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SOM of SOMs

Abstract

This paper proposes an extension of the self-organizing map (SOM), in which the mapping objects them-

selves are self-organizing maps. Thus a “SOM of SOMs” is presented, which we refer to as a SOM2. A

SOM2 has a hierarchical structure consisting of a single parent SOM and a set of child SOMs. Each child

SOM is trained to represent the distribution of a data class in a manifold, while the parent SOM generates a

self-organizing map of the group of manifolds modeled by the child SOMs. Thus a SOM2 is an architecture

that organizes a product manifold represented as (child SOM)×(parent SOM). Such a product manifold is

called a fiber bundle in terms of the topology. This extension of a SOM is easily generalized to any combi-

nation of SOM families, including cases of neural gas (NG) in which, for example, “NG2(=NG×NG) as an

NG of NGs” and “NG×SOM as a SOM of NGs” are possible. Furthermore, a SOM2 can be extended to a

SOMn, such as SOM3=SOM×SOM×SOM defined as a “SOM of SOM2”. In this paper, the algorithms for

the SOM2 and its variations are introduced, and some simulation results are reported.

Keywords: self-organizing map, modular network SOM, mnSOM, manifold learning, fiber bundle, ho-

motopy
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1 Introduction

The self-organizing map (SOM) as introduced by Kohonen has provided a powerful and useful tool for data

mining, classification, analysis, visualization, and so on [13]. For a labeled dataset, a SOM is one of the

best techniques available for visualizing the distribution of each class in the entire data distribution. In an

application such as this, a SOM shows how the data vectors of each class are distributed in the high dimen-

sional data space by transforming them to a low dimensional map space while preserving their topological

relationships. Though this characteristic of SOMs is effective in many applications, some cases require the

visualization of these relationshipsbetween the distributions of classes, i.e., to what degree two class distri-

butions are similar or different. Alas, a SOM does not provide such information. A SOM provides a map of

data vectors, but not a map of class distributions.

The aim of this paper is to propose a method of mapping classes that can represent the relationships

between their distributions. In other words, the mapped objects of a SOM are no longer vectors, but class

distributions that form manifolds in the data space. Because the distribution of a class, i.e., the manifold,

can be represented by a basic SOM, all the classes can be modeled by a group of basic SOMs, which

we call “child SOMs”. Thus the method involves the generation of a self-organizing map of a group of

self-organizing maps, that is, a “SOM of SOMs”, abbreviated to “SOM2” in this paper, because a SOM2

represents a product manifold formed by SOM×SOM. The architecture of the SOM2 is simple: it is a

hierarchical structure of a set of child SOMs and a single parent SOM, as shown in Fig. 1. Each child

SOM learns to represent the corresponding class distribution in the data space, whereas the parent SOM is

expected to generate a meta map of the set of maps represented by the child SOMs.

This expansion of the SOM is useful in cases where differences between class distributions are considered

more essential than differences between data vectors. As an example, let us consider a classification task

of 3D objects from sets of photographs, e.g. face images. Each class in this example consists of a set of

2D images of an object taken from various viewpoints. Even if some photographs of different objects look

similar from a certain viewpoint, the entire distributions of data vectors, i.e., 2D images, should be different.

In other words, each object corresponds to a unique distribution of data vectors of 2D images [1]. Therefore,

it is necessary to generate a map of classes rather than a map of data vectors. In this way, similar items can

be identified when a set of sample data from each system, object, or parameter set, etc. is measured.

Let us further clarify the framework of the situation dealt with by the SOM2, using an example of face

image classification. Suppose we have a face image of a person, that is represented by a vector in the
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high-dimensional data space. If the camera angle is changed continuously, the face images will show a

corresponding continuous change. As a result, a one-dimensional trajectory is obtained, which is called

the viewpoint manifold. It is also possible to define a continuous map from a one-dimensional camera

angle space to a high-dimensional image data space. Such a manifold and map can be modeled using a

conventional SOM, by providing a set of face images from different camera angles.

In the above scenario, a manifold is obtained by continuously changing the camera angle, but there is also

another way of obtaining a manifold of face images. Suppose that the subject’s facial expression changes,

e.g., from a sad to a smiling face. The continuous change in facial expression also generates a continuous

trajectory in the data space, which is called a face manifold. The set of face images taken from different

camera angles and with varying facial expressions forms a product manifold, that consists of a group of

viewpoint manifolds and a group of face manifolds. In terms of topology, this product manifold is called

a ‘fiber bundle’. The map from the camera angle space to the face image space also shows a continuous

change when the facial expression changes and is called a homotopy. The fiber bundle and homotopy are the

target concepts addressed by the SOM2.

Let us suppose that we have a set of face images sampled randomly, and suppose further that no informa-

tion about the camera angle or the facial expression is given. The only clue is the class information, which

confirms that a set of data of a class belongs to the same viewpoint manifold. Thus face images belonging

to the same class represent the same (yet unknown) facial expression, and are taken from various (unknown)

camera angles. In this situation, we need to order the data within each class to show good continuity in

the data space, whilst simultaneously ordering the classes. Since a conventional SOM can approximate a

data distribution by a manifold, this task is expected to be achieved by a self-organizing map of a set of

self-organizing maps, representing a fiber bundle. This is the purpose of the SOM2, which is, therefore, the

extension of a SOM from ‘manifold learning’ to ‘fiber bundle learning’. The SOM2 is also regarded as an

extension from a ‘self-organizing map’ to a ‘self-organizing homotopy’.

Another example where data distributions are more important than individual data points is photograph

classification according to color. In this case, a three dimensional RGB histogram is usually used as a feature

vector for each photograph. Thus each photograph is regarded as a class, consisting of pixel data in the RGB

space. SOMs have also been used to represent color distributions instead of histograms [22, 28]. Therefore

it is possible to generate a map of photographs using a SOM2, by regarding the color SOMs as data vectors.

A similar situation arises in texture classification tasks [20, 31].

By extending the concept, it is easy to generalize the SOM2 to a SOMn by regarding a group of SOM2s as
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a set of data vectors to the next higher-level SOM, and so on. For example, a SOM3 (SOM×SOM×SOM) is a

“SOM of SOM2s”. In addition, other types of neural maps, e.g., those for neural gas (NG), can be employed

as replacements for the parent and/or child SOMs. For example, the “NG of NGs”, “SOM of NGs”, and “NG

of SOMs”, which we abbreviate respectively as “NG2=NG×NG”, “NG×SOM”, and “SOM×NG”, are all

possible members of the SOMn family. Consequently we can obtain numerous self-organizing architectures

by further multiplication. In this sense, the real aim of this paper is to present the power of the SOM.

In this paper, the algorithm and some applications of SOMn are presented. Some preliminary results

have been published as conference proceedings [4, 5, 6].

2 Related work

Actually, the importance of the concept has been recognized in the field of the SOM. The adaptive subspace

SOM (ASSOM) is an architecture designed for this very purpose [14]. The main difference between the

ASSOM and SOM2 is that the ASSOM represents the given data distributions by a set of infinite linear

subspaces, whereas the SOM2 approximates these by a set of finite nonlinear manifolds. Thus an ASSOM

can be denoted as PCA×SOM in our notation. The self-organizing operator map (SOOM) was proposed by

Kohonen to represent a homotopy [12]. Although the original concept of the SOOM included a nonlinear

case, the algorithm presented by Kohonen was applicable to linear operator cases only. A kernel-based

ASSOM and modular network SOM (mnSOM) with multi-layer perceptrons (MLPs) have been proposed

as nonlinear extensions of the ASSOM and SOOM, respectively [11, 7, 30, 29]. The common features of

these algorithms, with the exception of the SOM2, are that (i) every nodal unit of the SOM is replaced by

a particular module such as PCA, kernel PCA, MLP and so on, and (ii) each nodal module is trained by

a weighted mixed dataset so that the module represents an intermediate model of the given classes. These

modules can however, only represent appropriate intermediate models when the degree of freedom is limited

(low dimensional linear fitting is the typical case). If each module is powerful enough to represent a nonlinear

manifold as well, then the module can model different classes at the same time by giving a mixed dataset

[19]. It is possible to train such nonlinear modules in a supervised manner by giving enough information

during the training. For example, the face image classification task becomes much easier if information about

the camera angle is given, which is assumed to be unknown in our framework. These problems are solved

in the SOM2 algorithm, in which intrinsic variables such as the camera angle, are estimated iteratively. In

addition, these architectures only have two levels, namely, the lower functional module level and upper SOM
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level, whereas the SOM2 can be extended to SOMn cases.

From the viewpoint of supervised learning, there are two major groups currently using the SOM and

other vector quantization techniques. One of these uses a single SOM (or vector quantization architecture)

to classifyn-classes of data. The supervised SOM is a typical example, and many algorithms have been

proposed [15, 8]. The other group usesn-SOMs forn-classes [34, 35]. In the former case, all labeled data

are classified in the same map space, whereas each class distribution is modeled by a corresponding SOM

in the latter case. Although the SOM2 is fairly similar to the latter case, it does not belong to either group.

The purpose of the SOM2 is to model not only the given classes, but also any continuous change of the given

classes. In another words, the purpose of the SOM2 is not to segregate classes, but to find a continuous

relationship between classes. It can also be stated that the mapping objects dealt with by a SOM2 are data

classes, whereas data vectors are the mapping objects in the conventional SOM.

One may consider hierarchical SOMs and tree structure SOMs [16, 24, 25] to be similar to the SOM2

because both architectures have hierarchical structures. However the meaning of the hierarchy is completely

different. It is worth emphasizing that the SOM2 does not aim to organize a global map consisting of a set

of local maps. Instead, in SOM2 the child SOMs are global maps of different objects (sets of data vectors).

When using a SOM2, all data are mapped into two spaces representing independent aspects of the data,

namely, the best matching positions in both the parent SOM and child SOM. For example, in the case of face

images, each image data is assigned to two coordinates given by the parent/child SOMs and corresponding

to the facial expression and camera angle, respectively. Thus the SOM2 is related to nonlinear independent

component analysis (ICA), but is not exactly the same. A method for nonlinear ICA using a conventional

SOM has already been proposed [9, 21]. The difference between this method and the SOM2 is that the

two independent axes are explicitly defined in the SOM2, whereas only a square map space is given for the

conventional SOM. Furthermore, an advantage of ICA is that it does not require class information, whereas

an advantage of the SOM2 is that it can solve more difficult cases by utilizing class information. Therefore

ICA and the SOM2 are applicable in different situations.

A SOM is categorized to a subspace method as well. In the pattern recognition field, a vast amount of

literature has been published concerning subspace methods including the SOM. Object recognition, face im-

age classification, human action recognition and scene recognition are all representative fields. Within these

fields, one of the key points is to extract observation-independent features by representing data as product

subspaces, such as (observation-dependent component)×(observation-independent component). An exam-

ple of this is the recognition of a human action, in which image data are represented by (viewpoint)×(human
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action) [27]. In the robotics field, such a product manifold method is also useful. Ritter et al. applied SOMs

with a functional hierarchy to a robot manipulator [26, 33]. Kurata and Oshiro proposed a method organiz-

ing a product space using SOMs, which they applied to the localization task of a mobile robot [17]. These

methods are related to our framework, though this work aims to establish a more generalized scheme of the

SOM. Thus these works are expected to be re-described from the viewpoint of the SOM2.

3 Algorithm and architecture of the SOMn family

3.1 Mathematical notation

In this paper, mathematical formulas are written according to the following rules. Variablesi, j andk denote

the indexes of the data or class, whereasn, m andl are the indexes of SOM units. Thusxk andwn represent

thekth data vector and thenth reference vector, respectively. Upper case variables, such asI , J, K denote

the upper limits of these indexes. Vectors are indicated by boldface, andD is the dimension of a data vector.

Vectors denoted by upper case with asterisks depict joint vectors. For example,W∗ represents a vector

obtained by joining vectorsw1 to wN, that is,W∗ , (w1, . . . ,wN) = (wn)N
n=1 andW∗ ∈ RN×D. By obeying

this notation rule,Ul∗∗ represents a joint vector defined byUl∗∗ , (ulmn)M
m=1

N
n=1 andUl∗∗ ∈ RM×N×D. Indexes

are written as super- or subscripts allowing formulas to obey the tensor notation rule because these joint

vectors can be regarded as higher rank tensors. Indexes of best matching units (BMUs) are indicated with

hat, so that ˆnk, denotes the BMU ofxk within {w1, . . . ,wN}. Similarly, n̂ j
k is the index of the BMU ofxk

within {w j1, . . . ,w jN}. An index with a check, as iňjk, denotes the class of the data. In this case it means

thatxk belongs to thějkth class.

3.2 Architecture of SOM2

To begin with, let us first consider the dataset dealt with by the SOM2. Because the goal is to map a group of

class distributions, all data vectors are assumed to be classified and/or labeled in advance. Suppose that there

areJ classes andK labeled data vectorsX = {x1, . . . , xK}, andxk ∈ RD. Let X j denote thejth class dataset,

each of which comprisesK j data points. In addition, it is assumed that the distribution ofX j is approximated

by the manifoldΦ j , which can be modeled by a child SOM. The label information is represented by a

classification matrix defined byRj
k = δ( j, ǰk). Hereδ(·, ·) is the Kronecker delta.

The architecture of the SOM2 has a hierarchical structure as illustrated in Fig. 1. At the first level there

are J basic SOMs, which are called ‘child SOMs’. (Note that the concept of child SOMs is introduced
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merely for explanation. As described later, users can write a program for a SOM2 without referring to child

SOMs. Therefore the algorithm can also be applied whenJ is infinite). The task of the child SOMs is to

represent the data distributions of given classes, i.e., to organize a set of ‘class maps’. Thus thejth class map

is expected to model the distribution ofX j . Each child SOM has the same structure and the same number of

reference vectors, denoted byW j∗ = (w j1, . . . ,w jN). Herew jn ∈ RD means thenth reference vector of the

jth child SOM, and the joint reference vectorW j∗ ∈ RN×D represents the entirejth class map.

At the second level, there is another basic SOM called a ‘parent SOM’. The task of the parent SOM is to

organize a self-organizing map of a set of self-organizing maps. Let us call the map produced by the parent

SOM a ‘meta-map’. Then the parent SOM’s task is to generate a meta map of the class maps by giving{W j∗}

as input data vectors. To achieve this task, the parent SOM has a set ofM reference vectors{V1∗, . . . ,VM∗},

the dimensions of which are equal toW j∗. ThusVm∗ ∈ RN×D can also be regarded as a a joint vector such

thatVm∗ = (vm1, . . . , vmN). Let us callVm∗ a ‘reference map’. Finally, the entire meta-map is represented by

the joint vectorV∗∗ = (V1∗, . . . ,VM∗).

The tasks attributed to a SOM2 are (i) to organize a set of class maps representing the manifold set{Φ j}

which is carried out by the child SOMs, and (ii) to generate a meta-map of the manifold set carried out by

the parent SOM. Tasks (i) and (ii) are processed in parallel. Fig. 2 (a) shows the actual simulation results for

artificial datasets. In this example, three class distributionsX1, X2 andX3, are modeled by the child SOMs

W1∗, W2∗ andW3∗, respectively, while the parent SOM has five reference mapsV1∗, . . . ,V5∗. Thus, in this

example, the meta-map space is one-dimensional, while class and reference maps have two-dimensional

spaces. The parent SOM orders the given class maps so that the meta-map represents a continuous change

in the reference maps. Note that the reference mapsV2∗ and V4∗ in Fig. 2 (a) are created to represent

intermediate manifolds by interpolation, and are formed where there are no data points. Such interpolation

cannot be achieved by the conventional algorithm in which each module is trained by a mixed dataset. Fig. 2

(b) shows the results of another simulation, in which the number of classes is larger than the number of

reference maps (J > M). The SOM2 once again organizes a continuous change in the maps of the given

classes similar to the case whereJ < M.

The continuous change in maps is represented by a set of strings connecting the reference maps. These

strings represent the ‘fibers’, which are defined by a joint vectorV∗n = (v1n, . . . , vMn). Some representative

fibers are indicated by dotted lines in Figs. 2 (a) and (b). Thus the entire SOM2 organizes a fiber bundle in the

data space, and each reference map represents a homotopic manifold as a section of the bundle. (Note that the

dimension of the fibers is equal to that of the meta-map space; thus if the parent SOM has a two dimensional
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meta-map space, the fibers are also two dimensional.) This means that every data vector is assigned to a

pair of low-dimensional coordinates in the meta map, where one coordinate represents the section and the

other the fiber to which the data vector belongs. The former is determined as thebest matching map(BMM)

while the latter is determined as thebest matching unit(BMU) within the BMM. Therefore BMM and BMU

mean ‘best matching section’ and ‘best matching fiber’ in the fiber bundle, respectively. This is illustrated

in Fig. 3.

3.3 SOM2 algorithm

To introduce the SOM2 algorithm, it is convenient to define an operatorS, that represents the update algo-

rithm of the conventional SOM. Suppose we have a set of data vectorsX = {x1, . . . , xK} and a conventional

(basic) SOM, the reference vectors of which are denoted by{w1, . . . ,wN}. Thus the entire map organized

by the SOM is represented by the joint vectorW∗ = (w1, . . . ,wN). The operatorS is defined as the update

process fromW∗(t − 1) toW∗(t) with respect to datasetX as follows.

W∗(t) := S [
W∗(t − 1),X; σ(t)

]
. (1)

Hereσ(t) denotes the neighborhood size. In the batch algorithm,S is defined by the following equations.

n̂k(t) = arg min
n

∥∥∥xk − wn(t − 1)
∥∥∥2

(2)

An
k(t) =

h (d(n, n̂k(t)); σ(t))∑

k′
h (d(n, n̂k′ (t)); σ(t))

(3)

wn(t) := (1− η) wn(t − 1) + η

K∑

k=1

An
k(t) xk (4)

Hereh(· ; ·) andd(· , ·) denote, respectively, the neighborhood function and distance between two units in

the map space. Learning massAn
k represents how muchxk affectswn, which is updated to get close to the

mass center of{xk} with masses{An
k}. η is a coefficient determining the update rate, withη = 1 normally in

the batch SOM case. (Hereafterη is assumed to be 1.) It is also possible to define an on-line versionS, in

which the traditional on-line algorithm is executed for a subset ofX. In the conventional case, the operator

S is repeated with a reducingσ until W∗ reaches a steady state. This is the SOM algorithm, i.e., SOM1. The

calculation flow of the SOM1 is depicted in Fig. 4 (a).

Using operatorS, the SOM2 algorithm can be described in terms of iterations of the following three

steps.
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Step 1 At the start of every iteration, each class map, i.e., each child SOM is initialized by the reference map

of the parent SOM that approximates the class distribution best. The easiest way is to pass the BMM

at the preceding iteration to the corresponding child SOM. (This BMM is computed at the previous

iteration, by step 3 below.) Thus the initial state of thejth class map at calculation timet is given by

W̃ j∗(t) := Vm̂j ∗(t − 1). (5)

If the BMM is not given in the preceding iteration (this sometimes happens in on-line cases), then the

least quantization error map is tentatively chosen as the BMM.

m̂′j(t) = arg min
m


K∑

k=1

Rj
k min

n

∥∥∥xk − vmn(t − 1)
∥∥∥2

 (6)

W̃ j∗(t) := Vm̂′j ∗(t − 1) (7)

Step 2 In each child SOM, a class mapW j∗ is estimated by applying the SOM algorithm to datasetX j , and

by regardingW̃ j∗ as the initial state.

W j∗(t) := S
[
W̃ j∗(t),X j ; σ1(t)

]
(8)

Hereσ1(t) is the neighborhood size for the child SOM update. Note thatW j∗(t) is not updated directly

from W j∗(t − 1), as it is overwritten by its BMM in Step 1.

Step 3 By regardingY(t) = {W j∗(t)} as a set of data vectors, the meta-map is updated by the parent SOM.

V∗∗(t) := S [
V∗∗(t − 1),Y(t); σ2(t)

]
(9)

Hereσ2(t) is the neighborhood size for the meta-map update. (The details of how to compute this

update, including how to compute BMMs for the class maps, will be discussed later in this section.)

After V∗∗(t) has been updated, the estimated class maps{W j∗(t)} are abandoned, and are replaced by

the BMMs as the initial state for the next iteration.

These three steps are repeated with reducing neighborhood sizes. The above calculation flow is illustrated

in Fig. 4 (b).

The essence of the algorithm is that the parent SOM deals with a set of class maps as if they were ordinary

data vectors (Step 3). It is worth noting that each class map is estimated separately without mixing datasets

(Step 2). If each class map were organized directly from a mixed dataset, the map would cover all areas of the

mixed classes, and would not represent an appropriate, intermediate distribution between classes. Thus it is



SOM of SOMs 10

necessary to estimate class maps separately, although they are not updated independently, because the class

maps are overwritten by the BMMs at every iteration (Step 1). This means that the class maps are estimated

whilst indirectly affecting one another via the meta-map. If the class maps were estimated independently,

every class map would be organized in its own way, and subsequently making a meta map of such class maps

would make no sense. This is because there can be several alternative organizations for a good child map, so

independently organized child maps of similar objecs could end up in nonsimilar organizations. Therefore,

‘separately but not independently’ is an important aspect of the SOM2 algorithm.

Considering the points raised above, the batch algorithm for a SOM2 is formulated as follows. In Step 1,

the reference vectors of the child SOMs{W̃ j∗} are overwritten by their BMMs, thus representing the initial

state at timet.

w̃ jn(t) := vm̂j n(t − 1) (10)

In Step 2, the class maps are estimated separately for each class.

n̂ j
k(t) = arg min

n

∥∥∥xk − w̃ jn(t)
∥∥∥ (11)

Bjn
k (t) =

Rj
k h1

(
d1(n, n̂ j

k(t)); σ1(t)
)

K∑

k′=1

Rj
k′ h1

(
d1(n, n̂ j

k′ (t)); σ1(t)
) (12)

w jn(t) :=
K∑

k=1

Bjn
k (t) xk (13)

Here h1(· ; ·) and d1(· , ·) are the neighborhood and distance functions for the class maps. The BMU ˆn j
k

determines the best matching fiber ofxk, if xk belongs to thejth class.

Finally, in Step 3, the BMM is determined for each class mapW j∗ by regarding it as a data vector, and

then the meta-map is updated by the batch SOM algorithm.

m̂j(t) = arg min
m

∥∥∥W j∗(t) − Vm∗(t − 1)
∥∥∥2

(14)

= arg min
m

N∑

n=1

∥∥∥w jn(t) − vmn(t − 1)
∥∥∥2

(15)

Am
j (t) =

h2

(
d2(m, m̂j(t)); σ2(t)

)

J∑

j′=1

h2

(
d2(m, m̂j′ (t)); σ2(t)

) (16)

Vm∗(t) :=
J∑

j=1

Am
j (t) W j∗(t) (17)

Hereh2(· ; ·) andd2(· , ·) are the neighborhood and distance functions for the meta-map. By combining (13)
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and (17), the update algorithm is formulated as

vmn(t) :=
J∑

j=1

K∑

k=1

Am
j (t) Bjn

k (t) xk. (18)

Then returning to Step 1, the BMMs are copied to the corresponding child SOMs as the next initial states.

Since the estimated class maps{W j∗} are overwritten by the BMMs, there is no need to store the class

maps for the next iteration. (18) also means that the meta-map can be updated directly without using the

class maps. In other words, each class map is required only for the duration of determining the BMM. This

means that the SOM2 algorithm does not consume much memory even with a huge number of classes.

It is worth noting that the organized meta-map is not affected by the data number of each class, because

all class maps are treated equally by the parent SOM. If users prefer a map reflecting the data density, (16)

can be modified as follows.

Am
j (t) =

K j h2

(
d2(m, m̂j(t)); σ2(t)

)

K∑

j′=1

K j′ h2

(
d2(m, m̂j′ (t)); σ2(t)

) (19)

An on-line version of the SOM2 is also available, by replacing the operatorS by the on-line SOM

algorithm. Four different combinations of batch and on-line algorithm are then possible, e.g., the child level

is on-line while the parent level is batch, and so on. Users can choose any one of these depending on the

task.

With regard to parameter settings, one important point needs to be clarified: the neighborhood size of the

child SOMs must be reduced more slowly than that of the parent SOM. The reason is that the parent SOM

should stabilize earlier than the child SOMs because all child SOMs are overwritten by the parent at every

iteration. In this paper, the neighborhood size is reduced as follows,

σ(t) = σmin + (σmax− σmin) exp [t/τ] . (20)

For the batch algorithm,τparent' 50 andτchild ' 100 are typical values. Other parameters of the SOM2, such

as the number of reference units, can be determined the same as in the conventional case. Since the SOM2 is

rather robust in terms of parameter settings, consistent results can be obtained as long as extreme parameters

are not used.

3.4 Generalization from SOM2 to SOMn

By adding a higher level, it is easy to generalize the SOM2 to SOMn, such as SOM3 = SOM×SOM×SOM.

To explain the role of the SOM3, let us consider a situation in which a user requires a map of face images.
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Suppose that a class consists of a set of photographs taken from various viewpoints at any one time. Thus

the photographs belonging to a single class represent the same person with the same facial expression, but

from different view points. Suppose further that each image set is classified according to subject, e.g., ‘the

set of image sets of Mr. A’ and so on. In this case, the SOM2 is required to model a set of image sets of one

person, while the SOM3 can deal with a set of sets of image sets classified by subject.

Now suppose that there areK data pointsX = {x1, . . . , xK} that are classified according toJ classes

{X1, . . . ,XJ}, and theseJ class maps are classified according toI meta-classes{Y1, . . . ,YI }. Let Rj
k denote

the classification matrix of data to class as defined previously, and letQi
j denote the meta-classification

matrix of class to meta-class, defined asQi
j = δ(i, ǐ j). Thus Qi

j = 1 if the jth class belongs to theith

meta-class, otherwiseQi
j = 0.

The structure of a SOM3 is described below. In the first level there areJ child SOMs as is the case

for a SOM2, but there areI parent SOMs in the second level, that organize the set of meta class maps.

Finally in the third level, there is a grandparent SOM, which produces a meta-meta-map as the output of

the SOM3. Let W j∗ andV i∗∗ denote thejth class map (child SOM) and theith meta map (parent SOM),

respectively. Suppose further that the grandparent SOM hasL reference meta-maps{U1∗∗, . . . ,UL∗∗}. Thus

the joint vectorU∗∗∗ represents the entire meta-meta-map. Since the reference meta-mapUl∗∗ at the third

level can be regarded as a tensor of rank 3, it would be natural to call the SOM3 a ‘SOM of rank 3’.

The SOM3 algorithm is given by the following equation. At the start, all class and meta class maps are

replaced by the BMMs determined at (t − 1). Thus,

Ũ∗∗∗(t) := U∗∗∗(t − 1) (21)

Ṽ i∗∗(t) := Ul̂ i ∗∗(t − 1) (22)

W̃ j∗(t) := Ul̂ jm̂j ∗(t − 1). (23)

Here l̂ j , l̂ ǐ j
means the best matching meta-map (BMMM) of the meta class to which thejth class belongs.

Then the SOMs at each level are updated by the SOM algorithm as follows.

W j∗(t) := S
[
W̃ j∗(t),X j ; σ1(t)

]
(24)

V i∗∗(t) := S
[
Ṽ i∗∗(t),Yi(t); σ2(t)

]
(25)

HereYi(t) = {W j∗(t) ; all j for which ǐ j = i}. Finally the grandparent SOM is updated by regardingZ(t) =

{V1∗∗(t), . . . ,V I∗∗(t)} as a set of data vectors.

U∗∗∗(t) := S
[
Ũ∗∗∗(t),Z(t); σ3(t)

]
(26)
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Hereσ3 is the neighborhood size for the grandparent SOM. In the case of a batch-algorithm, the above

algorithm becomes

C jn
k (t) =

Rj
k h1

(
d1(n, n̂ j

k(t)); σ1(t)
)

K∑

k′=1

Rj
k′ h1

(
d1(n, n̂ j

k′ (t)); σ1(t)
) (27)

w jn(t) :=
K∑

k=1

C jn
k (t) xk (28)

Bim
j (t) =

Qi
j h2

(
d2(m, m̂i

j(t)); σ2(t)
)

J∑

j′=1

Qi
j′ h2

(
d2(m, m̂i

j′ (t)); σ2(t)
) (29)

V im∗(t) :=
J∑

j=1

Bim
j (t) W j∗(t) (30)

Al
i(t) =

h3

(
d3(l, l̂ i(t)); σ3(t))

)

I∑

i′=1

h3

(
d3(l, l̂ i′ (t)); σ3(t)

) (31)

Ul∗∗(t) :=
I∑

i=1

Al
i(t) V i∗∗(t) (32)

Hereh3(· ·) andd3(· , ·) are the neighborhood and distance functions for the grandparent SOM. By combining

(28), (30), and (32), the complete update algorithm can be formulated as

ulmn(t) :=
I∑

i=1

J∑

j=1

K∑

k=1

Al
i(t) Bim

j (t) C jn
k (t) xk. (33)

Equation (33) implies thatAl
i , Bim

j , andC jn
k are vital for updating the SOM3, whereas the class maps that

consume vast amounts of memory are not indispensable in the actual programming. By applying further

nesting, one can easily obtain an algorithm for a SOMn.

3.5 Variations of the SOM2 using the Neural Gas Algorithm

By adopting other vector quantization methods, many variations in the SOM2 can be created. Here we

introduce neural gas (NG) [18, 3], by first considering an “NG of NGs,” i.e., NG2=NG×NG. The only

difference between SOM and NG is the way in which learning masses are determined: by a neighborhood

function in the SOM, and by a function of ‘order’ in the NG model. For each data vector, the order of

the winning unit is 0, while the next winning unit has order 1. Therefore, the NG2 algorithm can easily be

obtained by replacing the neighborhood function by a function of order. Thus Eqs. (12) and (16) are replaced
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by

β
jn
k (t) =

Rj
k exp

[
−s(w̃ jn(t), xk)/λ2(t)

]

K∑

k′=1

Rj
k′ exp

[
−s(w̃ jn(t), xk′ )/λ2(t)

] (34)

αm
j (t) =

exp
[
−s(Vm∗(t),W j∗(t))/λ1(t)

]

J∑

j′=1

exp
[
−s(Vm∗(t),W j′∗(t))/λ1(t)

] . (35)

Here,s(w̃n, xk) is the function that gives the order ofw̃n to the dataxk, while λ1(t) andλ2(t) give the rates of

decay. Therefore the complete update algorithm (18) becomes

vmn(t) = (1− η) vmn(t − 1) + η

J∑

j=1

K∑

k=1

αm
j (t) β jn

k (t) xk (36)

In the NG2 case, it is better to setη to be smaller than 1. If one needs a “SOM of NGs” (NG×SOM), it can

be obtained by combining (16) and (34) as

vmn(t) = (1− η) vmn(t − 1) + η

J∑

j=1

K∑

k=1

Am
j (t) β jn

k (t) xk, (37)

whereas the combination of (12) and (35) represents the “NG of SOMs” (SOM×NG). In addition, if one em-

ploys other types of mapping algorithms, the number of variations will increase further. Of these variations,

one of the most promising architectures is the NG×SOM, i.e., the “SOM of NGs”. This is because there

are no restrictions on the dimensions of the target manifolds in the child NGs, and the meta SOM allows

one to visualize the relationships of the classes. The NG×SOM therefore inherits the advantages of both

algorithms.

It is also possible to employ other algorithms such as the Generative Topographic Map (GTM) and

kernel-based maximum entropy learning rule (kMER) [2, 10]. In either case, the user would simply replace

the operatorS by the respective algorithm. The important point is that the concept of the SOM2 includes all

these variations as long asS is definable, and thus there is no need to be restricted to Kohonen’s narrowly-

defined SOM.

4 Simulations and Results

4.1 Maps of artificial manifolds

To validate the performance of the SOM2, artificial manifold sets were used in the simulations. Fig. 5

(a) shows the first manifold set, which contains a small number of classes (J = 9), with each class having a
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large number of data vectors (K j = 400) for random sampling. The shapes of the manifolds are all congruent

triangles, the positions and orientations of which gradually change. There areM = 5 × 5 reference maps,

with N = 6× 6 reference vectors for each reference and class map.

Figs. 5 (b) and (c) show respectively, the reference maps and meta-map generated by the SOM2. As

shown in Fig. 5 (b), all reference maps adhere well to the triangular shape, while the positions and orien-

tations vary in such a way that a continuous map of the manifolds is formed successfully as the meta-map.

This result also shows that the unknown intermediate manifolds can be estimated correctly by interpolation.

Furthermore, the reference maps are aligned so that reference vectors with the same index correspond to

a congruent point on each manifold. For example, the reference vectors indicated by arrowheads in Fig. 5

(c) have the same index, i.e., these units form a fiber. Therefore it is possible to observe how the manifold

gradually changes shape by tracing the fibers. This homologizing ability is one of the advantages of the

SOM2.

In contrast to the first example, the second set shown in Fig. 6 (a) has a large number of classes (J = 400),

each of which contains a very small number of samples (K j = 4). The shapes of the manifolds are all

congruent triangles, the positions and orientations of which were changed in the same manner as in the first

example. Nine out of 400 manifold shapes are shown in Fig. 6 (a) with the data vectors belonging to the

class (indicated by larger markers). Unlike the first case, however, it is difficult to recognize the shapes of

the manifolds due to deficiencies in the samples. Furthermore, the manifolds of the second set overlap each

other in such a way that the sample vectors are distributed evenly over the area without forming clusters. The

results are almost the same as in the first manifold set (Figs. 6 (b) and (c)). The meta-map is well organized

with good continuity, i.e., the positions and orientations of the reference maps vary continuously. The SOM2

also succeeds in estimating the distribution of every class, even though the number of samples per class is

very small. One may notice that the reference maps appear smaller in size when compared with the original

manifold. However, the reference maps still succeed in estimating the average data distributions because

the data points are usually distributed in a smaller area than the triangle of the manifolds due to the limited

data. In addition, the SOM2 succeeds in homologizing the given manifolds as in the first case (refer to the

reference vectors indicated by arrowheads).

Fig. 7 shows another situation in which data points are not distributed in homologous manifolds. In

this experiment there are three classes, the data points of which are distributed in the shapes of the letters

‘S’, ‘O’ and ‘M’ in R2 space (Fig. 7 (a)). Even though the manifolds are not homologous, the SOM2 still

tries to ascertain good correspondences between the given distributions. Fig. 7 (b) illustrates the meta-map
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organized by the SOM2. Some representative fibers are also indicated, showing how the SOM2 represents a

continuous meta-map.

For this third experiment, it would be preferable to use an NG×SOM instead of a SOM2. Fig. 7 (c)

depicts the meta-map organized by a NG×SOM. Here, the data distributions are well represented by the

reference NGs. As a result, the NG×SOM depicts a morphing of letters from ‘S’ into ‘O’ and from ‘O’ into

‘M’.

4.2 Maps of shapes

One of the application areas of the SOMn family is shape classification. To show the ability of the SOM2

for this purpose, three simulations were done. The first dataset is shown in Fig. 8 (a). In this simulation,

15 contours are used, each of which contains 400 dots. Thus each contour forms a 1-dimensional closed

manifold and 400 data vectors in thex–y space were sampled from each manifold. Let us call this method

the ‘Dot Distribution Representation’ (DDR). To represent the manifold shape, each child SOM has a 1-

dimensional closed structure with 36 reference vectors. The results are shown in Fig. 8 (b). As illustrated

in the figure, the reference maps fit the contours well, and the parent SOM successfully generates a map of

these contours. Furthermore, the SOM2 interpolated the given contours resulting in a meta-map with good

continuity.

If these contours are classified a priori, then a SOM3 can be used. In the second simulation, it was

assumed that each row of Fig. 8 (a) constitutes a class, i.e., the 15 contours were classified into 3 classes in

advance. Thus there are 3 contour classes (rectangles, ellipses, and diamonds), each of which has 5 contours

with different sizes and orientations, with each contour containing 400 data vectors using the DDR method.

In this simulation, the task of the grandparent SOM is to represent the map of the contour classes, while the

task of each parent SOM is to represent a map of the contours belonging to each class, and finally the task

of every child SOM is to represent a contour. Each child SOM has a 1-dimensional closed structure as in the

previous simulation, whereas the parent and grandparent SOMs have 1-dimensional linear structures. The

results are shown in Fig. 8 (c). In the figure, each box corresponds to a reference map in the 1st level, while

each row represents a meta-map generated in the 2nd level. Finally the entire map represents the meta-

meta-map generated by the grandparent SOM in the 3rd level. According to the results, the grandparent

SOM successfully generates a continuous meta-meta-map of contour classes, morphing from diamond to

rectangle (viewing the map from top to bottom), while every parent SOM generates a meta-map of a contour

class, with gradual variations in size and orientation (viewing the map from left to right). In addition, every
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child SOM regenerates a contour well; the red dots in Fig. 8 (c) show the original data overlaid on the

BMMs. In other words, one can see a class of contours varying in size and orientation in every row, i.e.,

in every section of the fiber bundle, and a set of contours with similar size and similar orientation in every

column, i.e., in every fiber.

If the data vectors do not form clear manifolds, an NG would be a better solution. In the next simulation,

the task is to generate a map of face contours as shown in Fig. 9. To enable the DDR method to be applied to

photograph images, 15 face images were first decomposed into small dots using a Laplacian Gaussian filter,

followed by binarization with a threshold. DDR is expected to result in a more natural data representation,

because the continuous movement of an image is represented by a continuous movements of dots. In this

case, 600 dots were sufficient to express a face image. To organize a self-organizing map of the DDR images,

an NG×SOM was used. Fig. 9 illustrates the results. Every reference NG represents a face image, while the

meta map space successfully shows a continuous change in camera angle.

4.3 Map of 3D objects from 2D images

The task of the next simulation is to generate a map of 3D objects from 2D projected images. Put more

clearly, the task is to make a self-organizing map of 3D objects from a set of image sets, each of which

contains several image data of one object from various viewpoints. Since a set of 2D images of a 3D object

observed from various angles forms a viewpoint manifold in the high dimensional data space, a SOM2 is

expected to organize a meta-map of classes, as has already been described. Note that the SOM2 does not

know how 3D objects can be reconstructed from their 2D images.

The first simulation represents an artificial situation, in which the 13 objects shown in Fig. 10 (a) are used

as the dataset. Here the objects are assumed to be flexible grids (9×9 nodes), and each data vector consists of

a set of (x, y) coordinates of the lattice points on a 2D image. Thus each 2D image corresponds to a 9×9×2 =

162 dimensional data vector. Each class consists of 9 data vectors observed from different viewpoints.

Fig. 10 (b) is the meta-map of the 3D objects generated by the parent SOM, along with two representative

reference maps. The meta-map was generated successfully, showing good continuity of varying 3D shapes

from a flat shape (bottom left in Fig. 10 (b)) to a prominent peaked shape (top right).

In other words, the SOM2 generated a map where the actual 13 input objects are interpolated into 49

objects, and object shapes change smoothly over the intermediate 3D objects. Each reference map generated

a map of 2D images of an object consisting of 25 images. Thus every reference map also interpolated

intermediate viewpoints of the objects. Furthermore, all the maps are aligned with one another in such a way
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that all reference vectors with the same index are assigned to the images taken from the same viewpoint.

This means that every fiber corresponds to a viewpoint. This is also an effect of the homologizing ability of

the SOM2.

Fig. 11 shows a more practical case, in which sets of face images are given to a SOM2. The images are

204 photographs of 12 people from various viewpoints. These face images were classified into 12 classes

in advance, but they were not sorted in any way, thus providing no clue to identifying the camera angle.

Each image consists of 75× 75 pixels, which are regarded as the 5625-dimensional data vectors without

any image-preprocessing. In this simulation, the parent SOM consists of a set of 1-dimensional reference

maps arrayed in a 2-dimensional meta-map space. Therefore the entire SOM2 has a cubic map space as

shown in Fig. 11 (a). Fig. 11 (b) shows a meta-map and two representative reference maps organized by the

SOM2. Every reference map (i.e. section) represents the continuous change in camera angle for a person,

while every fiber represents a map of faces taken from a certain viewpoint.

4.4 Application of SOM3 to autonomous mobile robot

The last simulation is an application of the SOM3 to an autonomous mobile robot. The task is to build a

geographical image (i.e. the inner model) of the work field from a set of visual images, which have been

obtained during exploration. This application of a SOM was also proposed by Kurata and Oshiro [17]. To

achieve this task, the SOM3 illustrated in Fig. 12 (a) is employed. As is shown in the figure, the SOM3

consists of three levels, each of which codes different properties of the given information.

The task of the SOMs at level 1, i.e., the child SOMs, is to extract shift invariant information from each

image. By regarding the color pixels of each image as a set of data, each child SOM is expected to represent

a color distribution of the image. This image coding is expected to be robust with respect to the robot

movement, because the color distribution changes gradually as the robot continues to move. In addition, this

method can drastically reduce the dimension of the image data. Here we refer to these as ‘color maps’.

In level 2, there is a set of parent SOMs, each of which has a circular topology. The task of the parent

SOMs is to code the orientation of the robot, by regarding the color maps as data vectors. To achieve this, a

set of color maps obtained at a particular location is given to a parent SOM.

Finally in level 3, there is a grandparent SOM, with a two dimensional map space. The task of the

grandparent SOM is to code the position of the robot in the work field, as in place cells. Therefore the entire

SOM3 represents a 2+ 1 + 2 dimensional fiber bundle. It should be noted that this five dimensional fiber

bundle is located in the three dimensional data space because the most primitive data, i.e., each color pixel,
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only carries RGB information. It is emphasized again that the data distribution, rather than each data point,

carries the essential information in the SOMn algorithm.

The details of the experiment are now given. A robot simulator “WEBOTS” was used. The virtual work

field used in this experiment is shown in Fig. 12 (b). The robot had a color camera with 40× 16 (W×H)

pixels, and the horizontal view angle was approximately 120◦. Each image was divided into 5 subimages

with 16× 16 pixels. Each subimage was regarded as a class of color values (a color map). Therefore five

successive color maps were obtained from each image. To determine the BMMs at level 2 of the SOM3, a

group of color maps were matched to a block of reference maps. Thus five color maps were matched to five

successive reference maps. The robot observed the landscape at 225 points in the field, and 20 images were

obtained at each point. During the exploration, the robot movement was controlled manually.

Though it is rather an unnatural assumption, the information about the sequential movement of the robot

was assumed lost. Consequently, a huge number of unordered snapshots were given to the SOM3. The

only clue was the meta-class information, which confirmed that images belonging to the same meta-class

were observed at the same location. In practice, we can utilize a priori knowledge, for example, that the

robot never leaps in the field, etc. to simplify the task. However, because the aim of this experiment is to

demonstrate the performance of a SOMn, any assistance from a priori knowledge was disregarded.

Fig. 12 (c) illustrates the meta-map organized by the SOM3, along with two representative reference

meta-maps. In this figure, the camera images are indicated at the BMM. The geographical topology in the

work field is preserved in the meta-meta-map space, while each reference meta map represents the orientation

at a position. Furthermore, the reference maps with the same index represent the same orientation. Therefore

the inner image of the work field geography is successfully built in the robot. By using the organized meta-

meta-map, the robot can itself localize its position and orientation.

5 Discussion

5.1 Homologizing ability of SOM2

Briefly, a SOM2 is a learning machine that represents a fiber bundle, whereas a conventional SOM is a

machine representing a manifold. Therefore, the homologizing ability is one of the central functions of the

SOM2. Interestingly, there is no explicit process for homologization in the SOM2 algorithm.

Fig. 13 shows the process of how a SOM2 homologizes two manifolds. Here, only two data manifolds

were given to a SOM2 with two reference maps. In the middle of the simulation, the indexes of one of the
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reference maps and the corresponding class map were explicitly renumbered. Fig. 13 (a) shows the situation

just after the renumbering. In this case, the upper map was rotated 90◦. As a result, the fibers were twisted

90◦. Figs. 13 (b), (c), and (d) show the next three iterations. As shown in these figures, the two maps

immediately turned so as to minimize the distance between the two reference maps.

The reason why the class maps turned is that the class maps are overwritten by their BMMs at every

iteration. Since the reference maps are smoothed by the effect of the neighborhood function in the SOM

algorithm, the difference between reference maps becomes smaller than the difference between class maps.

By substituting these smoothed reference maps into the class maps, the organized class maps are gradually

aligned and the total length of fibers decreases. In other words, the fibers work like elastic rubber bands

connecting the reference maps. Therefore, the homologizing ability of the SOM2 is built into the SOM

algorithm by its very nature.

5.2 On determining BMMs

There are two different ways to determine the BMM for a dataset. One is to use the least quantization error

map, as defined by (6), while the other is to measure the distance using class maps, as defined by (14). The

latter method is used in the SOM2 algorithm to determine the BMMs.

To compare the difference between the two methods, let us consider the situation in which we have a

datasetX and two reference mapsV∗A andV∗B as illustrated in Fig. 14. By using the former method,V∗B

becomes the BMM forX, because one of the reference vectors inV∗B wins all data points ofX (Fig. 14 (a)).

In contrast,W∗
A becomes the BMM in the latter method, because the entire distribution is more similar than

V∗B (Fig. 14 (b)). In this method, the class mapW∗
X is estimated using a child SOM, and then the distances

from W∗
X to V∗A andV∗B are compared. This is an important aspect of the SOM2 highlighting how it differs

from other algorithms.

Ideally speaking, the class map should be estimated individually for each reference map, by letting each

reference map be the initial state of the class map. Thus, to measure the distance betweenX andV∗A, the

class mapW∗
X is initialized byV∗A, while V∗B becomes the initial state when the distance fromX to V∗B is

measured. This means that the distance between a mapV∗ and a datasetX is defined by the distance thatW∗
X

travels from the initial stateV∗ to the datasetX. To estimateW∗
X, it is sufficient to execute the batch-SOM
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algorithm one or more times. The distance measurement is formulated using the operatorS as follows.

L2(V∗,X) ,
∥∥∥W∗

X − V∗
∥∥∥2

(38)

W∗
X = S [

V∗,X; σ
]

(39)

This distance measurement is the recommended one. Since BMUs need also be determined in the former

method, the increased calculation cost of the latter method is not that much in comparison.

In the learning algorithm for the SOM2, each class map is only estimated from the latest BMM. Rig-

orously, it is better to measure distances using the method described above. Thus the BMM should be

determined by substituting all reference maps into the class map as the initial states. Fortunately there is no

need to be too concerned about this issue, because the homologizing ability of the SOM2 aligns the class

maps gradually. In fact all simulation results presented in this paper were produced by the simple algorithm

without estimating class maps for every reference map.

After a meta-map has been obtained using the training datasets, the organized meta-map can be used

to classify new datasets. To do this classification, it is also necessary to determine BMMs for the datasets.

For this the homologizing ability of SOM2 is not available, because the meta-map has already been fixed.

Therefore the distance must be measured by estimating class maps for each reference map.

5.3 Calculation cost

Since a SOM2 has the ability to represent datasets using two different levels of maps, it allows us to deal

with more complex data than the conventional SOM. A corresponding increase in the size and complexity of

the calculation is expected. We now compare the calculation cost of a SOM2 with M reference maps, each

of which hasN reference vectors, with that of a conventional batch SOM withMN reference vectors. Note

that both architectures have an equal number (i.e.MN) of reference vectors.

Since most of the calculation time is consumed by the process determining BMUs and BMMs, we evalu-

ate the calculation cost according to the number of times theD dimensional Euclidean distance is measured.

In the conventional SOM, the Euclidean distances are measuredKMN times for every iteration, whereas

in the SOM2, the Euclidean distances are measuredKN times for the child SOMs andJMN times for the

parent. Thus the calculation costs of the SOM and SOM2 areO(KMN) andO(KN + JMN), respectively.

Surprisingly, execution of the SOM2 is much faster than that of the conventional SOM, because the number

of classesJ is usually far less than the data numberK. This is a real advantage in using a SOM2 in practical

applications.
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5.4 Generative model of the framework

Finally, let us revisit the viewpoint of geometry to consider the theoretical framework underlying the SOM2.

Suppose that the data vectors are distributed on a set of nonlinear homotopic manifolds{Φ j} in RD, with the

manifolds havingd-dimensions (d < D). Therefore, the manifoldΦ j can be represented by a nonlinear map

f j fromRd toRD as

f j : ξ → x ξ ∈ Rd, x ∈ Φ j . (40)

Hereξ is an intrinsic variable that cannot be observed. The nonlinear maps{ f j} are assumed to vary contin-

uously according to an intrinsic parameterθ ∈ RP as follows.

F(ξ, θ j) = f j(ξ). (41)

ThusF is the homotopy underlying this generative model, and{Φ j} are the sections of a fiber bundle gen-

erated byF. Furthermore, let the probability densities ofξ andθ be given, respectively, byp(ξ) and p(θ),

which are assumed to be independent. Without loss of generality,p(ξ) andp(θ) can be assumed to obey uni-

form distribution defined in [0,1]d and [0,1]P, respectively. Under these conditions, the distance between

two homotopic manifoldsΦ1 andΦ2 can be defined as,

L2(Φ1,Φ2) ,
∫

ξ∈Rn
‖ f1(ξ) − f2(ξ)‖2 p(ξ) dξ (42)

=

∫

ξ∈[0,1]d
‖F(ξ, θ1) − F(ξ, θ2)‖2 dξ. (43)

Thus the goal of the architecture is to solve the inverse problem, namely, to estimate the fiber bundle and

homotopyF from the given data vectors, that are generated by two unknown independent random variables

ξ andθ. The only clue is that a set of data belonging to the same class is produced by the sameθ. To achieve

this goal, the architecture is expected to model each dataset as a homotopic manifold, whilst simultaneously

ordering these manifolds to form a natural fiber bundle.

In the above generative model, the distance between manifolds is defined by (43), while in the SOM2

algorithm it is approximately measured by the distance between two maps obtained by the operatorS as

(14) (see also Fig. 14 (b)). To measure the manifold distance (43) more precisely, it is better to defineS

as an equiprobability mapping algorithm rather than a SOM, because this causes the density of fibers to be

proportional to the data density (a SOM does not generate an equiprobability map due to the magnification

problem [23, 32]). Thus it is expected that the precision of the meta-map of the SOM2 will be improved by

using an equiprobability mapping, such as GTM and kMER, in exchange for calculation cost [2, 10].
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Finally, let me present several points that should be emphasized. (i) All advantages and disadvantages

of the SOM are inherited by a SOMn because theSOMn is a straightforward generalization of the SOM. As

the SOM is still a powerful and effective algorithm in many fields despite the lack of theoretical assurance,

the SOMn would be equally useful and effective. (ii) The concept of the SOMn is not limited to Kohonen’s

SOM. By modifying the operatorS, the SOMn algorithm can be improved. Thus plenty of siblings and

modifications of the SOM are possible in the SOMn. In this sense the algorithm presented in this paper

based on Kohonen’s SOM should be seen rather as an implementation of the widely-defined SOMn. (iv)

Calculation speed is very important in practical tasks. The concept of the SOMn provides us huge scale

architectures, that are able to deal with more complex data structures. The simulation of the autonomous

mobile robot, in which sensor data are organized in terms of position and orientation, is an example of this,

and proves that the SOM2 is a good architecture with high speed calculations.

The issues concerning the equiprobability mapping and theoretical derivation from the generative model

should be examined further. These have been set as tasks for the future.

6 Conclusion

The concept of the SOMn, together with an algorithm, have been presented in this paper. The essence of the

algorithm is to generate a higher-rank of data representation with class information as a clue, and the given

datasets are modeled by fitting to a fiber bundle. The algorithm has a hierarchical structure of the operatorS,

which is usually defined by Kohonen’s SOM algorithm. Since the concept of the SOMn allows us to multiply

by SOM and other mapping algorithms, we can obtain fruitful variations. It can therefore be expected that

the SOMn will be useful within many application fields.
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2. Bishop, C. M., Svenśen, M., & Williams, C. K. I. (1998). GTM: The generative topographic mapping.

Neural Computation, 10(1), 215–234.

3. Cottrell, M., Hammer, B., Hasenfuss, A., & Villmann, T. (2005). Batch neural gas.Proceedings of the

5th Workshop on Self-Organizing Maps (WSOM2005)(pp. 275–282). Paris

4. Written by the author

5. Written by the author

6. Written by the author

7. Furukawa, T., Tokunaga, K., Morishita, K., & Yasui, S. (2005). Modular network SOM (mnSOM): From

vector space to function space.Proceedings of the International Joint Conference on Neural Networks

2005 (IJCNN2005)(pp. 1581–1586). Montreal

8. Hammer, B., Strickert, M., & Villmann, T. (2005). Supervised neural gas with general similarity mea-

sure.Neural Processing Letters, 21, 21–44.

9. Haritopoulos, M., Yin, H., & Allinson, N. (2001). Nonlinear blind source separation using SOMs and

applications to image denoising. In N. Allinson, H. Yin, L. Allinson, & J. Slack,Advances in self-

organizing maps(pp. 275–282). London: Springer-Verlag.

10. Van Hulle, M. M. (2000).Faithful representation and topographic maps: From distortion to

information-based self-organization. Willey-Interscience.

11. Kawano, H., Horio, K., & Yamakawa, T. (2005). Nonlinear adaptive manifold self-organizing map with

reproducing kernels and its application to pose invariant face recognition.IEEJ Transactions on EIS,

125, 948–955.

12. Kohonen, T. (1993). Generalization of the self-organizing map.Proceedings of the International Joint

Conference on Neural Networks 1993 (IJCNN93)(pp. 457–462).

13. Kohonen, T. (2001).Self-Organizing Maps(3rd ed). Berlin: Springer-Verlag.



SOM of SOMs 25

14. Kohonen, T., Kaski, S., & Lappalainen, H. (1997). Self-organized formation of various invariant-feature

filters in the adaptive-subspace SOM.Neural Computation, 9, 1321–1344.

15. Kohonen, T., M̈akisara, K., & Saram̈aki, T. (1984). Phonotopic maps — insightful representation of

phonological features for speech recognition.Proceedings of the International Conference on Pattern

Recognition(pp.182–185). Los Alamitos

16. Koikkalainen, P. (1993). Fast organization of the self-organizing maps.Finnish Artificial Intelligence

Society, 51–62.

17. Kurata, K., & Oshiro, N. (2004). Separating visual information into position and direction by SOM.

Proceeding of International Symposium on Artificial Life and Robotics(pp. 5–8). Oita

18. Martinetz, T.M., Berkovich, S.G., & Schulten, K.J. (1993). Neural-gas network for vector quantization

and its application to time-series prediction.IEEE Transactions on Neural Networks, 4, 558–569.

19. Ohkubo, T., Tokunaga, K., & Furukawa, T. (2007). Self-organizing homotopy networks: Comparisons

among modular network SOM, SOM of SOMs and parametric bias method.International Congress

Series, 1301, 168–171.

20. Oja, E. & Valkealahti, K. (1996). Co-occurrence map: Quantizing multidimensional texture histograms.

Pattern Recognition Letters, 17, 723–730.

21. Pajunen, P., Hyv̈arinen, A., & Karhunen, J. (1996). Nonlinear blind source separation by self-organizing

maps.Proceedings of International Conference on Neural Information Processing (ICONIP 1996), 2,

(pp. 1207–1210).

22. Pei, S-C. & Lo, Y-S. (1998). Color image compression and limited display using self-organization Ko-

honen map,IEEE Trans. on Circuits and Systems for Video Technology, 8(2), 191–204.

23. Ritter, H., & Schulten, K. (1986). On the stationary state of Kohonen’s self-organizing sensory mapping.

Biological Cybernetics, 54, 99–106.

24. Samsonova, E.V., Kok, J.N., & IJzerman, A.P. (2006). TreeSOM: cluster analysis in the self-organizing

map.Neural Networks, 19, 935–949.

25. Sauvage, V. (1997). The T-SOM (Tree-SOM).Lecture Notes in Computer Science, 1342, 389–197.



SOM of SOMs 26

26. Ritter, H., Martinetz, T., & Schulten, K. (1992). Neural Computation and Self-Organizing Maps — An

Introduction. Addison-Wesley.

27. Souvenir, R., & Babbs, J. (2008). Learning the viewpoint manifold for action recognition.Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition 2008(pp. 1–7). Anchorage

28. Tanaka, K., Hoshi, N., & Horiguchi, T. (2003). Color image compression algorithm using self-

organizing feature map.Interdisciplinary Information Science, 9(2), 201–208.

29. Tokunaga, K., & T. Furukawa (2009). Modular network SOM.Neural Networks, (in press).

30. Tokunaga, K., Furukawa, T., & Yasui, S. (2003). Modular network SOM: Extension of SOM to the

realm of function space.Proceedings of the 5th Workshop on Self-Organizing Maps (WSOM2003)(pp.

173–178). Kitakyushu

31. Valkealahti, K., & Oja, E. (1998). Reduced multidimensional co-occurrence histograms in texture clas-

sification.IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 90–94.

32. Villmann, T., & Claussen, J.C. (2006). Magnification control in self-organizing maps and neural gas.

Neural Computation, 18(2), 446-469.

33. Walter, J., & Ritter, H. (1996). Rapid learning with parametrized self-organizing maps.Neurocomputing,

12, 131-153.

34. Zhang, B., Fu, M., & Yan, H. (1998). Handwritten digit recognition by neural ‘gas’ model and pop-

ulation decoding.Proceedings of the IEEE International Joint Conference on Neural Networks(pp.

1727–1731). Alaska

35. Zhang, B., Fu, M., Yan, H., & Jabri, M.A. (1999). Handwritten digit recognition by adaptive-subspace

self-organizing map (ASSOM).IEEE Transactions on Neural Networks, 10(4), 939–945.



SOM of SOMs 27

Figure Legends

Fig.1: The SOM2 architecture.

Fig.2: Simulation results for the SOM2 with artificial datasets.

Fig.3: The best matching map (BMM) and best matching unit (BMU) correspond, respectively, to the best

matching section and best matching fiber in the fiber bundle.

Fig.4: Calculation flow of the SOM and SOM2 algorithm.

Fig.5: Maps of the first artificial manifold set generated by a SOM2. (a) The data vectors of 9 classes. (b)

The reference maps generated by the SOM2. The maps with thick lines are the BMMs of the 9 given

classes. (c) The meta-map generated by the SOM2. The arrowheads indicate reference vectors with

the same index in each reference map, i.e., a fiber.

Fig.6: Maps of the second artificial manifold set generated by a SOM2. (a) The data vectors of 400 classes.

The data vectors of 9 of the 400 classes are indicated with larger markers and the manifold shapes. (b)

The reference maps generated by the SOM2. (c) The organized meta-map. The arrowheads indicate

reference vectors with the same index in each reference map.

Fig.7: The maps of three datasets that are not homotopic. (a) Three datasets used in this simulation. (b) The

meta-map organized by a SOM2. (c) The meta-map organized by a NG×SOM.

Fig.8: The results of the shape classification task. (a) 15 contours used in the simulation. (b) A map of the

contours generated by a SOM2. (c) A map of the contours generated by a SOM3. The red dots show

the original data overlaid on the best-matching reference maps.

Fig.9: A map of face images organized by a NG×SOM using the DDR method. The one-dimensional meta-

map space is indicated by the division into 3 lines. The BMMs of the input face images are indicated

by circles.

Fig.10: Maps of 3D objects generated from 2D images by a SOM2. (a) 2D images of 13 objects used in

the simulation. (b) Meta-map of the objects generated by the SOM2. For clarity, each box in the

meta-map shows only one reference vector of the corresponding reference map. Two representative

reference maps are also presented in full.
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Fig.11: Maps of faces organized by a SOM2. (a) Entire meta-map organized by a SOM2. (b) Each fiber

represents a map of faces, while each section, i.e., each reference map, represents the continuous

change in viewpoints.

Fig.12: Maps of camera images of a mobile robot organized by a SOM3. (a) Architecture of the SOM3.

(b) Work field built in the simulator WEBOTS. (c) Organized meta-meta-map created by the SOM3

along with two representative reference meta-maps. The input images (16× 16 images) are indicated

at the best matching reference map in the meta-meta-map. For clarity, each image indicated in the

meta-meta map corresponds to one of the reference maps of each meta-map with the same index; the

two representative reference meta-maps are shown in full.

Fig.13: Homologization process of given manifolds by SOM2.

Fig.14: Methods for determining the BMM. (a)V∗B becomes the BMM for datasetX, using the least error

criteria. (b)V∗A becomes the BMM when the distance is measured by the class map.
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Figures

The following captions and figures of reduced size are attached for the convenience of the reviewers. Due to

the too large file size, the original figures are presented inSOM2figs.pdf.
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Fig. 2: Simulation results for the SOM2 with artificial datasets.
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(a) (b) (c)

Fig. 5: Maps of the first artificial manifold set generated by a SOM2. (a) The data vectors of 9 classes. (b)

The reference maps generated by the SOM2. The maps with thick lines are the BMMs of the 9 given classes.

(c) The meta-map generated by the SOM2. The arrowheads indicate reference vectors with the same index

in each reference map, i.e., a fiber.

(a) (b) (c)

Fig. 6: Maps of the second artificial manifold set generated by a SOM2. (a) The data vectors of 400 classes.

The data vectors of 9 of the 400 classes are indicated with larger markers and the manifold shapes. (b) The

reference maps generated by the SOM2. (c) The organized meta-map. The arrowheads indicate reference

vectors with the same index in each reference map.
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(a)

(b) (c)

Fig. 7: The maps of three datasets that are not homotopic. (a) Three datasets used in this simulation. (b)

The meta-map organized by a SOM2. (c) The meta-map organized by a NG×SOM.
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(a) (b)

(c)

Fig. 8: The results of the shape classification task. (a) 15 contours used in the simulation. (b) A map of

the contours generated by a SOM2. (c) A map of the contours generated by a SOM3. The red dots show the

original data overlaid on the best-matching reference maps.
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Fig. 9: A map of face images organized by a NG×SOM using the DDR method. The one-dimensional

meta-map space is indicated by the division into 3 lines. The BMMs of the input face images are indicated

by circles.
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(a)

(b)

Fig. 10: Maps of 3D objects generated from 2D images by a SOM2. (a) 2D images of 13 objects used in

the simulation. (b) Meta-map of the objects generated by the SOM2. For clarity, each box in the meta-map

shows only one reference vector of the corresponding reference map. Two representative reference maps are

also presented in full.
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(a)

(b)

Fig. 11: Maps of faces organized by a SOM2. (a) Entire meta-map organized by a SOM2. (b) Each fiber

represents a map of faces, while each section, i.e., each reference map, represents the continuous change in

viewpoints.
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(c)

Fig. 12: Maps of camera images of a mobile robot organized by a SOM3. (a) Architecture of the SOM3.

(b) Work field built in the simulator WEBOTS. (c) Organized meta-meta-map created by the SOM3 along

with two representative reference meta-maps. The input images (16× 16 images) are indicated at the best

matching reference map in the meta-meta-map. For clarity, each image indicated in the meta meta map

corresponds to one of the reference maps of each meta-map with the same index; the two representative

reference meta-maps are shown in full.
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Fig. 13: Homologization process of given manifolds by SOM2.
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Fig. 14: Methods for determining the BMM. (a)V∗B becomes the BMM for datasetX, using the least error

criteria. (b)V∗A becomes the BMM when the distance is measured by the class map.
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