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Preface

The Internet is one of the 1argest communication networks consisting of a 1arge number

of computers. In the Internet, users can satisfy their objectives through many kinds of ap-

plications (e.g., electric mail, file transfer, etc.), and almost applications are working in a

ClientiServer-model where only specific high-performance computers, called server, handle

all resource requests from other computers, called client. With the recent improvement in

the performance of end-computers and networks, it is now feasible to construct a distributed

environment where all end-computers in the Internet can serve as resource providers, and

the users gather the resources needed for their objectives from the environment. Typical ex-

amples of applications based on it are Grid computing and P2P application. The distributed

application can provide non-trivial services by gathering resources from the distributed envi-

ronment, and balance the load between end-computers without concentrating load on specific

computers.

   In order to achieve high performance of distributed applications, a resource management

architecture which helps users to effectively discover the resources and a scheduling algo-

rithm which can efficiently utilize the resources are needed. The Grid computing and P2P

application construct the resource management architecture in a different way, and provide

the uniform interface for accessing resources to users. In addition, a resource scheduling al-

gorithm, especially for the Grid computing, can efficiently utilize the resources and achieve

a high-performance application processing. However, the existing resource management

architecture and scheduling algorithm have following problems. in the distributed environ-



ment, the resources are managed in a distributed manner, so that the resource information

obtained by the users has some uncertainty. In addition, since the users selfishly select re-

sources for their objectives, the resources are unfairly utilized. These factors may concentrate

the load on specific resources. Furthermore, the existing scheduling algorittms do not focus

on a realistic heterogeneous environment in terms of the resource capacities of computers.

Therefore, they cannot derive the optimal parameters for the application processing in the

heterogeneous environment and cannot fully utilize the resource.

   The objective of this dissertation is to modify/extend the existing resource management

architecture and scheduling algorithm so as to solve the problems mentioned above, and

achieve the high-performance processing of the distributed application.

   First, in Chapter 2, I present the existing resource management for the P2P application

and the Grid computing. Furthermore, the existing resource scheduling algorithms which

achieve the efficient application processing are shown.

   Second, in Chapter 3, I focus on the resource management architecture for the P2P ap-

plication, and attempt to balance the load on storage between computers (or peers) dispersed

over the P2P network. In the P2P network, the number of adjacent peers (degree) of each

peer follows the power-law, and a resource request query traverses high-degree peers with

high probability. Therefore, by allocating replicas of the original data on the high-degree

peers, a replication method improves the search performance. However, the existing repli-

cation method concentrates the resource requests on a small number of high-degree peers

storing a large number of replicas, which biases the storage load between peers. Therefore,

I propose new replication methods for balancing the storage load between peers while lim-

iting the degradation of the search performance within an acceptable level, and show their

effectiveness in balancing the load through computer simulations.

   Third, in Chapter 4, I focus on the impact of the characteristics of the resource manage-

ment architecture for the Grid computing on a resource selection for application tasks. Since

the resource management architecture for the Grid environment manages the resources in
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the Grid environment in a distributed manner, it is essential that the resources are unevenly

utilized and the utilization information of resources have some uncertainty. Therefore, when

the scheduler selects resources for application processing, the characteristics of the resource

management architecture should be considered. In this study, I propose some task alloca-

tion schemes (how to select resources for application tasks) with the consideration of the

CPU utilization, and analytically evaluate the impact of the characteristics of the resource

management architecture on the resource selection by modeling computers as an M/G/1-PS

(Processor Sharing) queue. In addition, I investigate the performance of the task allocation

schemes in a realistic Grid environment where the al1 computers composing the environ-

ment act as "users" through the computer simulation. As a result, I clarify the characteristics

needed for the task allocation scheme adaptive to the Grid computing.

   Fourth, in Chapter 5, I focus on the scheduling algorithm for the Grid computing, and

aim at high-performance application processing by efficiently utilizing the resources gath-

ered for the execution of applications. An existing scheduling algorithm, called Uniform

Multi-Round (UMR) algorithm, has achieved good application turnaround time by process-

ing a 1arge amount of data in multiple rounds and overlapping the communication time and

the computation time effectively. However, it does not focus on realistic heterogeneous envi-

ronments where the network resources of all computers are different each other. Therefore, I

propose a new scheduling algorithm, Parallel Transferable Uniform Multi-Round (PTUMR)

algorithm, so as to minimize the application turnaround time, and show its performance

through computer simulations. As a result, the proposed algorithm can dramatically mitigate

the adverse effects of data transmissions of a 1arge amount of application data, achieving

turnaround time close to the theoretical lower limits.

   Finally, I hope that this dissertation will be helpful for further study in this field.

                                                                   Mar. 2006

                                                         Hiroshi YAMAMOTO
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Chapter 1

Introduction

The Internet is one of the 1argest networks consisting of mi11ions of computers. In the In-

ternet, users can achieve their objectives through many kinds of applications which utilize

resources dispersed over the Internet. Many applications running in the Internet (Web surf-

ing, E-mail, etc.) are modeled in a ClientiServer model where a small number of high-

performance computers, called server, serve as a resource provider for others, called client.

However, this model has a following problem. All resource requests are handled by only a

small number of servers, so that, if they fail, the entire service of the application is stopped.

   As the Internet widely spreads over a 1arge number of end-computers, new type of ap-

plications such as Peer-to-peer (P2P) applications and Grid computing has emerged. These

applications target a distributed environment where all computers can serve as the resource

provider, and the users attempt to collect the resource' s required for their objectives from the

distributed environment, while the traditional application adopts the centralized architecture

(i.e., ClientiServer model). In the distributed environment, the distribute application can

continue to provide the services even if some computers fails. Therefore, I can say that the

distributed application can solve problems existing in the ClientiServer model.

   ln order to achieve the high-performance application processing, both the resource man-

agement architecture which helps the users to efficiently discover the resources and the

scheduling algorithm which leads to an efficient utilization of the discovered resources are

needed.

   This chapter is organized as follows. In Section 1.1, I introduce the emergence of the
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CHAPTER 1. INTRODUCTION

next generation distributed applications (P2P application and Grid computing) due to the

improvement in the performance of end-computers and networks. Next, in Section 1.2,

I present the resource management architecture and the scheduling algorithm for the dis-

tributed application, and the problem of them is shown in Section 1.3. Finally, I show the

outline of this dissertation in Section 1.4.

1.1 Emergenceofnextgenerationdistributedapplications

In the traditional application such as Web surfing and E-mail, the users attempt to access only

a smal1 number of high-performance computers (i.e., servers) to achieve their objectives, and

almost all computers connecting to the Internet (i.e., clients) have had much lower capacities

than the servers. With the recent improvement in the performance of end-computers, the

clients becomes to have enough capacity to serve as resource providers, which make it pos-

sible to provide distributed applications such as Grid computing and Peer-to-peer (P2P) ap-

plication in the Internet. The distributed application targets a distributed environment where

al1 end-computers provide their resources for the application processing and users attempt to

collect the necessary resource from them.

   In this context, many technologies for the Grid computing and the P2P application have

been developed respectively, and the resources for them are managed in a different manner.

The technology for the Grid computing first developed as a middleware which constructs a

hardware and software infrastructure by connecting computation resources through the In-

ternet. The infrastructure provides dependable, consistent, pervasive, and inexpensive access

to high-performance computation capacities [FK98a]. Recently, Grid technology attempts

to build a fundamental infrastructure where various entities (e.g., computational resources,

storages, sensors, etc.) can seamlessly collaborate for providing non-trivial qualities of ser-

vices to users [FKTO1]. In order to promote the collaboration, many standards organizations

including the Global Grid Forum (GGF) are making many documents of standards for the

Grid technologies [GGF]. On the other hand, the technology for P2P application firstly aims

2



1.2. RESOURCE MANAGEMENT ARCHITECTURE AND SCHEDULING
                    ALGORITHM FOR DISTRIBUTED APPLICATIONS

at a constmction of an environment where the users can directly exchange their data each

other and the storage resources of end-computers can be shared by participants of the P2P

application. This technology helps making many file-sharing applications such as Napster

[Nap] and Gnutella [Gnu]. Recently, new P2P technology attempts to provide an environ-

ment where the users' requests can smoothly meet the resources and services required for

the users' requirements [SAZ'04, STI02].

   As I mentioned above, the technologies for the Grid computing and the P2P applications

are built on the same objective, namely the construction of the cormiunication infrastruc-

ture which promotes the collaboration of many kinds of resources and services, and each

technology attempts to complement the function by considering the other [Bha05].

1.2 Resource management architecture and scheduling al-

      gorithm for distributed applications

in the distributed applications, the resource management architecture which enables the users

to efficiently discover the resources (computation resource, storage, sensor, etc) is needed.

The traditional IP network adopts Domain Name System (DNS) to find the location infor-

mation (i.e., IP address) of the computer corresponding to the user-friendly name, but does

not support a lookup mechanism for each resource in computers. The resource management

architectures for the Grid computing and the P2P application have been proposed so far.

   IR the Grid environment, Grid middleware equipped in computers works as resource

management architecture. It firstly constructs a virtual organization where the users and end-

computers sharing the same objective, and then the resource information is managed by com-

puters belonging to the same organization. In a de facto standard Grid middleware, Globus

Toolkit [Fos05], developed by the Globus Alliance [Glo], the information service called

Monitoring and Discovery Service (MDS) is implemented [MDS], which achieves scalable,

uniform and efficient access to distributed resources. Each computer running MDS mon-
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itors the resources periodically and registers the resource information to its own database.

In addition, an index server (which usually exists in each domain) manages a presence of

computers running MDS, and when receiving a resource request, it asks the computers to

send back their resource information. The resources are managed with respect to each vir-

tual organization, and al1 index servers in the organization collaborate to provide a uniform

interface to the users. By sending the resource request to any server, the users can obtain any

resource information in the organization.

   On the other hand, in the P2P technology, each end-computer (or peer) has both client

and server function, and the resource information is managed in a completely distributed

manner. Each peer connects to some other peers by establishing TCP connections. By prop-

agating the request queries over the P2P network through the virtual links between peers, the

users can discover the requested resources (the way to discover resources is categorized into

several types as shown in Section 2.1.1). Furthermore, the P2P technology has a replication

function which allocates replicas of the data owned by some peers to other sites. Due to the

replication, the users can eMciently discover the requested resource by accessing the near-

est peer storing the replica instead of the peer storing the original data, and the load on the

storage resgurce storing the original data caR be distributed over the entire P2P network.

   Furthermore, in order to achieve the efficient application processing, we should optimize

how to use the resources gathered for the users' objectives. In the Grid computing, resources

are utilized by adopting a Master/Worker model where the computer (Master) having appli-

cation tasks and data dispatches subtasks to other computers (Worker). A typical example

of applications based on this model is Divisible Workload Application, where the applica-

tion data can be divided into an arbitrary number of chunks with an arbitrary size, and the

computation time and communication time of chunks are proportional to the size of them.

By focusing on this algorithm, some scheduling algorithms which attempt to minimize the

application turnaround time have been proposed so far [BGMR96, Rob03].
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CHAPTER 1. INTRODUCTION

1.3 Problemsindistributedapplications

As I mentioned in the previous section, in order to achieve the efficient processing of the

distributed applications, the resource management architecture and the scheduling algorithm

have been proposed so far. However, existing proposals have some problems.

   First, the existing architecture is insufficient to achieve a load-balancing between com-

puters, and the load concentrates on a small number of computers. In the Grid environment,

the resources are managed in a distributed manner with respect to the virtual organization,

and the resource information is updated periodically. Here, the scheduler in each organi-

zation handles application tasks generated by the users belonging to the same organization.

in a condition where resources can belong to multiple virtual organizations, each sched-

uler cannot obtain the latest resource information and cannot perceive task allocations of

other schedulers. Therefore, the scheduler overestimates the resource states of the high-

performance resources, which may bias the load between computers. On the other hand,

although the replication for the P2P application helps balancing the load between peers by

distributing the replicas of the data over the entire P2P network, the data replications and re-

quests from users tend to concentrate on a small number ofcomputers with high-degree. This

is because the P2P network has a characteristic that the number of adjacent computers (de-

gree) of each computer follows the power-law network, and the resource request queries go

through a small number of high-degree peers with high probability. Therefore, high-degree

peers play an important role in the P2P application, and the failure of them may markedly

degrade the performance of applications.

   On the other hand, the existing scheduling algorithm for the Divisible Workload appli-

cation can effectively utilize the resources discovered for the user's objective, but focus on

a sequential transmission model which allows the master to transmit application data to one

worker at a time. It cannot consider a realistic Grid environment where there exist a differ-

ence between the data transmission speed of the master-side link and that of the worker-side

link, while it can handle the heterogeneous environment in terms of the worker's compu-
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tation/communication capacities. Therefore, when the master-side link capacity is 1arger

than the worker-side link capacity, the existing algorithm cannot fully utilize the master-

side link capacity, and it cannot minimize the application tumaround time. Therefore, in

order to achieve high-performance application processing, I should consider completely het-

erogeneous environments where all computers including both the master and workers have

different communicationlcomputation capacities.

1.4 Outline of this dissertation

I have introduced the emergence of the next generation distributed applications, and the re-

source management architecture and scheduling algorithm needed for them has been shown.

In the distributed applications such as the Grid computing and the P2P application, it is

necessary for the users to discover resources needed for their objectives, so that the technol-

ogy for the Grid computing adopts the distributed database, and that for the P2P application

adopts the completely distributed resource search method as resource management archi-

tecture. In addition, in order to achieve the high-performance application processing, some

scheduling algorithms which efficiently utilize the resources has been proposed so far. How-

ever, the existing resource management architecture and the existing scheduling algorithm

have some problems, namely the concentration of the load on a few resources and the inef-

fective utilization of the resources.

   In this dissertation, I first propose the way to distribute the load over the entire distributed

environment. In addition, by focusing on the Grid computing, I propose new scheduling

algorithm adaptive to completely heterogeneous environment in terms of the computers'

capacltles.

   First, in Chapter 2, I present the resource management architecture which helps the users

to efficiently discover the necessary resources. In addition, I show the scheduling algorithm

for the discovered resources by focusing on the Grid computing.

   Second, in Chapter 3, I focus on the resource management architecture for the P2P ap-

7
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plication, and attempt to balance the load on storage between computers (or peers) dispersed

over the P2P network. In the P2P network, the number of adjacent peers (degree) of each

peer follows the power-law, and a resource request query traverses high-degree peers with

high probability. Therefore, by allocating replicas of the original data on the high-degree

peers, a replication method improves the search performance. However, the existing repli-

cation method concentrates the resource requests on a smal1 number of high-degree peers

storing a large number of replicas, and biases the storage load between peers. Therefore,

I propose the replication methods for balancing the storage load between peers while lim-

iting the degradation of the search performance within an acceptable level, and show their

effectiveness in balancing the load through computer simulation's.

   Third, in Chapter 4, I focus on the impact of the characteristics of the resource manage-

ment architecture for the Grid computing on a resource selection for application tasks. Since

the resource management architecture for the Grid environment manages the resources in

the Grid environment in a distributed manner, it is essential that the resources are unevenly

utilized and the utilization information of resources have some uncertainty. Therefore, when

the scheduler selects resources for application processing, the characteristics of the resource

management architecture should be considered. In this study, I propose some task alloca-

tion schemes (how to select resources for application tasks) with the consideration of the

CPU utilization, and analytically evaluate the impact of the characteristics of the resource

management architecture on the resource selection by modeling computers as an M/G/1-PS

(Processor Sharing) queue. In addition, I investigate the performance of the task allocation

schemes in a realistic Grid environment where the all computers composing the environ-

ment act as "users" through the computer simulation. As a result, I clarify the characteristics

needed for the task allocation scheme adaptive to the Grid computing.

   Fourth, in Chapter 5, I focus on the scheduling algorithm for the Grid computing, and aim

at high-performance application processing by efficiently utilizing the resources gathered

for the execution of applications. An existing scheduling algorithm, called Uniforrn Multi-

8
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Round (UMR) algorithm, has achieved good application turnaround time by processing a

large amount of data in multiple rounds and overlapping the communication time and the

computation time effectively. However, it cannot fu11y utilize the communication resources

in the realistic heterogeneous environment where the master-side link capacity is different

from the worker-side link capacity. Therefore, I propose a new scheduling aigorithm, Parallel

Transferable Uniform Multi-Round (PTUMR) algorithm, so as to improve the application

turnaround time, and show its performance through computer simulations. As a result, the

proposed algorithm can dramatically mitigate the adverse effects of data transmission of a

1arge arnount of application data, achieving turnaround time close to the theoretical lower

limits.

   The results discussed in Chapter 3 is mainly taken from [YKTO03, YKTO06], Chapter

4 from [YMO05, YMO06], and Chapter 5 from [YTO05].
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Chapter 2

Resource Management Architecture for

P2P application and Grid computing

In this chapter, I introduce the resource management architecture for the P2P application and

the Grid computing which helps the users to efficiently discover the necessary resources. In

addition, the scheduling algorithms which can effectively utilize the resources to maximize

the performance of applications are shown.

2.1 P2Papplications

The Napster and Gnutella have pioneered the idea of a Peer-to-Peer (P2P) file-sharing ap-

plication. These applications provide the scalable and robust environment where rnillions

of users can directly exchange the data, and thus share the storage resources in their PCs

without intermediating centralized servers. The resource management of the file-sharing ap-

plication can extend to other kinds of applications. For example, by adopting the technology

for the file-sharing applications to a management of a telephone directory, Skype can provide

Voice over IP (VolP) service hosting mi11ions of users simultaneously. As a result, the re-

source management architecture will extend to locating not only resources but also services

and users.

   Therefore, I can say that, in the future, the resource management for P2P applications

will evolve into the fundamental technology which helps the seamless collaboration of the

                                                                          11
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users, services and resources.

   In the resource management architecture for the P2P application, the user issues the query

for lookup of resources, services and other users. ln the following section, we show the query

forwarding method which is key technology of the lookup service.

2.1.1 Queryforwardingmethod

In the P2P network, each computer (or peer) connects to some other peers through the TCP

connections. The connection between peers is referred to as a virtual link, and the users

send queries through the virtual links to locate the necessary data. The way to discover the

requested resource can be roughly categorized into two types, Hybrid P2P model and Pure

P2P model.

Hybrid P2P model

Hybrid P2P is a network model where there is a centralized directory server managing the

location of the data in the P2P network. In this model, the user issue queries to the directory

server to discover the peef storing the requested data, while the data is directly exchanged

between peers. A typical example of applications based on this model is Napster [Nap].

Fig. 2.1 shows an example where Peer B want to retrieve the data stored in Peer A, but does

not know where the requested data is placed. Peer B first requests the directory server to send

back the location of the requested data. After receiving the location, Peer B directly connects

to Peer A to get the data. In this model, lookup requests concentrates on the directory server,

so that, the failure of the server stops the entire service of the application. Therefore, it is not

adaptive to the environment hosting a 1arge number of users.

Pure P2P model

Pure P2P model have no centralized directory server and consists of only end-computers. In

this model, the data request queries are exchanged between peers without accessing the cen-

12
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tralized server, that is, the users can locate the requested data in completely distributed man-

ner. Typical examples of applications based on this model are Gnutella [Gnu] and Freenet

[CSWHoo]. Fig. 2.2 show the condition where Peer B requests the data stored in Peer D.

First Peer B records its address and a name of the requested data in the query and propagates

it through the virtual links between peers. When Peer D, which stores the requested data,

receives the query, it sends back the location information of the data to the source address

recorded in the query. After that, Peer B directly accesses Peer D and gets the requested data.

This model scales a large number of users because it does not have one point of failure and

can well balance the load of the data request and the data transmission over the P2P network.

   The Pure P2P model is categorized into two types, namely Unstructured and Structure,

and they construct different of networks.

Unstructured P2P network

Unstructured P2P network is formed by peers joining the P2P network following some loose

rules. This network has no strict control to construct the network topology, and each peer

maintains the virtual links connected to some other peers as in Fig. 2.3. As shown in this
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figure, when requesting the data, the peer generates the query, records the address and the

name of the requested data into it, and sends it to some adjacent peers. Each peer receiving

the query evaluates the query locally, and if it stores the requested data, it sends the data to

the source address recorded in the query. Otherwise, the peer forwards the query to some

adj acent peers recursively. The process is repeated until the requested data is discovered. Key

issue of this model is the way to detemine where each peer forwards the query in each step,

and there are some proposals at this point (described in Section 2.3.1) [LCC"02, CMS04].

   However, the lookup in the unstructured P2P network cannot reliably find the original

data unless the flooded query reaches all peers. On the other hand, it is suitable to lookup

of well replicated data [LRS02, CRB'03]. Therefore, the query forwarding method should

work with appropriate replication methods (shown in Section 2.1.2).

Structured P2P network

Structured P2P network has strict rule to construct the network topology, and the location of

the data is controlled [SMK'Ol, RFHKOI, RDOIa, ZHS'04]. in this network, an identifier

is assigned to each data based on some information (e.g., file name), and each peer has also
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its own identifier. And then, a location information of the data is placed at the peer whose

identifier is the nearest to the data's one. For example, Chord presented in [SMK'Ol], the

location information of the data is managed by the peer whose identifier is equal to or follows

the identifier of the data. In addition, the way to forward queries is also well defined, and

each peer manages the routing table and each entry of it includes a couple of peer's identifier

and IP address. As shown in Fig. 2.4, when requesting the data, the peer issues the query

to the peer whose identifier is nearest to the identifier of the requested data. This process is

repeated until the query anives at the peer managing the data's identifier.

   The query forwarding method in the structure P2P network can reliably find the requested

data in small number of search hops. However, this network has some problems. First, many

message exchanges are necessary for each peer to keep entries of the routing table latest state.

Especially when the frequent peer arrivals and departures occur, the routing table becomes

unstable and cannot provide the efficient routing [RGRK04]. In addition, the implementation

of functions in the structured P2P network such as a lookup of the requested data is much

more difficult than that in the unstructured P2P network.

   As I mentioned above, the query forwarding method in the unstructured P2P network

overcomes that in the structured P2P network in terms of the search performance for the well

replicated data,. so that, in this dissertation, I focus on the unstructured P2P network, and

discuss about the appropriate replication method to it.

2.1.2 ReplicationMethod

Replication method determines where the replicas of the original data are placed. Due to

the replication method, users can always get necessary data in the P2P network where the

continuous peer arrival and departure occur. In addition, the replication method improves the

search performance by allowing the users to access the nearest replica of the requested data.

   In order to optimize the search performance, the replication method should satisfy a rule

described in the following section.
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                    Figure 2.5: Grid Protocol Architecture.

Square-Root Replication

Existing research has clarified that the replicas of the original data should be allocated ac-

cording to Square-Root manner to achieve the optimal search performance [LCC'02, CS02].

In the Square-Root replication, each data i i's replicated at ri random sites among all R sites.

Here, ri i's derived by the following equation.

                                 RÅ~ Vii7
                                        . (2.1)                             ri=                                 Z, V4i

where qi i'ndicates a relative rate at which the data i i's requested among all data.

   Surprisingly, the Square-Root replication can be achieved by simple distributed replica-

tion methods. I show an example of them, called Path Replication, in Section 2.3.1.

2.2 Gridcomputing

The objective of the Grid computing was to constmct the high-performance computing envi-

ronment by connecting the computers dispersed over the Intemet and to provide an interface

                     ' 17
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by which the users can uniformly and effectively access to the high-performance computa-

tion resources. Recently, it extends to providing an interface for many kinds of resources and

equipments (e.g., computationlcommunication resources, sensors, etc.).

   Figure 2.5 presents the grid protocol architecture which virtualizes resources dispersed

over the Internet and provides the uniform interface to users [FKTOI]. Like in IP protocol

stack, functions in each layer are based on the characteristics and functions in the lower layer.

Fabric Layer

Fabric layer provides an interface for each local resource composing the grid environment

(e.g., CPU, memory, storage, network) to the upper layer, and includes functions for effec-

tively utilizing the local resource such as an advance reservation and scheduling.

Connectivity Layer

Connectivity layer includes core communication and authentication protocols. Communica-

tion protocols enable the exchange of data between resources through the interfaces defined

in the Fabric Layer. Authentication protocols build secure communication to the resources

by verifying the identity of users and resources.

Resource Layer

Resource layer builds on the communication and authentication protocols of the Connectiv-

ity layer and provides protocols for the secure negotiation, initiation, monitoring, control,

accounting, and payment of sharing operations on individual resources. Through the inter-

face of the Resource layer, the upper layer functions or applications can handle each resource

controlled by the Fabric Iayer.

   The Resource layer and Connectivity layer achieve the virtualization of individual re-

source dispersed over the Internet, and allow the users to access al1 resources in the grid

environment as if they use the local resources.

18
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Collective Layer

while the Resource layer focuses on interactions with a single resource, Collective layer

supports the protocols for interactions across collections of resources. Collective layer build

on functions of the lower layers (Resource and Connectivity layers), and achieve a wide

range of resource sharing without depending on other protocols.

   An example of services based on the Collective layer is a directory service which allows

the users to locate the resources satisfying their requirements.

Application Layer

Application layer comprises the user applications executing in the grid environment. The

user application utilizes the necessary functions by accessing the interfaces provided in the

lower layers for the objective.

   ln order to provide the Grid computing, the functions and interfaces in each layer should

be developed. Globus toolkit is a de facto standard middleware constructed based on the

layered architecture.

2.2.1 GlobusToolkit

The Globus toolkit produced by the Globus Alliance [Glo] is a software providing the in-

dispensable functions for the Grid computing. One of main functions in the Globus toolkit

is a resource management which helps the user application to discover the resources and

allocates the gridjobs to the resources.

   In this section, I present two services, Monitoring and Discovery Service (MDS) and

Grid Resource AIIocation Manager (GRAM), composing of the resource management archi-

tecture in the grid environment.
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                       Figure 2.6: Architecture of MDS.

Monitoring and Discovery Service (MDS)

MDS allows the users to discover the resource information in the Grid environment [CFFKO 1 ,

MDS]. It consists of two sub-services, Grid Resource Information Service (GRIS) and Grid

Index lnformation Service (GllS) as shown in Fig. 2.6. GRIS is a common information

service running in each resource, and GllS discovers the information required by the users.

Grid Resource Information Service (GRIS)

GRIS monitors the resource information of each computer including static information (e.g.,

operating system version, CPU type, etc) and dynamic information (e.g., CPU utilization,

storage utilization, etc), and notifies the information to the index server (GllS).

   GRIS authenticates and parses each incoming request and then dispatches them to local

information providers. One information provider exists in each resource, and is responsible

for monitoring the resource information. After receiving the requested information from the

information providers, GRIS aggregates them to the requested form and sends it to the index

server.
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Figure 2.7: Hierarchical Architecture of MDS.

Grid Index Information Service (GIIS)

GllS provides a framework which allows the index servers to construct a hierarchical struc-

ture. One or more GRISs connect to one GllS server, and GllS server can also connect to

other GllS server. The GIIS server periodically receives notification messages from GRISs

and GllS server connecting to it, and manages the indices of them. One hierarchical archi-

tecture shown in Fig. 2.7 corresponds to one virtual organization, and the user issues the

requests to the GllS server to get the resource information in the organization. After receiv-

ing the request, the GHS server requests GRISs to send back the information, aggregates the

information to the requested form and send it to the user.

Grid Resource Allocation Manager (GRAM)

GRAM defines the interface which enables the users to execute theirjobs on the local and/or

remote resources. This interface also includes the functions for monitoring and terminating

thejob.
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Components in GRAM.

   GRAM consists of several components described in Fig. 2.8. In order to submitjobs,

the user first issues the request to the Gatekeeper on the local and/or remote computer. The

Gatekeeper parses the request and starts the Job manager for each job. The Job manager is

responsible for executing and monitoring the job, and notifying the processing state of the

job to the user. When thejob is completed, the Job manager expires.

2.2.2 Schedulingmethod

Scheduling is defined as the process of mapping the user jobs to resources in a way that

the user and application requirements (e.g., application turnaround time) is satisfied, and

there exist several scheduling strategies. In this section, I presents two strategies, centralized

scheduling and distributed scheduling [HSSYoo].
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Centralized Scheduling

In a centralized scheduling environment, a central scheduler serves as a resource manager to

schedule jobs to other execution nodes as shown in Fig. 2.9. In this strategy, jobs are first

submitted to the central scheduler, and it then allocates jobs to appropriate execution nodes

by considering the requirements of the users and/or applications. This model is also referred

to as a master/worker model where one master (central scheduler) manages its workers (ex-

ecution nodes).

   The centralized scheduling strategy is suitable to the environment where the central

scheduler can get the up-to-date resource information of al1 execution nodes, because it can

make the best decision by considering the resource capacity and availability. However, since

the central scheduler may become a bottleneck, the centralized scheduling strategy does not

scale well with the increasing the size of environment.
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Distributed Scheduling

In Distributed Scheduling strategy, there is no centralized scheduler managing all nodes.

Instead, the environment includes multiple local schedulers, and each local scheduler is re-

sponsible for one group of execution nodes (e.g., virtual organization). The local scheduler

has a list of remote schedulers, and when dispatching jobs to remote groups, it directly com-

municates to the remote scheduler, and issues the request of the job allocation.

   The Distributed scheduling overcomes the centralized scheduling in terms of scalability

because there is no bottleneck in the environment. However, each local scheduler cannot

manage the up-to-date utilization information of all execution nodes, so that, the distributed

scheduling model usually leads to sub-optimal decision.
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2.3 RelatedWork

In this section, I describe related works. First, I focus on the improvement of two perfor-

mance metrics in the P2P application, and present the existing proposals. And then, the

existing scheduling algorithms which achieve the high performance of the Grid computing

are shown.

2.3.1 Search perfe rmance and Load balancing in P2P application

Many studies on the P2P network consider not only the search performance but also the load

balancing between peers at the viewpoint where the peers with the same functions should

be equal in load. The structured P2P network and unstructured P2P network attack these

problems in the different way.

Structured P2P network

in order to improve the search performance for the requested data and the performance in

load balancing, most researches have focused on the structured P2P nelwork using Dis-

tributed Hash Table (DHT) {SMK'Ol, RFHKOI, RDQIa, ZHS'04]. Identifiers of each data

and peer described in Section 2. 1 . 1 are derived by inputting some information (e.g., file name

of data, IP address of peer, etc.) into a hash function, and the location information of the data

is place at the peer whose identifier is the closest to the data's identifier. Each peer manages

the routing table, and each entry in it contains a pair of identifier of data and an IP address

of peer. By referring the routing table, the peer forwards the request queries to the peer with

identifier closer to the data's identifier in each step. In theory, most DHT-based systems can

guarantee that the requested data can be discovered in O(log N) hops, where N is the number

of peers in the P2P network.

   The hash function distributes the identifier of the data over the whole range of identifier

space even if there are many files whose information used for the input of the hash func-
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tion resembles, which can balance the load between peers. However, DHTs can exhibit an

e(log n) imbalance factor, that is, some peers have e(log n) times as much load as the aver-

age peer [SMK'Ol]. in order to mitigate the imbalance of load, [GLS'04, GS05] presents a

virtual server approach where one physical peer stores one or more identifiers in DHT. By al-

locating the multiple separated region of the identifier space to one physical peer, the virtual

server approach distributes the load on storage and bandwidth over the entire P2P network.

Other approaches focus on the movement ofpeers to arbitrary locations in the identifier space

where they are needed to fairly share the identifier space between peers [KR04].

   The structured P2P network has a disadvantage in stability. When the continuous arrival

and departure of peer occur, much information need to be exchanged between peers to main-

tain the entries in the routing table, arid the routing table cannot keep the latest state, which

may mislead the queries [RGRK04]. in order to improve the stability, some schemes have

been proposed so far: for example, [MBR03] attempts to improve the stability by decreasing

the number of entries in the routing table while keeping the search performance within an

acceptable level.

Unstructured P2P network

In the unstructured P2P network, the search queries of the requested data are forwarded to

the adjacent peers in each step until the requested data is found. It achieves the better search

performance for the well replicated data than the structured one while it cannot reliably find

the rare data [LRS02, CRB'03].

   A traditional query forwarding method used in Gnutella, namely flooding, each peer

which receives the query forwards it to all adjacent peers. In this method, the number of

queries grows dramatically, which may finally saturate the network bandwidth [LCC'02].

On the other hand, Random Walk, where each peer forwards a query to a randomly chosen

adjacent peer at each step until the requested data is found [LCC'02, CMS04], markedly

decrease the number of queries at a cost of the efficiency and responsiveness [LW03].
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   in order to improve the responsiveness of the random walk, some proposals focus on the

selection of the next peer of the query. By considering the peer's characteristics, queries

can be forwarded to an appropriate peer. For example, it is probable that many replicas of

the data are placed at few peers connecting to a large number of adjacent peers (degree). By

considering it, in High Degree Forwarding (HDF) proposed in [AMG03], each peer forwards

the query to high-degree peers with high probability so as to improve the search performance.•

   On the other hand, [LCC'02, CS02] have clarified that the appropriate replication method

helps the random walk to find the requested data in short hops, and the optimal search perfor-

mance can be achieved by allocating replicas of the data in Square-Root replication manner

described in 2.1.2. It can be achieved by a simple replication rnethod, Path Replication,

where the replicas of the requested data are placed on the search path the search query goes

through.

   Furthermore, other important issue of the query forwarding method and the replication

method is an improvement in the perforrnance in load-balancing between peers. As I men-

tioned above, many replicas are placed at high-degree peers, so that, the number of occur-

rences of reading.from and writing to the storage (storage load) is concentrated on them.

In order to achieve the load-balancing, there are some proposals. At the query forwarding

method point of view, an existing method based the on random walk, Low Degree Forward-

ing (LDF) proposed in [muG03], forwards the query to small degree peer with high proba-

bility so as to mitigate the load on the high-degree peer. On the other hand, the replication

method, LAR, proposed in [GSBK04] moves the replicas in peers with high-load to peers

with low-load by comparing the resource utilization between peers. This method has the

same concept as my research. I focus on the replication method where each peer determines

to create and store a replica based on only the local information of peers.
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CHAPTER 2. RESOURCE MANAGEMENT ARCHITECTURE FOR P2P
APPLICATION AND GRID COMPUTING

2.3.2 SchedulingAlgorithmforGridComputing

In the Grid computing, scheduling algorithms consider the problem of allocating a applica-

tion task with a 1arge amount of data which can be divisible to a large number of independent,

equal-sized chunks [Rob03, BGMR96], and attempt to optimize how to utilizes the resources

are utilized for transmitting and processing the application data in terms of the application

turnaround time and the system throughput. In this section, with respect to each metric, I

introduce existing scheduling algorithms.

Maximize System Throughput

One of important issues of the scheduling algorithms is to maximize the system throughput

(total load or number of instructions executed per unit time-period) in steady-state mode.

Here, steady-state indicates the interval where al1 computers with computation capability are

running at the maximum speed for the application processing.

         '                                   '
   Beauount et al. focus on the environment where all application tasks are generated by

single node which is a root of the tree-graph [BCF'02]. The root node decides which tasks

to execute in it, and how many tasks to forward to each of its children. And then, each child

performs this action recursively. Beaumont et al. have clarified that the best allocation in

the steady-state is bandwidth centric, where if enough bandwidth is available to the node, all

children are kept busy; if bandwidth is limited, then tasks are allocated only to nodes which

have sufficient bandwidth.

   Marchal et al. considers the system throughput in a realistic network model where sev-

eral nodes generates the application tasks and allocates them each other [MYCR05]. The

proposed algorithm aims not only to maximize total throughput of al1 applications but also

to achieve the fair balance among applications.
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Minimize Application INirnaround Time

Minimizing the application turnaround time of applications having a 1arge amount of applica-

tion data is key issue of the scheduling algorithm. In order to complete this issue, Beaumont

et al. has extended the bandwidth-centric approach to minimize the application turnaround

time [BLRe3]. This algorithm considers the tree-graph where the root node allocates ap-

plication tasks to other nodes like in [BCF'02]. However, it basically detemines the way

to utilize the resources in a way to to maximize the throughput instead of the application

turnaround time, so that, the application turnaround time cannot be minimized.

   Uniform Multi-Round algorithm proposed in [YC03b, YC02] adopts a multiple-round

manner where the application data is divided into an arbitrary number of chunks with an

arbitrary size, and processed in multiple rounds. The proposed algorithm decides how the

application data is divided and when the root node transmits the data to other nodes in a way

to minimize the application turnaround time. In addition, Yang et al have extendedlmodified

UMR in order to adapt to the practical computing environment where performance prediction

error of resource capacity occurs [YC03a].

   The bandwidth-centric approach can easily adapt to the heterogeneous environment in

terms of the communicationlcomputation capacities of nodes, but cannot optimize the appli-

cation turnaround time. The objective of my research is to maximize the performance of each

application by efficiently utilizing resources gathered by the resource management architec-

ture. in order to complete our objective, I extend/modify the existing algorithm UMR to

optimizing the application turnaround time and adapting to the heterogeneous environment.
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Chapter 3

Replication Methods for Load BaRancing

on Distributed Storages in P2P Networks

3.1 Introduction

Because of recent improvements in end-computers and networks, the construction of a Peer-

to-Peer (P2P) system over the Internet is now feasible. In a P2P system, each host, called

a " peer", has both a client and server function, and information is exchanged through a

direct connection between them. The P2P system dose not need a centralized server and

can achieve robust information service by distributing information providers over the P2P

network. Through P2P technologies, a massive storage system can be built virtually from

distributed storage systems by collecting unused storage resources on peers over the Internet

[BDETOO, RDOIb]. One of the advantages of these distributed storage systems is their use

as a contents distribution network (e.g., internet radio streaming).

   As an inherent feature of P2P networks, peers are very likely to leave the network, so

some mechahism is required to enable users to get necessary data even if some peers are not

connected to the network. For this purpose, that is, in order to achieve a robust data storage

system in P2P networks, there have been several proposals for allocating replicas of original

data on multiple peers. These replicas would also allow fast access to user's requiring data.

Furthermore, replication could mitigate or avoid the concentration of access to a specific peer

storing very popular data.
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   For these reasons, replication strategies play an important role. The replication strategies

proposed so far mainly focus on improving the performance of the search for required data

[LCC'02, AMG03]: e.g., a performance measure of concern is the ratio of queries which

can discover the required information and the hop count needed. On the other hand, each

peer is supposed to partly and equally devote its processing capability and storage capacity

to queries from shared P2P applications, and the load due to queries should be thus balanced

among the peers.

   Therefore, in this chapter, I pay particular attention to the load on storage systems, which

is due to reading and writing data items from and to the peer. I propose two replication

methods ofbalancing the load on storages distributed over the P2P network while limiting the

degradation of the search performance within some acceptable level. It should be noted that

replication methods consist of such decisions as how many replicas should be allocated and

where to allocate them. Among the replication methods proposed so far, the Path Replication

method is of interest in terms of its good search performance and ease of implementation

[LCC'02]. Thus, my proposed method will be based on this method, but will improve upon

it. Furthermore, the performance of load balancing can depend upon the query forwarding

method, which is a way to forward a query to discover the specific peer storing the required

original data or its replica. As a query forwarding method, the k-walker random walk will be

employed because it can discover requested data with a relatively small number of queries

compared with other methods [LCC'02]. In addition, the P2P network is characterized by

the so-called power law, i.e., the number of neighbor peers of each peer (degree) follows

the power law [BA99, ABOO, ALPHOI]. In the power-law network, the load on storage due

to queries can be concentrated on few peers with a high degree [SGG02]. By considering

these features, I investigate the performance of my proposed replication methods through

computer simulations.

   The rest of this chapter is organized as follows. In Section 3.2, the procedure of data

exchange between peers and the existing replication strategies are described. Section 3.3
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presents my proposed replication methods. Section 3.4 outlines the computer simulations

and presents the performance metric of the replication methods. In Section 3.5, I investigate

the performance of my proposed methods. Finally, the conclusion is presented in Section

3.6.

3.2 Peer-to-PeerNetwork ,
in this chapter, I focus on a pure P2P network such as Gnutella and Freenet [CSWHOO],

where a server managing a directory of peers and their data is not required. In this section,

I show the procedure of data exchange between peers in that system. in addition, I present

some existing query forwarding methods and replication methods. Furthermore, the major

problems of these methods are also described.

3.2.1 InformationAcquisitionintheP2PSystem

As shown in Fig. 3.1, queries are exchanged between peers to discover the requested data,

because there is no centralized directory. The sender peer records its address and the name

of the requested data on the query. Furthermore,Iassume that the peer receiving the query

also records its address on it. wnen the query arrives at some peer having the requested

data, the peer sends the data out to the sender's address recorded in the query along the

reverse sequence of addresses of the intermediate peers. During the data transmission, each

mtermediate peer determines whether or not it replicates that data according to the replication

method.

3•2.2 QueryForwardingMethod

The query forwarding method indicates how to transmit queries for discovering the peers

storing the requested data or its replicas. Some existing methods are described below [LCC'02],
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Figure 3.1: Procedure of the Data Exchange.

Figure 3.2: Power-law Network.
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Floeding

The peer requesting the data forwards queries to all peers adj acent to it. Then, if the peers re-

ceiving the query do not have the requested data, they transmit queries to all their neighbors.

This process is repeated until the requested data is discovered. Each query has a TTL (Time

to Live) value, which limits the maximum number of intermediate peers through which the

query can be forwarded. When the query is received by neighboring peers, the TTL value

decreases by one, and when it becomes zero, the query is expired and deleted.

Expanding Ring

Peers first forward the query in the above flooding method with a small TTL value. If this

query does not discover the requested data, the sender peer increases the TTL value and

sends it out again. This process is repeated until the TTL value reaches some predetermined

threshold.

k-walker Random Walk

The peer generates k queries and each of them is transmitted to a randomiy chosen adjacent

peer at each step. In this method, the TTL value is also set for each query. The TTL value

sets the maximum number of hops.

   Furthermore, HDF (High Degree Forwarding) and LDF (Low Degree Forwarding) are

proposed in [AMG03]. In HDF and LDF, queries are forwarded to peers with a high de-

gree and a low degree, respectively, by modifying the k-walker random walk based on the

characteristics of the power-law network.

3.2.3 ReplicationMethod

The replication method indicates a way to determine which peer is to store a replica, based

on the P2P network status obtained in the query forwarding method. Some of the existing
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methods are described below [LCC'02, GSBK04].

Owner Replication [LCC'02]

Only the sender peer of the query stores a replica of the requested data.

Path Replication [LCC+02]

The requested data is replicated on all the peers along the data transmission path between

the peer requesting the data and the peer having the data. This scheme has been employed in

many distributed systems because of its good search performance and ease of implementation

[RDOIb, LCC+02, CSWHOO].

LAR [GSBK04]

The sender peer of the search query stores the replica of the data stored in the peers receiving

the search query. In addition, the peer is equipped with additional advanced functions. Each

of the peers receiving the search query checks which is more heavily loaded among the

sender peer and itself, and will allocate replicas of some of its own data if it is more congested

in some sense (see [GSBK041 for further information).

   Furthermore, in order to decrease the number of search hops, caches of the data are

distributed over the P2P network. The cache contains the identifier and the location (i.e., IP

address of the peer) of the data, so that, the cache enables the search query to be forwarded

to the target peer only by IP routing, without any hop-by-hop forwarding over P2P network.

In this method, the caches are distributed by being piggybacked onto the search queries.

3.2.4 ProblemsintheExistingReplicationMethods

As shown in Fig. 3.2, the power-law network consists of a few peers with a high degree

and a 1arge number of peers with a low degree. ln the case of Path Replication, the peer

with a high degree forwards much more data than the peer with a low degree, so that a 1arge
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number of replications will occur at the peers with a high degree. Therefore, the storage load

due to writing and/or reading can be concentrated on a few high-degree peers, which thus

play an important role in the P2P system. If the system fails due to overload or some other

reason, a large amount of time is needed to recover the system [KLS02]. Therefore, we need

a replication method to distribute the load over all the peers of the whole P2P network.

   In Owner Replication, the number of replicas generated in the P2P network is limited to

one at each data exchange, and so it takes a1arge amount of time to propagate replicas over

the P2P network, thereby limiting the search performance for the requested data.

   in addition, LAR needs much modification to the peers for providing additional functions

mentioned above.

   In my proposed method, each peer decides to create the replica based on only its local

information, so that, the proposed method does not need much modification to the peers as

described in Section 5.3, and can utilize the existing query forwarding methods without any

modification.

3.3 ProposedReplicationMethods

The Path Replication method explained above provides good performance in searching for

the requested data. I thus focus on this method and will develop a way of load balancing for

it. For this purpose, I propose the two methods below: Path Random Replication and Path

Adaptive Replication. One is a rather straightforward extension of Path Replication. The

other funher improves upon it in its adaptability to the storage availability of the peers.

3.3.1 PathRandomReplication

Path Replication places replicas in all the peers on the path the requested data goes to the

requesting peer. The number of replicas created can become very 1arge, which eventually

may be more than necessary to achieve the required search performance. Thus, some amount
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1.

2.

3.

peer.initializeO{

  prob= replication ratio; •
}

  Figure 3.3: Initialization of Paramter in Path Random Replication

     1. peer.decision(data){

     2. if(peer is sender peer){

     3. replication(data);

     4. retum O'                  '

     5. }

     6.

     7. if(drand480 s prob){

     8. replication(data);

     9. }

    10. return next.decision(data);

    11. }

Figure 3.4: Decision of whether peer Replicates Requested Data or not in Path Random

          Replication
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L

2.

3.

4.

5.

6.

7.

8.

9.

peer.replication(data){

}

if(hold < capacity){

  storage-push(data);

}

else{

  storage-popO;

  storage-push(data);

}

Figure 3.5: Replication of Requested Data in peer's Storage

 The sender peer
stores the replica of
the requested data

. .
. Peerl ," .

Replication

        . Peer2 ,"

Ratio = o.3 (3oo/,)

Sender
==.Es2F:S'

--  s
----e------- Target

•9ii!!!

Data Transmission

When drand480s O.3,
    Peer1 stores
    the replica of
  the requested data

When drand480s O.3,
    Peer 2 stores
    the replica of
  the requested data

Figure 3.6 : Sample Procedure of Path Random Replication
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of the processing capability and storage capacity of the peers may be wasted, particularly on

the few peers with a high degree. Nevertheless, there must exist an adequate number of

replicas.

   For this reason, I introduce the replication ratio, which is the ratio of the created replicas

to all the intermediate peers on the path for each requested data. The replication ratio is

determined in advance. Each intermediate peer randomiy detemines whether or not the

replica is created and placed there, based on the probability of the pre-determined replication

ratio. Thus, the Path Replication method coupled with this replication ratio is referred to as

the Path Random Replication method, in which the special cases of replication ratios of 1O09o

and 09o becorne the Path Replication and OwnerReplication method, respectively. My major

concern is determining an adequate replication ratio that will mitigate the concentration of

load on the few high-degree peers while achjeving almost the same search performance as

Path Reptication.

   Figures 3.3-3.5 present the algorithm of Path Random Replication in pseudo-code. First,

Fig. 3.3 indicates an initialization procedure when the peer peer invokes P2P application. As

shown in this figure, on line 2, the replication probability prob of peer is set to the predeter-

mined replication ratio, which is identical among peers in the P2P network. Next, Fig. 3.4

describes the procedure executed upon the requested data's arrival at peer. if peer is a sender

peer of the search query, it stores the requested data in its own storage and treats the data as a

repljca as shown on Iine 2-5. 0therwise, it decides whether or not to repljcate the requested

data depending on its replication probability prob as shown on line 7-9, where drand480

produces a random number between O and 1. Finally, peer transmits the requested data to

a next peer on the data transmission path on line 10. Here, the data placement procedure is

described in Fig. 3.5. As shown in this figure, on line 2-Zl, if the number of replicas in its

storage is smaller than the storage capacity, the replica of the requested data is placed on the

storage. On the other hand, if there is no available storage capacity, peer stores the replica

after removing the replica stored at the earliest time in the storage on line 5-8.
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   Figure 3.6 shows a sample procedure of Path Random Replication for the replication

ratio of O.3 (309o). When the query arrives at the target peer storing the requested data, the

peer transmits the data to the sender peer of the search query in a hop-by-hop manner. In an

example of Fig. 3.6, Peers 1 and 2 receive the requested data, and decide whether to replicate

the data or not. Here, each of the peers obtains a random number between O and l, and

compares the number with the replication probability prob of O.3 (Note that the replication

probability prob of each peer is identical among peers in Path Random Replication). If the

number is smaller than or equal to prob, the data is replicated in the storage of the peer.

Finally, the sender peer receives the requested data and stores it.

3.3.2 PathAdaptiveReplication

In Path Random Replication, the requested data is replicated in each intermediate peer on the

path with a specified probability, which is the same at any peer in the P2P network. How-

ever, peers are highly different in their degree in the power-law networks. Consequently,

the constant replication probability in Path Random Replication may still cause much load

imbalance, because high-degree peers are frequently located in the data transmission path.

Therefore, each peer should adaptively determine whether or not to create a replica depend-

ing on its resource status (e.g., available storage capacity). Thus, I propose Path Adaptive

Replication, which determines the probability of the replication in each peer according to the

predetemined replication ratio and its resource status.

   In this research, the probability is defined in each peer as a function of x, which indicates

its storage utilization (O s x s 1); this allows each peer to detemine whether or not to create

a replica based on its own local information, without any global information over the P2P

network.

   Because of the nature of the power-law network, high-degree peers are often located on

the data transmission path. Their storage capacity can be consumed substantially or some-

times exhaustively, while the storage capacity of the low-degree peers will not. Thus, in
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     1. peer.initializeO{

     2. R = init]ambda(replication ratio);

     3. }

          Figure 3.7: Initialization of Paramter in Path Adaptive Replication

     1. peer.decision(data){

     2. if(peer is sender peer){

     3. replicatioR(data);

     4. return O'                  '

     5. }

     6.

     7. util=holdlcapacity;

     8. prob=get-prob(util);

     9. if(drand480 s prob){

    10. replication(data);

    11. }

    12. return next.decision(data);

    13. }

Figure 3.8: Decision of whether peer Replicates Requested Data or not in Path Adaptive

          Replication
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 The sender peer
stores the replica of
the requested data

. . .

Replication
          `it•

   Peer2 ""
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' .
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t---e---e---

 Hold = 15
Capacity = 20

       Target

:
Data Transmission

            When
drand480s O.748 (= get-prob(2I20)),
         Peer 1 stores
         the replica of
       the requested data

             When
drand480S O.071 {= get-prob(15120)},
          Peer 2 stores
          the replioa of
        the requested data

             Figure 3.9: Sample Procedure of Path Adaptive Replication

order to distribute the load on the storage of the peers effectively, the replication probabil-

ity, denoted by f(x), in each peer should be monotonically decreased with the utilization

x. Moreover, the high utilization of some peers may be because they frequently receive re-

quested data. Thus, it is desirable that f(x) decreases sharply with x in order to limit the

total number of replications on peers which frequently receive data. Here, I introduce an

exponential function F(x) = 1 - e-ke, and f(x) must take a value from O to 1; so, I employ

the following f(x) as one candidate.

                                           1 - e-ix                                F(x)
                       f(x) =1-                                     =1-                                                                        (3.1)                                           1- e-2'                                F(1)

   ln addition, I define the predetemined replication ratio Ratio(O s Ratio s 1), and R in

Eq. (3.1) is determined for the Ratio as follows.

                            foif(x)dx=Ratio. (3.2)

   Figures 3.7 and 3.8 present the algorithm of Path Adaptive Replication in a pseudo-

code, except for the data placement procedure which is the same as that for Path Random
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Replication. Figure 3.7 indicates an initialization procedure of the peer peer. As shown in

this figure, on line 2, 1 in Eq. (3.1) is detemined in advance, where initJambda derives n

corresponding to the predetermined replication ratio so as to satisfy Eq. (3.2). Furthermore,

Fig. 3.8 describes the procedure executed upon the requested data's arrival at peer. The

same as the procedure for Path Random Replication, the sender peer of the search query

stores the requested data in its storage as shown on line 2-5. 0therwise, peer obtains its

storage utilization util based on the number hold of replicas stored in the storage and the

storage capacity capacity, and derives the replication probability prob on line 7, 8, where

get-prob gives prob based on A and util according to Eq. (3.1). Then, it decides whether to

replicate the requested data or not by comparing the random number and prob as shown on

line 9-1 1. Finally, peer transmits the requested data to a next peer on the data transmission

path on line 12.

   Figure 3.9 shows a sample procedure of Path Adaptive Replication for the replication

ratio of O.3 (309o), where each peer calculates 1 = 2.672 based on the replication ratio

according to Eq. (3.2) in advance. The same as the procedure for Path Random Replication,

the target peer transmits the requested data to the sender peer in a hop-by-hop manner, and

the sender peer stores the requested data in its storage. However, unlike in Path Random

Replication, each peer derives the replication probability based on its own storage utilization

as described above. In the example of Fig. 3.9, when Peers 1 and 2 receive the requested data,

they set the replication probability prob to O.748 and O.071 based on the storage utilization

util of O.1 (= 2120) and O.75 (= 15120) by Eq. (3.1), respectively. After that, each peer

decides whether to store the replica by comparing the random number with prob. Therefore,

Peer 1 stores the requested data in its storage with much higher probability than Peer 2.
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3.4 SimulationModel

In this research, I investigate the performance of the proposed methods through computer

simulations. I focus on the popular P2P file sharing system, namely Gnutella, where the de-

gree of the peers follows the power-law distribution and about 10, OOO peers always organize

its system [LCC+02, SGG02], and assume the Gnutella network as the simulation topology.

Therefore, I employ the power-Iaw network, generated by the topology generator shown in

[BT02]. This power-law contains 10,OOO peers and 20,OOO links. Figure 3.10 shows the

relationship between the degree of each peer and the number of corresponding peers. In

addition, there are n kinds of data, and each of them is stored in 10 peers on the simulation

topology; that is, 10 Å~ n data items are allocated in the P2P network in the initial condition.

   I adopt the k-walker random walk as the query forwarding method, where k queries are

randomly sent out from the sender peer to discover the requested data. In [LCC'02], the

k-walker random walk with k = 16, • • • , 64 queries results in good search performance in

the power-law network which contains about 10,ooO peers. In this study, I'focus on the

replication methods, so that, I fix the number k of queries to 16 without investigating the

impact of k. In addition, I consider cases where al1 queries reach their requested data so as

to focus on the performance of the replication methods. ln [LCC'02], the k-walker random

walk discovers the requested data within a few more than 10 hops. Thus, I set TTL to 100,

which is enough for each query to get the data in hops less than the TTL. Besides, each peer

has the same storage capacity of c, which can accommodate c data. Furthermore, two or

more of the sarne data are not stored in each peer, and when the replication occurs on a peer

with no available storage capacity, the data or the replica stored at the earliest time will be

eliminated from the storage in a FIFO (first-in first-out) manner. Therefore, each peer can

store a maximum of c kinds of data.

   In this chapter, I pay attention to the balance of the load on the storages distributed

over the P2P network while limiting the degradation of the search performance within some

acceptable level. First, as a measure of the search performance, I use the number of hops
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needed to discover the required data. In my proposed methods where each peer decides

whether to create the replica of the data or not based on the replication ratio and its resource

status, the number of replicas in the P2P network is smaller than that of Path Replication,

so that the search performance may deteriorate to some extent. Therefore, I assume that

users can accept an increase in the number of search hops up to, say, 1209o of that of Path

Replication. If the average hop count in the replication method with some replication ratio

exceeds the acceptable level, I consider that it cannot achieve my objective, and then I do not

adopt the associated simulation results even if it presents good load balancing.

   Furthermore, existing research focuses on the number of queries arriving at each peer as

a storage load [RDOIb, GSBK04]. However, this represents the storage load due to reading

only, not to both reading from and writing to the peer. Therefore, in order to represent the

storage load appropriately, I define both reading and writing on each peer as a load, and the

total number of reading and writing occurrences is considered as the load on the storage.

In the performance evaluation results below, I show a figure that represents the storage load
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of the peers as a function of the peer's degree, and define the slope of the least-squares

regression line as a metric of the load balancing, which will be referred to as the load balance

index. A smaller index means better load balancing; in other words, the concentration of the

load on the peers with a high degree is mitigated.

3.5 SimulationResuksandDiscussion

In this section, I show the performance of the proposed replication methods by focusing on

the search performance and the balance of the storage load due to reading and writing of

the requested data. First, I investigate the performance under the condition that no new data

is added to the network during the simulation. Next, I consider the case where new data is

added. Ifocus on the load balance index of 50, OOO queries and the average number of hops

in the steady state, namely of 20, Ooo queries after 10, OOO queries are issued. Furthermore,

the peer which generates a query is selected according to the uniform distribution.

3.5.1 Comparison of the Search Performance of My Proposed Methods

       and That of Existing Methods

I show the effect of the replication ratio on the search performance in Fig. 3. 1 1, which shows

the average number of hops needed to discover the requested data as a function of the replica-

tion ratio for each method when the storage capacity c is set to 20, and the number n of kinds

of data is set to 100. The threshold in the figure is 1.2 times as large as the average number

of search hops of Path Replication; i.e., an increase of 209o is acceptable, as described in

Section 3.4. As shown in this figure, the average number of hops exceeds the threshold for

the low replication ratio, that is, for the replication ratio of less than 7qo in Path Random

Replication and less than 149o in Path Adaptive Replication. This is because in this range

of smal1 replication ratios, a sufficient number of replicas cannot be allocated in the P2P

network. On the other hand, my proposed methods can maintain good search performance
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Figure 3.1 1 : Number of Hops vs. Replication Ratio.

1OO

for a wide range of replication ratio.

   in Fig. 3.1 1, we can see that Path Random Replication outperforms Path Adaptive Repli-

cation in the average number of search hops, but the difference is only less than O.05. In

addition, Path Random Replication achieves almost the same performance as Path Replica-

tion within the range of high replication ratios which are 1arger than 509o. This is because

the proposed methods can allocate enough data items to high-degree peers to achieve good

search performance, even if the replication ratio is lower than 1009o.

3.5.2 Balance of Storage Load due to Reading and Writing Requested

Data

Next I present the effect of varying replication ratios on the storage load due to reading

and writing requested data items in Path Random Replication and Path Adaptive Replication

when the storage capacity cis set to 20, and the number n of kinds of data is set to 100.
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Figure 3.12: Storage Load vs. Degree of Peers (Path Random).

   Figure 3.12 shows the relationship between the degree of the peers and the number of

accesses to the storage of the corresponding peer in Path Random Replication. As shown in

this figure, the number of accesses to the storage system increases with the replication ratio,

and comes close to that of Path Replication. The load balance index described in Section

3.4 becomes larger as the replication ratio increases. The access is due to both writing and

reading data, and the number of accesses due to each examined in Figs. 3. 13 and 3. 14. In Path

Random Replication, the replication probability is the same at any peer and at any condition,

and the high-degree peers are very likely to exist on the data transmission path. Therefore,

as the replication ratio increases, the high-degree peers have a 1arger number of chances to

write replicas, as shown in Fig. 3.13. 0n the contrary, the number of reading occurrences is

inversely proportional to the replication ratio for peers with a degree 1arger than, say, 200,

as shown in Fig. 3.14. The reason is as follows. In the case ofa low replication ratio, the

replicas are allocated to only the high-degree peers, which have many chances to be located

on the data transmission path and they are very likely to have almost all the requested data
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items. With an increase in the replication ratio, the low-degree peers also have some replicas,

so that the load due to reading is not concentrated on the high-degree peers. As shown in

these figures, the characteristic of the number of writing occurrences is contrary to that of

the number of reading occurrences. The total number of accesses due to writing and reading

has a feature simi1ar to the number of writing occurrences because the number of reading

occurrences represents almost the same value for any replication ratio. As a result, the load

balance index increases with the replication ratio.

   Figure 3.15 shows the relationship between the degree of the peer and the number of

storage accesses of the corresponding peer in Path Adaptive Replication. From this figure,

we can see that the number of storage accesses of each peer is the same for any replication

ratio, unlike that in Path Random Replication. In addition, the number of accesses is smaller

than that of Path Random Reptication. Path Adaptive Replication does not allocate replicas

in a peer with a small available storage capacity. Therefore, the replicas are fairly disuibuted

over al1 the peers, independently of their degree and replication ratio, as shown in Fig. 3.16.
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On the other hand, as in Path Replication and Path Random Replication, queries in Path

Adaptive Replication can more frequently discover the requested data in peers with a higher

degree, as shown in Fig. 3.17. Since the number of writing occurrences is almost the same

for any replication ratio, the total number of accesses is almost the same as the number of

reading occurrences, as shown in Fig. 3.15.

   I present the load balance index as a function of the replication ratio in Fig. 3.18. As

described in Section 3.4, the load balance index indicates how eveniy the load is distributed.

As shown in this figure, the index of Path Adaptive Replication is smaller than that of Path

Random Replication for any replication ratio, and Path Adaptive Replication improves its

performance in load-balancing as the replication ratio increases. This is because, as the

replication ratio increases, the storage load in Path Random Replication increases, and the

storage load in Path Adaptive Replication decreases, as described previously. Thus, Path

Adaptive Replication with a high replication ratio achieves excellent performance in load

balancing.
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3.5.3 Impact of Simulation Parameters on Performance of Proposed

       Methods

In this subsection, in order to investigate the impact of some simulation parameters, namely

the storage capacity c and the number n of kinds of data, I examine the search performance

and the performance in load-balancing of the proposed replication methods when c is set to

40 and n is set to 1, OOO, while c and n are set to 20 and 100 respectively, until now.

   Figure 3.19 shows the average number of hops needed to discover the requested data as

a function of the replication ratio. As shown in this figure, both of Path Random Replication

and Path Adaptive Replication achieve the number of hops within 1209o of that of Path

Replication for a wide range of replication ratio, like in Fig. 3.1 1 presented in Section 3.5.1.

   Furthermore, Fig. 3.20 shows the load balance index as a function of the replication

ratio. In this figure, as in Fig. 3.18 of Section 3.5.2, the index of Path Adaptive Replication

is smaller than that of Path Random Replication, and Path Adaptive Replication improves its

performance in load-balancing as the replication ratio increases.

   Therefore, we can see the improvement in load balancing by Path Random Replication

and Path Adaptive Replication in this case as well, while the load balance index takes differ-

ent values for different c and n.

3.5.4 PathAdaptiveReplicationwithPriorityLevel

So far, I have considered the case where no new data is added to the network during the

simulation. In actual networks, new data is added in the P2P system at run time, so that the

replication method should be adaptive to such situations. As stated previously, Path Adaptive

Replication performs very well, but it does not allocate any replicas on the peers with no

available storage capacity except for the requesting peers which can store its requesting data

in its own storage, so that the new data cannot be replicated after the storage is occupied

by old data. This leads to critical degradation of the search performance for the new data.
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Therefore, I modify Path Adaptive Replication to allow new data to be distributed over the

peers. In this subsection, x in Eqs. (3.1) and (3.2) is redefined as follows.

                       Storage utilization + Priofity level
                                                     . (3.3)                   x=                                     2

   The Priority level, denoted by 6, is a parameter used to adjust the replication probability

in order to allow newer data to be replicated more frequently. The Priority levet parameter

is associated with how much new data is requested in the peer storing it. More specifically,

I let m be the total number of data stored in the peer. And I let n indicate how much new

requested data is among al1 the data there, and n is set at 1 for the newest data. 6 is given by

nlm. This allows new data to have priority over old data.

   In this evaluation, ten kinds of data are added to the P2P network and each kind is al-

located to ten peers after 10, Ooo queries are issued. Then, I investigate the performance

of the proposed method. For the newly added data, I also focus on the average number of

hops in the steady state, namely of 20, OOO queries after 20, OOO queries are issued. Figures

3.21 and 3.22 show the number of hops needed to discover the requested data as a function

of the replication ratio. From Fig. 3.21, Path Random Replication, Path Adaptive Replica-

tion without the priority level and that with the priori.ty level attain almost the same search

performance close to that of Path Replication for a wide range of replication ratios. On the

other hand, as shown in Fig. 3.22, the average number of hops needed to discover the new

data in Path Adaptive Replication without the priority level is equal to almost 3, while that

of Path Adaptive Replication with the priority level stays at less than 2.2. Thus, it should be

noted that, for newly added data, Path Adaptive Replication without a priority level cannot

be accepted in terms of search performance.

   Furthermore, Fig. 3.23 illustrates the load balance index of each peer as a function of the

replication ratio for each of the replication methods. As shown in this figure, Path Adap-

tive Replication without the priority level achieves the most effective load balancing, but its

search performance for new data is degraded compared with other methods, and the differ-
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ence of the average number of hops becomes more than O.7. 0n the contrary, Path Adaptive

Replication with the priority level can achieve excellent search performance even for new

data, and is superior to Path Random Replication in terrns of load balancing. Therefore, I

can say that Path Adaptive Replication with the priority level can successfu11y distribute the

load on storages over P2P networks while keeping the degradation of the search performance

within an acceptable level.

3.6 ' Conclusion

in the P2P network, the number of neighbors (degree) of each peer follows the power law;

there exist a few high-degree peers and a 1arge number of low-degree peers. Therefore,

a huge number of requests can go through these few high-degree peers, and the storage

loads due to reading and writing requested data is concentrated on them. Thus, in order

to mitigate the load concentration on the high-degree peers over the P2P network without
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deteriorating the search performance too much, I proposed two replication methods, which

make replicas on some chosen peers, through which the data passes. One method, Path

Random Replication, chooses the peers randomiy with a predetermined replication ratio,

and the another method, Path Adaptive Replication, further improves the procedure in the

decision to make a replica on a peer depends on how much storage is still available on it

as well as the predetermined replication ratio. I have evaluated the performances of both

methods through computer simulations.

   My results show that Path Random Replication could balance the loads on the storage of

the peers very well at a cost of deterioration of the search performance of only 109o in com-

parison with that of the existing replicatipn method (Path Replication). Also, Path Adaptive

Replication could further improve the load balancing using each peer's local information

on resource availability. Furthermore, I considered the case where new data is added to the

system; in order for the system to work well, I modified Path Adaptive Replication by consid-

ering when the required data is allocated on the peer as well as considering the information

on resource availability. Path Adaptive Replication achieved effective load balancing while

limiting the degradation of the search performance within an acceptable level.
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Chapter 4

Performance Comparison of Task

AllocatiQn Schemes Depending upon

Resource Availability in a Grid

Computing Environment

4.1 Introduction

Because of recent improvements in the performance of end-computers and networks, the

construction of a Grid system over the Internet is now feasible. A Grid system [FK98a] is

constructed by connecting geographically distributed computers over the Internet to secure

greater computing power. Several fundamental services are indispensable for this sharing

of computational resources (e.g., CPU time, memory, storage, and so on) in a Grid envi-

ronment: security management, resource management, and task execution on remote hosts,

all of which are run as low-level middleware [FKTOI]. The Globus Toolkit [FK98b] pro-

duced by the Globus Alliance [Glo] is a well-known example of middleware providing these

important services. Using these services, a computer (user) can securely submit a set of

task executions to the Grid environment, while requiring a scheduling system linked to the

middleware to appropriately select the computers to which the tasks will be allocated.

   The Grid system is very likely to be heterogeneous; that is, each of its computers has

                                                                    61
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a distinct computing performance. ln order to achieve good perforrnance of Grid comput-

ing in this environment, several scheduling algorithms have been proposed [YC03b, BLR03]•

These algorithms can adapt themselves to a heterogeneous environment by considering avail-

able computing and networking resources in the Grid environment, and by dividing a long-

lived task composing an application into an appropriate number of sub-tasks. The algorithms

assume that the scheduler can always perceive all information about the task allocations as

well as the latest resource status in the Grid environment, as in cluster computing.

   However, the Grid system is actually built on a global network, where the computing and

networking resources are shared by many organizations with their own objectives, and each

organization can independently alloc4te their jobs on their resources by their own sched-

ulers. Therefore, Grid computing resources are very likely to be used unevenly, and will not

be absolutely managed in a centralized manner [FKTOI]. Furthermore, each scheduler can-

not always perceive the dynamic variations of the computing resource status, and can only

refer to the information periodically updated through a directory service which manages the

resource status in the Grid environment in a distributed manner (e.g., MDS (Metacomputing

Directory Service) [CI FKOI]). These Grid characteristics lead to some uncertainty in the

information on the resource status: in particular, the obtained information may not indicate

the current status exactly. Most schedulers which have been proposed so far don't focus on

this effect on the performance of task allocation. Therefore, the task allocation scheme in the

Grid environment should be designed with consideration of the fact that resources distributed

over the Internet are used unevenly and the obtainable information on their utilization can

involve some uncertainty.

   In this chapter, I investigate the preliminary performance of some task allocation schemes

by considering the unevenness of resource utilization and the uncertainty of utilization in-

formation. My investigation is based on a simple analysis and computer simulation, through

which I focus on CPU performance and availability as a function of utilization. In the anal-

ysis, the computers are modeled as an M/G/1-PS (processor sharing) queue, and the average
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turnaround time of the application with a long-lived task in each scheme is derivgd analyti-

cally. Adopting the IWG/1-PS queue allows the average time for each computer to process a

sub-task to be a function of CPU utilization alone. Since the Grid computing environment is

constantly evolving, it is very difficult to precisely describe the CPU utilization of computers

comprising the Grid environment. Hence, a probability distribution function associated with

CPU utilization is introduced to describe the uneven utilization of the computers. In order to

verify the accuracy of the analysis, I compare the performance derived by the analysis with

that derived by the simulation. Then, I consider a more realistic simulation model in which

the available information on resource utilization is uncertain due to the reasons mentioned

previously, while the available information is assumed to exactly indicate the current status

in the analytical model.

   The rest of this chapter is organized as follows. ln Section 4.2, the resource management

model of Grid computing is described, and the task allocation schemes are defined. Section

4.3 outlines the analytical evaluation of the average application turnaround time, and exam-

ines the characteristics of the proposed task allocation schemes. In Section 4.4, I deal with

a realistic computer simulation and investigate the impact of information uncertainty on the

performance of each scheme. Finally, the conclusion is presented in Section 4.5.

4.2 GridComputingArchitecture

4.2.1 ResourceManagementArchitecture

The resource management architecture employed here consists of computers and directories,

as shown in Fig. 4.1.

Computer

Every computer is assumed to manage its own performance and capability using a database.

This information is measured periodically using a resource management toolkit such as Net-
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Figure 4.1 : Resource Management Architecture.

work Weather Service [WSH99]. ln this context, computers execute tasks allocated by other

computers in the Grid, while simultaneously executing the necessary local tasks.

   Here, CPU performance is denoted by S i [instructions per unit time], and CPU utilization

pi (O s pi < 1) is defined as the load imposed on the computer Ri. The computer can execute

tasks allocated to it at the rate of Si, and pi of the total capability of the CPU is consumed

when the User allocates new sub-task.

Directory

The directory manages the static computer information as a database, including the operating

system, processing capability, memory capacity, and IP addresses. The database is updated

periodically when computers notify the directory. According to requests from users, the

directory asks computers under its control to send back information related to the resource

status, which is cached in the directory database, and then replies to users with the obtained

information. Each entry registered with a database has a lifetime [GCKFOI]; if the entry has

not been updated during the lifetime, the directory detemines that the relevant computer is

no longer available.
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4.2.2 GridComputing

The Grid computing process is outlined in Fig. 4.2. After a task arrives, the user divides

long-lived tasks into n independent, small-scale sub-tasks. The long-lived task is composed

of W instructions. Here, the overhead of each sub-task due to segmentation is neglected for

simplicity, and so the number of instmctions in each sub-task W, can be defined as Wln.

Next, the user requests the directory to investigate the resource status of the computers, and

to reply with the relevant information. in this study, the limited case of a maximum of one

sub-task allocated to each computer is considered, so that the user selects n computers to

which sub-tasks are allocated based on the information from the directory. The computer
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resource information is presented in detai1 in Section 4.3. In this study, it is reasonably

assumed that all tasks are independent, have the same priority, and are fairly scheduled in a

round-robin manner on al1 computers. The overall application tumaround time is determined

by the time when the result of the latest sub-task is retumed.

   As shown in Fig. 4.2, the interval from the allocation of sub-tasks to the completion of all

sub-tasks is defined as the main process. Processes to be executed before the main process

begins are defined as the pre-process, and those executed after the main process are defined

as the post-process. In this chapter, I define the application turnaround time as the time

required for the main process, and the performance of each sub-task allocation scheme is

evaluated based on it to show the impact of only the CPU status on the performance.

4.2.3 Sub-taskAllocationScheme

I focus on the following three sub-task allocation schemes to investigate the impact of the

uneven CPU utilization in computers on their performance. As I mentioned in Section 4.2.2,

I consider the limited case of a maximum of one sub-task allocated to each computer.

Scheme 1 (Random Selection)

The user randomiy selects n (number of sub-tasks) computers from all the available comput-

ers, then allocates all the n sub-tasks to the selected computers. In this scheme, the user does

not have to consider the computer resource information, thereby minimizing the pre-process

time.

Scheme 2 (Resource Availability First Selection)

The user selects n least-loaded computers and allocates sub-tasks to these computers. In

this scheme, the user needs to receive the current resource information for all computers and

compare the available processing capability. This results in a lengthy pre-process time.
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Scheme 3 (Random Selection with Resource Availability Threshold)

The user requests the directory to ask all computers to send back a reply if the computer

satisfies the requirement that the current utilization is lower than some threshold Th. The

user then randomiy selects n computers among those responding to the inquiry, and allocates

sub-tasks accordingly. wnen Th is set relatively low, fewer than n computers may satisfy

the requirement, in which case the user increases Th by some amount and re-investigates the

resource status. This process is repeated until n or more computers satisfy the requirement.

The pre-process time of Scheme 3 is expected to be shorter than that of Scheme 2 because

the user does not need to receive resource information from al1 available computers, and also

does not need to compare the infomiation, unlike in Scheme 2. However, in this study, in

order to investigate the preliminary performance of task allocation schemes, I assume that the

pre-process time is small enough to be neglected compared with the application turnaround

time mentioned in Section 4.2.2.

4.3 Analysis

4.3.1 AnalyticalModel

I employ the analytical model illustrated in Fig. 4.3, in which the user is directly connected

to 120 computers over the Internet. In this section, I analytically show the impact of the un-

even CPU utilization in computers on the performance of proposed task allocation schemes,

in which I thus neglect the transmission delay between the user and computers. The perfor-

mance of each scheme described in Section 4.2.3 is evaluated using this model. Computers

are evenly divided into three groups in terms of CPU performance: classes A, B and C corre-

spond to CPU performances SA, SB and Sc respectively. In what follows, I assume SA = 50,

SB = 100 and Sc = 150. Here, I assume a basic CPU with a performance of 1.0, and define

one unit period as the time required for the basic CPU to calculate the task of unit instruc-

tion. Thus a CPU with a performance of 50, which is fifty times faster than the basic CPU,
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can calculate a task with a workload of 100 in 2 unit periods. Because only the main pro-

cess is considered here, the average application turnaround time is adopted as a performance

measure, and can be obtained analytically as follows.

   Each computer is modeled by the M/G/1-PS queue, where al1 tasks in some computer

are fairly served with a round-robin scheduler. Thus, this model allows the coexistence of

other tasks, which may be allocated from other users andlor may be generated by the local

computer. In this model, I assume that the workload W, of sub-task injected into computer

Ri by the user is small, and this does not change the long-term utilization pi of the computer,

that is, I focus on the Grid environment where the load due to tasks generated by a computer

itself is dominant over the entire load of the computers. Thus the average time E[Ti] required

for the computer Ri with CPU performance Si is given by

                             E[T,]. Ws lSi. (4.1)
                                    1-pi

   I consider that the application turnaround time is defined as the interval between the

allocation and the completion of all sub-tasks [BGMR96]. lf one task is divided into n

sub-tasks, which are allocated to computers Ri, • • • ,R., the application turnaround time is

defined as follows.

E[T] = E[max{Ti,•••, Tn}]' (4.2)
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However, jt is djfficult to analytically derive the average appljcation turnaround tjme by

solving Eq. (4.2), so that, in this chapter, I assume the average application turnaround time

as the maximum value of the sub-task processing time E[Ti] for simplicity as Eq (4.3), and

investigate the preliminary performance of task allocation schemes.

                       E[T]=max{E[Ti],•••,E[T.]}. (4.3)

in fact, these equations have a magnitude relationship as follows.

                 E[max{Ti,•••,T.}] ) max{E[Ti],•••,E[T.]}. (4.4)

I will investigate the effect of jt on the performance of task alIocation schemes in Section 4.4

by comparing the analytical with the simulation results.

   In this chapter, Idefine the current resource capability Ii of computer Ri as the average

virtual turnaround time for a task with a unit workload would experience if it is allocated to

the computer as follows.

                                    1ISi                                        . (4.5)                               Ii=
                                    1-pi

   Even if the CPU performance of the three groups differs, the user can select computers in

order of the value Ii to allocate sub-tasks in Scheme 2 (Resource Availability First Selection).

In Scheme 3 (Random Selection with Resource Availability Threshold), the user randomly

selects computers with current resource capability Ii lower than the predetermined threshold

Th. Thus, each scheme mentioned in Section 4.2.3 is adaptable to the analytical model,

which models computers with different CPU performances, and is evaluated as follows:

     1. Computer resource information is investigated using Eq. (4.5).

     2. Sub-tasks are allocated to n computers according to their current resource

        capability.

     3. The average application turnaround time is evaluated using Eq. (4.3).
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However, in general, the CPU utilization changes dynamically. Therefore, 10,OOO exper-

iments were conducted under the condition that the CPU utilization of each computer is

changed at every trial while the average CPU utilization of available computers P is set to

a constant value (O s P < 1). The mean of the average application turnaround time for

all experiments is then employed as the performance measure. The Grid computing envi-

ronment is constantly evolving, which makes it very difficult to precisely describe the CPU

utilization of the computers involved. Thus, I introduce a power distribution as the CPU

utilization distribution because it appears in many phenomena in the distributed environment

(e.g., the number of accesses received by web servers [New05, AH99]), which may be suited

for the unevenness of CPU utilization of computers. In [New05], the distribution of the CPU

utilization pi of computer Ri is formulated as follows.

                Pr{pi s x} = xa. (i = 1, •••,120, a= 1P- p-) (4.6)

4.3.2 AnalyticalResultsandDiscussion

Average Application 1)irnaround time vs. Average CPU Utilization

The workload of each task W (i.e., the number of instructions) is set to 10,OOO and the

number of sub-tasks n is set to 40. Therefore, the workload of each sub-task W, becomes

250 (=10000/40).

   Figure 4.4 shows the average application turnaround time as a function of average CPU

utilization. In Random Selection (Scheme 1), 40 computers are randomly chosen indepen-

dent of CPU utilization or class. Therefore, some of the sub-tasks will be assigned to comput-

ers of class A, resulting in a turnaround time of as long as 5 (=250/50), even when the average

CPU utilization is O. With the power distribution, allocation under Scheme 1 may result in

assignment to a highly loaded computer. As a result, the average application turnaround time

increases markedly with average CPU utilization.

   In Resource Availability First Selection (Scheme 2), the user selects n least-loaded com-
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puters and allocates sub-tasks accordingly. Consequently, the average application turnaround

time of Scheme 2 outperforms the other schemes discussed here. in particular, when the av-

erage CPU utilization is O, since al1 the sub-tasks are allocated to computers of class C, the

application turnaround time becomes 1.67 (=250/150), which is much smaller than that of

Scheme 1. The performance of Random Selection with Resource Availability Threshold

(Scheme 3) falls between Schemes 1 and 2 in that n computers are selected randomly, but

from computers that are not highly Ioaded. However, when the average CPU utilization is O,

the application turnaround time of Scheme 3 is the same as that of Scheme 1, because some

of the sub-tasks are allocated to computers of class A. In Fig. 4.4, as the threshold Th is re-

duced, the average application tumaround time becomes smaller over a wide range ofP and

approaches that of Scheme 2. However, reducing Th may, in turn, result in re-investigation

if too few computers are available. Although this is a concern, Fig. 4.5 shows that no re-

investigation occurs under the present model until P becomes more than O.9, even in the case

of Th = O.1.

Ratio of Sub-tasks Allocated to Computers in Each Class

Given the present method of updating computer information, it may occur that many users

will select simi1ar sets of computers based on information that may not be the latest, which

could lead to critical performance degradation.

   To examine this in more detail, the ratio of sub-tasks allocated to computers belonging

to each class is investigated. As shown in Fig. 4.6, Scheme 2 allocates many sub-tasks

to computers with higher CPU performance (i.e., class C). As the average CPU utilization

increases, computers with relatively low CPU performance are also selected. However, even

if the average CPU utilization is O.5, 609o of all the sub-tasks are assigned to computers in

class C. Therefore, it is very likely under Scheme 2 that many users in the Grid environment

will select a few computers with high performance or lightly loaded at the same time, thereby

leading to critical performance degradation if tasks are allocated independently by several
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schedulers.

   Figure 4.7 shows that Scheme 3 selects computers evenly from all classes. For example,

in the case that the average CPU utilization is smaller than O.5, the ratio of sub-tasks allocated

to each class is around O.33. Therefore, Scheme 3 will use all types of computers fairly, while

providing moderate performance, as shown in Fig. 4.4.

Effect of the Number of Sub-tasks on the Average Application [IUrnaround Time

The effect of the number of sub-tasks is illustrated in Fig.'4.8 in terms of the average ap-

plication turnaround time for average CPU utilization P of O.6. Normally, as the number of

sub-tasks increases, the workload of each sub-task VV, decreases, resulting in a comparable

decrease in average application turnaround time for Scheme 2 down to some minimum value.

As shown in Fig. 4.8, as the number of sub-tasks is increased past 50, the average applica-

tion turnaround time begins to increase again, because the user must allocate sub-tasks to

highly loaded computers with higher probability. The average application turnaround time

for Scheme 3 improves with the number of sub-tasks, as long as all the selected computers
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have Ii smaller than Th. in Fig. 4.8, the average application turnaround time decreases with

the increase in n for Th = O. 1, as long as n is smaller than 94. In this case, no re-investigation

occurs. However, as shown in Fig. 4.9, which illustrates the number of re-investigations in

Scheme 3 as a function of the number of sub-tasks n, if n exceeds 94 and more, the number of

re-investigations becomes 1arger. In this time P is fixed to O.6 whereas P is smaller than O.9,

no-re-investigations occur as stated in Fig. 4.5. Therefore, re-investigatiOns in Scheme 3 oc-

curs depend on P, n, and Th, and leads to the increase of the average application turnaround

time.

   As mentioned above, there exists an optimal number of sub-tasks that minimizes the av-

erage application turnaround time for some value ofP. Figure 4.10 illustrates the optimal

number of sub-tasks for each P. The optimal number of sub-tasks is dependent on P, demon-

strating that a larger number of sub-tasks does not always lead to an improvement in the

application turnaround time. Therefore, the number of sub-tasks should be determined care-

fu11y in consideration ofP, that is, the average load imposed on the Grid computing system.

This figure also shows that the optimal number of sub-tasks is larger for a higher threshold

'Th.
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4.4 Simulation

In the previdus section, I analytically evaluated the average application turnaround time by

modeling each computer as an M/G/1-PS queue, and investigated the fundamental perfor-

mance and characteristics of each task allocation scheme. Numerical results show that

Scheme 2 outperforms other schemes presented in this chapter in terms of the application

turnaround time, and selects a few computers with high performance, on the other hand,

Scheme 3 can use all types of computers fairly. Thus, it may lead Scheme 2 to the critical

performance degradation in the realistic Grid environment where the obtainable information

on the utilization can involve some uncertainty and many schedulers independently allocate

their tasks. In the rest of this chapter, I assume a realistic Grid environment and evaluate

performance by computer simulation.

   In order to verify the efficiency of the simple analysis, I first compare the performance

obtained through the analysis with that of the simulation, in which the model is almost the

same as the analytical one, except that the information related to the resource status in each

computer is updated periodically. Next, assuming that all computers comprising the Grid

environment also act as "users", and that they divide their own task into some sub-tasks and

assign them to each other with the same task allocation scheme, I can also investigate the

performance of some of the task allocation schemes adopted in the analysis.

4.4.1 SimulationModel

I evaluate the performance of the task allocation schemes in the simulation, which uses a

model that is almost the same as the analytical model shown in Fig. 4.3. Some of the details

in this simulation are different from the analysis. In the analysis, since the amount of task

load injected by one user is small enough to be neglected compared with the utilization of the

computers as stated in Section 4.3.1, I assume that the resource utilization of each computer

never changes at each evaluation. However, in a realistic environment, even if there is only
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one user, the utilization can fluctuate by its own task. Thus, in the simulation, I assume

that Grid users can receive periodically updated information related to the resource status of

the computers, and the update interval in the computers becomes the important parameter to

determine a magnitude of the uncertainty of the resource status. Here, I define the updated

information as the average value of resource capability, as defined in Eq. (4.5), and obtained

by the number of tasks in the computers during the previous update interval.

   The total CPU utilization pi of computer Ri can be defined by the sum of the CPU utiliza-•

tion p.i associated with Grid users and p;. due to tasks generated by itself. I assume that the

task is generated by users according to a Poisson process at rate 1 [Kle79]. Whenever one

user task is generated, n sub-tasks are- allocated to n computers, so that the sub-task arrival

rate 1,i at each computer is given by Eq. (4.7). In this equation, AI indicates the number of

all computers in the simulation model.

                                     nl
                                1,i = '7g7"

Thus, the CPU utilization p.i associated with users can be defined as follows.

                                /lsiXWs iJIW
                           Pui= si =SiN'

(4.7)

(4.8)

4.4.2 ComparisonbetweenAnalyticalandSimulationResults

First, I evaluate the validity of the analytical results compared with the results obtained by

the simulation, in which the model is almost the same as the analytical one, except that the

update interval of the resource status in each computer is set to 10 unit periods, which is a

same unit as that of the application turnaround time. As in the analysis, I assume that the

CPU utilization p.i associated with tasks injected by the Grid user is small enough to be

neglected compared with p;. due to tasks generated by computer Ri itself, that is, I will focus

on the performance of task allocation schemes in Grid environments where the load due to

tasks generated by a computer itself is dominant over the entire Ioad of the computers, as

stated in Section 4.3.1. Therefore, the total CPU utilization pi equals pl•. Furthermore, pl. is
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Figure 4.11: Average Application Turnaround Time vs. Average CPU Utilization.
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Figure 4.12: Average Sub-task Processing Time vs. Average CPU Utilization.
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assumed to follow a power distribution, which is given by Eq. (4.6), based on the average

value P for al1 of the computers. Thus, I obtain the performance of task allocation schemes

as a function ofP. Here, the number of sub-tasks n is set to 40.

   Figure 4.1 1 illustrates the average application turnaround time in Scheme 2 and Scheme

3 with a threshold Th of O.1. From this figure, it is found that the average application

turnaround obtained by the simulation is larger than the analytical one. This is due to some

approximations employed in the analysis. First, the average application turnaround time

E[T] is approximately obtained by Eq. (4.3), instead of Eq. (4.2), in the analysis; the ap-

proximation in fact underestimates E[T] as shown in Eq. (4.4). As a result, the analytical

result does not agree with the simulation one; the former is smaller than the latter as shown

in Fig. 4.11. Furthermore, the resource status of each computer is assumed to be fixed for

simplicity in the anaiysis, whereas that actually dynamicalIy fluctuates in the simulation.

This analytical approximation also causes the difference between the analytical result and

the simulation one. This can make the former larger in some cases, and smaller in other

cases. The application turnaround time is, however, determined by the maximum of the sub-

task processing time, as given by Eq. (4.2), so that this approximation can also make the

simulation results 1arger than the analytical ones.

   Furthermore in order to evaluate the validity of the analytical results from a different

aspect, I focus on the sub-task processing time itself and the ratio of sub-task allocation to

each class. Figure 4.12 shows the average sub-task processing time as a function of the

average CPU utilization. We can see from this figure that the average sub-task processing

time of the analysis agrees very well with the simulation over a wide range ofP. Next, from

Figs. 4.13 and 4.14, which show the ratio of sub-task allocation to each class in Scheme 2

and 3, respectively, I can say that the analytical results are almost the same as the simulation

results.

   Hence, I can conclude that the simple analysis is very usefu1 for evaluating many char-

acteristics of a Grid environment in which the number of users and/or the amount of tasks
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allocated to computers is relatively small. Therefore the analysis may not be applicable to

a realistic environment with many users. Thus, in the next subsection, I investigate perfor-

mance in a realistic environment only by simulation.

4.4.3 PerformanceEvaluationintheMulti-UserEnvironment

In the realistic Grid environment, since there are many users allocating their tasks to com-

puters and information related with resource status in each computer is updated periodically,

it is likely that divided sub-tasks would concentrate on a small number of computers with

relatively high utilization. This tendency may lead to a critical performance degradation of

task allocation schemes. Therefore, in this subsection, I assume that computers also act as

Grid users and allocate some of their tasks to each other, and I investigate the impact of the

update interval on the performances of Scheme 2 and Scheme 3. The simulation environ-

ment is shown in Fig. 4.15, in which the number of computers N is set to 120, and they are

evenly categorized into three classes in terms of CPU performance, namely class A, B, and

C, and their CPU performance is denoted by SA, SB and Sc, respectively. As an example of

task allocation, in Fig. 4. 15, computers Ri and Ri2o assign their tasks at almost the same time
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without considering the task allocation of each other, which may lead to the critical perfor-

mance degradation due to the concentration of a 1arge number of tasks on a small number

of computers. Since the CPU utilization p.i, which is associated with tasks allocated from

other computers, as given by Eq. (4.8), differs among the three classes, I thus redefine the

"average" CPU utilization P. as follows:

                        p.-2.W Å~g(gl); +Å}+ Å}). (4.g)

In the simulation, the CPU utilization of each computer due to tasks generated and executed

by themselves, p;., is set to O.1, andP. is set to O.4, so that the total CPU utilization pi ofeach

computer is O.5.

   Figure 4. 1 6 depicts the average and 99th-percentile application turnaround time in Scheme

2 and Scheme 3 with the threshold of O.1, where 99th-percentile application turnaround time

means that 999o of application turnaround times over al1 experiments distribute within this

value. As shown in this figure, the application turnaround time in Scheme 3 is almost the

same as that of Scheme 2, and it increases very little as the update interval in each scheme in-

creases, whereas the 99th-percentile value of the application turnaround time in Scheme 2 in-

creases markedly compared with that in Scheme 3. ln other words, in the worst case, Scheme

2 leads to critical performance degradation as expected previously and cannot achieve the

stable performance.

   Figure 4. 17 shows the ratio of sub-tasks allocated to computers belonging to each class as

a function of the update interval of the resource information. It is found from this figure that,

in Scheme 2, sub-task allocation from other computers is concentrated on a few computers

belonging to class C with high CPU performance. Even if the CPU utilization of this class of

computers is low at the start of an update period, these computers are likely to be allocated

more sub-tasks than others with low or medium CPU performance. Remarkably, this happens

when the update interval becomes 1arge, namely the magnitude of the uncertainty of the

resource status is 1arge, and this leads to performance degradation in Scheme 2, as shown

in Fig. 4.16. 0n the other hand, Scheme 3 allocates sub-tasks to al1 computers in almost
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the same manner as in the analysis, so that, the resource capability does not change greatly

during one update interval. Hence, Scheme 3 can achieve a moderate performance from

the practical viewpoint, while Scheme 2 may degrade the performance, in particular, of the

99th-percentile application tumaround time in a realistic environment, in which the resource

utilization information used for task allocation must be uncertain due to the update delay.

4.5 Conclusion

In order to examine the behavior of sub-task allocation schemes in the Grid computing en-

vironment, first I analytically evaluated performances of some task allocation schemes by

modeling each computer as an M/G/1-PS queue. I adopted three task allocation schemes in

this chapter: random selection of computers (Scheme 1), selection of n least-loaded com-

puters based on the current resource availability (Scheme 2), and random selection of n

computers from among them with processing capability greater than a predefined threshold

(Scheme 3).

   The performance of each scheme was investigated preliminarily in terms of the average

application turnaround time as a function of the average CPU utilization of computers for the

case in which the load due to the task allocation from a single user is very small and it does

not change the long-term CPU utilization of computers. Through some numerical results,

I found that Scheme 1 is not usefu1 due to randomly chosen computers with high loads.

Scheme 2 outperforms both of the other schemes, even though it causes the concentration of

sub-tasks on a few computers. Scheme 3 achieves moderate performance over a wide range

of average CPU utilization without concentrating task allocation.

   Next, assuming the realistic Grid environment where information related with the re-

source status in each computer is updated periodically, I compared the performance obtained

by the simulation with that of the analysis when there is a single user, and I investigated the

application turnaround time of Scheme 2 and Scheme 3 when all computers act as "users"

and some of their own tasks are allocated to each other. The analysis agrees with the simu-
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lation very well when there is a single user. Furthermore, when al1 computers act as users,

Scheme 3 succeeds in handling the uncertainty imposed by both the dynamic change of re-

source utilization and the periodic update of resource information in a way to introduce some

randomness in selecting computers, whereas Scheme 2 leads to critical performance degra-

dation due to the concentration of task allocation with a long update period. Thus, I can

conclude that Scheme 3 is applicable to a realistic Grid environment.
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Chapter 5
                            'ParalRel Transferable Uniform
                                                  'Multi-Round ARgorithm for Achieving

Minimum AppRication TUrnaround

Times in Heterogeneous Distributed

Computing Environments

5.1 Introduction

As the performance of wide-area networks and off-the-shelf computers increases, 1arge-scale

distributed computing has become feasible, realizing a virtual high-performance computing

environment by connecting geographically distributed computers via the Intemet. Such an

environment has high heterogeneity in terms of computation and communication resource

capacities of individual computers (i.e., the computation power of each computer and the

communication bandwidth of the link attached to the computer). This type of Grid com-

puting has recently increased in popularity for parallel applications [FK98a, FKTOI]. The

master/worker model is suitable for loosely coupled applications and particularly suited to

Grid computing environments involving a 1arge number of computers that have different re-

source capacities each other. In this model, a master with application tasks (and data to

                                                                       87
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be processed) dispatches subtasks to several workers, which process the data allocated by

the master. Such data transmissions are usually performed by using TCP (Transmission

Control Protocol) that provides a reliable data delivery between the master and the worker.

A typical instance of applications based on this model is a divisible workload application

[BGMR96, Rob031, where the master divides the data to be processed into an arbitrary num-

ber of chunks and then dispatches the chunks to multiple workers processing the chunks. For

a given application, it is assumed that all chunks require identical processing. This divisibil•-

ity is encountered in various applications such as image feature extraction, where a complete

task typically consists of many subtasks that may involve operations on pixels or clusters of

pixels at a common level [G093].

   Recent applications have involved 1arge amount of data, and the transmission time of

data sent from the master to workers is no longer negligible compared to the computa-

tion time [CFK'OO]. Therefore, the master is required to schedule the processing workload

of workers effectively by considering the impact of communication time and computation

by each worker on the application turnaround time. A number of scheduling algorithms

have been proposed in which the master dispatches workload to workers in a `multiple-

round' manner to overlap the time required for communication with that for computation

{BGMR96, YC03b, YC02, BLR03]. These methods, such an the uniform multi-round al-

gorithm (UMR), can mitigate the adverse effects of time spent to transmit 1arge amounts

of data, and have made it possible to achieve good application turnaround times. However,

these methods assume a homogeneous network model, in which both the networks associ-

ated with the master and workers have the same transmission capacity, adopting a sequential

transmission model. In this model, the master uses its network resource in a sequential man-

ner, that is, the master transmits data to one worker at a time [CBLR02, RosOl]. In actual

networks, where the master and workers are connected via a heterogeneous network, the se-

quential transmission model is unable to minimize the adverse effects of data transmission

time on the application turnaround time. Therefore, in this study, a new scheduling algorithm
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called parallel transferable uniform multi-round (PTUMR) is proposed based on the UMR

algorithm [YC03b, YC02]. In the PTUMR algorithm, the master divides workers into appro-

priate groups and transmits chunks to all workers in each group in parallel in order to treat

the set of workers in a group as one virtual worker to whom the master transmits chunks in a

sequential manner like in UMR. The PTUMR analytically detempines how application data

should be divided and when data should be sent to workers in heterogeneous environments

to nearly minimize application tumaround time. Performance evaluations indicate that the

algorithm can reduce the adverse effects of data transmission time on application turnaround

time more thoroughly compared with the conventional UMR under various environments

with a wide range of heterogeneity, allowing turnaround times close to the lower limits to be

achieved.

   This chapter is organized as follows. In Section 5.2, the conceptual basis for multiple-

round scheduling and the conventional UMR algorithm are introduced. The proposed PTUMR

algorithm is presented in Section 5.3, and its performance is investigated in Section 5.4. The

chapter is finally concluded in Section 5.5.

5.2 ConventionalUMRSchedulingAlgorithm

The concept behind the multiple-round scheduling method and the heterogeneous distributed

computing model employed in this study are introduced briefiy followed along with a de-

scription of the standard UMR algorithm as an example of existing multiple-round schedul-

ing algorithms.

5.2.1 Multiple-RoundSchedulingMethod

Recently, a number of scheduling methods have been proposed in which the master dis-

patches data to workers in a multiple-round manner in order to overlap communication with

computation and thereby reduce the application tumaround time. Figure 5.1 shows an exam-
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Figure 5.1 : Multiple-round scheduling.

ple of this scenario, where the master dispatches a workload of the application to one worker.

In single-round scheduling, the master transmits the entire set of application data W [units]

to the worker at one time. In multiple-round scheduling, on the other hand, the data W is

divided into multiple chunks of arbitrary size and processed in M rounds. Here, in Round

J' (= O, • • • , M - 1), the master allocates one chunk of Cj [units] in length to the worker. In

data transmission, the master transmits data to the worker at a rate of B [unitsls], and the

worker computes the data allocated by the master at a rate of S [units/s]. In addition, it is

assumed that the time required for the workers to return computation results to the master

is smal1 enough to be neglected. Prior to the start of data transmission, a fixed time interval

independent of the size of the chunk is added due to some initial interaction between the

master and workers such as TCP connection establishment. It is assumed that the size of

data exchanged in this interaction is small enough so as that the overhead is also indepen-

dent of the bandwidth of the network between the master and the worker. This fixed interval

added at the start of data transmission is defined as E [s]. Simi1arly, a part of the computation

time is independent of the chunk size is defined as 6 [s]. For example, this time includes

preparation and invocation time to start the computational process on each worker. Using

the above definitions, the time T,...j needed for the master to send Cj units of a chunk to a

worker is formulated as follows.

                             Tcommj =E+ ft• (5•1)
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The time T...pi required for the worker to compute Cj units of a chunk received in Round j

is modeled as follows.

                            Tcompj -'--6+gt• ' (5•2)

   Multiple-round scheduling is briefly compared below with single-round scheduling in

terms of the application turnaround time Tid,.i under the ideal assumption that each worker

never enters the idle computation state once the first chunk has been received. In single-

round scheduling, the worker starts computation after receiving the entire set of data W from

the master, as shown in Fig. 5.1. Therefore, the application turnaround time in single-round

scheduling is represented as follows.

                                   WW                         Tideal=E+ i}' +6+ ff• (5.3)

In multiple-round scheduling (over M rounds), the worker can start computation after receiv-

ing only Co units of the data in the first round (Round O). The application turnaround time is

therefore given by

                        Tideai = E+StL+tLoi(6+{]tL),

                              = E+ St +Mx6+ ge. (s .4)

in single-round scheduling, the data transmission time directly affects the application turnaround

time, whereas under multiple-round scheduling, the adverse effects of data transmission time

on the application turnaround time can be reduced because the data transmission time in

Round 1 and later can be overlapped with the computation time. However, the use of a large

number of rounds would lead to an increase in the total overhead, and eventually result in

a degradation of application turnaround time. Thus, optimizing both the number of rounds

and the size of chunks so as to minimize the application turnaround time is a key issue in

multiple-round scheduling.
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Figure 5.2: Distributed computing model.

5.2.2 HeterogeneousDistributedComputingEnvironment

The heterogeneous distributed computing model employed here is shown in Fig. 5.2. The

master and N workers are connected to a high-speed network that is free of bottlenecks, that

is, the internal links of the backbone network are assumed to have much higher transmission

capacities than the links attached directly to the master and workers such that congestion on

internal link is negligible.

   This model has heterogeneity in terms of the computation and communication capacities

of workers, namely, the computation rate Si [units/s], the data transmission rate Bi [units/s]

of the link attached to the worker, the overhead 6i [s] added at the computation time, and the

overhead Ei [s] added at the data transmission time. In my study, these parameters of each

worker are randomiy and independently chosen according to some uniform distributions (See

Section 5.4).

   Furthermore, the data transmission rate of the link attached to the master is defined as
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Figure 5.3: Timing chart of data transmission and worker processing under UMR.

Bo, which can be shared by multiple data transmissions between the master and multiple

workers. I define the actual data transmission rate between the master and the worker i as

rBi, which may be smaller than Bi due to the sharing of master-side link capacity by multiple

data transmissions.

5e2e3 UMR

UMR is an example of multiple-round scheduling algorithm [YC03b, YC02]. The dis-

tributed computing model for UMR is shown in Fig. 5.2. UMR adopts the sequential trans-

mission model, by which the master transmits a chunk to one worker at a time. Therefore,

the actual data transmission rate rBi between the master and worker i becomes min{Bi, Bo}.

Figure 5.3 illustrates how the data is transmitted to workers and then processed under UMR,

where the size of chunk allocated to the worker i i'n Round j i's denoted by Cj,i. In het-

erogeneous environments in terms of resource capacities of workers, the master determines

the amount of chunks allocated to each worker in a way that the computation time becomes
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identical for all workers during a round for ease of analytical approach. To reduce the data

transmission time in the first round, small chunks are transmitted to workers in the first round,

and the size of chunks then grows exponentially in subsequent rounds.

   In UMR, the number of rounds and the chunk size in the first round have been approx-

imately optimized under the sequential transmission model so as to mitigate the adverse

effects of data transmission time on the application turnaround time [YC02]. However, the

sequential transmission model adopted in UMR prevents the rninimization of application

turnaround time in real network environments, particularly when the transmission capacity

of the master-side link is larger than that of the worker-side links. Under such conditions,

the UMR algorithm cannot utilize the network resource to their maximum. Therefore, UMR

requires further improvements in order to make a better use of the network resources.

5.3 PTUMRSchedulingAlgorithm

In this section, the new PTUMR scheduling algorithm is presented. The PTUMR algorithm

determines how the application data should be divided and when the data should be trans-
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mitted to workers in network environments that allow the master to transmit data to multiple

workers in parallel by establishing multiple TCP connections. The PTUMR is based on the

same distributed computing model (Fig. 5.2) as standard UMR.

   In contrast to UMR, the PTUMR algorithm allows the master to transmit chunks to mul-

tiple workers simultaneously (Fig. 5.4) assuming that Ei can be overlapped among concurrent

transmissions so as to reduce the adverse effects of data transmission time on the application

turnaround time. This extension is applicable and suitable especially for asymmetric net-

works, where the transmission capacity (Bo) of the master-side link is greater than that (Bi)

of the worker-side links, as is often the case in actual network environments. More precisely,

the PTUMR divides workers into appropriate groups to transmit chunks to all workers in

each group in parallel and then treats the set of workers in each group as one virtual worker

to whom the rnaster transmits chunks in a sequential manner like in UMR, where the data

transmission to one virtual worker can be equivalent to the parallel data transmissions to

multiple workers composing that.

   After appropriately grouping the workers, the PTUMR algorittm analytically detemiines

the appropriate number M' of rounds and total size Ro' of the chunks allocated to all workers

in the first round such that the application turnaround time for total amount W of application

data is minimized under a given environment characterized by Si, Bo, Bi, 6i, and Ei (i =

1, 2, . . . , N, where N is the number of all possible workers). This algorithm is explained in

further detai1 below.

5.3.1 Aggregation of Workers in each Parallel Transmission

The algorithm divides the workers into groups, and treats the set of workers in each group as

one virtual worker. The master transmits chunks to the workers composing a virtual worker

in parallel. In this subsection, I describe how to derive the resource capacity of the virtual

worker based on resource capacities of workers composing the virtual worker (grouping

method is presented in Subsection 5.3.3). Here, the number of workers composing virtual
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worker k is denoted by mk and the number of virtual workers used for processing of the

application by vN, and the set of mk workers by Lk.

   The virtual worker k computes the chunk of Cj,k, which is the total size of chunks ailo-

cated to al1 workers composing the virtual worker in Round j, at the rate of vSk, with the

overhead v6k added at the start of the computation. The computation time of virtual worker

k is defined by that of the worker which finishes computing at the latest time among workers

composing the virtual worker k. I assume that the computation time without the overhead 6i

added at the start of computation is identical for all workers composing the virtual worker in

each round. For this assumption, the relation between size cj,i of chunk allocated to worker

l(E Lk) in Round J' and size Cj,k of chunk allocated to the virtual worker k can be derived

based on computation speed Si of worker l and that vSk of virtual worker k such that

                                    Cj,I Cj,k •                            VIELk ------= •                                                                        (5.5)
                                    Sl                                         vSk

From this equation and the assumption described above, the computation time T...pj,, of the

virtual worker k for Round jjs given by

                                                                          '               VtELk Tcompsk=liitlii"'ip,2,x'{6i}=.Csj{'ip,2,x{6i}• (5•6)

From this equation, the 1argest overhead 6i among workers composing the virtual worker k

can be treated as the overhead v6k of virtual worker k. Furthermore, since the size Cj,k of

chunk allocated to the virtual worker k is equal to the sum of chunk size cj,t for all workers

composing that, from Eq. (5.5), the computation speed vSk of the virtual worker k can be

denoted by the sum of Si for al1 workers composing that.

   Next, the virtual worker k receives the chunk of Cj,k at the rate of vBk, and the overhead

vEk is added to the data transmission. Similarly to the computation time,Iassume that the

data transmission time without the overhead Ei added at the start of the data transmission

in each round is identical for all workers composing the same virtual worker. As shown in

Eq. (5.5), the size cj,i of chunks allocated to worker l is determined based on computation

speed Si of the worker. Therefore, the master must transmit these chunks to worker l at
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the rate of rBi (s Bi) so that the data transmission time cj,ilrBi without overhead becomes

identical for all workers composing the same virtual worker k. Here, the relation between

the data transmission rate vBk to virtual worker k and rBi is given as follows.

                           vlELk CJ,l.CJ,k. (s.7)
                                    rBi                                         vBk

From this equation and the assumption for the data transmission, I can give the communica-

tion time T....j,, of the virtual worker k in Round j as follows.

                                             Cj,k                                Cj,l               VI E Lk Tcommj,k = ,B, + iP,2,X{Ei} = ,B, + rp,2,X{Et}' (5'8)

From this equation, the 1argest overhead among all workers can be treated as the overhead

vEk of the virtual worker k. Furthermore, since Cj,k of the virtual worker k is equal to the

sum of cj,t over mk workers, from Eq. (5.7) the data transmission capacity vBk of the virtual

worker k can be denoted by the sum of rBi for all workers composing that.

   In addition, the data transmission rate vBk between the master and the virtual worker k

can be derived by solving the constraint maximization problem as follows.

                          maximize vBk =ZrBi, (5.9)
                                        IELk

                                    Vl E Lk rBl s Bl,

                          subjectto vlELk -t=llS:k,

                                    ZIEL, rBl s Bo.

The 2nd constraint is derived based on Eqs. (5.5) and (5.7), and implies that the master should

group the workers whose computation rate Si normalized by data transmission capacity Bi is

identical. Otherwise, the actual data transmission rate rBi of workers are limited to lower rate

due to the worker with the smallest SilBi, which may result in the critical degradation of the

data transmission rate of the virtual worker. After the derivation of vBk, the data transmission

rate rBi at which the master transmits the data to the worker l in Lk is derived according to

Eq. (5.7).
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   Furthermore, from Eq. (5.6), the relation between the total size Rj of chunks allocated to

all virtual workers in Round J' and the size Cj,k of chunk allocated to the virtual worker k is

given by

                   Cj,k = akxRj +6k, (s.lo)
                          . VSk
                    ak = ZXbl.,vSk' •
                      ' '- vSk Å~ ZZg, {vSk Å~ v6k}
                    6k = zzY.,vSk                                              - vSk Å~ v6k.

As shown in this equation, the size of chunk allocated to the virtual worker is proportional

to its computation speed, that is, the virtual worker with higher computation speed processes

1arger size of chunk.

5.3.2 DerivationofParametersAchievingNearlyMinimumTUrnaround

       Time

The algorithm determines the number M' of rounds and total chunk size Ro' at the first

round that are nearly optimal in terms of minimizing the application turnaround time under

the network model where the master transmits chunks to virtual workers in the sequential

manner like in UMR. in general, virtual workers may enter a computationally idle state while

waiting for transmission of the next chunk to complete. Thus the application turnaround

time T,,.i under PTUMR can be obtained as illustrated in Appendix A for given parameters

(the number M of rounds, chunk size Ro,Ri, • • • ,RM-i). In addition, since T,,ai is difficult

to express analytically, instead of T,,.i, the ideal application turnaround time Tid,.i, which

can be readily represented in analytical form, is derived under the ideal assumption that no

virtual worker ever enters the idle computation state once it has received its first chunk of

data (some workers composing the virtual worker enter the computation idle state). Note that

this assumption is likely to be valid when T,,.i is at its minimum. Furthermore, I also assume

that the time required to compute chunks received in each round is identical for all virtual
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 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Int(M)

{

 Trealfi..,.i = Treal(LM] ' 1, Ro(LM] - 1));

 Trealflo., = Treal(LM], Ro(LMJ));

 Treal.,ii = Treal(rMl, Ro(fMl));

 Treaiceii+i = Treai(rMl + 1, Ro(rMl + 1));

           '
 Treal = Trealfloor-i;

 M+ = LMJ - 1;

 if(Trealfi.., < Treal){

  Treat = Trealfieor;

  M+ = LM];

 }
 if(Treal.,ii < Treal){

  Treal " Trealceii;

  M+ = rMl;

 }
 if(Treat.,ii+i < Treat){

  Treal " Trealceii+i ;

  M+ = rMl+ 1;

 }

 return M+;

}

 Figure 5.5: Procedure for detemining the integer number of rounds.
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workers, which helps an analytical approach for derivation of the appropriate parameters of

the algorithm.

   From this assumption, the master should complete the transmission of chunks to al1 vir-

tual workers for computation in Round j + 1, just before virtual worker vN completes the

processing of the chunk received in Round j. This situation is formulated as follows.

                     vN                    ZTcommj+ik = Tcompj,

                     k=1
               II.li), C.Jii i•k+ii.il], vEk = zzl.yR,J,s,+ZZ(-YIi{ii..S,k,sX,V6k} (s ll)

The left-hand side of the equation above represents the time required for the master to trans-

mit the chunks for Round j + 1 to all virtual workers, and the right-hand side represents the

time required for the virtual worker vN to compute the chunk received in Round j. From

Eq. (5.11), the desired total chunk size RJ• for Round 1' can be detemined by the total chunk

size Ro in the first round as follows.

Rj ---- ej(Ro - y) + y,

     11 ZZU., vSk

(5.12)

               e=                  ZZU-i{aklvBk}'
                  ZZY.,{vSk Å~ v6k}1 ZZY., vSk - ZZI.Y, {]3klvBk} - ÅíZor., vEk

               Y= zzY.,{ak/vBk}-11 zzcr, vsk '

   On the other hand, since the sum of chunks allocated to all virtual workers should be

equal to the total workload (application data size), the relation between the total chunk size

Ro in the first round and the number M of rounds is given by

                    "z" Rj m- (Ro -- l)-/ le- e") + M7 . w. (s.13)

                    j--o

   Using this relation, the application turnaround time Tid,.i under this ideal assumption can

too



5.3. PTUMR SCHEDULING ALGORITHM

be derived, which can be regarded as a function of the number M of rounds, as follows.

        Tideai = Åízy.lvsk(W+MÅ~ll.li]i(VSkÅ~v6k)

                 + li.i), [vskÅ~ ;.i, (aK Å~(il5/k Å~(IIIii.M7')+ Y) +/3K +,,.)]) (s i4)

The derivation process of the application turnaround time Tid,.t is presented in Appendix B.

   Let M' denote the optimal number of rounds in terms of achieving the minimum appli-

cation turnaround time, which can be obtained by solving O Stide"' = O. Then, since the number

of rounds used in PTUMR should be an integer, it is necessary to detemine an appropriate

number of rounds M" as an integer and the corresponding initial chunk size Ro" satisfying

Eq. (5.13), if M' is not an integer. Note that, supposing Eq. (5.12) holds, the application

turnaround time T,,.i(M, Ro) can be calculated as a function of the given total chunk size Ro

in the first round and the number M of rounds. Therefore, as shown in Fig. 5.5, the best M'

of four integers near M', LM"J - 1, LM"1, rM'1, and rM'l + 1, is chosen by comparing T,,.i

corresponding to each of them. Here, Ro(M) denotes the total chunk size in the first round

corresponding to the number M of rounds so as to satisfy the Eq. (5.13).

   Let M' denote the number of rounds obtained using the procedure shown in Fig. 5.5, and

let Ro' --- Ro(M') be the total chunk size in the first round. in general, since T,,.i(M",Ro')

is not equal to Tid,.i(M') and is likely to be greater than Tid,.i(M'), (M', Ro') is not ensured

to be optimal in terms of minimizing the application turnaround time T,,.i. However, as

indicated in Section 5.4, T,..i(M', Ro') may be quite close to the theoretical lower bound of

Tb..nd that would be obtained by assuming an infinite capacity for all communication links.

5.3.3 GroupingMethod

The proposed algorithm, PTUMR, groups the workers and treats the set of workers in the

same group as one virtual worker. As described in Subsection 5.3.1, since the resource ca-

pacity of the virtual worker depends on that of each worker composing the virtual worker, the
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grouping method strongly affects the performance of PTUMR. In this subsection, I propose

the grouping method by considering the advantage of the parallel data transmission to mul-

tiple workers demonstrated in my previous study. The details of this method are explained

below.

   First, al1 workers are sorted in ascending order of ri = Sil min(Bo, Bi) for grouping work-

ers whose ri are close to each other not to degrade t-eir data transmission rate vBk derived

according to Eq. (5.15). The workerS are put into one group up to the maximum number of

workers satisfying the following equation because the master-side link capacity Bo should

be fu11y utilized to mitigate the adverse effect of data transmission time on the application

turnaround time.

                                Mk                               ZBiSBo. (5.15)
                                l=1
On the other hand, the overlap the overheads Ei at the start of the data transmission for

multiple workers can also mitigate the adverse effect of the data transmission, even when

the data transmission capacity Bo of the master-side link is close to that Bi of the worker•-

side link. Therefore, I select additional x workers to the firstly selected workers (according

to Eq. (5.15)) for the group k. Note that the sum of the number of firstly selected workers

and x (the number of additional ones) is referred to as mk defined in Section 5.3.1. 0n the

other hand, increasing x reduces the transmission speed for each worker due to sharing of

the trapsmission capacity of the master-side link by multiple data transmissions. Therefore,

there may exist an optimal number x of additional workers that minimizes the application

turnaround time (no covered in this chapter). This grouping is performed repeatedly for

subsequent groups until all workers are selected. In this method, I assume that x is identical

for al1 group.

   The set of workers in the same group are treated as one virtual worker k to whom the

computation rate vSk, data transmission rate vBk, and latency parameters v6k and vEk can be

derived as described in Section 5.3. 1.

   After this virtualization, the virtual workers to be used by the master for processing the
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application should be detemiined (i.e., limited) so as to prevent the performance of PTUMR

from degrading due to allocation of the workload to the virtual worker with too low capacity.

In this chapter, I employ the resource selection scheme presented in [YC02], which sorts vir-

tual workers according to vrk = vSklvBk, and selects vN' virtual workers out of vN satisfying

the following equation.

                                vN' '
                               z                                   vrk<1. (5.16)
                                k=1
By preferentially selecting virtual workers with higher transmission rate rather than faster

computation speed according to the above equation, the master can transmit 1arger sized

chunks to virtual workers during their computation. Therefore, under the resource selection,

the data transmission can be overlapped with the computation effectively, which can mitigate

the adverse effect of the data transmission time on the application turnaround time.

5.4 PerformanceEvaluation

In this study, the distributed computing environment is heterogeneous in workers' resource

capacities, and I assume that the computation rate Si, worker-side link capacity Bi, and

latency parameters Ei and (Si corresponding to related overhead of workers follow the uniform

distribution. The range of the distribution is decided based on the parameter het which

represents heterogeneity of each resource capacity in the environment, where I employ a

coefficient of variation of each resource capacity as het. Resource capacity of each worker

is randomiy selected over the range as follows.

                ((1- ViiÅ~het)Å~mean,(1+ ViiÅ~het)xmean). (5.17)

where mean can be set to the average capacity over all workers, namely S, B, 6, and E listed

in Tab. 5.1.

   The performance of the PTUMR algorithmis evaluated in terms of application turnaround

time Treai(M',Ro') for the number M' of rounds and the total chunk size Ro' for Round O,
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Table 5.1 : Model parameters and their values examined in performance evaluation.

W loo,soo,looo,sooo,loooo[units]

N 1,2,•••,100

s 1[units/s]

Bo 2oo,4oo,•••,2ooo[units/s]

B 200[units/s]

E O.OO1,O.O05,O.Ol,O.05,O.1[s]

5 O.1[s]

which are derived in a way explained in the previous section. The effectiveness of PTUMR

is evaluated by comparing the achievable turnaround time T,,.i with the lower bound Tbound,

which corresponds to the best possible application turnaround time in an environment where

the network resources are sufficient to render the data transmission time negligible, and any

latency corresponding to related overhead is not added. In this environment, the data trans-

mission rate Bi i's close to infinity and the overheads 6i and Ei are close to O for all workers,

so that, the single-round scheduling (M = 1) achieves the minimum application turnaround

time as shown in Eq. (5.14). Therefore, from Eq. (5.14), Tb...d is obtained as follows.

                                  WW                        Tbound = zzcr., .sk= z:..i s,g (5•i8)

   In the heterogeneous environment, resource capacities Si, Bi, 6i and Ei of each worker

change at every trial, so that, 100 experiments are conducted under the condition that the

average resource capacity S, B, 6, e for all workers are fixed. And then, the mean of the

application turnaround time T,..i and that normalized by the lower bound Tb...d for all ex-

periments are treated as a performance measure of scheduling algorithms.

   The impact of computational and network resources on the application turnaround time

Treai is investigated below, and the performance of PTUMR is compared to that of UMR

using the parameters listed in Tab. 5.1. The appropriate scale of applications for the pro-

posed algorithm is then detemiined based on the total amount of application data. In these
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evaluation, all resource capacities, Si, Bi, 6i, and Ei, of each worker are randomiy chosen

according to the uniform distribution described above, and the heterogeneity het of my eval-

uation model is first set to some value indicating moderate heterogeneity, say 2;G. At last,

the effect of the heterogeneity het on the performance of scheduling algorithms is evaluated

in further details.

5.4.1 Impact of computational and network resources on application

       turnaround time

The impact of the computational and network resources on the average application turnaround

time is examined here by assuming a total size W of 1000. In this evaluation, the number x

of additional workers in each group is set to 2 or 10 (Optimal number of additional work-

ers is not covered in this chapter). Note that the additional workers are the workers further

added to the group after the master-side bandwidth can be already fu11y utilized, as defined

in Section 5.3.3. First, I investigate the impact of the number of workers on the performance

of scheduling algorithms in my evaluation model assuming a master-side link capacity Bo

of 1000. Figure 5.6 shows the application turnaround time T,,.i as a function of the num-

ber N of workers. As A[ increases, the application turnaround times under all scheduling

algorithms presented in this chapter, PTUMR with x of 2, that with x of 10, and UMR, re-

markably decrease. This is because, with the increase in the number of workers, the size

of chunks allocated to each worker decreases, which further reduces the computation time

on each worker. On the other hand, Fig. 5.7 shows the average normalized turnaround time

TreailTbound as a function of N in order to compare the performance of the scheduling algo-

rithms in further details. From this figure, you can see that when N is large, PTUMR can hold

the increase of the normalized turnaround time by transferring chunks to multiple workers to

utilize the network resources at master-side to their maximum, while the difference between

Treai of UMR and Tbound increases with N. Furthermore, when the number x of additional

workers is set to 10, PTUMR achieves T,,.i close to the lower bound Tb...d for any N by
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Figure 5.7: Impact of number of workers on normalized turnaround time.
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aggressively overlapping the overhead 6i added at the start of data transmission to multiple

workers.

   Furthermore, the performance of the PTUMR algorithm is evaluated in more detai1 below

in reference to Fig. 5.8 and 5.9, which show the effect of Bo and the average value of Ei on

peiformance for 100 workers (N). Figure 5.8 shows the application turnaround time T,,.t

normalized by the lower bound Tb...d as a function of the transmission capacity Bo on the

master-side link. The sequential transmission model in UMR limits the transmission speed

between the master and each worker to the capacity Bi of worker-side link. Therefore, even

if Bo increases, the UMR algorithm cannot effectively utilize the network capacity, and thus

cannot improve the application turnaround time, By contrast, the application turnaround time

under both PTUMR with x of 2 and that with x of 1O decreases with increasing Bo because the

algorithm can utilize the fu11 capacity by transmitting chunks to multiple workers in parallel.

However, after Bo exceeds 1OOO, PTUMR does not provide any funher noticeable reduction

in the application turnaround time, because the adverse effect of the data transmission time

on the application turnaround time becomes extremely small when the data transmission

capacity is much 1arge.

   Figure 5.9 shows the relationship between the average overhead F at the start of data

transmission and the application tumaround time T,..i normalized by the lower bound Tbound.

PTUMR overcomes UMR for any E in terms of the normalized tumaround time, and es-

pecially when x is set to 10, PTUMR achieves T,,.i close to the lower bound Tb...d for a

wide range of overhead E. This is because PTUMR can reduce the impact of the overhead

on the application tumaround time by aggressively overlapping the overhead Ei for multiple

workers.

   This evaluation demonstrates that the PTUMR algorithm can achieve application turnaround

time quite close to the lower bound through effective utilization of the transmission capacity

on the master-side and overlapping of the overhead for multiple workers.
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: Impact of overhead at start of data transmission on normalized turnaround time.
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Figure 5.1O: Impact of total workload (data size) on normalized turnaround time.

5.4.2 Impact of total workload on application turnaround time

Next, the effect of the total amount VV of application data on the application turnaround

time Treai is evaluated assuming a master-side transmission capacity Bo of 1ooO and 100

workers (N). Figure 5.10 shows the application tumaround time T,,.i normalized by the

lower bound Tb...d as a function of the application data size W. Under PTUMR, I set the

number x of additional workers to 2 or 10. Both PTUMR with x of 2 and that with x of 10

provide excellent performance quite close to the lower bound for any W and any e, that is,

the PTUMR algorithm effectively eliminates the performance degradation associated with

these factors. Under UMR, the normalized turnaround time becomes quite poor as the total

data size W decreases, although good performance is achieved at large W. The degradation

of performance at low VV under UMR can be attributed to the increase in overhead ratio by

decreasing the data size, which can be overcome by PTUMR. These results therefore show

that the PTUMR algorithm can effectively schedule applications of any size by minimizing

the adverse effects of overhead on the application turnaround time.

109



CHAPTER 5. PARALLEL TRANSFERABLE UNIFORM MULTI-ROUND
ALGORITHM FOR ACHIEVING MINIMUM APPLICATION TURNAROUND TIMES
IN HETEROGENEOUS DISTRIBUTED COMPUTING ENVIRONMENTS

5.4.3 Impact of heterogeneity of the resource capacity of workers on

       application turnaround time

Finally, I investigate the effect of heterogeneity het, which is the coefficient of variation

of each resource capacity of workers, on the performance of scheduling algorithms in my

evaluation model assuming the total amount W of application data of 1000, a master-side

transmission capacity Bo of 1000, the average overhead E at the start of the data transmission

of O.Ol, and 100 workers (N). When I evaluate the impact of the heterogeneity het of each

resource capacity, one of resource capacities Si, Bi, 6i and Ei of each worker is randomly

chosen according to the uniform distribution with the heterogeneity het, and others are set to

average values, S, B, 6, and E.

   Figures 5.1 1 and 5.12 show the average normalized turnaround time TreailTbound and the

maximum one for 1OO experiments as a function of the heterogeneity het, where the number

x of additional workers under PTUMR is set to 10. In these figures, the data points entitled

`All' correspond to the results in the condition where all recourse capacities of each worker

are randomiy selected according to the uniform distribution with het. As shown in Fig. 5.11,

for a wide range of het under the condition where all resource capacity are randomly chosen,

PTUMR overcomes conventional UMR in terms of the average normalized turnaround time.

However, when the heterogeneity is 1arge, the application tumaround time in the worst case

of PTUMR becomes 1arger than that of UMR. With the increase in the heterogeneity of

resource capacities of workers, the set of workers composing the virtual worker may include

some workers with much lower resource capacities than others, which may lead to critical

degradation of the resource capacity of the virtual worker as mentioned in Section 5.3.1.

Therefore, the application turnaround time in the worst case of PTUMR markedly increases

with het, and when the heterogeneity is large, PTUMR may lead to critical performance

degradation compared with UMR.

   On the other hand, as the heterogeneity in the worker-side link capacity Bi jncreases,

the average performance and the worst one under both UMR and PTUMR degrades remark-
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ably as well, while the performance is insensitive to the heterogeneity of other capacities of

the worker. Therefore, Ican say that the effect of heterogeneity of Bo is dominant in the

heterogeneous distributed computing model.

   To hold the degradation of the resource capacities of virtual workers, I present one ex-

ample of a modified PTUMR which selects workers whose resource capacities are close to

each other. This modified version of PTUMR is similar to the conventional version in terrns

of its fundamental grouping method, which divides the workers into groups under the way

explained in Section 5.3.3. In addition, under the modified PTUMR, if ri of the next worker

is l.5 times larger than the average ri of all workers which have been already selected in the

group, no worker does not further join the group and the master will create another group

by including the worker and its subsequent ones. I refer to this modified method as PUTMR

with resource capacity threshold.

   I evaluate the performance of PTUMR with resource capacity threshold in heteroge-

neous distributed computing environments where all resource capacities of each worker are

randomiy chosen according to the uniform distribution. Figures Figs. 5.13 and 5.14 shows

the average normalized turnaround time T,,.ilTb...d and the maximum one for 100 trials as

a function of the heterogeneity het of resource capacities. PTUMR with resource capacity

threshold can hold the increase of the normalized turnaround time and achieve the applica-

tion ,turnaround time close to the lower bound even in the worst case for a wide range of the

heterogeneity het, while both the conventional PTUMR and UMR remarkably degrade their

performance. From these results, I can say that how the workers are grouped strongly affects

the application turnaround time, in particular, when the resource capacity is highly hetero-

geneous. Funhermore, PTUMR can achieve the excellent turnaround time performance by

grouping the workers in an appropriate way even in the highly heterogeneous case.
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5.5 Conclusion

The amount of data handled by distributed applications has recently increased, with the re-

sult that the time required for data transmission from the master to the workers has begun

to degrade the application turnaround time. The adverse effects of data transmission time

on the application turnaround time can be mitigated to a certain extent by employing a

multiple-round scheduling algorithm such as UMR to overlap the data transmission time

with the computation time. However, as UMR adopts the sequential transmission model, it

cannot minimize the application turnaround time especially in asymmetric networks where

the master-side link capacity is greater than the worker side link capacity.

   In this chapter, a new multiple-round scheduling algorithm adopting a multiple transmis-

sion model was introduced as an extension of UMR that allows for application data to be

transmitted to multiple workers in parallel by establishing multiple TCP connections simul-

taneously. The newly proposed algorithm PTUMR focuses on how to group the workers

for parallel data transmissions, and determines appropriate parameters of the chunk size and

the number of rounds that are nearly optimal in terms of achievable application turnaround

time. Consequently, it can outperform the UMR for any application data size and network

condition in various heterogeneous environment. Furthermore, to cope with the cases of con-

siderably high heterogeneity, I improved the PTUMR to keep the heterogeneity of workers'

capacities in each group within a certain degree, and showed that the improved version of

PTUMR always achieved the application turnaround time close to the lower bound even in

the distributed computing environments with high heterogeneity.
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Appendix A: Derivation of Application TUrnaround Time

Treal

Derivation process of the application turnaround time T,..i under PTUMR is illustrated in

Fig. 5.15. In this figure, compj,k and commj,k is defined as the time when the virtual worker k

completes processing chunks received in Round 1', and when the master finishes transmitting

the chunk to the virtual worker k in Round j, respectively.

   The derivation process of T,..i consists of three phases. In the first phase, I recursively

derive the time at which each virtual worker completes processing chunks received in each

round. This is shown in Fig. 5.15, line 6-14. Except for the last round (Round M-1), the

size Cj,k of the chunk transmitted to the virtual worker k in Round j corresponding to Ro is

derived according to Eqs. (5.10) and (5.12). In the second phase, the time when each virtual

worker completes processing the last chunks is given on line 16-22. Note that the size of

the last chunk, which is denoted by Ci.,t,k, for the virtual worker k, should be chosen in a

way that every virtual worker completes the processing of its last chunk with one accord,

thereby preventing any virtual worker from entering the idle state before the entire workload

has been finally processed. I call it the last-chunk alignment. The need for the last-chunk

alignment arises from the difference in time at which each virtual worker began to process

its initial chunk. Finally, T,,.i can be obtained on line 24.

Appendix B: Derivation of Application Turnaround Time

Tideai under Ideal Assumption

First I derive Ti' d,.i, which is the ideal application turnaround time in case without the last-

chunk alignment (See Appendix A), as follows.

                 Tideai = [Ii.i],(g&i+vtk)+tLS(.Cs"i".+v6.N). (s.ig)
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1. comm-1,.N = O;

2. FOR (k = 1; ks vN; k+ +)

3. comp-1,k = O;

4. }

5.

6. FOR (j=O; j<M-1; j++){
7. commj,1 = commj-1,.N + (vfl + S/1 );

8. FOR (k = 2;ks vN;k+ +){

g. commj,k = commj,k-1 + (vEk + :lltS•k );

        '10. }

11. FOR (k = 1; ks vN; k+ +){

12. compj,k = max{compj-1,k, commj,k} + (v6k + ft/tk);

13. }

14. }

15.

16. commM-i,i = commM-2,vN + (vEi + Ciaii'i);

17. FOR (k = 2; ks vN; k+ +){

18• commM-i,k = commM-i,k-i + (v6k + Elf/f\ai'ik );

19. }

20. FOR (k = 1; ks vN; k+ +){

21. compM-i,k = max{compM.2,k,commM-i,k} + (v6k + !}/Zffig&S"k);

22. }

23.

24• Treal = MaX{COMPM-1,k};
       k

  Figure 5.15: Derivation Process of Application Turnaround Time Treai.

116



5.5. CONCLUSION

which indicates the time at which the virtual worker vN completes processing the chunk

received in the last round.

   Next I consider the last-chunk alignment to reduce the application turnaround time. in

order to have all virtual workers to complete processing the last round chunk with one accord,

the master modifies the size of chunks allocated to virtual workers in the last round. Here,

the difference Ak in the time required for the virtual worker k to perform computation of the

last chunk and that for the virtual worker vN is expressed as follows.

               Ak = KII.Illlk.i Dk =(Cvigsi'k + v6k) -(Cvigst.,NvN + v6.N). ' (s.2o)

                                         '
where Dk indicates the difference in time at which the virtual worker k - 1 start computing

the last chunk and the time at which the virtual worker k start computing the last chunk. In

my method, it is assumed that the amount of all chunks received by all virtual workers in the

last round in case with the last-chunk alignment is equal to that in case without the last-chunk

alignment. For this assumption, from Eq. (5.20), the relation between the total size RM-i of

the last chunks and the size Ci.,t,.N of the last chunk allocated to the virtual worker k can be

formulated as follows.

          Clast,vN = 2]I,lilii VvNsk(RM-i+#tli vSk(vik-tlltiilll.iDK))-vs vNxv6,N (s.2i)

In PTUMR, the difference in the time at which the master starts allocating the initial chunk to

the virtual worker k- 1 and that to the virtual worker k becomes Dk, because the computation

time in each round is assumed to be identical for all virtual workers. Therefore, Dk is given

by

                                        Co,k                                           • (5.22)                             Dk = 6k+                                        vBk

   Under the last-chunk alignment, the application turnaround time Tid,.i is smaller than

that Ti' d,.i in case without the alignment by the difference in the computation time of the

chunk of CM-i,.N and that of Ci.,t,.N. Therefore, from Eqs. (5.20), (5.21) and (5.22), Tid,.i is
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formulated as follows.

Tideai = T;d,.i - (( CvMs-.iiN + v6vN) - ( CvigS."NVN + v6.N)) ,

    . 1 (w+Mxli.li]1(vSkXV6k)

                CVK Å~ (ftt. Å~(W-M7)+7) +/3K
ZWi VSk

+ li.li, [vskÅ~ IE.1, (
vBK .vEK

)l)
(5.23)
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Chapter 6

Concluding Remarks

In this dissertation, in order to efficiently provide the next generation distributed applica-

tions such as the Grid computing and the P2P application, I have focused on the exten-

sionlmodification of the existing resource management architecture which helps the users

to discover the required resource and the existing scheduling algorithm which efficiently

utilizes the gathered resource for the users' objective.

   First, in Chapter 2, I have presented the resource management architecture for the Grid

computing and P2P application. Especially, for the P2P network, I have shown the replica-

tion method which improves the search performance and the performance in load-balancing

by djstributing the replicas of the original data over the entire P2P network. in addition, the

scheduling strategies for the Grid computing have been shown.

   Next, in Chapter 3, I have focus on the resource management architecture for the P2P

application, and have presented new replication methods balancing the storage load between

peers in the P2P network. Due to the characteristic of the P2P network that the degree of each

peer follows the power-law, the storage load concentrates on a small number of high-degree

peers. In order to achieve the storage load-balancing without deteriorating the search perfor-

mance too much, I have proposed two replication methods which make replicas of the data

on some chosen peers. One method, Path Random Replication, chooses the peers randomiy

with a predetermined replication ratio, and the another method, Path Adaptive Replication,

further improves the procedure in the decision to make a replica on a peer depends on how

much storage is still available on it as well as the predetemiined replication ratio. I have
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evaluated the performances of both methods through computer simulations. My results have

shown that the latter method, Path Adaptive Replication, could extremely improve the per-

formance in load balancing by using each peer's ,local information on resource availability.

Fumhermore,Iconsidered the case where new data is added to the system; in order for the

system to work well, I have modified Path Adaptive Replication by considering when the

required data is allocated on the peer as well as considering the information on resource

availability. As a result, Path Adaptive Replication have achieved effective load balancing

while limiting the degradation of the search perforrriance within an acceptable level.

   In Chapter 4, in order to efficiently utilize the resources, I have evaluated the impact

of the characteristics of the resource management architecture for the Grid environment on

the resource selection for application tasks. First I have analytically evaluated performances

of the task allocation schemes by modeling each computer as an MIG/1-PS queue. I have

adopted three task allocation schemes: random selection of computers (Scheme 1), selection

of least-loaded computers based on the current resource availability (Scheme 2), and random

selection of computers from among them with processing capability greater than a predefined

threshold (Scheme 3). Through numerical results, I have found that Scheme 2 outperforms

the other schemes in terms of the task execution time, and selects a few computers with the

highest performance. On the other hand, Scheme 3 achieves moderate performance over

a wide range of average CPU utilization without concentrating task allocation on specific

computers. Next, I have evaluated the impact of the concentration of task allocation through

the computer simulation with respect to the realistic Grid environment, where informat' ion

related to the resource utilization in each computer is updated periodically and all computers

act as "users" which allocate application tasks each other. As a result, some randomness in

Scheme 3 have succeeded in handling the uncertainty imposed by both the dynamic change

of resource utilization and the periodic update of resource information, whereas Scheme 2

leads to critical performance degradation due to the concentration of task allocation with a

long update period.
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   In Chapter 5, by focusing on the scheduling algorithm for the Grid computing whjch ef-

ficiently utilize the resources gathered for the application processing, I have proposed a new

multi-round scheduling algorithm. The existing algorithm, UMR, can mitigate the adverse

effect of the transmission time of a 1arge amount of application data by overlapping the data

transmission time and the computation time. However, UMR adopts the sequential trans-

mission model, it cannot minimize the application turnaround time especially in asymmetric

networks where the master-side link capacity is greater than the worker side link capacity.

Therefore, I have proposed a new multiple-round scheduling algorithm, PTUMR, adopt-

ing a multiple transmission model which allows the master to transmit the application data

to multiple workers in parallel. Consequently, The PTUMR outperforms the UMR for any

application data size and any network condition in various heterogeneous environments. Fur-

thermore, in order to cope with the cases of considerably high heterogeneity, I have modified

the PTUMR to keep the heterogeneity of workers' capacities in each group within a certain

degree, and showed that the improved version of PTUMR always achieved the application

turnaround time close to the lower bound even when the distributed computing environments

have high heterogeneity.

   in this dissertation, I have focused on the resource management architecture and resource

scheduling algorittm in the static environment where both the arrival and departure of end-

computers do not occur. I will propose a new resource management architecture which han-

dles the dynamic distributed environment and which always achieve the high-performance in

terms of the lookup of resources and load-balancing. Furthermore, I will build the resource

management architecture which parses the characteristics and requirements of the schedul-

ing algorithm and which discovers the resource required for the algorithm so as to achieve

the high-performance application processing.
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