Memoirs Kyushu Inst. Tech.
(Eng.) No. 14, 1984, pp. 53-63

HARDWARE SIMULATION LANGUAGE HSL/I

by

Akikazu TAMAKI*, Hajime MizuMAcHI'
and Kiyoshi KaTo**

(Received November 30, 1983)

SYNPOSIS

The authors describe of the CHDL called HSL/1 (Hardware Simulation Language/1)
which is suitable and adaptable to over the logic design level. HSL/1 consists of two
parts. The former is the system part by which a hardware system is described. The
later is the command part which is the command for the simulation. This paper contains
two examples. One is the description and simulation of the asynchronous circuit. It is
shown that the circuit can correctly operate by having the proper delays. The other is the
description of the simple model computer. The computer is designed by means of the
horizontal microprogram. HSL/1 is also a good tool for the education of hardware
systems in the logic design level.

1. INTRODUCTION

CHDL has developped in the aid of designing of large computer systems and LSI. In
the organizing a computer system, there are several levels as followings [5],

1. PMS level

2. Program level

3. Logic design level

4. Circuit level
and each level may be divided into sublevels. Most of CHDLs are convenient and adapt-
able to few sublevels. The development of CHDLs requires many labors and long time.
Therefore, the computer system, which is designed by using those CHDLs, is produced in
large quantities.

We make the digital system which is used for the tool of the research and experiment in
laboratories. It is.assembled by the standard IC chips and printed circuit boads. The
authors intend to develop the CHDL which is convenient and usuful to design of digital
systems by assembling the standard IC chips in laboratories. The CHDL is required to
be convenient to over the logic design level, because the logic design of laboratories is
almost included in it. The logic design level is divided into two sublevels i.e. Register
transfer sublevel and Switching circuit sublevel. It requires the good descriptivity and the
module structure such as assembly of IC chips. The digital system which is described by
the CHDL must be simulated so as to find logical errors, before it is practically assembled
on the printed circuit boads. The register transfer level requires a synchronous simulation,
and the switching circuit level requires an asynchronous simulation with propagation delays.

* Assistant, Dept. of Computer Sci.
** Professer
1 Nippon Telegraph and Telephone Public Corpration

— 53 —

Akikazu Tamaki, Hajime MizumacHr and Kiyoshi Kato

The authors has constructed the CHDL and its simulator which satisfy above needs and
called HSL/1 (Hardware Simulation Language 1). A part of KARL [1] is converted with
slightly modification for the hardware description part of HSL/1.

2. OVERVIEW OF HSL/1

HSL/1 is designed for the purpose of making, learning and simulation for correctness of
digital systems which are small and manufuctured in the laboratory. Those systems are
not integrated onto LSI chips, but made by assembling the standard IC chips, and produced
in small quantity. ’

HSL/1 consists of the system part and the command part. The former represents the
structure of a hardware system, i.e. the type of elements and the interconnection of them.
It is exactly a computer description language, by which we can describe a digital system in
the manner of building blocks such as we practically assemble the modules (IC chips,
printed circuit boads and so on). The command part is a simulation command, and
represents the circumstance of the hardware system. It indicates the initial state, the
timing of input data, the period of simulation, the result of simulation to be displayed and
so on.

Figure 1 shows the general flow of

HSL/1. The hardware system, which is HSL/1
described by the system part, is simulated SYstem Part
in the compiler driven method. To make

compiling easy, the authors have con- J

structed the virtual machine which is
suitable to simulate a hardware system.
The simulator of the virtual machine is
programmed in PL/1. The compiler
produces the intermediate module from

a source program (a hardware system ;2;3‘;‘“1“8

Compiler

described in the system part). The unit
pakage is a set of modules which is freq-
uently used such as a subroutine package
in the programming lenguage. We can Unit Linkage
regard the unit package as a set of IC Package Editor
chips. By connecting the intermediate
modules and those of the unit package,
the linkage editer produces the object
module which is simulated by the virtual Sg?iiff;
machine. In obedience of the command

part, the virtual machine simulates and
reports the results of simulation.

2

We can repeat the simulation of the HSL/1)
same object module in the different con- Command Part Simulater
dition, by rewriting the command part.
That is corresponding to checking up the
hardware system in various conditions, in
the real hardware system. Result
~——_—

Fig. 1 The general flow of HSL/1.

Hardware Simulation Language HSL/I

3. SYSTEM PART AND COMMAND PART

SYSTEM PART

A hardware system described by the system part begins at UNIT and ends at TINU,
and then it is compiled to an intermediate module. The system part consists of the
declaration part and the statement part. The formar declares attribute of the elements
used in the hardware system. Some attribute are followings.

REGISTER and TERMINAL attribute are able to have a high dimensional structure
(inplemented up to five dimensionality). REGISTER has a memorial function but
TERMINAL has not. SWITCH attribute means the data input and LIGHT attribute
displays the output data. CLOCK attribute indicates the clock pulse with a period and a
width or with only a period. We can declare both a single phase pulse and a multi phase
pulse. For designing a computer system such as a micro computer system, MEMORY
and a bus attribute are declared. MEMORY is declared the capacity of words and the
length of word, and essentially equals to a two dimensional register array. A bus attribute
declares bus line systems such as that of a computer system. There exist OUTBUS that
is a one directional data path and BIBUS that is a bidirectional data path. OUTBUS is
connected by means of tristate, logical and, logical or, and then BIBUS is tristate.
CONSTANT attribute declares the constants which are logical one or logical zero. We
can describe Roms in which programs and data are programmed in computer systems.
CONNECT attribute indicates the connection of elements to those of the other modules.

The statement part describes the interconnection of elements, the functions of ele-
ments, the condition of data transfer and the propagation delays. The sort of function
has the shift, the reflection and so on. In the data transfer condition, there are AT, ON,
IF and CASE statement. AT statement describes that the data is transferred at the edge
of the pulse, and we can describe a edge triggered flip-flop. ON statement is used for
description of a master slave flip-flop. IF statement describes that the data is transferred
if the control signal is logical one, and a D latch is described. CASE statement is the
same as that of a programming language. We can also describe the propagation delay of
rising up and rising down individually.

COMMAND PART

The command part gives the information to the simulator which simulates the object
module made from intermediate modules and those of the unit package. The commands
are followings.

INITIALIZE command is used for setting the initial state of the hardware system to be
simulated. DELAYSET command is used for changing the magnitude of the propagation
delay which has already described in the system part. CLOCKSET command is used for
changing the period and width of the clock pulse which has already described in the system
part. SWITCHIN command indicates the value of data and the time when the data is
input. The data is not input to only SWITCH attribute, but also REGSTER and TERMI-
NAL attribute. PRINTOUT command indicates the time, the condition and the element
to be reported of the result. RUN command indicates the period of simulation by means
of the time or the condition.

4. SIMULATOR

The hardware system is simulated by the virtual machine illustrated in Figure 2. The
-machine consists of a superviser and five processers, i.e. Executer, Clock Generator, 1/O

Akikazu TaMAK1, Hajime Mizumacsar and Kiyoshi Kato

Controller, Delay Controller and Initiator. They are programmed by PL/1. The elements
of the hardware system, which is described in the system part, are represented in Data
Memory. One word of Data Memory contains five items i.e. the value of element, the
magnitude of up delay, that of down delay, two counters for up delay and down delay.
The element can take six values, i.e. logical one, logical zero, up (transition of logical zero
to one), down (transition of logical one to zero), tristate (high impedance) and warning
(which means that the value is not determined). The interconnection and operation of
elements, which are described by the statement part in the system part, are stored in
Program Memory in the form of instruction code for Executer. The statement part is
compiled and linked to the form of object module for Executer which contains the infor-
mation of the system part. The information of CLOCK attribute is stored in Clock Table.
The information of SWITCHIN and PRINTOUT command is stored in I/O Table. We
can change the period and width of Clock Table by CLOCKSET command, and the
magnitude of up delay and down delay in Data Memory by DELAYSET command.
Initiator initializes the state of elements of the hardware system by setting the value of ele-
ments in Data Memory, in accordance of INITIALIZE command. Executer changes the
value of elements in Data Memory by executing the program in Program Memory. Clock
Generator generates clocks according to Clock Table and changes the value of clock
terminal in Data Memory. I/O Controller inputs the data to the elements in Data Memory
and prints out the value of elements, in accordance with I/O Table.

It can simulate in the synchronous and asynchronous methods. In the former, the
magnitude of the delays described in the system part are neglected. In the later, that is
regarded and the minimum sampling (simulation) time is 1 nano second for convenience’
sake. Executer does not change the values directly, only sets the counter for up delay and
down delay at changing zero to one and one to zero, respectively. The counters are de-
creased one by one each sampling time, so that Delay Controller sets the value of one when
the counter for up delay is zero, or that it sets the value of zero when the counter for down
delay is zero.

Program - Executer
Memory

1/0 Table

l

I/0 Controller

Data Memory

Delay
Controller

R\\\\\\ Initiator

Fig. 2 The block diagram of the virtual machine.

Supervisor

Clock Table | Clock
Generator

— 56 —

Hardware Simulation Language HSL/I

Superviser controlls those processers so as to simulate the hardware system.

5. EXAMPLES

EXAMPLE OF ASYNCHRONOUS CIRCUTT

Consider the asynchronous circuit with the flow table, assignment and realization shown
in Figure 3.() The assignment causes a race in the transition from the state 2 to the state
3 and the transition from the state 4 to the state 1. The final state reached is depend on the
order of changes. We can described the realization by HSL/1 and simulate it by varying
the magnitude of delays of gates. The description of the realization by the system part is
also shown in Figure 3, named SAMPLE. 11,12, I3, G1, G2, G3, Y1 and Y2 have TER-
MINAL attribute. X has CLOCK attribute whose period is 40 nano seconds and the
width 20 nano seconds. Figure 4 shows the command part and the result of simulation in

State | Next state Assignment —Doﬁlﬂ
X=0 X=1 Y1 y2 &
1 ® 2 o o . i
2 3 @ 0 1 13 G2 Y1l
3 ® 4 1 o0
4 N O0) 11
The circled states are stable, G3
and the others unstable.
(a)
N 1“
L7
(b)
1 lnno-n-oaaninc.¢o-.nono'n.o.ul.u.o.o..-on..u.bo.o.ou--.oonc.--o.oa-o.o:
: EXAYBLE OF KACE 1N ASYNIWwONOUS CIRCIUT -

. .
e Y L R T e R R AT R T R R LA R e

UNIT SAMPLE (MAIND .

2 TERMINAL 114124134314524530v10v2.
3 CLOCK x=20 BY 20 NS« .
I3 12 = NOT 2.

5 12 = »OT Y2,

6 13 i= NOT v1.

7 51 = 11 aND 12 AND Y1.

8 Gz i= |1 AND [3 aND Y2.

9 Gy 1= K AND Y1.

15 Yl i= Gl OR G2 OR 53.

1 ¥2 i= X.

12 TINU SAMPLE.

(c)

Fig. 3 An asynchronous circuit.
(a) flow table and assignment
(b) realization
(c) description by system part of HSL/1

NOTE (1) It appears in p. 210 of [4].
— 57 —

Akikazu TAMAKk1, Hajime Mizumacrr and Kiyoshi KaTo

R T R L op e e e
L 2 O 0
Has o P v oo e o
i H H 12¢ v2u0t T e i li: H i
a1t a0 2 [NITIAL = R v
Ptz B 1 3 H INITIALIZE Y1=03 IS H HE
IITIALTEE T3eld I H H INITIALIZE GImCi HE I H HE
(NIT;ALIZE 3103 N H v, INtTiaLI2E 52-0; RS I H $ o8
INLTIALIZE G2=08 5 iis < T "'”"':“ ff‘:i“ 2 e . HEA
INITUALIZE 63=0: A H i il e I IR
[NITiaL1ZE YinOd S I H o1 INITEALIZE 1 H DS IR 5 N
1nITLELIZE Y2%0i IR ¢ 1 l‘«HHL:lF?:};l”: b []
SISy CYaLE () A R Dl SR v SEE B EREE A
gy HEH HESII: H :: 291NTOUT BY CYCLE (D) X3 SR A I Y
R ME - 1 133 s T f H o 2R1NT3UT 8y CYELE(L 111 R ° P
SrinranT 3 JYCLE(L) 81 oiie o d H i 2RI By CrLed) 121 iiE H HE
BN TN Boote oL : i SelviduT 3y CYiLEdD) Sid HES I I : H
RANEAEM) vis FAER H i 3RINTOUT 3v CviLend) 2t R o FN
EANCHEBMR NS R Pio s Hidhdvonem oy S P
2RINTIUT 3Y 2 3 A . o 24047307 3¥ CYCLEGD) i Ol M 8 Iy
RUNL2D9D 3 “ H H aRINTOUT 3y CYCLELL) v2i S § S
b ! i ° RUNCZECY S f F
3 : : 3 R
{a) d M o B T o
2 H I ta) : Mol :
N H DR
M H CEIR IR I]
(b) (b))
Fig. 4 The simulation (all of the delays are Fig. 5 The simulation (the delays of G2 and Y2
1
equivalent). are larger).
(a) command part of HSL/1 (a) command part of HSL/1
(b) timing chart (b) timing chart

which all of the delays are equivalent. When I1 is down and Y2 is up, the logical and of
them is not determined. Therefore, G2 sometimes becomes warning, and then Y1 and Y2
repeat the state 1 and the state 2. Figure 5 shows the next simulation in which the down
delays of G2 and Y2 are larger. The magnitude of delays of G2 and Y2 are rewriten by
DELAYSET command. No warning appears in the timing chart, and the realization
can correctly operate by having the proper delays.

EXAMPLE OF COMPUTER DESIGN

The authors have described the model computer called COMP-X which is used for the
examination of information processing engnieer in Japan. Refer the specification to the
appendix. The simple diagram shown in Figure 6 indicates the data path and the principal
registers except the elements for the timing and state control. The description of the model
computer is shown in Figure 7, named COMP-X. In this architecture, one execution of a
instruction requires 8 states (from the state 0 to the state 7), and the preceding 4 states are
a fetch cycle, and the secceeding 4 states an excute cycle. STATE (0: 2) is the 3 bits counter
used for the 8 states. The data paths are controlled by the horizontal microprogram stored
in Rom, named CODE, which is declared as CONSTANT attribute. It consists of 16
words corresponding to the instructions, and one word is 18 bits corresponding to the
information of controlling the data paths. Table 1 shows the meanings of the each bit.
In the state 3, an instruction is transferred from DBR to IR, and in the state 4, the instruc-
tion is decoded by the contents of CODE, and then the information is transferred to the
control flip-flops (CR, CW, CH, CALU (2: 0), C11, C10, €9, C8, C7, C6, C5, C4, C3, C2,

Hardware Simulation Language HSL/I

ADR

main
memory

DB

Control
Registers

+1

GR
general
registers

cC

ALU

TEMP

N

DBR

Fig. 6 The block diagram of COMP-X.

Table 1. The bitwise function of micro code

bit function
0 DBR —GR
1 ADR -GR
2 BR: SC -»GR
3 ALU -GR
4 GR —TEMP
5 ADR —SC (Jump on condition)
6 ADR —SC (Jump if GR is not zero)
7 ADR —SC (Halt and jump)
8 DBR —BR:SC
9 ADR —AB
10 DB —DBR
11 GR —DBR, GR—DB
12-14 ALU control
bit function
14 13 12
0 0 1 exor
0 1 0 and
0 1 1 subtract
1 0 0 add
1 0 1 shift
15 halt
16 memory read
17 memory write

(note) Bit 0 is the rightmost bit.

NO.

~NOWV e W ~

(=1)

11
12
13
14

15
16

17
18
20
21
22

24
2%

27
28

20
31

33
34

3%
36

37
38
39
a1
42
43
44
45
46
47

“9

Akikazu TAMAKI, Hajime MizumacHI and Kiyoshi KAaTo

SJOURCE

A Ry Y Y Yy Ry YY)

/= Cove=x

CODE BY MD628

./

A Y Yy Ny T Ly Y R R Y Y Y Y Y I LY

UNIT COMP-X (MAIN),

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

REGISTER
REGISTER
REGISTER

IR(15:0).
BR(15:0).
GR(3:0§15:0),
§C(15:0).

cc.

TEMP(15:0) .
ADR(15:0).
DBR(15:0).,

/% INTERNAL BUS BUFFER ®/

REGISTER RD.
REGISTER wR.
REGISTER AB(15:0).
REGISTER DB(15:0).

/% STATUS REGISTER

REGISTER HOLD.

REGISTER STATE(2:0).

/% “IZRI CODE

./

./

CONSTANT CODE(15:0317:0)=001C300C0010600000C8:

060CC00060010000008:
000000C0000610G000R:
10000001110CGC0100a:
gOOlDlCOOOOOCllOOG“:
0:

0:

8000000000000000105:

1001000110000110008:
1000116110000110008:
100050011000C000013:
0100£01010002000J03:
10001038110000110008:
1000315110060110008.

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

CR,
Twe

CH.

caLuc2:0).

{11,
<1cC.
C9.
Cé.
c7.
Co.
<s.
Ca.
<3,
<2,
1.

<C.

/® ZONTRDL
CLOZK JLx=l BY 1 NS,
TERWMINAL ACLK:=NDT CLK.

RESISTER

JF .

./

IF NDT H0LD THEN
CASE STATE(2:0) OF

4
)

[4

~ o

~~

)

[

1

ADR(15:0) :=3k(15:6):5C(7:0).

RD:=®HIGH.
AB(15:0):=aDR(15:0),

/e
/e
/»
/®
/»
/=
/e
/1
/»
/e
/=
/e
/e
7%
/=
/e

AT NCLK DD ST(15:0):=INC SC(15:0). TA,

DAR(15:0):=D2(15:0),

RD:=a Ow.
IR(15:0):=D8k(15:0).

CRICwW:CHICALUL(2:C)IC11:Cl0:CY:CH:ICTICeICH:Ca:

C€3:C2:C1:CO:=CODECIR(15:12):17:0).,

ADR(15:8) i=BR(15:8).
IF 1RC(9:8)=@LDw &L Ow

THEN ADR(T:0):=|R(T:0),

MY
INZ

JSR
SFT

LAI

ADD
sue
Lo

AND
E0R

®/
./
./
./
./
./
./
./
./

./
s/
»/
*/

./

ELSE ADR(T:C) = |H(T:0)+GREIR(G:8):7:C).

Fl.

Fig. 7 The description of COMP-X by system part of HSL/1.

— 60 —

94
95

96
97

98
99

100
101
102

103

104

105
106
107
108
109
110
111

112
113

114
115

116

118
120

(

)

Hardware Simulation Language HSL/I

5 1 IF CR THEN HDimeHIGH. FI.
IF Cw THEN wR:iweHlGH. F1.
1F C11 THEN 08(15:0):=GRCIR(11:10)315:0), Fl.
1IF €9 THEN A3(15:0):=ADR(15:0). Fl.
JFi=@LOw,

6 i IF C10 THEN DBR(15:0):=0D8(15:0). Fl.
IF C6 THEN IF GRCIR(11:10):15:0)#@LIw(15:0)
THEN JF (@8HIGH.
fFl.
Fl.
IF C5 THEN JF:e(iR(11) AND (NOT CO))
R

C(IR(1C) AND CO)»
Fl.
IF C4 THEN TEMP(15:0):=GR(IR(11:10):15:0), F1,
IF €2 THEN GRCUIK€11:10):15:0):=6R(15:8):5C(7:0). FI.

7 ¢ IF CR THEN KD:eeélOw. Fl.
IF Cw THEN wR:!szLDw, Fl,
IF CH THEN HOLD:=2H{GH. Fl.
iF C8 THEN BR(15:8):=pER(15:8).
SC(7:0):=DpBR(T:0),
Fl.
IF CT DR JF THEN SC(T:0):=ADK(T7:0). FI.
IF €3 THEN GRCIRC11:10)3515:0):=aLu(15:0).

CCi=ALUCC,
Fl.
IF C1 THEN GR(IR(11:10)315:0):=eLOw(15:8) :ADR(T:0).
Fls

IF CO THEN GR(IR(11:10)315:0):=DBR(15:0), FI,

ESAC,
AT CLK DO STATE(O0:2):=INC STATEC0:2). TA,

Fl.

/e ALU

./

REGISTER ALU(15:0).
RESISTER ALUCC.

CASF CALU(2:0) OF

«1
)
2
)

3

~~
»

)
£Sac.

/% RESET

ALUC15:0):=sTEMP(15:0) EXOR DBR(15:0).
ALU(15:0):=TEMP(15:0) AND DBR(15:0).

ALU(15:0) :mTEMP(15:0) = D3R(15:0).
ALUCC:=NOT ALUC15).

ALUCL5:0):=TEMP(15:C) + DBR(15:0).
ALUCC:=NDT ALUC15).

IF IR(8) THEN ALU(15:0):=SHk TEM2(15:0).

ELSE ALU(15:0) 1=dSHL TEMP(13:0).
Fi.

./

SwITI4 RESET.

IF RESET THEN SC(18:0):=@LOw(15:0).

Fl.

/% START

BR(15:0):=9LOw(15:0).,
HOLD :=@LOw.

STATE(2:0) 1=aLJw(2:0).
RD:=@LOW.

WRI=@_LOW.

./

SWITCH START.

IF START THEN HOLD:=8L0w.

Fl,

STATE(2:0):=28L0w(2:0),

/% MEMORY ./
CONSTANT RAM(5:0:19:0)=0C40un:

085FF~:
01401+:
00000+
00002+:
0.

IF RD THEN DB(15:0):=RAM(A8(T:0):15:0). FI.,
[F wR THEN RAMCAB(7:0)315:0):=D3(15:3). Fl.

TINU COMP=X.

Fig. 7 The description of COMP-X by system part of HSL/1.

(continue)

— 61 —

Akikazu TAMAKI, Hajime MizuMacHr and Kiyoshi KaTo

C1, C0).
In the description, the shift instruction is allowed only one bit operation. The explana-
tion of the other operation is omitted.

6. CONCLUSIONS AND ACKNOLEDGEMENT

The authors have explained the outline of HSL/1 system which is suitable to over the
logic design level. A hardware system can be built up from modules, as the system part of
HSL/1 has a module structure. We can describe a hardware system by HSL/1, in the
imagination of assembling standard IC chips practically. As showing the example,
HSL/1 simulates the asynchronous circuit with a race and hazard. The circuit can correctly
operate or cannot, by changing the magnitude of the propagation delays. Then, HSL/1
is a good tool for learning the operation of an asynchronous circuit. COMP-X is de-
scribed in the register transfer level, and the description is very simple. HSL/1 is useful
for learnig a computer design. From above discussion, HSL/1 is also suitable to the
education of hardware system in the logic design level.

The authors greatefully appreciate the active roles that Shin-ichi Kiyohara and Hiroyuki
Fukuda played in the design and implementation.

REFERENCES

1) Hartenstein, R. W., Fundamentals of Structured Hardware Desing, North-Holland, 1977.

2) Breuer, M. A., Digital System Design Automation: Language, simulation & Database, Computer
Science Press, 1975.

3) Breuer, M. A, Design Automation of Digital Systems, Prentice-Hall.

4) Friedman, A. D. and Menon, P. R., Theory & Design of Switching Circuits, Computer Science
Press, 1975.

5) Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-wesley, 1980.
Followings are described in Japanese.

6) Tamaki, A. et al., “Hardware Simulation System HSL/1 (I): Declaration of Hardware System”,
Bulletin of Kyushu Institute of Technology, No. 42, 1981.

7) Tamaki, A, et al., ‘“‘Hardware Simulation System HSL/1 (II): Simulation by Virtual Machine”,
Bulletin of Kyushu Institute of Technology, No. 42, 1981.

8) Mizumachi, H., “Study of Computer Design Language”, Master Thesis of Kyushu Institute of
Technology, 1982.

APPENDIX
The Specification of COMP-X
Main memory: 216 words, 16 bits/word.
Numerical data: Fixed point with 16 bits, and a negative number is the form of 2’s
complement. '
Registers
SC: Sequence counter (program counter).
BR: Base register with 16 bits, the lower 8 bits are always zero.

General registers: 16 bits, called GRO, GR1, GR2, GR3, which are also used for index
registers except GRO. GR means general registers.

CC: Condition code register, after the completion of Add of Subtract
operation, set 1 if the result is negative, otherwise 0.

Instruction format

Hardware Simulation Language HSL/I

314 5,6 78 15

OP

GR | XR

AD

OP: Operation code.
GR: The number of GR or the condition of the Jump on Condition
instruction.
XR: The number of index register. If XR=0, no address modification.
AD: Indicates the lower 8 bits of the operand address. The effective
address (A,¢) is modified as following.
No index modification,
As=upper 8 bits of BR + AD.
Index modification,
A =(AD+lower 8 bits of GR indexed by XR field) mod
256+ upper 8 bits of BR.
Instructions
Binary Instruction Function
0000 Halt and jump A.—SC, and halt. If the start button will be pushed, reruns
at the address indicated by SC.
0001 Jump if GRis Jump to A.;, if GR is not zero.
not zero
0010 Jump on [GR]=00: No operation
condition [GR]=01: If CC=1, then jump to A.,
[GR]=10: If CC=0, then jump to A,
[GR]=11: Jump to A.;
(note) [GR] means the content of GR field.
0011 Jump to SC+1—-GR, and [A.;]>SC, BR, and then the lower 8 bits of
subroutine BR are reset.
0100 Shift The content of GR is shifted to the right (XR field=00) or left
(XR field=01) for the number of [A.,].
1000 ‘Load address Lower 8 bits of A.—lower 8 bits of GR, and the upper 8 bits of
immediate the GR is reset.
1010 Add GR+[A.]—GR, and CC is set if the result <0, reset otherwise.
1011 Subtract GR—[A,(]>GR, and CC is set if the result <0, reset othwewise.
1100 Load [A.]—GR
1101 Store GR—[A,(]
1110 And GR and [A.(]>GR

11

Exclusive or

GR exor [A.;]->GR

(note) - [A.(} means the content of memory whose address is indicated by [A.,].
are specified by GR field in the instruction.

GR used above

— 63 —

