate the algorithm there. If naj+1
candi < g holds, ai

and all the agents (including the leader staying at vj+1
candi at the beginning

of Procedure 3) at vj+1
candi move to vj+2

candi. Leader agent ai repeats such a
behavior until it visits the next candidate node vj′ ∈ V more

candi , and each of the

other agents repeats such a behavior until it reaches a node vj
′′

candi such that

(
∑j′′−1

p=j+1 na
p
candi < g) ∧ (

∑j′′

p=j+1 na
p
candi ≥ g) holds. Agents staying between

vj”+1
candi and vj′ behave in a similar manner. Hence, after the movement, all
agents eventually terminate the algorithm and clearly at least g agents exist
at each node where agents exist. Thus, the lemma follows.

Lemma 7. The expected total number of moves of the proposed algorithm is
O(gn).

Proof. First, we analyze the expected total number of moves in the first part.
In each phase, each active agent ai moves until it observes 2g − 1 random
IDs. If ai does not become a leader, it additionally moves until it observes
another g random IDs or visits some candidate node vj (or vj.candi = true).
This requires a total number of O(gn) moves since each link is passed by at
most 3g times. In addition, by Lemma 4, the probability that at least two
IDs have the same maximum value among some consecutive 2g − 1 IDs and
agents proceed to the next phase is at most 1/16. Thus, letting E[Mfirst] be
the expected total number of moves in the first part, we have the following
inequality:

E[Mfirst] ≤ 3gn+
1

16
E[Mfirst] (1)

From the inequality, we have E[Mfirst] ≤ (16/5)gn.
Next, we analyze the total number of moves in the second part. Each

leader agent ai staying at a candidate node vjcandi ∈ V more
candi moves to the
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nearest node in V more
candi . This clearly requires a total number of n moves

because no two leader agents traverse the same link. In addition, each agent
staying at a candidate node vj ∈ V less

candi moves to its gathering node or waits at
vj until at least g agents gather at vj depending on the value of vj.nAgents.
Because of the behavior of leader agents explained above, this movement
requires a total number of O(gn) moves since each link is passed by at most
2g times. Hence, the total number Msecond of moves in the second part is
O(gn). Therefore the lemma follows.

By Lemmas 6 and 7, we have the following theorem.

Theorem 4. The proposed algorithm solves the g-partial gathering problem
with probability 1 in a total number of O(gn) moves in expectation from any
initial configuration.

5. Conclusion

In this paper, we considered the g-partial gathering problem for anony-
mous agents without global knowledge in asynchronous unidirectional ring
networks. We considered deterministic and randomized cases. First, in the
deterministic case, we showed that there exist unsolvable initial configura-
tions and agents cannot detect whether the initial configuration is an un-
solvable one or not. In addition, we proposed an algorithm that solves the
problem from any solvable initial configuration in a total number of O(gn)
moves. In the randomized case, we proposed an algorithm that solves the
problem with probability 1 in a total number of O(gn) moves in expectation
from any initial configuration. Thus, our algorithms can solve the problem in
the asymptotically optimal total number of moves without global knowledge.

Future works are as follows. First, we plan to investigate the possibility
to solve the g-partial gathering problem without knowledge of k or n in a
total number of O(gn) moves not in expectation but with high probability
(i.e., probability 1 − O(1/n)). Lemma 4 guarantees that the proposed ran-
domized algorithm this time achieves g-partial gathering in a total number of
O(gn) moves only with a constant probability. It is interesting and still open
whether this algorithm (or some other algorithm) achieves g-partial gather-
ing in a total number of O(gn) moves with high probability or not. Second,
we will consider improvements of the space complexity on whiteboards. In
the deterministic proposed algorithm, each whiteboard requires O(log log g)
space to maintain phase numbers. In the randomized proposed algorithm,
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each whiteboard requires at least Ω(log g) space to store random IDs and
phase numbers that may infinitely increase. We will consider whether such
space complexities can be shown to be asymptotically optimal (in the de-
terministic case) or can be reduced by introducing another randomization
(in the randomized case). Finally, we will consider g-partial gathering from
initial configurations such that two or more agents exist at the same node.
We conjecture that agents can achieve g-partial gathering also from such
configurations by maintaining the number of agents using whiteboards.
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