
Memoirs Kyushu Inst. Tech.
(Eng.) No. 14, 1984, pp. 53-63

HARDWARE SIMULATION LANGUAGE HSLII

by

Akikazu TAMAKi*, Hajime MizuMAcHIt
 and Kiyoshi KATo**
 (Received November 30, 1983)

 SYNPOSIS

 The authors describe of the CHDL called HSL/1 (Hardware Simulation Language/1)
which is suitable and adaptable to over the logic design level. HSL/1 consists of two
parts. The former is the system part by which a hardware system is described. The
later is the command part which is the command for the simulation. This paper contains
two examples. One is the description and simulation of the asynchronous circuit. It is
shown that the circuit can correctly operate by having the proper delays. The other is the

description of the simple model computer. The computer is designed by means of the
horizontal microprogram. HSL/1 is also a good tool for the education of hardware
systems in the logic design level.

1. INTRODUCTION
 CHDL has developped in the aid of designing of large computer systems and LSI. In
the organizing a computer system, there are several levels as followings [5],

 1. PMSIevel
 2. Programlevel
 3. Logic design level
 4. Circuit level
and each level may be divided into sublevels. Most of CHDLs are convenient and adapt-
able to few sublevels. The development of CHDLs requires many labors and long time.
Therefore, the computer system, which is designed by using those CHDLs, is produced in
large quantities.

 We make the digital system which is used for the tool of the research and experiment in
laboratories. It is nyassembled by the standard IC chips and printed circuit boads. The
authors intend to develop the CHDL which is convenient and usufu1 to design of digital
systems by assembling the standard IC chips in laboratories. The CHDL is required to
be convenient to over the logic design level, because the logic deSign of laboratories is
almost included in it. The logic design level is divided into two sublevels i.e. Register
transfer sublevel and Switching circuit sublevel. It requires the good descriptivity and the

module structure such as assembly of IC chips. The digital system which is described by
the CHDL must be simulated so as to find logical errors, before it is practically assembled
on the printed circuit boads. The register transfer level requires a synchronous simulation,

and the switching circuit level requires an asynchronous simulation with propagation delays.

 * Assistant, Dept. of Computer Sci.
** Professer
t Nippon Telegraph and Telephone Public Corpration

 - 53 --

 Akikazu TAMAKi, Hajime MizuMAcHi and Kiyoshi KATo

 The authors has constructed the CHDL and its simulator which satisfy above needs and
called HSLII (Hardware Simulation Language 1). A part of KARL [1] is converted with
slightly modification for the hardware description part of HSLII.

2. 0VERVIEW OF HSLII
 HSLII is designed for the purpose of making, learning and simulation for correctness of
digital systems which are small and manufuctured in the laboratory. Those systems are
not integrated onto LSI chips, but made by assembling the standard IC chips, and produced
in small quantity.

 HSL/1 consists of the system part and the command part. The former represents the
structure of a hardware system, i.e. the type of elements and the interconnection of them.
It is exactly a computer description language, by which we can describe a digital system in

the manner of building blocks such as we practically assemble the modules (IC chips,
printed circuit boads and so on). The command part is a simulation command, and
represents the circumstance of the hardware system. It indicates the initial state, the
timing of input data, the period of simulation, the result of simulation to be displayed and

so on.
 Figure1 shows the general flow of
HSL/1. The hardware system, which is
described by the system part, is simulated Systern part
in the compiler driven method. To make
compiling easy, the authors have con-
structed the virtual machine which is
suitable to simulate a hardware system.
The simulator of the virtual machine is

programmed in PL/1. The compiler
produces the intermediate module from

a source program (a hardware system :nterrnediate
described in the system part). The unit Moduie
pakage is a set of modules which is freq-
uently used such as a subroutine package

in the programming lenguage. We can unit
regard the unit package as a set of lc package EL di 2•:gge

chips. By connecting the intermediate
modules and those of the unit package,
the linkage editer produces the object

lgg,",ke,rvhlihs'g,/rl•g,x,'2te8,?K,tPs.vih'hui,i ggg::s

part, the virtual machine simulates and
reports the results of simulation.

 We can repeat the simulation of the HsL/i
same object module in the different con- Command part
dition, by rewriting the command part.
That is corresponding to checking up the
hardware system in various conditions, in
the real hardware system.

Fig. 1 The general flow of HSL/1.

-54-

Hardware Simulation Language HSL/I

3. SYSTEM PART AND COMMAND PART
SYSTEM PART
 A hardware system described by the system part begins at UNIT and ends at TINU,
and then it is compiled to an intermediate module. The system part consists of the
declaration part and the statement part. The formar declares attribute of the elements
used in the hardware system. Some attribute are followings.
 REGISTER and TERMINAL attribute are able to have a high dimensional structure
(inplemented up to five dimensionality). REGISTER has a memorial function but
TERMINAL has not. SWITCH attribute means the data input and LIGHT attribute
displays the output data. CLOCK attribute indicates the clock pulse with a period and a
width or with only a period. We can declare both a single phase pulse and a multi phase
pulse. For designing a computer system such as a micro computer system, MEMORY
and a bus attribute are declared. MEMORY is declared the capacity of words and the
length of word, and essentially equals to a two dimensional register array. A bus attribute

declares bus line systems such as that of a computer system. There exist OUTBUS that
is a one directional data path and BIBUS that is a bidirectional data path. OUTBUS is
connected by means of tristate, logical and, logical or, and then BIBUS is tristate.
CONSTANT attribute declares the constants which are logical one or logical zero. We
can describe Roms in which programs and data are programmed in computer systems.
CONNECT attribute indicates the connection of elements to those of the other modules.
 The statement part describes the interconnection of elements, the functions of ele-
ments, the condition of data transfer and the propagation delays. The sort of function
has the shift, the reflection and so on. In the data transfer condjtion, there are AT, ON,

IF and CASE statement. AT statement describes that the data is transferred at the edge
of the pulse, and we can describe a edge triggered flip-flop. ON statement is used for
description of a master slave fiip-flop. IF statement describes that the data is transferred

if the control signal is logical one, and a D latch is described. CASE statement is the
same as that of a programming language. We can also describe the propagation delay of
rising up and rising down individually.

COMMAND PART
 The command part gives the information to the simulator which simulates the object
module made from intermediate modules and those of the unit package. The commands
are followings.

 INITIALIZE command is used for setting the initial state of the hardware system to be
simulated. DELAYSET command is used for changing the magnitude of the propagation
delay which has already described in the system part. CLOCKSET command is used for
changing the period and width of the clock pulse which has already described in the system

part. SWITCHIN command indicates the value of data and the time when the data is
input. The data is not input to only SWITCH attribute, but also REGSTER and TERMI-
NAL attribute. PRINTOUT command indicates the time, the condition and the element
to be reported of the result. RUN command indicates the period of simulation by means
of the time or the condition.

 4. SIMULATOR
 The hardware system is simulated by the virtual machine illustrated in Figure 2. The
•machine consists of a superviser and five processers, i.e. Executer, Clock Generator, I/O

-55-

 Akikazu TAMAKi, Hajime MizuMAcHi and Kiyoshi KATo

Controller,DelayControllerandInitiator. TheyareprogrammedbyPLII. Theelements
of the hardware system, which is described in the system part, are represented in Data
Memory. One word of Data Memory contains five items i.e. the value of element, the
magnitude of up delay, that of down delay, two counters for up delay and down delay.
The element can take six values, i.e. Iogical one, logical zero, up (transition of logical zero

to one), down (transition of logical one to zero), tristate (high impedance) and warning
(which means that the value is not determined). The interconnection and operation of
elements, which are described by the statement part in the system part, are stored in
Program Memory in the form of instruction code for Executer. The statement part is
compiled and linked to the form of object module for Executer which contains the infor-
mation ofthe system part. The information ofCLOCK attribute is stored in Clock Table.
The information of SWITCHIN and PRINTOUT command is stored in IIO Table. We
can change the period and width of Clock Table by CLOCKSET command, and the
magnitude of up delay and down delay in Data Memory by DELAYSET command.
Initiator initializes the state of elements of the hardware system by setting the value of ele-

ments in Data Memory, in accordance of INITIALIZE command. Executer changes the
value ofelements in Data Memory by executing the program in Program Memory. Clock
Generator generates clocks according to Clock Table and changes the value of clock
terminal in Data Memory. IIO Controller inputs the data to the elements in Data Memory
and prints out the value of elements, in accordance with IIO Table.

 It can simulate in the synchronous and asynchronous methods. In the former, the
magnitude of the delays described in the system part are neglected. In the later, that is

regarded and the minimum sampling (simulation) time is 1 nano second for convenience'
sake. Executer does not change the values directly, only sets the counter for up delay and
down delay at changing zero to one and one to zero, respectively. The counters are de-
creased one by one each sampling time, so that Delay Controller sets the value of one when
the counter for up delay is zero, or that it sets the value of zero when the counter for down
delay is zero.

Prograrn
Memory

Delay
Controller

Fig. 2 The block diagram of the virtual machine.

- 56 --

Hardware Simulation Language HSLn

Superviser controlls those processers so as to simulate the hardware system.

5. EXAMPLES

EXAMPLE OF ASYNCHRONOUS CIRCUTT
 Consider the asynchronous circuit with the flow table, assignment and realization shown
in Figure 3.(i) The assignment causes a race in the transition from the state 2 to the state
3 and the transition from the state 4 to the state 1. The final state reached is depend on the

order of changes. We can described the realization by HSL/1 and simulate it by varying
the magnitude of delays of gates. The description of the realization by the system part is

also shown in Figure 3, named SAMPLE. Il, I2, I3, Gl, G2, G3, Yl and Y2 have TER-
MINAL attribute. X has CLOCK attribute whose period is 40 nano seconds and the
width 20 nano seconds. Figure 4 shows the command part and the result of simulation in

State Nextstate .Assignment

X=OX=l YlY2
1 12 oo2 Ol3 104 11 The circled states are stable,

and the others unstable.

(a)

I2

Gl

x rl

13 G2 Yl

G3

Y2

(b)

1 l-----------t----t---------t------tt------------t--"-t-----"------l----
 - . t EX4"pLE OF RACE JN ASvNt"HONOuS CMCIuT - . . }------------t-{"------------t---t------t--------"t------"---t-----"--1
 UN1T SAMPLE(MAIN).
2 TERMINAL II.l2.IJ.31,3?.30,Yl.y2.
3 CLOCX p20 BY ?O NS.4 11 :s NOT X.S 12 :s ,-Ot y2.6 lj :t NOT YI. ,7 31 :t r; ANO I? AND YI. .S 32 :t ll AND 13 AND Y?.
9 C•) :sKAN) Yl.10 Y; :s Gt OR "2 0R 33.
11 y2 :t x•12 TtNJ SMOLE.

(c)
 Fig. 3 An asynchronous cirouit.

(a) fiow table and assignment

(b) realization
(c) description by system part of HSL/1

NOTE (1) It appears in p. 210 of [4].

-57-

Akikazu TAMAKi, Hajime MizuMAcHi and Kiyoshi KAro

 1i1SG:vt tililtlla •:is?::;;
 tl-- (NS- ;l t: :V: :": :J}i tu il: rl-L- tSS:e .-.-.J.c
 -O .: .1 .i- "OuO 10 .l .t .1"L":" : : : 1• : 1 i l : S : : : : Oo : : : : : : : r : u, o, te .: .l .lnUOeO S: .t .l .1;Lo-o :: :: :: lt e• ::i: :: :t :t ::g: ," ';: leo .1 .l .Io voee Fe .1 .l .lo.a:e ll •: 1•IIIiig g : l i t': :• I•l• Ii lg , io l :•
 1-o ,I .1 .leceoo U" .; -l .1"goco i)o .l ,t .10 ., DeO 110 .l ,: .10:e.: "o .: .} .le Oeoo S-e .1 .1 .IO"ooe ITe .t .t .toeo-o tSe .1 -i .10Ov c• elull taLtlE lis,1: ::: :l :: ::: .J O, :: tN:T[4LIZE Y2.e` ;:: :: :: :::::: O,I:I::tlEX i:il i; re, ll ll lll giii I:lll:tlEt g,' :2i ,}ii Ii: il lg ::Ii
ilil•111111[•2'l:•il li•lg' i): lli [•il i"i iliiii:i•K':•lil' l,i i"i i•t ,ill•liiii i,
[NSTIALLtE YI.O; ;: :::X :::t:: :: [,NLT"Ltlf 12.:: ;: ::t '" :;:::k :t t- le g .le boo .l tNsTt4Lltf tl.II IT .iC L te eeo .1lfi,ITLLLil[V?.LO:

 I- .t u::ll.;?.ti; gv, :v,:tEal t;: i; ll: :. Ii l tt Il git:: ;E; e;:11:gl '; •s •::l •ll gig i
;!l)lgyre::::tE,[B lg'l il :lg ,i- ll :• li l ;:l:T,e.:T, e.:EY,2tE`,IMI, }:lii iilii:i
i'i'i,i•i'5,/i';• l,lll'//lt,Ik'} 'lll /l'i isiil l'i#il•i' 'i"Ei/L'IOr•Y.i•l:,'i'i'lllLt,llllll•l -,lliii li 'li' i' l' i'ii i' i' i' li /J/i•

)HtNr3uT sv tyCLECI) V?: ::: O. X :l: ; : : ',')gtNTJvT sy CyCLE(1) GS' :: ')'S g ::: : : : ::
UJNt20,)). "o .1" .10 -o.o)"t',TouT 5V CyCLE{:) VZt 'te"; .lo-o- .l ::: :} .'t ::: : : : : ORItJIOvT S, CyCLECI) ,2: Y.: .U,: ::: x : .o ::
 lii Iili fii:iii RUN(2eCM ili li r/ ,:lg r",gi Ii
 {a) ll, :, ll, {i -I:, :, c".i!t l, ii:A:. :,:g l}i :u} :o
 ;:: :: :l :1:::!: (a} ;;: :: :: ,` ". I:: :t: s-e .L .L .leoe-o)le ,S .te .1 .to .to i'ii it,, ,)i/ ,l/ il• i/ l/. I/ l/ i'., ,/i;/ i'., ,/i• /r/ r' /i /f/"t /f". ,it ii

 il li l• i• ii•1 i• i• l• ll ii l• 1• i):i i"`!li, il i"l,
 illi lliill il ll ll iii ll li ill,11 11/iii li i:• li ii• l`i lli li•

 i'ii !i, i' ll' l' i'. i' li i'"i i'I' i':i i' !' i' lli'll' i'l'

 ::: :: ."s l:: :::: ::: •'I:::: ge :: :: i•i i, Il l•IIi• i, le i1 l• i,i/ili• Y•, i, l• ,; :,' i,l
 gtl!-:il:l ll•i ll !•lll,il ,i. i•l

 (b) (b) Fig. 4 The simulation (all of the delays are Fig. 5 The simulat!on (the delays of G2 and Y2

 equivalent). are larger).
 (a) command part of HSL/1 (a) command part of HSL/1
 (b) timingchart (b) timingchart
which all of the delays are equivalent. When Il is down and Y2 is up, the logical and of
them is not determined. Therefore, G2 sometimes becomes warning, and then Yl and Y2
repeat the state 1 and the state 2. Figure 5 shows the next simulation in which the down
delays of G2 and Y2 are larger. The magnitude of delays of G2 and Y2 are rewriten by
DELAYSET command. No warning appears in the timing chart, and the realization
can correctly operate by having the proper delays.

EXAMPLE OF COMPUTER DESIGN
 The authors have described the model computer called COMP-X which is used for the
examination of information processing engnieer in Japan. Refer the specification to the
apRendix. The simple diagram shown in Figure 6 indicates the data path and the principal
registers except the elements for the timing and state control. The description of the model

computer is shown in Figure 7, named COMP-X. In this architecture, one execution ofa
instruction requires 8 states (from the state O to the state 7), and the preceding 4 states are
a fetch cycle, and the secceeding 4 states an excute cycle. STATE (O: 2) is the 3 bits counter

ysed for the 8 states. The data paths are controlled by the horizontal microprogram stored

in Rom, named CODE, which is declared as CONSTANT attribute. k consists of 16
rvords corresponding to the instructions, and one word is 18 6its corresponding to the
information of controlling the data paths. Table 1 shows the meanings of the each bit.
I.n thg state 3, an instruction is transferred from DBR to IR, and in the state 4, the instruc-

tion is decoded by the contents of CODE, and then the information is transferred to the
control fiip-flops (CR, CW, CH, CALU (2: O), Cll, CIO, C9, C8, C7, C6, C5, C4, C3, C2,

-- 58 -

.

Hardware Simulation Language HSL/I

RAM

maln
mernory

Control
Registers

CODE
control
raernory

GR
general
registers

Fig. 6 The block diagram of COMP-X.

Table 1. The bitwise function of micro eode

bit function
O DBR -GR1 ADR --.GR2 BR: SC .GR
3 ALU .GR4 GR -TEMP5 ADR .SC (Jumponcondition)
6 ADR -ÅÄSC (Jump if GR is not zero)
7 ADR -SC (Haltandjump)
8 DBR -BR:SC9 ADR --,FAB
10 DB .DBR11 GR .DBR,GR.DB12-14 ALU control

 bit functionl4 13 12
O O 1 exorO 1 O andO 1 1' subtract
1 O O add1 O 1 shift

15 halt16 memory read
17 memory write

(note) Bit O is the rightmost bit.

--- 59 -de

Akikazu TAMAKi, Hajime MizuMAcHi and Kiyoshi KATo

NO. SOURCE
1 . 1------t-e--------"--------e--------e-e"-----f-----e------------------/

 t- Coyp-x coDE ey Mo6?6 -t 1----"---}-e--------"-----"------t-t------"--t-"--t------t-----"'"-"--"/

 UNST COMP.X (MA1N),
 2
 REGtSTER :R(15:O).
 3 REGtSTER 8R(IS:O).
 4 REG:STER GR(3:O;IS:O).
 s REGrsTER scus:o).
 6 REG!STER CC. 7
 REGISTER TEYP(IS:O).
 e RE3ISTER ADR(ls:o).
 9 REGISTER DBR(15:O). 10
 1- :NTERNAL eUS eUFFER .I
 REGISTER RD.
 11 REG:STER wR. 12 REG:STER AB(15:O).
 13 REGISTER D8(lb:O).
 14
 t. STATUS REGISTER nt
 RE3:STER HOL).
IS REG:STER STATE(2:O).
i6

 /. gr:RO coDE -/
 coNfTANT coDEas:oaT:o)-Oolo:+OOcooloooooooB: 1. HJ ./
 oooeeoooooolooooooE: t. JNz ./
 oooooocoooocloooooe; 1- Jc .1
 looocoolnoceoolooe: t. JsR -1
 OOOIOICOOOOOCI:OOOR: /. SFT .t
 o: t.- .t O: /-e et o: t". "/ OOOOOOOOOOOOOOOOIOS: /. LAI .t
 o; t.. ./ 1001COOtlOOOOIIOOOB: 1. ADD .t
 looollOliooOolloooE: t. Sue ./
 loooooonoooeooeo13; /. LD .1
 olooco:olooouooooeB: t. sT et
 100010Cl:OOOOIIOOOB: t. AND .t
 1000ClbllOOOOIIOOOB. t. EOP .1
17

 RErotsTER cR.
18 REGISTER Cw.19 RE3:STER CH.20 RE31STER CALU(2:O).
21 pEGrsTER cll.22 PEGISTER CIC.23 RE3tSTEq C9.24 REG!STER C8.2t. RE31STER C7.26 REGISTER C6.27 RE3tSTER Cb.2s RE31STER• C4.29 RE3ISTEP C3.'30 RÅíGISTER C7.
31 PEc,ISTER CI.S2 PL6ISTER :o.33

 1. :O•gTROL -/ CLJ:K CLKsl 5Y 1 NS.
34 TE-"INAL NCLK:tNOT CLK.
35 PE31STER JF.36
 iF NOT ,-tOLD THEN
 CASE STATE(?:O) OF
 (O ; ADR(ls:O):sSR(15:6):SC(7:O).

 (1 : RD:sYH:GH.
3s ABas:o):tADR(ls:O).39 AT NCLK DO SC(15:O):tlNC SC(i5:O). TA.
 (? ; DBR(ls;O):sD:(IS:O).

 (3 ; RD:s:..LOw.
43 IR(15:o):sDBk(IS:O).
 (" ; CR:Cw:Cg):CALL,(?:C):Cil:CIO:C9:Cti:C7:C6:C5:C4:
 C3:C2:Cl:CO:s:ODE(IR(IS:i2);i7:O).
4b ADP(15:8):tBR(IS:8)."6 1,F rR(9:8)=eLOlt:eLOw THEN ADR(7:O):tlR(7:O).
"7 ELSE A)P(7:C):slft(7:O).GR(IR(9:8);7:C).

Fig. 7 The description of COMP-X by system part of HSLII.

60

Hardware Simulation Language HSL/I

 (S : IF CR THEN HD:seHIGH. F:.
 51 IF Cw THEN .R:-eHIG-. FI. S3 IF CII THtN DB(IS:O):sGR(:R(11:10);1):O). F:.
 55 :F C9 THEN AS(IS:O):sADR(15:O). Ft.
 s7 JF:seLow. (6 ; IF CIO THEN)BR(15;O):nDB(15:o). F:.
 60 ;F C6 THEN IF GRCIR(11:10);15:O)"eLO.(15:O) T.-tEN JF:.eHtGH.

 63 :F C5 THEN JF:e(iR(11) AND (NOT CO) OR
 (SR(IC) AND CC).

 6S :F C4 THEN TEMO(15:O):sGR(IR(11:10);IS:O). fl. 67 IF C2 THEN GR(IH(11:10):IS:O):sSR(lb:8):SC(7:o). Fl.
 (7 ; IF CR THEN RD:seLOv. FS.
 71 IF C" THEN .R:sYLOw. Fl. T3 IF CH THEN HOLD:sPHIGH. Fl, 7S IF Ce THEN bR(IS:e):tDeR(15:S). 76 SC(7:O):sDSR(7:O).
 7e :F C7 0R JF THEN SC(T:O):tADR(7:O). FI. eO IF C3 THEN 6R(IR(11;10);15:O):-ALu(IS:O).
 el cc:tALucc. S3 IF CI THEN 3R(IR(11:10);15:O):teLOw(15:S):ADR(7:O).
 85 :F CO THEN GR(:R(11:10);IS:O):tDeR(15:O). Fl.
 ESAC.
 e8 AT CLK DO STATE(O:2):slNC STATE(O:2). TA.
 90 Fl. 91
 1. ALU "/ RErelSTER ALU(15:O).
 92 RE31STER ALuCC.
 93
 CASF cALU(?:O) OF
 (1 ; ALu(IS:O):sTEMP(ib:O) ExOR DBR(ls:o).

 94) (2 ; ALU(15:O):sTEMP(lb:O) AND DfR(15:O).

 95) ('3 ; ALU(IS:O):eTEMP(15:O) ' DSR(i5:O)e
 96 ALVCC:sNOT ALu(15). 97) (- ; ALu(15:O):.TEMP(IS:C) • DSR(15:O).
 9e ALuCC,.sNOT ALU(15). 99) (S S tF :R(e) THEN ALUUS:'O):ssrlR TEMp(15;o).
100 ELSE ALU(IS:O):t)SHL TEMD(IS:O).

102) ESA:.
103
 1. PESET .t S":T:-t RESET.
104
 !F RESET THEN SC(15:O):teLO"(IS:e).
10S eR(ls:O}:sip.LOW(i5:O).106 HOLD:seLO".107 STATE(2:O):sL.LO"(2:O).10s RD:seLow.109 wR:seLO".110 Fl.111
 /" START -/ S"IT:rt STAPT.
112
 IF START THEN "OLD:tSLOw.
113 sTATEO:O):s!LO.(2:O).114 Fl.11S
 1" yEYORy -1 CO,yfTANT RAy(5:O;ls:O)tOC404H:
 OebFF -i :
 O:401rl:
 ooooo":
 OOO02H:
 o.
:16
 tF RD T,-IEN D6(15:O):tRAY(AS(7:O);15:O). Fl.
11e IF "R THEN RAM(ABu:o);15:O):sD3(ls:O). FI.
120
 TlNU COMP.X.

Ftg. 7 The description of COMP-X by system part of HSLII.

 (continue)

- 61

Akikazu TAMAKi, Hajime MizuMAcHi and Kiyoshi KATo

Cl, CO).
 In the description, the shift instruction is allowed only one bit operation. The explana-
tion of the other operation is omitted.

6. CONCLUSIONS AND ACKNOLEDGEMENT
 The authors have explained the outline of HSL/1 system which is suitable to over the
logic design level. A hardware system can be built up from modules, as the system part of

IISL(1 h.as a module structure. We can describe a hardware system by HSLII, in the
imagination of assembling standard IC chips practically. As showing the example,
HSLII simulates the asynchronous circuit with a race and hazard. The circuit can correctly

gperate or cannot, by changing the magnitude of the propagation delays. Then, HSL/1
is a good tool for learning the operation of an asynchronous circuit. COMP-X is de-
scribed in the register transfer level, and the description is very simple. HSL/1 is usefu1
for learnig a computer design. From above discussion, HSLII is also suitable to the
education of hardware system in the logic design level.
 The authors greatefu11y appreciate the active roles that Shin-ichi Kiyohara and Hiroyuki

Fukuda played in the design and implementation.

REFERENCES
 1) Hartenstein,R.W., FundamentalsofStructuredHardwareDesing, North-Holland,1977.
 2) Breuer,M.A., DigitalSystemDesignAutomation: Language,simulation&Database, Computer
 Science Press, 1975.
 3) Breuer,M.A., DesignAutomationofDigitalSystems, Prentice-Hall.
 4) Friedman, A.D. and Menon,P. R., Theory & Design of Switching Circuits, Computer Science
 Press, 1975.
 5) Mead,C.andConway,L., IntroductiontoVLSISystems, Addison-wesley,1980.
 Followings are described in Japanese.
 6) Tamaki, A. et al., "Hardware Simulation System HSLII (D: Declaration of Hardware System",
 Bulletin of Kyushu Institute of Technology, No. 42, 1981.
 7) Tamaki, A. et al., "Hardware Simulation System HSL/1 (II): Simulation by Virtual Machine",
 Bulletin of Kyushu Institute of Technology, No. 42, 1981.
 8) Mizumachi, H., "Study of Computer Design Language", Master Thesis of Kyushu Institute of
 Technology, 1982.

AJ?PENDIX

 The Specification of COMP-X
Main memory: 2'6 words, 16 bits/word.
Numerical data: Fixed point with 16 bits, and a negative number is the form of 2's
 complement.

Registers

SC: Sequence counter (program counter).
BR: Base register with 16 bits, the lower 8 bits are always zero.
General registers: 16 bits, called GRO, GRI, GR2, GR3, which are also used for index

 registers except GRO. GR means general registers.
CC: Condition code register, after the completion of Add of Subtract
 operation, set 1 if the result is negative, otherwise O.

-- 62 -

"

Hardware Simulation Language HSL/I

Instruction format

op
45
GR

67
XR AD

OP: Operation code.
GR: The number of GR or the condition of the Jump on Condition
 lnstructlon.
XR: The number of index register. If XR==O, no address modification.
AD: Indicates the lower 8bits of the operand address. The effective
 address (A,f) is modified as following.
 No index modification,
 A,f=upper 8 bits of BR + AD.
 Index modification,
 A.f=(AD+lower 8bits of GR indexed by XR field) mod
 256+upper 8 bits of BR.

Instructions

Binary Instruction Function
OO(X) Halt andjump A.f.SC, and halt. If the start button will be pushed, reruns
 at the address indicated by SC.
Ooo1 Jump if GR is Jump to A,f, if GR is not zero.
 not zero

oo10 Jump on [GR]=oo: No operation
 condition [GR]=Ol: If CC== 1, thenjump to A,f
 [GR] == 10: If CC=O, then jump to A,f

 [GR] =11: Jump to A.f
 (note) [GR] means the content of GR field.

oo11 Jump to SC+1.GR, and [A,f]-SC, BR, and then the lower 8 bits of
 subroutine BR are reset.
Oloo Shift The content of GR is shifted to the right (XR field==oo) or left
 (XR field= Ol) for the number of [A,f].
1000 ' Load address Lower 8 bits of A,f-lower 8 bits of GR, and the upper 8 bits of
 immediate the GR is reset.
1010 Add GR+[A.f].GR, and CC is set if the resultÅqO, reset otherwise.
1011 Subtract GR-[A,f]-GR, and CC is set if the resultÅqO, reset othwewise.

11oo Load [A,f].GR
1101 Store GR.[A,f]
1110 And GR and [A,f]-GR
1111 Exclusive or GR exor [A,f].GR

(note) [A,f] means the content of memory whose address is indicated by [A,t]. GR used above
 are specined by GR field in the instruction.

-63-

