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SOM of SOMs

Abstract

This paper proposes an extension of the self-organizing map (SOM), in which the mapping objects them-
selves are self-organizing maps. Thus a “SOM of SOMs” is presented, which we refer to as’a 80M
SOM? has a hierarchical structure consisting of a single parent SOM and a set of child SOMs. Each child
SOM is trained to represent the distribution of a data class in a manifold, while the parent SOM generates a
self-organizing map of the group of manifolds modeled by the child SOMs. Thus & & architecture

that organizes a product manifold represented as (child S@ddyent SOM). Such a product manifold is
called a fiber bundle in terms of the topology. This extension of a SOM is easily generalized to any combi-
nation of SOM families, including cases of neural gas (NG) in which, for example2(MN@GxNG) as an

NG of NGs” and “NG<SOM as a SOM of NGs” are possible. Furthermore, a $@&h be extended to a
SOM", such as SOM=SOMx SOMx SOM defined as a “SOM of SOM In this paper, the algorithms for

the SOM and its variations are introduced, and some simulation results are reported.

Keywords: self-organizing map, modular network SOM, mnSOM, manifold learning, fiber bundle, ho-

motopy
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1 Introduction

The self-organizing map (SOM) as introduced by Kohonen has provided a powerful and useful tool for data
mining, classification, analysis, visualization, and so on [13]. For a labeled dataset, a SOM is one of the
best techniques available for visualizing the distribution of each class in the entire data distribution. In an
application such as this, a SOM shows how the data vectors of each class are distributed in the high dimen-
sional data space by transforming them to a low dimensional map space while preserving their topological
relationships. Though this characteristic of SOMsffe&ive in many applications, some cases require the
visualization of these relationshipgtween the distributions of classés., to what degree two class distri-
butions are similar or dierent. Alas, a SOM does not provide such information. A SOM provides a map of
data vectors, but not a map of class distributions.

The aim of this paper is to propose a method of mapping classes that can represent the relationships
between their distributions. In other words, the mapped objects of a SOM are no longer vectors, but class
distributions that form manifolds in the data space. Because the distribution of a class, i.e., the manifold,
can be represented by a basic SOM, all the classes can be modeled by a group of basic SOMs, which
we call “child SOMs”. Thus the method involves the generation of a self-organizing map of a group of
self-organizing maps, that is, a “SOM of SOMSs”, abbreviated to “SOM this paper, because a SGM
represents a product manifold formed by S@®MM. The architecture of the SCGMs simple: it is a
hierarchical structure of a set of child SOMs and a single parent SOM, as shown in Fig. 1. Each child
SOM learns to represent the corresponding class distribution in the data space, whereas the parent SOM is
expected to generate a meta map of the set of maps represented by the child SOMs.

This expansion of the SOM is useful in cases whefiedknces between class distributions are considered
more essential than fiiérences between data vectors. As an example, let us consider a classification task
of 3D objects from sets of photographs, e.g. face images. Each class in this example consists of a set of
2D images of an object taken from various viewpoints. Even if some photographesédt objects look
similar from a certain viewpoint, the entire distributions of data vectors, i.e., 2D images, shouttEbendi
In other words, each object corresponds to a unique distribution of data vectors of 2D images [1]. Therefore,
it is necessary to generate a map of classes rather than a map of data vectors. In this way, similar items can
be identified when a set of sample data from each system, object, or parameter set, etc. is measured.

Let us further clarify the framework of the situation dealt with by the SQO¥ing an example of face

image classification. Suppose we have a face image of a person, that is represented by a vector in the
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high-dimensional data space. If the camera angle is changed continuously, the face images will show a
corresponding continuous change. As a result, a one-dimensional trajectory is obtained, which is called
the viewpoint manifold. It is also possible to define a continuous map from a one-dimensional camera
angle space to a high-dimensional image data space. Such a manifold and map can be modeled using a
conventional SOM, by providing a set of face images froffedént camera angles.

In the above scenario, a manifold is obtained by continuously changing the camera angle, but there is also
another way of obtaining a manifold of face images. Suppose that the subject’s facial expression changes,
e.g., from a sad to a smiling face. The continuous change in facial expression also generates a continuous
trajectory in the data space, which is called a face manifold. The set of face images takenffevemtdi
camera angles and with varying facial expressions forms a product manifold, that consists of a group of
viewpoint manifolds and a group of face manifolds. In terms of topology, this product manifold is called
a ‘fiber bundle’. The map from the camera angle space to the face image space also shows a continuous
change when the facial expression changes and is called a homotopy. The fiber bundle and homotopy are the
target concepts addressed by the SOM

Let us suppose that we have a set of face images sampled randomly, and suppose further that no informa-
tion about the camera angle or the facial expression is given. The only clue is the class information, which
confirms that a set of data of a class belongs to the same viewpoint manifold. Thus face images belonging
to the same class represent the same (yet unknown) facial expression, and are taken from various (unknown)
camera angles. In this situation, we need to order the data within each class to show good continuity in
the data space, whilst simultaneously ordering the classes. Since a conventional SOM can approximate a
data distribution by a manifold, this task is expected to be achieved by a self-organizing map of a set of
self-organizing maps, representing a fiber bundle. This is the purpose of thé, 8@Mdh is, therefore, the
extension of a SOM from ‘manifold learning’ to ‘fiber bundle learning’. The SOMalso regarded as an
extension from a ‘self-organizing map’ to a ‘self-organizing homotopy’.

Another example where data distributions are more important than individual data points is photograph
classification according to color. In this case, a three dimensional RGB histogram is usually used as a feature
vector for each photograph. Thus each photograph is regarded as a class, consisting of pixel data in the RGB
space. SOMs have also been used to represent color distributions instead of histograms [22, 28]. Therefore
it is possible to generate a map of photographs using a%0yregarding the color SOMs as data vectors.

A similar situation arises in texture classification tasks [20, 31].

By extending the concept, it is easy to generalize the 3@\ SOM by regarding a group of SOfd as
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a set of data vectors to the next higher-level SOM, and so on. For example, 4(SOMxSOMxSOM) is a
“SOM of SOMPs”. In addition, other types of neural maps, e.g., those for neural gas (NG), can be employed
as replacements for the parent grathild SOMs. For example, the “NG of NGs”, “SOM of NGs”, and “NG
of SOMs”, which we abbreviate respectively as “RBIGXNG”, “NGxSOM”, and “SOMNG”, are all
possible members of the SONamily. Consequently we can obtain numerous self-organizing architectures
by further multiplication. In this sense, the real aim of this paper is to present the power of the SOM.

In this paper, the algorithm and some applications of S@k& presented. Some preliminary results

have been published as conference proceedings [4, 5, 6].

2 Related work

Actually, the importance of the concept has been recognized in the field of the SOM. The adaptive subspace
SOM (ASSOM) is an architecture designed for this very purpose [14]. The mfieratice between the
ASSOM and SOM is that the ASSOM represents the given data distributions by a set of infinite linear
subspaces, whereas the SOapproximates these by a set of finite nonlinear manifolds. Thus an ASSOM
can be denoted as PGASOM in our notation. The self-organizing operator map (SOOM) was proposed by
Kohonen to represent a homotopy [12]. Although the original concept of the SOOM included a nonlinear
case, the algorithm presented by Kohonen was applicable to linear operator cases only. A kernel-based
ASSOM and modular network SOM (mnSOM) with multi-layer perceptrons (MLPs) have been proposed
as nonlinear extensions of the ASSOM and SOOM, respectively [11, 7, 30, 29]. The common features of
these algorithms, with the exception of the S§Mre that (i) every nodal unit of the SOM is replaced by

a particular module such as PCA, kernel PCA, MLP and so on, and (ii) each nodal module is trained by
a weighted mixed dataset so that the module represents an intermediate model of the given classes. These
modules can however, only represent appropriate intermediate models when the degree of freedom is limited
(low dimensional linear fitting is the typical case). If each module is powerful enough to represent a nonlinear
manifold as well, then the module can moddfalient classes at the same time by giving a mixed dataset
[19]. It is possible to train such nonlinear modules in a supervised manner by giving enough information
during the training. For example, the face image classification task becomes much easier if information about
the camera angle is given, which is assumed to be unknown in our framework. These problems are solved
in the SOM algorithm, in which intrinsic variables such as the camera angle, are estimated iteratively. In

addition, these architectures only have two levels, namely, the lower functional module level and upper SOM
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level, whereas the SOMtan be extended to SOMases.

From the viewpoint of supervised learning, there are two major groups currently using the SOM and
other vector quantization techniques. One of these uses a single SOM (or vector quantization architecture)
to classifyn-classes of data. The supervised SOM is a typical example, and many algorithms have been
proposed [15, 8]. The other group useSOMs forn-classes [34, 35]. In the former case, all labeled data
are classified in the same map space, whereas each class distribution is modeled by a corresponding SOM
in the latter case. Although the SGN& fairly similar to the latter case, it does not belong to either group.

The purpose of the SOMs to model not only the given classes, but also any continuous change of the given
classes. In another words, the purpose of the $@Mhot to segregate classes, but to find a continuous
relationship between classes. It can also be stated that the mapping objects dealt with by ar&dada
classes, whereas data vectors are the mapping objects in the conventional SOM.

One may consider hierarchical SOMs and tree structure SOMs [16, 24, 25] to be similar to tife SOM
because both architectures have hierarchical structures. However the meaning of the hierarchy is completely
different. It is worth emphasizing that the S®Moes not aim to organize a global map consisting of a set
of local maps. Instead, in SOMhe child SOMs are global maps offiéirent objects (sets of data vectors).

When using a SOR/ all data are mapped into two spaces representing independent aspects of the data,
namely, the best matching positions in both the parent SOM and child SOM. For example, in the case of face
images, each image data is assigned to two coordinates given by the@algi®OMs and corresponding
to the facial expression and camera angle, respectively. Thus theé 80#ated to nonlinear independent
component analysis (ICA), but is not exactly the same. A method for nonlinear ICA using a conventional
SOM has already been proposed [9, 21]. Th@edénce between this method and the SOthat the
two independent axes are explicitly defined in the SOWhereas only a square map space is given for the
conventional SOM. Furthermore, an advantage of ICA is that it does not require class information, whereas
an advantage of the SOMs that it can solve more flicult cases by utilizing class information. Therefore
ICA and the SOM are applicable in dierent situations.

A SOM is categorized to a subspace method as well. In the pattern recognition field, a vast amount of
literature has been published concerning subspace methods including the SOM. Object recognition, face im-
age classification, human action recognition and scene recognition are all representative fields. Within these
fields, one of the key points is to extract observation-independent features by representing data as product
subspaces, such as (observation-dependent compe(m@rggrvation-independent component). An exam-

ple of this is the recognition of a human action, in which image data are represented by (viex(boimn
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action) [27]. In the robotics field, such a product manifold method is also useful. Ritter et al. applied SOMs
with a functional hierarchy to a robot manipulator [26, 33]. Kurata and Oshiro proposed a method organiz-
ing a product space using SOMs, which they applied to the localization task of a mobile robot [17]. These
methods are related to our framework, though this work aims to establish a more generalized scheme of the

SOM. Thus these works are expected to be re-described from the viewpoint of thé SOM

3 Algorithm and architecture of the SOM" family

3.1 Mathematical notation

In this paper, mathematical formulas are written according to the following rules. Variapl@sdk denote

the indexes of the data or class, whemeas andl are the indexes of SOM units. TheSandw" represent

the kth data vector and theth reference vector, respectively. Upper case variables, suchlag denote

the upper limits of these indexes. Vectors are indicated by boldfacd) &the dimension of a data vector.
Vectors denoted by upper case with asterisks depict joint vectors. For examplepresents a vector
obtained by joining vectore* to wN, that is, W* £ (wt,...,wN) = (W")N_, andw* € R"*P. By obeying

this notation rulel™** represents a joint vector defined by* £ (u™MM N = andu € RMN<P_ Indexes

are written as super- or subscripts allowing formulas to obey the tensor notation rule because these joint
vectors can be regarded as higher rank tensors. Indexes of best matching units (BMUSs) are indicated with
hat, so thang, denotes the BMU okK within {w,...,wN}. Similarly, ﬁlj( is the index of the BMU of«*

within {wil, ..., wiN}. An index with a check, as It]vl( denotes the class of the data. In this case it means

thatx¥ belongs to thgth class.

3.2 Architecture of SOM?

To begin with, let us first consider the dataset dealt with by the 8@dcause the goal is to map a group of
class distributions, all data vectors are assumed to be classifigaf &imkled in advance. Suppose that there
areJ classes ani labeled data vectons = {x%,...,x¥}, andxX € RP. Let X! denote thejth class dataset,
each of which comprises; data points. In addition, it is assumed that the distributiod!ds approximated
by the manifold®!, which can be modeled by a child SOM. The label information is represented by a
classification matrix defined l:i?t’< = 6(j, ). Heres(-, -) is the Kronecker delta.

The architecture of the SOMhas a hierarchical structure as illustrated in Fig. 1. At the first level there

are J basic SOMs, which are called ‘child SOMs’. (Note that the concept of child SOMs is introduced
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merely for explanation. As described later, users can write a program for & $@hbut referring to child
SOMs. Therefore the algorithm can also be applied whé&ninfinite). The task of the child SOMs is to
represent the data distributions of given classes, i.e., to organize a set of ‘class maps’. Tthusl#ss map

is expected to model the distribution Xf. Each child SOM has the same structure and the same number of
reference vectors, denoted Wy/* = (wil,...,wiN). Herew" € RP means thaith reference vector of the

jth child SOM, and the joint reference vecitt’* e RN*P represents the entitigh class map.

At the second level, there is another basic SOM called a ‘parent SOM'. The task of the parent SOM is to
organize a self-organizing map of a set of self-organizing maps. Let us call the map produced by the parent
SOM a ‘meta-map Then the parent SOM'’s task is to generate a meta map of the class maps by @iifg
as input data vectors. To achieve this task, the parent SOM has aMekdérence vectors/*, ..., VM,
the dimensions of which are equal\ts’*. ThusV™ e RN*P can also be regarded as a a joint vector such
thatv™ = (v™,...,v™N). Let us callvV™ a ‘reference map Finally, the entire meta-map is represented by
the joint vectonv*™* = (V¥, ..., VM),

The tasks attributed to a SGMre (i) to organize a set of class maps representing the manifoldget
which is carried out by the child SOMs, and (ii) to generate a meta-map of the manifold set carried out by
the parent SOM. Tasks (i) and (ii) are processed in parallel. Fig. 2 (a) shows the actual simulation results for
artificial datasets. In this example, three class distributins<? and X3, are modeled by the child SOMs
W, W2 andW?*, respectively, while the parent SOM has five reference nvdps .., V> . Thus, in this
example, the meta-map space is one-dimensional, while class and reference maps have two-dimensional
spaces. The parent SOM orders the given class maps so that the meta-map represents a continuous change
in the reference maps. Note that the reference mé&psand V* in Fig. 2 (a) are created to represent
intermediate manifolds by interpolation, and are formed where there are no data points. Such interpolation
cannot be achieved by the conventional algorithm in which each module is trained by a mixed dataset. Fig. 2
(b) shows the results of another simulation, in which the number of classes is larger than the number of
reference maps)(> M). The SOM once again organizes a continuous change in the maps of the given
classes similar to the case where M.

The continuous change in maps is represented by a set of strings connecting the reference maps. These
strings represent thdibers, which are defined by a joint vecta™" = (v1",...,vM"). Some representative
fibers are indicated by dotted lines in Figs. 2 (a) and (b). Thus the entire ®@jdnizes a fiber bundle in the
data space, and each reference map represents a homotopic manifold as a section of the bundle. (Note that the

dimension of the fibers is equal to that of the meta-map space; thus if the parent SOM has a two dimensional
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meta-map space, the fibers are also two dimensional.) This means that every data vector is assigned to a
pair of low-dimensional coordinates in the meta map, where one coordinate represents the section and the
other the fiber to which the data vector belongs. The former is determined lsstmatching ma(BMM)

while the latter is determined as thest matching unBMU) within the BMM. Therefore BMM and BMU

mean ‘best matching section’ and ‘best matching fiber’ in the fiber bundle, respectively. This is illustrated

in Fig. 3.

3.3 SOM algorithm

To introduce the SORalgorithm, it is convenient to define an operafrthat represents the update algo-
rithm of the conventional SOM. Suppose we have a set of data veXtergx?, .. ., xK} and a conventional

(basic) SOM, the reference vectors of which are denotefby. .., wN}. Thus the entire map organized
by the SOM is represented by the joint vectst = (wi,...,wN). The operatosS is defined as the update

process fromV*(t — 1) to W*(t) with respect to dataset as follows.
W*(t) := S[W*(t-1), X; o(t)]. (1)

Hereo (t) denotes the neighborhood size. In the batch algorithim,defined by the following equations.

A(t) = arg minfx —w(t - 1)| )
h (d(n, f(®); (1)
20 = 3
A > h(d(n. A (©); (1))
kr
K
WD) = (L= )Wt = 1)+ ) AL(H) X" (4)
k=1

Hereh(-; -) andd(-, -) denote, respectively, the neighborhood function and distance between two units in
the map space. Learning ma&$represents how muckk affectsw”, which is updated to get close to the
mass center ofxX} with masses$Ay}. 7 is a codlicient determining the update rate, with= 1 normally in
the batch SOM case. (Hereafteis assumed to be 1.) It is also possible to define an on-line ve&iom
which the traditional on-line algorithm is executed for a subseX.dlin the conventional case, the operator
S is repeated with a reducinguntil W* reaches a steady state. This is the SOM algorithm, i.e., SONe
calculation flow of the SOMis depicted in Fig. 4 (a).

Using operatorS, the SOM algorithm can be described in terms of iterations of the following three

steps.
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Step 1 At the start of every iteration, each class map, i.e., each child SOM is initialized by the reference map
of the parent SOM that approximates the class distribution best. The easiest way is to pass the BMM
at the preceding iteration to the corresponding child SOM. (This BMM is computed at the previous

iteration, by step 3 below.) Thus the initial state of flieclass map at calculation tintés given by
W () := VMi*(t - 1). (5)

If the BMM is not given in the preceding iteration (this sometimes happens in on-line cases), then the

least quantization error map is tentatively chosen as the BMM.

K

M (t) = arg min Z Rl min X< = vt - 1) ©
m k=1

Wi (D) == VT (t - 1) @

Step 2 In each child SOM, a class mal!* is estimated by applying the SOM algorithm to datasetand

by regarding/Vi* as the initial state.
W (t) := S|W(t), XI; o (1) ®)

Herec(t) is the neighborhood size for the child SOM update. Note\(t) is not updated directly

from Wi*(t — 1), as it is overwritten by its BMM in Step 1.
Step 3 By regardingY(t) = {(Wi*(t)} as a set of data vectors, the meta-map is updated by the parent SOM.
VE() == SVt - 1), Y(1); o2()] ©)

Hereo,(t) is the neighborhood size for the meta-map update. (The details of how to compute this
update, including how to compute BMMs for the class maps, will be discussed later in this section.)
After V**(t) has been updated, the estimated class riapgt)} are abandoned, and are replaced by

the BMMs as the initial state for the next iteration.

These three steps are repeated with reducing neighborhood sizes. The above calculation flow is illustrated
in Fig. 4 (b).

The essence of the algorithm is that the parent SOM deals with a set of class maps as if they were ordinary
data vectors (Step 3). It is worth noting that each class map is estimated separately without mixing datasets
(Step 2). If each class map were organized directly from a mixed dataset, the map would cover all areas of the

mixed classes, and would not represent an appropriate, intermediate distribution between classes. Thus it is
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necessary to estimate class maps separately, although they are not updated independently, because the class
maps are overwritten by the BMMs at every iteration (Step 1). This means that the class maps are estimated
whilst indirectly dfecting one another via the meta-map. If the class maps were estimated independently,
every class map would be organized in its own way, and subsequently making a meta map of such class maps
would make no sense. This is because there can be several alternative organizations for a good child map, so
independently organized child maps of similar objecs could end up in nonsimilar organizations. Therefore,
‘separately but not independently’ is an important aspect of the Sa@dybrithm.

Considering the points raised above, the batch algorithm for aG©fdrmulated as follows. In Step 1,
the reference vectors of the child SOM& i*} are overwritten by their BMMs, thus representing the initial

state at time.
Win(t) := vli(t - 1) (10)

In Step 2, the class maps are estimated separately for each class.

ALY = arg min|[x* — W ()| (11)
() = KR& ha (da(n, A (V); o1 (1)) 12
DR ha (da(n, Al (0); u(t))
k=1
K
win() = 3" Bl(t) x¢ (13)

k=1
Here hy(-;-) andd(-,-) are the neighborhood and distance functions for the class maps. The rl}iMU "
determines the best matching fibendf if x* belongs to theth class.
Finally, in Step 3, the BMM is determined for each class &b by regarding it as a data vector, and

then the meta-map is updated by the batch SOM algorithm.

i (t) = argmminHWj*(t) -v™(t- 1) (14)
= argmminZN: [[win(t) — v™(t - 1)”2 (15)
AT = th (dﬁ iy (1); ora(t)) 16
le ha (da(m, iy (1)); oa(t))
V™ (1) = i ARt W (1) (17)
=

Herehy(-;-) anddy(-, -) are the neighborhood and distance functions for the meta-map. By combining (13)
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and (17), the update algorithm is formulated as

vM(t) o= ZJ: ZK: AT(t) B (1) X~. (18)
=1 k=1

Then returning to Step 1, the BMMs are copied to the corresponding child SOMs as the next initial states.

Since the estimated class mgp¥/*} are overwritten by the BMMs, there is no need to store the class
maps for the next iteration. (18) also means that the meta-map can be updated directly without using the
class maps. In other words, each class map is required only for the duration of determining the BMM. This
means that the SO#algorithm does not consume much memory even with a huge number of classes.

It is worth noting that the organized meta-map is nééeted by the data number of each class, because
all class maps are treated equally by the parent SOM. If users prefer a map reflecting the data density, (16)

can be modified as follows.

Kjhy(d m;i(t); o
AP = — i 2( b(m, (1)) 2(t)) (19)

> Kj e (da(m i (1); 02(0)

=

An on-line version of the SORis also available, by replacing the opera®iy the on-line SOM
algorithm. Four derent combinations of batch and on-line algorithm are then possible, e.g., the child level
is on-line while the parent level is batch, and so on. Users can choose any one of these depending on the
task.

With regard to parameter settings, one important point needs to be clarified: the neighborhood size of the
child SOMs must be reduced more slowly than that of the parent SOM. The reason is that the parent SOM
should stabilize earlier than the child SOMs because all child SOMs are overwritten by the parent at every

iteration. In this paper, the neighborhood size is reduced as follows,
o(t) = omin + (Cmax— omin) €XP t/7] . (20)

For the batch algorithmyaent= 50 andrehiig = 100 are typical values. Other parameters of the SQaMch
as the number of reference units, can be determined the same as in the conventional case. Sincéithe SOM
rather robust in terms of parameter settings, consistent results can be obtained as long as extreme parameters

are not used.

3.4 Generalization from SOM? to SOM"

By adding a higher level, it is easy to generalize the SGVSOM", such as SONM= SOMx SOMx SOM.

To explain the role of the SO/ let us consider a situation in which a user requires a map of face images.
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Suppose that a class consists of a set of photographs taken from various viewpoints at any one time. Thus
the photographs belonging to a single class represent the same person with the same facial expression, but
from different view points. Suppose further that each image set is classified according to subject, e.g., ‘the
set of image sets of Mr. A’ and so on. In this case, the S@Mequired to model a set of image sets of one
person, while the SORican deal with a set of sets of image sets classified by subject.

Now suppose that there ake data pointsX = {x%,...,xK} that are classified according tbclasses
{X1,..., X7}, and thesel class maps are classified according tmeta-classegy?, ..., Y'}. Let R|]< denote
the classification matrix of data to class as defined previously, ar@ijlelenote the meta-classification
matrix of class to meta-class, defined (a‘rc, = 6(i,TJ-). Thus Q‘j = 1 if the jth class belongs to thigh
meta-class, otherwisre‘j =0.

The structure of a SORMis described below. In the first level there arehild SOMs as is the case
for a SOM, but there ard parent SOMs in the second level, that organize the set of meta class maps.
Finally in the third level, there is a grandparent SOM, which produces a meta-meta-map as the output of
the SOM. Let Wi* andV"™* denote thejth class map (child SOM) and thith meta map (parent SOM),
respectively. Suppose further that the grandparent SOM. eference meta-magb/***, ..., U%*}. Thus
the joint vectorU*** represents the entire meta-meta-map. Since the reference metd‘rapthe third
level can be regarded as a tensor of rank 3, it would be natural to call thé SCBOM of rank 3’

The SOM algorithm is given by the following equation. At the start, all class and meta class maps are

replaced by the BMMs determined &t{(1). Thus,

U (t) := U™ (t - 1) (21)
Vi (t) = U (- 1) (22)
Wi (t) = Ul (¢ - 1), (23)

Herefj S I}J means the best matching meta-map (BMMM) of the meta class to whicjthoéass belongs.

Then the SOMs at each level are updated by the SOM algorithm as follows.
W (t) == S|W (1), XI; o (t)] (24)
VI () = SV (), Y o) (25)

HereYi(t) = {W*(t); all j for whichi; = i}. Finally the grandparent SOM is updated by regardifiy =

(VI(1),...,V'** ()} as a set of data vectors.

U™ = S[07 (1), 2(t); o] (26)



SOM of SOMs 13

Here o3 is the neighborhood size for the grandparent SOM. In the case of a batch-algorithm, the above

algorithm becomes

R (da(n. AL): 2 (1)

G0 = — _ (27)
DR ha (da(n, i (©); a(t))
k=1
K

win(t) = Z clx (28)
k=1

iy (do(m, M (1));

wmzqu(Nnﬂmaﬂ» 29
D°Q) hp (da(my 1, (1); oo(1))
=1
J

VI (¢) = Z BIM(t) W* () (30)
=1

hs (ds(1, i (t));
A - f(“ ©); os(t)) -

> ha (da(l. T (©); rat)
i’=1

|
U= ) AOV 0 (32)
i=1

Herehs(- -) andds(-, -) are the neighborhood and distance functions for the grandparent SOM. By combining

(28), (30), and (32), the complete update algorithm can be formulated as

| J K
um(t) = Z Z A() BM®) CI" (1) X~ (33)
i=1 j=1 k=1
Equation (33) implies thady, B, andC,in are vital for updating the SO whereas the class maps that
consume vast amounts of memory are not indispensable in the actual programming. By applying further

nesting, one can easily obtain an algorithm for a SOM

3.5 \Variations of the SOM using the Neural Gas Algorithm

By adopting other vector quantization methods, many variations in the’S@M be created. Here we
introduce neural gas (NG) [18, 3], by first considering an “NG of NGs,” i.e.?NBExNG. The only
difference between SOM and NG is the way in which learning masses are determined: by a neighborhood
function in the SOM, and by a function of ‘order’ in the NG model. For each data vector, the order of
the winning unit is 0, while the next winning unit has order 1. Therefore, thé &lorithm can easily be

obtained by replacing the neighborhood function by a function of order. Thus Egs. (12) and (16) are replaced
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by
. ) exp|—s(WI"(t), X¥)/22(t)
B = | 0] (34)
DR exp[-s@" (), X)/22(0)]
k=1
exp|—s(V™ (t), WI*(1)) /(1)
aT(t) = — [ 1] . (35)

D exp[-s(v™ (), W (0)/41(1)]
=1

Here,s(W", xK) is the function that gives the order@f to the datac, while 11(t) and.,(t) give the rates of
decay. Therefore the complete update algorithm (18) becomes
J K
V() = (L= )Vt 1)+ ) > oMM X (36)
=1 k=1
In the N& case, it is better to s@tto be smaller than 1. If one needs a “SOM of NGs” (K&OM), it can
be obtained by combining (16) and (34) as
J K
V() = (L-m)VM(t- 1)+ ) > AT AN O XK, (37)
=1 k=1
whereas the combination of (12) and (35) represents the “NG of SOMs” (@@B). In addition, if one em-
ploys other types of mapping algorithms, the number of variations will increase further. Of these variations,
one of the most promising architectures is theXX8®M, i.e., the “SOM of NGs”. This is because there
are no restrictions on the dimensions of the target manifolds in the child NGs, and the meta SOM allows
one to visualize the relationships of the classes. TheSIGM therefore inherits the advantages of both
algorithms.

It is also possible to employ other algorithms such as the Generative Topographic Map (GTM) and
kernel-based maximum entropy learning rule (kKMER) [2, 10]. In either case, the user would simply replace
the operatosS by the respective algorithm. The important point is that the concept of the’Si@ikides all
these variations as long &kis definable, and thus there is no need to be restricted to Kohonen’s narrowly-

defined SOM.

4 Simulations and Results

4.1 Maps of artificial manifolds

To validate the performance of the S@Martificial manifold sets were used in the simulations. Fig. 5

(a) shows the first manifold set, which contains a small number of clagse®), with each class having a
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large number of data vector { = 400) for random sampling. The shapes of the manifolds are all congruent
triangles, the positions and orientations of which gradually change. TheM aré x 5 reference maps,
with N = 6 x 6 reference vectors for each reference and class map.

Figs. 5 (b) and (c) show respectively, the reference maps and meta-map generated by theASOM
shown in Fig. 5 (b), all reference maps adhere well to the triangular shape, while the positions and orien-
tations vary in such a way that a continuous map of the manifolds is formed successfully as the meta-map.
This result also shows that the unknown intermediate manifolds can be estimated correctly by interpolation.
Furthermore, the reference maps are aligned so that reference vectors with the same index correspond to
a congruent point on each manifold. For example, the reference vectors indicated by arrowheads in Fig. 5
(c) have the same index, i.e., these units form a fiber. Therefore it is possible to observe how the manifold
gradually changes shape by tracing the fibers. This homologizing ability is one of the advantages of the
SOM.

In contrast to the first example, the second set shown in Fig. 6 (a) has a large number of dlas$@8)(
each of which contains a very small number of samples £ 4). The shapes of the manifolds are all
congruent triangles, the positions and orientations of which were changed in the same manner as in the first
example. Nine out of 400 manifold shapes are shown in Fig. 6 (a) with the data vectors belonging to the
class (indicated by larger markers). Unlike the first case, however, iffisuti to recognize the shapes of
the manifolds due to deficiencies in the samples. Furthermore, the manifolds of the second set overlap each
other in such a way that the sample vectors are distributed evenly over the area without forming clusters. The
results are almost the same as in the first manifold set (Figs. 6 (b) and (c)). The meta-map is well organized
with good continuity, i.e., the positions and orientations of the reference maps vary continuously. The SOM
also succeeds in estimating the distribution of every class, even though the number of samples per class is
very small. One may notice that the reference maps appear smaller in size when compared with the original
manifold. However, the reference maps still succeed in estimating the average data distributions because
the data points are usually distributed in a smaller area than the triangle of the manifolds due to the limited
data. In addition, the SORAucceeds in homologizing the given manifolds as in the first case (refer to the
reference vectors indicated by arrowheads).

Fig. 7 shows another situation in which data points are not distributed in homologous manifolds. In
this experiment there are three classes, the data points of which are distributed in the shapes of the letters
‘'S’, ‘O’ and ‘M’ in R? space (Fig. 7 (a)). Even though the manifolds are not homologous, the? SOM

tries to ascertain good correspondences between the given distributions. Fig. 7 (b) illustrates the meta-map
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organized by the SORI Some representative fibers are also indicated, showing how the’ &&pikésents a
continuous meta-map.

For this third experiment, it would be preferable to use andSGM instead of a SO Fig. 7 (c)
depicts the meta-map organized by a }EDM. Here, the data distributions are well represented by the
reference NGs. As a result, the NGOM depicts a morphing of letters from ‘'S’ into ‘O’ and from ‘O’ into

‘M.

4.2 Maps of shapes

One of the application areas of the SOKmily is shape classification. To show the ability of the SOM

for this purpose, three simulations were done. The first dataset is shown in Fig. 8 (a). In this simulation,
15 contours are used, each of which contains 400 dots. Thus each contour forms a 1-dimensional closed
manifold and 400 data vectors in they space were sampled from each manifold. Let us call this method

the ‘Dot Distribution Representation’ (DDR). To represent the manifold shape, each child SOM has a 1-
dimensional closed structure with 36 reference vectors. The results are shown in Fig. 8 (b). As illustrated
in the figure, the reference maps fit the contours well, and the parent SOM successfully generates a map of
these contours. Furthermore, the SOiNterpolated the given contours resulting in a meta-map with good
continuity.

If these contours are classified a priori, then a SQidn be used. In the second simulation, it was
assumed that each row of Fig. 8 (a) constitutes a class, i.e., the 15 contours were classified into 3 classes in
advance. Thus there are 3 contour classes (rectangles, ellipses, and diamonds), each of which has 5 contours
with different sizes and orientations, with each contour containing 400 data vectors using the DDR method.
In this simulation, the task of the grandparent SOM is to represent the map of the contour classes, while the
task of each parent SOM is to represent a map of the contours belonging to each class, and finally the task
of every child SOM is to represent a contour. Each child SOM has a 1-dimensional closed structure as in the
previous simulation, whereas the parent and grandparent SOMs have 1-dimensional linear structures. The
results are shown in Fig. 8 (c). In the figure, each box corresponds to a reference map in the 1st level, while
each row represents a meta-map generated in the 2nd level. Finally the entire map represents the meta-
meta-map generated by the grandparent SOM in the 3rd level. According to the results, the grandparent
SOM successfully generates a continuous meta-meta-map of contour classes, morphing from diamond to
rectangle (viewing the map from top to bottom), while every parent SOM generates a meta-map of a contour

class, with gradual variations in size and orientation (viewing the map from left to right). In addition, every
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child SOM regenerates a contour well; the red dots in Fig. 8 (c) show the original data overlaid on the
BMMs. In other words, one can see a class of contours varying in size and orientation in every row, i.e.,
in every section of the fiber bundle, and a set of contours with similar size and similar orientation in every
column, i.e., in every fiber.

If the data vectors do not form clear manifolds, an NG would be a better solution. In the next simulation,
the task is to generate a map of face contours as shown in Fig. 9. To enable the DDR method to be applied to
photograph images, 15 face images were first decomposed into small dots using a Laplacian Gaussian filter,
followed by binarization with a threshold. DDR is expected to result in a more natural data representation,
because the continuous movement of an image is represented by a continuous movements of dots. In this
case, 600 dots wereicient to express a face image. To organize a self-organizing map of the DDR images,
an NG<SOM was used. Fig. 9 illustrates the results. Every reference NG represents a face image, while the

meta map space successfully shows a continuous change in camera angle.

4.3 Map of 3D objects from 2D images

The task of the next simulation is to generate a map of 3D objects from 2D projected images. Put more
clearly, the task is to make a self-organizing map of 3D objects from a set of image sets, each of which
contains several image data of one object from various viewpoints. Since a set of 2D images of a 3D object
observed from various angles forms a viewpoint manifold in the high dimensional data space,2asSOM
expected to organize a meta-map of classes, as has already been described. Note thaf ttieeS®ist
know how 3D objects can be reconstructed from their 2D images.

The first simulation represents an artificial situation, in which the 13 objects shown in Fig. 10 (a) are used
as the dataset. Here the objects are assumed to be flexible gri@da(@es), and each data vector consists of
a set of &, y) coordinates of the lattice points on a 2D image. Thus each 2D image correspondsde a9
162 dimensional data vector. Each class consists of 9 data vectors observed fiezentiviewpoints.
Fig. 10 (b) is the meta-map of the 3D objects generated by the parent SOM, along with two representative
reference maps. The meta-map was generated successfully, showing good continuity of varying 3D shapes
from a flat shape (bottom left in Fig. 10 (b)) to a prominent peaked shape (top right).

In other words, the SORIgenerated a map where the actual 13 input objects are interpolated into 49
objects, and object shapes change smoothly over the intermediate 3D objects. Each reference map generated
a map of 2D images of an object consisting of 25 images. Thus every reference map also interpolated

intermediate viewpoints of the objects. Furthermore, all the maps are aligned with one another in such a way
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that all reference vectors with the same index are assigned to the images taken from the same viewpoint.
This means that every fiber corresponds to a viewpoint. This is alsfient ef the homologizing ability of
the SOM.

Fig. 11 shows a more practical case, in which sets of face images are given to%a StMmages are
204 photographs of 12 people from various viewpoints. These face images were classified into 12 classes
in advance, but they were not sorted in any way, thus providing no clue to identifying the camera angle.
Each image consists of #5675 pixels, which are regarded as the 5625-dimensional data vectors without
any image-preprocessing. In this simulation, the parent SOM consists of a set of 1-dimensional reference
maps arrayed in a 2-dimensional meta-map space. Therefore the entiré I8M cubic map space as
shown in Fig. 11 (a). Fig. 11 (b) shows a meta-map and two representative reference maps organized by the
SOM?. Every reference map (i.e. section) represents the continuous change in camera angle for a person,

while every fiber represents a map of faces taken from a certain viewpoint.

4.4 Application of SOM2 to autonomous mobile robot

The last simulation is an application of the S&k an autonomous mobile robot. The task is to build a
geographical image (i.e. the inner model) of the work field from a set of visual images, which have been
obtained during exploration. This application of a SOM was also proposed by Kurata and Oshiro [17]. To
achieve this task, the SOMIllustrated in Fig. 12 (a) is employed. As is shown in the figure, the SOM
consists of three levels, each of which codeé®edént properties of the given information.

The task of the SOMs at level 1, i.e., the child SOMs, is to extract shift invariant information from each
image. By regarding the color pixels of each image as a set of data, each child SOM is expected to represent
a color distribution of the image. This image coding is expected to be robust with respect to the robot
movement, because the color distribution changes gradually as the robot continues to move. In addition, this
method can drastically reduce the dimension of the image data. Here we refer to these as ‘color maps’.

In level 2, there is a set of parent SOMs, each of which has a circular topology. The task of the parent
SOMs is to code the orientation of the robot, by regarding the color maps as data vectors. To achieve this, a
set of color maps obtained at a particular location is given to a parent SOM.

Finally in level 3, there is a grandparent SOM, with a two dimensional map space. The task of the
grandparent SOM is to code the position of the robot in the work field, as in place cells. Therefore the entire
SOME represents a 2 1 + 2 dimensional fiber bundle. It should be noted that this five dimensional fiber

bundle is located in the three dimensional data space because the most primitive data, i.e., each color pixel,
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only carries RGB information. It is emphasized again that the data distribution, rather than each data point,
carries the essential information in the SOMgorithm.

The details of the experiment are now given. A robot simulator “WEBOTS” was used. The virtual work
field used in this experiment is shown in Fig. 12 (b). The robot had a color camera wikh @qWxH)
pixels, and the horizontal view angle was approximately’1Zach image was divided into 5 subimages
with 16 x 16 pixels. Each subimage was regarded as a class of color values (a color map). Therefore five
successive color maps were obtained from each image. To determine the BMMs at level 2 of theaSOM
group of color maps were matched to a block of reference maps. Thus five color maps were matched to five
successive reference maps. The robot observed the landscape at 225 points in the field, and 20 images were
obtained at each point. During the exploration, the robot movement was controlled manually.

Though itis rather an unnatural assumption, the information about the sequential movement of the robot
was assumed lost. Consequently, a huge number of unordered snapshots were given to thélS©M
only clue was the meta-class information, which confirmed that images belonging to the same meta-class
were observed at the same location. In practice, we can utilize a priori knowledge, for example, that the
robot never leaps in the field, etc. to simplify the task. However, because the aim of this experiment is to
demonstrate the performance of a SQleny assistance from a priori knowledge was disregarded.

Fig. 12 (c) illustrates the meta-map organized by the SOdlbng with two representative reference
meta-maps. In this figure, the camera images are indicated at the BMM. The geographical topology in the
work field is preserved in the meta-meta-map space, while each reference meta map represents the orientation
at a position. Furthermore, the reference maps with the same index represent the same orientation. Therefore
the inner image of the work field geography is successfully built in the robot. By using the organized meta-

meta-map, the robot can itself localize its position and orientation.

5 Discussion

5.1 Homologizing ability of SOM?

Briefly, a SOM is a learning machine that represents a fiber bundle, whereas a conventional SOM is a
machine representing a manifold. Therefore, the homologizing ability is one of the central functions of the
SOM. Interestingly, there is no explicit process for homologization in the $@Iglorithm.

Fig. 13 shows the process of how a S&Mmologizes two manifolds. Here, only two data manifolds

were given to a SORIwith two reference maps. In the middle of the simulation, the indexes of one of the
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reference maps and the corresponding class map were explicitly renumbered. Fig. 13 (a) shows the situation
just after the renumbering. In this case, the upper map was rotated8@ result, the fibers were twisted

90°. Figs. 13 (b), (c), and (d) show the next three iterations. As shown in these figures, the two maps
immediately turned so as to minimize the distance between the two reference maps.

The reason why the class maps turned is that the class maps are overwritten by their BMMs at every
iteration. Since the reference maps are smoothed byfthet®f the neighborhood function in the SOM
algorithm, the dference between reference maps becomes smaller tharfigrece between class maps.

By substituting these smoothed reference maps into the class maps, the organized class maps are gradually
aligned and the total length of fibers decreases. In other words, the fibers work like elastic rubber bands
connecting the reference maps. Therefore, the homologizing ability of the?S©Miilt into the SOM

algorithm by its very nature.

5.2 On determining BMMs

There are two dferent ways to determine the BMM for a dataset. One is to use the least quantization error
map, as defined by (6), while the other is to measure the distance using class maps, as defined by (14). The
latter method is used in the SGMlIgorithm to determine the BMMs.

To compare the dierence between the two methods, let us consider the situation in which we have a
datasetX and two reference mapég, andVy as illustrated in Fig. 14. By using the former methat,
becomes the BMM fok, because one of the reference vectorg jywins all data points oK (Fig. 14 (a)).

In contrastW’ becomes the BMM in the latter method, because the entire distribution is more similar than
Vg (Fig. 14 (b)). In this method, the class maf, is estimated using a child SOM, and then the distances
from W5 to V}, andV§ are compared. This is an important aspect of the S@ighlighting how it difers

from other algorithms.

Ideally speaking, the class map should be estimated individually for each reference map, by letting each
reference map be the initial state of the class map. Thus, to measure the distance beameaf,, the
class map/s3 is initialized byV7;, while Vi becomes the initial state when the distance férto V7§ is
measured. This means that the distance between &/fnapd a dataseX is defined by the distance that;,

travels from the initial stat®* to the dataseX. To estimate/Ny, it is suficient to execute the batch-SOM
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algorithm one or more times. The distance measurement is formulated using the afSexrafotlows.

L2(V*, X) 2 2

Wi - V*

(38)

Wi = S[V*, X; o] (39)

This distance measurement is the recommended one. Since BMUs need also be determined in the former
method, the increased calculation cost of the latter method is not that much in comparison.

In the learning algorithm for the SOMeach class map is only estimated from the latest BMM. Rig-
orously, it is better to measure distances using the method described above. Thus the BMM should be
determined by substituting all reference maps into the class map as the initial states. Fortunately there is no
need to be too concerned about this issue, because the homologizing ability of tifeaB@id the class
maps gradually. In fact all simulation results presented in this paper were produced by the simple algorithm
without estimating class maps for every reference map.

After a meta-map has been obtained using the training datasets, the organized meta-map can be used
to classify new datasets. To do this classification, it is also necessary to determine BMMs for the datasets.
For this the homologizing ability of SOlis not available, because the meta-map has already been fixed.

Therefore the distance must be measured by estimating class maps for each reference map.

5.3 Calculation cost

Since a SOM has the ability to represent datasets using twiednt levels of maps, it allows us to deal
with more complex data than the conventional SOM. A corresponding increase in the size and complexity of
the calculation is expected. We now compare the calculation cost of Z9@MM reference maps, each
of which hasN reference vectors, with that of a conventional batch SOM Witk reference vectors. Note
that both architectures have an equal number.R) of reference vectors.

Since most of the calculation time is consumed by the process determining BMUs and BMMs, we evalu-
ate the calculation cost according to the number of time®tHenensional Euclidean distance is measured.
In the conventional SOM, the Euclidean distances are measUk&N times for every iteration, whereas
in the SOM, the Euclidean distances are measufedltimes for the child SOMs andMN times for the
parent. Thus the calculation costs of the SOM and $@kO(KMN) andO(KN + JMN), respectively.
Surprisingly, execution of the SOMs much faster than that of the conventional SOM, because the number
of classes] is usually far less than the data numberThis is a real advantage in using a S®M practical

applications.
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5.4 Generative model of the framework

Finally, let us revisit the viewpoint of geometry to consider the theoretical framework underlying thé. SOM
Suppose that the data vectors are distributed on a set of nonlinear homotopic mam@ifpidsR®, with the
manifolds havingi-dimensionsd < D). Therefore, the manifold! can be represented by a nonlinear map

f; fromR9 to RP as
fi:&—x £eRY xeol (40)

Here¢ is an intrinsic variable that cannot be observed. The nonlinear figpsre assumed to vary contin-

uously according to an intrinsic parametiez RP as follows.

F(£.6)) = (). (41)

ThusF is the homotopy underlying this generative model, &hY} are the sections of a fiber bundle gen-
erated byF. Furthermore, let the probability densitieséoéndé be given, respectively, bp(£) and p(6),
which are assumed to be independent. Without loss of genegllyand p(¢) can be assumed to obey uni-
form distribution defined in [01]¢ and [Q 1]7, respectively. Under these conditions, the distance between

two homotopic manifold®* and®? can be defined as,

2@, 0?) = f 11208 - TP pe) dé (42)
£eRn
= f IF(£,61) — F(£62)I17 de. (43)
£e[0,1]d

Thus the goal of the architecture is to solve the inverse problem, namely, to estimate the fiber bundle and
homotopyF from the given data vectors, that are generated by two unknown independent random variables
£ andd. The only clue is that a set of data belonging to the same class is produced by th& Jaraehieve
this goal, the architecture is expected to model each dataset as a homotopic manifold, whilst simultaneously
ordering these manifolds to form a natural fiber bundle.

In the above generative model, the distance between manifolds is defined by (43), while in tke SOM
algorithm it is approximately measured by the distance between two maps obtained by the apasitor
(14) (see also Fig. 14 (b)). To measure the manifold distance (43) more precisely, it is better taSdefine
as an equiprobability mapping algorithm rather than a SOM, because this causes the density of fibers to be
proportional to the data density (a SOM does not generate an equiprobability map due to the magnification
problem [23, 32]). Thus it is expected that the precision of the meta-map of the’ 8@Nde improved by

using an equiprobability mapping, such as GTM and KMER, in exchange for calculation cost [2, 10].
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Finally, let me present several points that should be emphasized. (i) All advantages and disadvantages
of the SOM are inherited by a SOMbecause theSOMs a straightforward generalization of the SOM. As
the SOM is still a powerful andffective algorithm in many fields despite the lack of theoretical assurance,
the SOM would be equally useful andfective. (ii) The concept of the SOMs not limited to Kohonen'’s
SOM. By modifying the operataf, the SOM algorithm can be improved. Thus plenty of siblings and
modifications of the SOM are possible in the SOMn this sense the algorithm presented in this paper
based on Kohonen’s SOM should be seen rather as an implementation of the widely-definéd (8pM
Calculation speed is very important in practical tasks. The concept of the"$@Mides us huge scale
architectures, that are able to deal with more complex data structures. The simulation of the autonomous
mobile robot, in which sensor data are organized in terms of position and orientation, is an example of this,
and proves that the SOMs a good architecture with high speed calculations.

The issues concerning the equiprobability mapping and theoretical derivation from the generative model

should be examined further. These have been set as tasks for the future.

6 Conclusion

The concept of the SOMtogether with an algorithm, have been presented in this paper. The essence of the
algorithm is to generate a higher-rank of data representation with class information as a clue, and the given
datasets are modeled by fitting to a fiber bundle. The algorithm has a hierarchical structure of the Sperator
which is usually defined by Kohonen's SOM algorithm. Since the concept of the"&0dws us to multiply

by SOM and other mapping algorithms, we can obtain fruitful variations. It can therefore be expected that

the SOM will be useful within many application fields.
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Figure Legends

Fig.1: The SOM architecture.
Fig.2: Simulation results for the SOMwith artificial datasets.

Fig.3: The best matching map (BMM) and best matching unit (BMU) correspond, respectively, to the best

matching section and best matching fiber in the fiber bundle.
Fig.4: Calculation flow of the SOM and SOMalgorithm.

Fig.5: Maps of the first artificial manifold set generated by a SO¥4&) The data vectors of 9 classes. (b)
The reference maps generated by the SOFhe maps with thick lines are the BMMs of the 9 given
classes. (c) The meta-map generated by the 50Me arrowheads indicate reference vectors with

the same index in each reference map, i.e., a fiber.

Fig.6: Maps of the second artificial manifold set generated by a 3@#) The data vectors of 400 classes.
The data vectors of 9 of the 400 classes are indicated with larger markers and the manifold shapes. (b)
The reference maps generated by the SO{) The organized meta-map. The arrowheads indicate

reference vectors with the same index in each reference map.

Fig.7: The maps of three datasets that are not homotopic. (a) Three datasets used in this simulation. (b) The

meta-map organized by a SGMc) The meta-map organized by a NSOM.

Fig.8: The results of the shape classification task. (a) 15 contours used in the simulation. (b) A map of the
contours generated by a SGMc) A map of the contours generated by a SONIhe red dots show

the original data overlaid on the best-matching reference maps.

Fig.9: A map of face images organized by a M6SOM using the DDR method. The one-dimensional meta-
map space is indicated by the division into 3 lines. The BMMs of the input face images are indicated

by circles.

Fig.10: Maps of 3D objects generated from 2D images by a $SO[4) 2D images of 13 objects used in
the simulation. (b) Meta-map of the objects generated by the SCHdr clarity, each box in the
meta-map shows only one reference vector of the corresponding reference map. Two representative

reference maps are also presented in full.
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Fig.11: Maps of faces organized by a SGM(a) Entire meta-map organized by a S&Mb) Each fiber
represents a map of faces, while each section, i.e., each reference map, represents the continuous

change in viewpoints.

Fig.12: Maps of camera images of a mobile robot organized by a Q) Architecture of the SOR/
(b) Work field built in the simulator WEBOTS. (c) Organized meta-meta-map created by thé SOM
along with two representative reference meta-maps. The input imagesl@@nages) are indicated
at the best matching reference map in the meta-meta-map. For clarity, each image indicated in the
meta-meta map corresponds to one of the reference maps of each meta-map with the same index; the

two representative reference meta-maps are shown in full.
Fig.13: Homologization process of given manifolds by S&M

Fig.14: Methods for determining the BMM. (aJ; becomes the BMM for datasé, using the least error

criteria. (b)V}, becomes the BMM when the distance is measured by the class map.
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Figures

The following captions and figures of reduced size are attached for the convenience of the reviewers. Due to

the too large file size, the original figures are presentedi2figs. pdf.
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Fig. 3: The best matching map (BMM) and best matching unit (BMU) correspond, respectively, to the best

matching section and best matching fiber in the fiber bundle.
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Fig. 5: Maps of the first artificial manifold set generated by a SO{d) The data vectors of 9 classes. (b)
The reference maps generated by the SORhe maps with thick lines are the BMMs of the 9 given classes.
(c) The meta-map generated by the SONThe arrowheads indicate reference vectors with the same index

in each reference map, i.e., afiber.
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Fig. 6: Maps of the second artificial manifold set generated by a 5Q& The data vectors of 400 classes.
The data vectors of 9 of the 400 classes are indicated with larger markers and the manifold shapes. (b) The
reference maps generated by the SONt) The organized meta-map. The arrowheads indicate reference

vectors with the same index in each reference map.
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Fig. 7: The maps of three datasets that are not homotopic. (a) Three datasets used in this simulation. (b)

The meta-map organized by a SBMc) The meta-map organized by a NSOM.
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original data overlaid on the best-matching reference maps.
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dimensional

Fig. 9: A map of face images organized by a N&DM using the DDR method. The one

map space is indicated by the division into 3 lines. The BMMs of the input face images are indicated

meta

by circles.
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Fig. 10: Maps of 3D objects generated from 2D images by a Qi) 2D images of 13 objects used in
the simulation. (b) Meta-map of the objects generated by the S®Wr clarity, each box in the meta-map
shows only one reference vector of the corresponding reference map. Two representative reference maps are

also presented in full.
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Fig. 11: Maps of faces organized by a S&Ma) Entire meta-map organized by a S&Mb) Each fiber
represents a map of faces, while each section, i.e., each reference map, represents the continuous change in

viewpoints.
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Fig. 13: Homologization process of given manifolds by SOM
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Fig. 14: Methods for determining the BMM. (&); becomes the BMM for datasii, using the least error

criteria. (b)V}, becomes the BMM when the distance is measured by the class map.
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