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1. Introduction. 
 

This chapter describes background and motivation for the research about 

Vacuum Arc Thruster. Present a novelty and objectives to be achieved in this 

work. Describes principle of VAT and the vacuum arc in passive ignition (no 

igniter). Was done overview about necessity of a deorbiting system for 

nanosatellites regarding to the high spacecraft population on the LEO orbit.  

 

1.1. Background and motivation. 

Traditionally the satellite-building industry differentiated things by size or 

mass, by power consumption, and by place of development (university, industry, 

or government). In recent years, micro- and nano- satellites have become popular 

in part because more and more universities are actively engaged satellite 

development programs.  The “cost-of-entry barrier” has come down significantly. 

Formation of a satellite constellation, where each is an individual part of a 

bigger system, is an important aspect of small satellites potential. Other positive 

attributes are: low cost, quick response to the mission, flexibility of the operation, 

and long operational life-time in orbit (> 10 years). Small microsatellites use a 

cost-effective method for the detailed space study and physical phenomena 

research. This method could provide new spacecraft design and instruments 

concepts that will be demonstrated in space, with support to new satellite and 

instrument projects, international missions also, and to scientific research. 

For example, a constellation of nanosatellites may each carry one or two 

scientific instruments to collectively perform the research of a single large satellite. 

Payload separation here into smaller segments can reduce a risk for the main 

mission. In addition, nanosatellites may be launched over an extended period of 

time, thereby allowing greater flexibility in mission capability, cost and lifetime. A 

spread network of satellites can collect data and perform experiments on a much 

larger scale than any single satellite could achieve. Constellations can also 

converge at a point of interest to study a particular region of the earth’s surface. 
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Some examples of satellite formation flying are shown in Figure 1 [1]. 

From the Figure 1, satellites used for: weather information, climate research, 

transportation and logistics (navigation (GPS)), multimedia communication 

(television, telephones), safety, security and rescue, space research, Earth remote 

sensing etc. Mostly supplemented micro- and nano- satellites, such as: space 

research, earth remote sensing, early warning and disaster management. 

 

 
Figure 1. Satellite possible missions. 

 

For now, the total number of operating satellites is around 1,305. Among these 

are: in Low Earth Orbit (LEO) are 696 satellites, in Elliptical orbit are 41 satellites, 

in Geostationary Orbit (GEO) are 481 satellites, and in Medium Earth Orbit 

(MEO) are 87 satellites.  The payload breakdown by country is:  USA- 549 

satellites, Russia- 131 satellites, China- 142 satellites, others- 483 satellites.  

For some satellite missions it is necessary to have a payload that can control 

attitude and satellite orientation. Some on-board propulsion could be used for this 

control. For now, the most popular method for attitude control is electric 

propulsion, where the acceleration process is based on the electric field generation 
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between electrodes.  On-board electric propulsions that are commonly used are:  

Pulsed Plasma Thruster (PPT), Stationary Plasma Thruster (SPT), Radiofrequency 

Ion Thruster (RIT), and Vacuum Arc Thruster (VAT). 

If satellite safety matters are considered, propulsion methods that exclude 

pipes, valves and tank systems are preferable. The best candidate is a Vacuum Arc 

Thruster. This propulsion system has a simple design, a great source, absence of 

valves - and so it is a good candidate for small satellites. 

Table 1 shows a comparison between various micro-propulsion schemes 

developed for satellite missions [2]. Vacuum Arc Thruster, which will be discussed 

further, is shown in the last column. Thrusters are classified according to the total 

system mass, specific impulse, efficiency and thrust to total system mass ratio. As 

we can see, efficiency is lowest for VAT- compared for example with Electrospray 

thruster method. But specific impulse is higher than Pulsed Plasma Thruster (PPT 

of Clyde Space), which is the nearest competitor to VAT. Nevertheless, VAT wins 

by the system mass and mass shot per one pulse/discharge, using passive ignition 

that avoid pipes, valves and tank in the system as for example for Electrospray 

(MIT) propulsion. To sum up, Vacuum Arc Thruster method has a simple design, 

absence of valves with leads to increased system reliability, small weight that is the 

most important for satellite as CubeSat with a small weight (1 kg) and great 

source.  

 

Table 1. Comparison of propulsion schemes for microsatellites. 

Thruster type uCAT 

PPT (Clyde 

space) 

PPT (Busek 

Co) 

Electrospray 

(MIT) 

VAT 

(Alameda) 

VAT 

(KIT) 

System mass, gr 200 160 550 45 600 35 

Propellant Metal Teflon Teflon Liquid Metal CFRP 

Isp, s 3000 590 700 3000 1500 1200 

Propellant mass, 

gr 40 10 36 20 40 1.8 
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efficiency, % 15 4.7 16 71 9.4 2.6 

Thrust to mass 

ratio, uN/gr 0.63 0.03 0.18 0.5 0.22 1.60E-03 

Table 1 (continue). Comparison of propulsion schemes for microsatellites. 

 

1.2. Vacuum Arc Thruster. 

The vacuum arc thruster was ultimately chosen for study due to its novelty of 

using Carbon based propellant, low power consumption, variable-thrust capability 

and low system mass and unless igniter system, when the discharge is occurred by 

the passive ignition in LEO plasma condition. The vacuum arc thruster consists of 

anode and cathode electrodes that separated by the insulator between them. The 

cathode in plasma condition emits electrons and by the potential difference on the 

cathode surface (consist of a metal and a dielectric) provides discharges. The 

action of the vacuum arc forms hot microscopic cathode spots on the cathode 

surface, which emits vaporized cathode material [Schein et al.]. This material 

becomes ionized within the arc region and expands outward as dense high-speed 

plasma, achieving velocities as high as 15-20 km/s [3]. The vacuum arc pulses 

within the VAT are generated by a power circuit comprised of a network of 

capacitors (Figure 2). Typical thrust values from a VAT are on the order of a few 

mN per pulse, where pulses are usually 50–500 μs in length and fired at a rate of 

1–50 Hz. Typical impulses (or impulse bits) are in the μNs range. 

The VAT falls under the category of a microthruster, which is a propulsion 

system that gives small satellites (typically 1–100 kg mass) the ability to perform 

orbital maneuvers, drag compensation and station keeping. These capabilities are 

highly attractive because they allow a satellite to orient itself, perform orbit 

positioning and extend mission lifetime. A large variety of micro thrusters exist 

and continue to be developed to address the technical challenges of miniaturizing 

propulsion systems. Examples include Pulsed Plasma Thrusters (PPT), Stationary 

plasma thruster, Field Emission Electric Propulsion (FEEP). 
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Figure 2. Vacuum Arc Thruster circuit. 

 

One of the Vacuum Arc Thruster was developed in George Washington University 

and called Micro-Cathode Arc Thruster. This thruster was developed in a frame of 

PhoneSat program but has not been not launched. The thruster consists of titanium 

cathode and similar diameter copper anode. The annual ceramic between cathode 

and anode has the same diameter. Thruster cross section is 5 mm and a mass 

together with a power processing unit about 200 gramm that is quite big for 

example for CubeSats. Cathode material eroded and accelerated by the Lorentz 

force between the cathode and anode electrodes, discharge is occurred and thrust is 

produced. The advantage of this thruster that thrust could be controlled by the 

frequency of discharges (for 1-50 Hz it is 1 uN-0.05 mN). During erosion test 

thruster demonstrated operational lifetime over two months. Micro-Cathode Arc 

Thruster has impulse bit around 0.11-1.1 uNs (without or with permanent magnet).  

Duration of one discharge is about 100 usec (Figure 3). 
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Figure 3. Micro-Cathode Arc Thruster. 

 

Another type of a Vacuum Arc Thruster is Magnetically enhanced Vacuum 

Arc Thruster (M. Keidar and futher development contributed to Alameda Applied 

Science Corporation). Thruster use metal solid propellant, low voltage operation 

(~100 V) and has 1000 s of specific impulse and 20% of efficiency. Voltage 

applied from the power processing unit (5-24 V) and converts into an adequate 

power. Thruster provide ~1 uNs of impulse bit and has a total system mass < 300 

gram (Figure 4). 

 

 
Figure 4. Magnetically enhanced Vacuum Arc Thruster 

 

By Alameda Applied Science Corporation for  2U CubeSat (10 x 10 x 20 cm) 

propulsion system was developed another Vacuum Arc Thruster [J. Schein] 

(Figure 5).  

 



 18 

 
Figure 5. VAT posion on-board 2U CubeSat and VAT geometry. 

 

Vacuum arc thruster presented a sandwich structure mounted to the satellite 

walls. Operation voltage is ~200V, discharge period for <1 usec, specific impulse 

>1000 sec, impulse bit ~0.25uNs-50uNs with discharge frequency varying from 1-

1000 Hz. Cathode material is Cromium with average velocity of moleculs ~17000 

m/sec. In this project, VAT dry mass of less than 300 gr, together with power 

processing unit and efficiency about 5%. 

The VAT has a huge potential due to the low system mass, low power 

consumption, great source and simple design. A propulsion system, such as VAT, 

based on the solid propellant, avoid valves, tank system, piping system and 

decrease failure modes that associates with that. This potential benefit thruster 

system has been recognized by several research groups who present developing 

VAT propulsion system hardware for space flight [4]. Additionally, the VAT is 

still a relatively new propulsion technology compared to many other commercial 

systems such as a PPT, which has almost 50 years of development and flight. So, 

there exists much opportunity to enhance, optimize VAT technology in order to 

achieve its wider acceptance by the small satellite community as an attractive and 

viable propulsion solution. 

So, this work will present Vacuum Arc Thruster for nanosatellites, developed 
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at Kyushu Institute of Technology, Laboratory of Spacecraft Environment 

Interaction Engineering (LaSEINE). Thruster was developed for student satellite 

project Horyu-IV, as a functional mission demonstration and with improved 

characteristics can be used as an effective deorbit system for CubeSats. Vacuum 

Ar Thruster has a head mass of 6 gramm and together with electric circuit total 

weight is 35 gramm plus additional DCDC converter. This mass characteristic in 

comparison with competitors has a huge advantage. Operation voltage 300V-800V 

converted from 5V of DCDC convertor, specific impulse 1300 sec, thrust 4.8 nN 

and efficiency 2.5%. Discharge occurred in LEO plasma condition without any 

igniter, that avoid uses of high voltage on-board and increase satellite safety. 

 

1.2.1. Vacuum arc. 

The terminology of a vacuum arc is used to describe a current-driven arc 

discharge that exists between anode and cathode electrodes within a vacuum 

condition. Vacuum arcs on the cathode material characterized by the electron 

emission and plasma production [5]. On the cathode surface form small arc spots 

and they produce plasma emission. These spots are microscopic and they are 

formed in the area of highly concentrated electric field (~109 V/m). This high 

power density can support a sufficient heat, vaporization and cathode material 

ejection during a very short time like 10-100 ns, when the cathode material could 

transform from the solid phase into the plasma. Emitted material collides with the 

electron cloud and forms highly ionized plasma. Plasma generation process on the 

cathode surface includes some simple area dominated by ionization, diffusion and 

emission. Ions ejected to the plasma from the cathode surface are expand outward 

with ions that going back to the cathode and by the bombardment heat of a cathode 

surface until the vacuum arc will destabilized and initiate a new arc spot in the new 

close place. Cathode’s arcs were found to be the most common arc mode of choice 

in literature for operating vacuum arc thrusters. 

Finally, the electron emission and plasma density would be decreased to some 

level where the discharge could be stopped. Due to decreasing in electric field and 
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conductivity of the cathode, the voltage between the cathode and anode electrodes 

increases. If the discharge is stopped but the plasma condition near the cathode 

area in combination with increased voltage is enough for ionization, cathode 

propellant emits electrons from the area that is more suitable for that, such as 

microprotrusion. This suitable location of microprotrusions could be heated by the 

ion bombardment energy together with heating of electrons by the Joule heat. 

Increasing temperature gives a escape situation when additional electrons emit and 

increase ionization, that provide additional ion bombardment, temperature 

increasing and electron emission. The thermal runaway near the microprotrusion in 

a very short period of nanoseconds will destroy it and a new cathode spot will be 

formed in this phase [6]. 

 

1.2.2. Cathode material and geometry. 

Due to the high density and good electrical and thermal conductivities, metals 

are well suited as a propellant for vacuum arc thruster with additional high melting 

and boiling points. Therefore, for some previous research were used metallic 

elements as a propellant (Aluminum, Molybdenum, Titanium, Tungsten etc.). 

Each material has own and exclusive combination of electrical and thermal 

properties, that change depending on the state of the cathode surface, presence of 

microparticles and pollution with vacuum arc [Polk et. Al. 2008]. So, it is possible 

that some cathode materials (clear metals or some compounds or metalized plastic) 

has not been tested yet and can show some better operation compare to current 

results. 

Thrust can be reduced by the impossibility of acceleration of the cathode 

material to high, as ions, velocities. It is depend to the cathode material properties, 

such as thermal conductivity and low melting that provide greater erosion. This 

problem could be solved by decreasing discharge pulse period to ~10 usec. 

Regarding to the previous works (e.g. Kandah and Meunier) and some 

industrial tests, some materials based on carbon or graphite are a good propellant 

for vacuum arc thrusters. Carbon for example has high temperature resistance and 
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it sublimates rather of melting and his resistance decrease with temperature 

increasing. Compare to the carbon metallic counterparts, they can show some 

better erosion rate results and high ion. This work will describe a test for some 

different propellants, include carbon based one.  

The most common used cathode electrode geometry is a rod shape. This 

provides simple illustration and cathode manufacturing process. Experimental 

measurements by Miernik & Walkowicz (2000) also showed that the profile of the 

cathode surface can has a significant effect on the spatial distribution of emitted 

macro particles from the vacuum arc [7]. For our test was used cathode with rod 

geometry and was not included some comparison results for cathodes with 

different geometries. 

 

1.3. Development effective satellite deorbit system based on Vacuum Arc 

Thruster. 

Because of the large number of satellites in orbits, there is a question of how 

much space debris can be accepted (Figure 6) [8].  

For today, more than 20,000 objects are traced and saved to the catalogue and 

around 66% of this debris concentrated on the LEO orbit. To keep spacecrafts on 

the orbit, use few “universal orbits” such as sun-synchronous orbit, polar orbit. 

Sun-synchronous orbit keeps a constant angle between the orbital plane and the 

Sun. Polar orbit cross the Earth polar regions. Debris population on the LEO orbit 

is much higher and frequent approaches up to 15 times per day can occurred 

between objects.  

Collision between space debris can occurred any time and from any direction 

due to the Earth’s gravitational field changing and disruption. The Kessler 

syndrome in this case can applies to the LEO orbits, and collision can be on the 

speed up to twice to the orbital speed- 16 km/s, or, as it happened in 2009, on a 

speed 11.7 km/s was head-on collision, when particles can cross other orbits and 

create a cascade effect. The LEO orbit could be impossible for operation in reason 

of some large enough collision, like between space station and some satellite for 
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example [9]. 

 

 
Figure 6. Model of space debris around the Earth. 

 

At 400 km (250 mi) and below where the air drag helps clear zones of 

fragments mostly are manned missions. In 90th, one of the factors that reduced 

debris density was increasing drag on the critical altitudes due to space weather 

and the atmospheric expansion. Also was decreased number of launches compare 

to 70th and 80th when was done most of the launches by USSR.  

Total number of debris in LEO according to size is: 0.1-1 cm are 20 million 

objects, 1-10 cm are 400,000 objects and > 10 cm are 15,000 objects. Operational 

payloads number that orbiting around the Earth are less that 10%. Other objects are 

non-operational payloads (26 %), rocket bodies (18 %), mission related objects (10 

%), fragments (40 %) [10]. 

Purposed solution for debris removal is: solar sail, electrodynamic tether, drag 

augmentation, electric propulsion etc.  

As example M. Keidar purposed to provide CubeSat deorbiting by arcing 

discharges on the solar cells surface and use a satellite structure as a propellant. In 

this case the satellite substrate material could be used as the anode in such kind of 

“vacuum arc thruster” and silicon material of solar cells as a cathode. It means that 

satellite panel will have two arcing places- vacuum arcs- that occurred on the 
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boundary between satellite substrates- anodes and solar cell silicon material- 

cathode. These discharges should occur in pairs to escape a rotation moment 

(Figure 7). To control pairs discharges is very difficult in case of passive ignition 

in LEO plasma condition, so accuracy of this method for now is low.  

 

 
Figure 7. Concept for self-consuming satellite (splar cells arc used as the 

cathode in a vacuum arc propulsion system). 

 

This work will describe CubeSat deorbit system based on Vacuum Arc 

Thruster (VAT) [11,12] as a propulsion system. 

The requirements for the satellite with deorbit system on-board: 

- picosat 10cm x 10cm x 10cm; 

- mass below 1 kg; 

- power consumption below 1 W. 

Deorbit system requirements: 

- Power consumption less than 1 W; 

- Small size; 

- Small weight; 

- Simple design; 
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- Deorbit time less than 25 years; 

- Deorbit from the 800 km altitude to the 400 km. 

The main idea is an installation to the satellite ram side a vacuum arc thruster 

that will produce a thrust, opposite direction to the movement of the satellite. 

VAT with passive ignition required a specific plasma concentration to heat the 

propellant and emit electrons from the cathode. This work confirms a 

possibility of the discharge in space plasma by the thruster testing in the same 

artificial vacuum condition provided by electron cyclotron plasma source 

(ECR) and present deorbit results for CubeSat with some prediction about the 

improvement of this data.  

 

1.4. Novelty. 

The novelty of this work is a Vacuum Arc Thruster that doesn’t use any igniter 

to provide a discharge on the working surface. System, that does not use igniter is 

more safe to the satellite because does not use high voltage to support ignition. 

Discharge is occurred by passive ignition, in LEO plasma with some required 

number of ions (~1012 m-3), that heat the propellant- CFRP-plastic, that already has 

a positive charge, and it is provide electron emission, electric field concentration 

between insulator and anode becomes stronger, and the electrons accelerate 

furthermore. Sufficiently accelerated electrons collide with the ambient molecules 

and ionize them. Finally, the cathode and anode will be electrically connected, and 

vacuum arc discharge occurs.  

Propellant/cathode electrode such as Carbon Fiber Reinforced Plastic can 

expand thruster lifetime, because of insulator coating on the main 

propellant/cathode surface to provide a positive charge and electron emission. 

Such kind of insulators have their own lifetime, that minimize total thruster 

lifetime.  

One more additional part of this work and some kind of novelty is a 

development the deorbit system for nanosatellites based on Vacuum Arc Thruster. 

The purpose is to provide CubeSats deorbiting from the LEO orbit in time less than 



 25 

25 years (ISO 24113). The deorbit system presented as a one thruster- VAT, on-

board 1U CubeSat, with mass- 35 gramm and applied voltage at 800 V through 

DCDC converter. Presented modeling and resuls for altitude 800km with 

deorbiting by VAT to 400 km (continue by the atmospheric drag). 

 

1.5. Objectives. 

This work aims to study and develop an electric propulsion thruster for 

potential use on board a conceptual nanosatellite (1 kg, 10 cm cubic) within an 

average power limit of 1 W to perform satellite deorbit mission from LEO altitudes 

(800 km to 400 km in time less then 25 years). A vacuum arc thruster, powered by 

a capacitive discharge power circuit, was designed, built and tested at the 

Laboratory of Spacecraft environment and interaction engineering in Kyushu 

Institute of Technology. Model of the vacuum arc thruster was developed to 

predict and characterise thruster behaviour and performance. Thrust measurements 

were performed. Presented results for efficiency improving by attaching permanent 

magnet to the thruster. Was presented results for efficiency improvement by using 

a new thruster propellant, manufactured in the laboratory and based on the Carbon 

Fiber Reinforced Plastic (CFRP). It is the intention of this work to develop a 

theory of vacuum arc thruster performance and aspects of vacuum arc thruster 

design.  

There are many features of vacuum arc thruster design and operation that need 

to be studied and expanded upon. This study will investigate the following areas 

with the over- all goal of improving the performance of vacuum arc thrusters: 

1. Development of Vacuum Arc Thruster;  

2. Development deorbit system for nanosatellites based on Vacuum Arc 

Thruster.  
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2. Experimental apparatus and test setup. 
 

This chapter provides descriptions of the development and performance of test 

facilities, thruster diagnostic tools and equipment used in this work. Section 

provides some background on the tool, its function, design specifications and an 

assessment of its performance and ability to accomplish this work’s study 

objectives. Major test equipment included the Impulse bit measurement system, 

Quadruple mass spectrometer (QMS), ECR plasma source, and erosion rate was 

measured by weight machine. 

All experimental testing was performed at the Laboratory of Spacecraft 

Environment Interaction Engineering (LaSEINE) in Kyushu Institute of 

Technology, Japan.  

 

2.1. LEO chamber. 

Experimentation with LEO plasma simulation was performed in a stainless steel 

ring vacuum chamber with internal dimensions 1000 mm diameter × 1200 mm 

length (Figure 8). This camber includes a rotary pump, two turbo pumps and also 

ECR plasma source (Figure 9). Highest vacuum level that could be performed by 

this pumps is 1 10-4  Pa, and ECR source produce a plasma with next parameters: 

density 1 1012 m -3 and electron temperature around 1 eV.  Vacuum level was 

measured by two pressure reading sources: low-vacuum Edwards PK-10 Pirani 

gauge (atm–10−2 mbar abs.) and a high-vacuum Leybold-Haraeus PM41 Penning 

Gauge (10−2– 10−9 Torr). ECR source use a Xenon gas as a source of plasma.  
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Figure 8. LEO vacuum chamber. 

 

 
Figure 9. LEO’s chamber apparatus. 

 

On the Figure 10 presented a power source for the plasma ignition. Ignited 

voltage is ~55-58 Volts and a current ~0.001 A.  
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Figure 10. ECR plasma power source. 

 

Inside the LEO chamber is installed a Langmuir probe that can measure 

electron density, electron temperature and plasma potential that allow the 

determination of the physical plasma properties. Langmuir probe consist of one or 

more electrodes, inserting into the plasma with electric potential between that 

could be constant or varying.  

2.2. Quadruple Mass Spectrometer. 

To evaluate the performance of the vacuum arc thruster using a CFRP 

propellant, the exhaust velocity, ve, of the metal vapor was measured in the 

vacuum chamber. The experimental configuration is shown in Figure 10. A 

Quadrupole Mass Spectrometer (QMS) (Figure 11) was used to detect the metal 

vapor ejected by CFRP (mass to charge ratio, m/z: 12; with m: mass number, and 

z: charge amount). QMS (model number: RGA200) made by SRS was used in this 

experiment. QMS mainly consists of an ionizer, quadrupole rods, a Faraday cup (to 

detect ion), and a Secondary Electron Multiplier (SEM) [13]. During arcing, CFRP 

vapor is ionized and flies through the quadrupole rods, which generate an electric 

field. Ions, except for ones with a specific mass-to-charge ratio of 12, collide with 
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the quadrupole rods. The ions with a specific mass-to-charge ratio of 12 are 

detected by the Faraday cup. The output from the Faraday cup is then amplified by 

the SEM, which measures signal. However, the signal intensity does not relate to 

the gas mass, and the vertical axis unit therefore uses arbitrary unit (a.u.) to show 

the relative relationship. In this experiment, the m/z ratio was set to 12 to detect 

carbon molecules.  

 

 
Figure 11. Quadrupole Mass Spectrometer. 

 

2.3. General purpose chamber. 

For some experiments, when number of measurements is high, was used a 

General Purpose Chamber [Figure 12], that doesn’t has any plasma simulation 

sources and discharge on the thruster initiated here by an igniter system. An 

experimental apparatus consist of vacuum chamber (diameter 450 mm x 500 mm 

height), rotary pump and diffusion pump. Highest vacuum level that could be 
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performed by this pumps is 4 10-4  Pa. Vacuum level was measured by two 

pressure reading sources: low-vacuum Edwards PK-10 Pirani gauge (atm–10−2 

mbar abs.) and a high-vacuum Leybold-Haraeus PM41 Penning Gauge (10−2– 10−9 

Torr). 

 

 
Figure 12. General Purpose Chamber (GPC). 

2.3.1. Igniter system. 

An igniter was used in order to generate a single discharge on the surface of 

VAT, when the test was performed without space plasma conditions (in the LEO 

chamber produced by ECR plasma source). The thruster circuit and igniter circuit 

were electrically isolated from each other. Therefore the igniter had no influence 
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on the vacuum arc discharge process. The igniter used was a compact type igniter 

CKB-108A, with an input voltage of 3.0 VDC, electric current consumption of 100 

mA, and output voltage of 15 kV (Figure 13). 

 

 
Figure 13. Igniter system. 

 

2.4. Thruster’s electric circuit. 

Difference between tests setup in the LEO chamber and GPC chamber is only 

use an igniter in the GPC chamber, because of high number of measurements that 

was done in this tests and if we will perform it in the LEO chamber with simulated 

plasma condition, and passive ignition, we have to wait for the each discharge and 

total test time will be huge. In LEO chamber was measures arc rate/frequency data 

for VAT with different configurations and different propellants, average velocity 

for the carbon molecules as a main component for the VAT propellant CFRP and 

was performed ed-to-end satellite test in collaboration with High Voltage Sollar 

Array as a main direct drive power source for the thruster. General purpose 

chamber was used for impulse bit measurements with different thruster 

configurations (propellants, magnetic system, nozzle), long life test experiment 
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(10,000 discharges). This implies a large number of measurements therefore was 

used an igniter system.  

 

 
Figure 14. Electric circuit for the test performed in the LEO chamber. 

 

On the Figure 14, we can see two different current probes on the thruster 

cathode line. One of them was commercial and a second one- hand-made current 

probe developed for the Horyu-4 satellite and using on-board for the VAT’s 

discharge current measurements (Figure 15). Commercial current probe was used 

for measurements correlation and checking. QMS spectrometer was installed in the 

opposite to the thruster surface direction, in one of the chamber window, in such a 

way that the cathode molecule (Carbon) during the discharge flew straight into the 

barrel of the QMS spectrometer. As a power source for the thruster was used a 

HVSA or a commercial power source (Figure 16). Points for voltage 

measurements was mentioned only for the confirmation of the power supply level 

from HVSA as a power source. 
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Figure 15. Current and voltage probe connections. 

 

 
Figure 16. Power source. 

 

For arc rate measurements was used a quick lock camera system that includes a 

personal computer that receive a signal from the oscilloscope (Figure 17), across 

from the Delay pulse generator (DPG) (Figure 18), and send a signal to the camera 

(Figure 19) to detect a moment of discharge, make a photo and count numbers.  

 

  
Figure 17. Oscilloscope “Wavesurfer 3024”. Figure 18. Delay pulse generator 
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Figure 19. Quick look camera. 

 

For the test in a General-purpose chamber was used an electrical circuit 

presented on the Figure 20.  

 

 
Figure 20. Electric circuit for the test performed in the GPC. 

 

For the long life test was used a quick look system to count number of 

discharges on the VAT and 8-channel oscilloscope, that could save data faster than 

“Wavesurfer 3024”.  
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3. Vacuum Arc Thruster. 
 

This chapter provides a brief outline of Vacuum Arc Thruster (VAT):  the 

design, the work mechanism, general performance. It describes the basic principle 

of selection of the working body or thruster cathode. These characteristics will be 

presented: impulse bit, discharge current, average velocities, arc rate. Long-life test 

results are also included. The thrust measurements were done in the nano-Newton 

range. 

 

3.1. An Introduction to Vacuum Arc Thruster. 

The idea of using electric power to accelerate the working material in rocket 

engines was made by K. E. Tsiolkovsky in 1911. Mr. Oberg has shown that despite 

the low values of thrust, we obtain in the electro devices through long duration of 

their work, the spacecraft can be accelerated up to a significant speed. The world's 

first plasma rocket engine (developed by academician V. P. Glushko) was 

designed as a camera with a nozzle, in which the working substance is heated to a 

high temperature and accelerated pulse discharge capacitor bank with energy   

3200 J. 

Practical work on electro-motors started in 1970. The Vacuum Arc Thruster 

was studied from the 1960’s, but VAT methods received significant attention after 

the publication of works by the Alameda Applied Science Corporation, California, 

during the 1990’s. And VAT was patented by Schein in 2004, as a source device 

using a low mass, compact energy storage circuit, with electrodes acting as the 

propellant themselves. Vacuum Arc Thruster is the closest competitor to the Pulsed 

Plasma Thruster (PPT) in terms of electric propulsion [14, 15]. 

 

3.2. VAT theory and Performance. 

The propulsion system for nano-satellites must be simple because the satellite 

does not have enough space to mount complex equipment. Vacuum arc thrusters 
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can be made simple and lightweight. As a propellant, vacuum arc thrusters use a 

solid metal rod that does not require additional equipment, such as piping, valve 

and fuel tank, as does a liquid or gas type propellant. A vacuum arc thruster’s 

electrodes act as the propellant themselves, and the number of parts required for 

propulsion is therefore greatly reduced.  

Upon thrust of the vacuum arc, metal vapor and plasma are ejected. When a 

vacuum arc is generated between the electrodes, vapor is exhausted from the 

cathode. Therefore, the performance of the vacuum arc thruster depends on the 

exhaust velocity, which results from the power input, cathode erosion (cathode 

material) that extends the operational lifetime, and others [16,17,18]. 

The novelty of this research is using Carbon Fiber Reinforced Plastic (CFRP) as 

propellant material. CFRP is a material often used as the back face material of a 

solar paddle. Past studies show that CFRP generates discharge easily and the 

discharge threshold voltage is less than 100 V in plasma inverted gradient. The 

vacuum arc thruster of this research uses this discharge for ignition of the vacuum 

arc.  

Moreover the vacuum arc thruster presented in this paper proposes to use solar 

cells as the direct drive, so that the booster circuit is not necessary in this system 

configuration. The direct drive is carried out by high voltage solar array (HVSA) 

that can generate a voltage beyond the threshold voltage [19]. The high voltage 

solar array can supply stable 350 V and was demonstrated in orbit by a micro-

satellite "HORYU-II" developed at Kyushu Institute of Technology (Kyutech) in 

2012 [20]. This paper also describes the performance measurement results of the 

vacuum arc thruster using CFRP propellant.  

Figure 21 shows the vacuum arc thruster developed by Kyutech. The main 

components for this vacuum arc thruster are: electron supply source (electron 

collector), capacitor, voltage source and protective resistor. The voltage source 

must supply a voltage higher than the electric discharge threshold value. Therefore, 

in this research the voltages used were from 300V up to 800V. The protective 
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resistor value must be larger than the plasma resistance, therefore a 100 kΩ 

protective resistor was used. 

 

 
Figure 21. Kyutech’s Vacuum Arc Thruster 

 

Following the description of this thruster operation, the ion plasma environment, 

based on the Xe gas, (with a high density plasma, 1012m-3) (LEO conditions), 

charges an insulator and/or dielectric (Figure 21 a.). Electric field concentration is 

generated at the boundary of the cathode and insulator (HVSA supply -350 V to 

the cathode) and from the cathode accelerated electrons are emitted (Figure 21 b.). 
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These move to the insulator to neutralize the potential difference. Charging of 

insulator becomes larger because of the collisions between accelerated electrons 

and as a result emitting secondary electrons. Electric field concentration becomes 

stronger, and the electrons accelerate furthermore. Sufficiently accelerated 

electrons collide with the ambient molecules and ionize the molecules. Finally, the 

cathode and anode will be electrically connected, and vacuum arc discharge occurs 

(Figure 21 c.). The vacuum arc between the anode and cathode is formed by the 

charges stored in the capacitor (10μF), and upon vacuum arc generation, metal 

vapor is ejected from the cathode’s discharging point. The reaction of this ejected 

metal vapor results in the generation of thrust that propels the satellite to move 

[21]. 

 

3.3. Design of Vacuum Arc Thruster. 

On the Figure 22 and Figure 23 are shown a prototype design of the Vacuum 

Arc Thruster. Here, thruster head mounted to the electric circuit (main discharge 

capacitor, that storage energy for the discharge). The outer case is cylindrical and 

made from aluminum (Al 7075). The cathode electrode works as a thruster 

propellant and made from the Carbon Fiber Reinforced Plastic (CFRP). It has the 

form of a cylinder. To ensure isolation between the propellant (CFRP, cathode) 

and the aluminum case (Anode), boron nitride was used. 

 

 
Figure 22. Vacuum arc thruster head  Figure 23. Schematic of thruster 

head 
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Anode, Figure 24, consists of 3 parts. Between two of them fixing electric 

circuit with conductive layer inside, to connect anode electrode to the electron 

collector. The cathode connection is made by using AWG22 cable and conductive 

glue “Araldite”. The position of connection shown on the Figure 22 (a hole with 10 

mm depth ). Cathode-cable connection place isolated by RTV glue (Figure 25).  

Total weight of the thruster body is 6 grams, including cathode or propellant 

with weight – 1.8 gram and side ф5 mm x 19 mm (length). VAT head together 

with electric circuit have a weight of 35 grams. The thruster head size is 13 mm x 

21 mm and circuit size is 40 mm x 85 mm. The circuit includes the main discharge 

capacitor that has 10 µF capacity and additional resistors in total 6.3 MΩ. 

The cathode electrode connects to the power source (with DC/DC converter or 

direct drive from High Voltage Sollar Array (HVSA)~ 330 V). The anode connects 

to the electrone collectore or ground (ground test). For DCDC was used 5AV800 

convertor from 5 V input and 800 V output and maximum aoutput power- 1.25 W 

[22]. 

 

 

 
Figure 24. VAT’s assembling 

 

 
Figure 25. VAT mounting to the satellite 

wall. 

 

The original circuit design is shown in Figure 26, where is a green line-

charging line, a red line-discharge line. On the figure, the abbreviation GND- is an 
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electron collector with the potential of plasma, in space condition, and ground- 0V, 

on the ground test. Power source applied voltage up to 800V. 

 

 
Figure 26. VAT’s electric circuit (green-charging line, red- discharge line). 

 

3.4. Vacuum Arc Thruster’s propellants. 

Vacuum Arc Thruster, regarding to his theory, does not have an igniter, and 

the ignition process is possible, only in plasma condition similar to LEO plasma, 

where the concentration of ions is enough to heat the propellant and initiate 

electron emission from the surface. The effectiveness of thruster usually shows 

thrust parameters. Required measurement of the two parameters that define thrust, 

namely, the propellant mass flow rate and propellant velocity or average velocity 

of particles, emitted and accelerated from the propellant surface. 

Important part of the VAT research is the cathode erosion rate that can 

decrease thruster lifetime. Methods of measuring the cathode erosion rate include 

the weight loss method and measuring changes in cathode geometry.  In addition, 

gross melting propellants make the thruster inefficient, since less mass is being 

ionized to produce useful thrust.  

Were tested some materials for the Vacuum Arc Thruster propellant. For each 

propellant material were compared vapor velocity results. Tested materials were 

aluminum, tungsten, and Carbon Fiber Reinforced Plastic (CFRP) (Figure 27, 28, 

29). 
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Figure 27. Aluminum 

sample 

 
Figure 28. Tungsten 

sample 

 
Figure 29. CFRP sample 

 

A Quadrupole Mass Spectrometer (QMS) was used to detect the metal vapor 

ejected by CFRP (Carbon Fiber Reinforced Plastic), Tungsten, and Aluminum. A 

QMS (model number: RGA200) made by SRS was used in this experiment [23].  

QMS mainly consists of an ionizer, quadrupole rods, a faraday cup (to detect 

ion), and a Secondary Electron Multiplier (SEM). During arcing, propellant vapor 

is ionized and flies through the quadrupole rods, which generates an electric field. 

Every ion, except for the ones with a specific mass-to-charge ratio (for CFRP it is 

12), collides with the quadrupole rods. The ions are detected by the Faraday cup. 

The output from the Faraday cup is then amplified by the SEM, which signal is 

measured. However, the signal intensity does not relate to the gas mass, and the 

vertical axis unit therefore uses arbitrary units (a.u.) to show the relative 

relationship. 

The time-of-flight between the thruster and the QMS was measured. The 

exhaust velocity Ve was calculated using Eq. (1). 

Ve = d
t
       Eq. 1 

Where, d [m] is the distance between the thruster and the QMS, and t [s] is the 

time-of-flight. 

In this experiment, the m/z ratio was set to 12 to detect carbon. The QMS 

pressure was 10^-4 Pa. The chamber pressure was 10-3 Pa. The capacitance was 10 

μF to change the arc discharge scale, and the supply voltage was 300V.  

Measurements were carried out in a general vacuum chamber with vacuum in 

10-3 Pa. Tube of QMS which has an aluminum plate with a hole in a one side was 
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connected to the chamber (Figure 30). Accelerated Carbon molecules from the 

VAT cathode came to the hole in the Aluminum plate and were registered by 

QMS.  

 

 
Figure 30. Scheme of experiments to measure average velocity 

 

In this experiment, an igniter was used in order to generate a single discharge. 

The thruster circuit and igniter circuit were electrically isolated from each other. 

Therefore the igniter had no influence on the vacuum arc discharge process. The 

igniter used was a compact type igniter CKB-108A, with an input voltage of 3.0 

VDC, electric current consumption of 100 mA, and output voltage of 15 kV. 

Figure 31 shows the QMS output signal. The vertical axis shows the detected 

amount of carbon by QMS in the arbitrary unit (a.u.). This figure shows the 

carbon distribution corresponding to the time at which the discharge occurs. The 

measurement was made at the moment the oscilloscope detects discharge current 

maximum according to the trigger level.  This means that at this same moment the 

average velocity of carbon is also at maximum.  

The exhaust velocity distribution calculated Eq. 1 is shown in Figure 32, 

where, P(v) represents the velocity distribution function. Weighted velocity 

distribution was calculated using Eq. 2 in order to calculate an average exhaust 

velocity. Q(v) represents the weighted velocity distribution function, Figure 33. 

The average exhaust velocity was calculated using Eq. 3, and the specific impulse 
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was calculated using Eq. 4. However, it should be noted that the average velocity 

represents the average of the velocity distribution of the injected carbon atoms for 

one shot. 

In this experiment, data of each capacitance value were acquired and the 

average velocity was calculated. Figure 34 shows the experimental results. The 

vertical axis is the average exhaust velocity and the horizontal axis is the energy of 

the vacuum arc discharge. Results present for three propellants. 

 

 
Eq. 2 

 

Eq. 3  

 
Eq. 4  

 

 
Figure 31. QMS output signal 

 
Figure 32. Velocity distribution 
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Figure 33. Weighted velocity 

distribution 

 
Figure 34. Average velocity vs. vacuum 

arc energy 

 

On the cross section of CFRP material was identified many triple junction 

points on the boundary of conductor and insulator. Small discharges that occur 

between them (conductor (negative charge) and insulator (positive charge)) 

because of the potential difference works like an igniter. Therefore the system 

mainly does not need the electrical igniter. We think that CFRP is useful as a 

material of the propellant [23] 

 

3.5. Vacuum Arc Thruster’s work parameters. 

Vacuum arc thruster was tested in the laboratory to verify possibility of passive 

ignition. We cannot control the frequency of VAT discharges with passive ignition 

because an igniter system for thruster ignition is not used, and have to wait for 

discharges. Test setup and conditions are shown in Figure 35. 

In this experiment, the plasma environment was simulated using ECR 

mechanism. The background pressure was 10-3 Pa and the electron density was 

1012 m-3 with a temperature of 2 eV. A capacitor of 10 𝜇F was used, the electrone 

collector was made from Copper, and a high voltage solar array was used to 

generate 300 V. 

The entire propulsion system (including the thruster head, capacitor, electron 

collector, and protective resistance) was placed in a vacuum chamber with no 
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connection to external units to check whether the prototype could operate without 

an igniter (passive ignition in LEO plasma). 

For discharge parameters measurement was used tow current probes: 

commercial current probe and hand-made current probe (used on-board 

microsatellite Horyu-IV), voltage probe (measured the level of the applied voltage 

from the HVSA). HVSA and a sun simulator (a lamp) was installed outside the 

vacuum chamber. 

 

 
Figure 35. VAT setup condition. 

 

The discharge current waveform is presented on the Figure 36. It was detected 

that each discharge has a length of ~5 μs. Maximum arc current is ~650- 700 A 

(with a direct drive power source- HVSA, ~300-330 V).  In 5 μs we have a main 

capacitor discharging and the next charging until the new VAT`s discharge will 

occur. More emission sites accommodate higher current levels. These emission 

sites are initiated at locations where there are local microprojection or dielectric 

inclusions, which cause local enhancement of the applied electric field. The ion 

bombardment and Joule heating keep the temperatures required for cathode 

material vaporization and electron emitting. If we loss a cathode material, it is 

cause cathode`s material craters, and because of this the power deposition 

decrease, by ion bombardment and ion heating [24]. It affects the frequency of 
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discharges. The frequency was measured in LEO chamber, with a plasma source 

for passive ignition. 

Testing to measure VAT discharge frequency was done in about 30 min. In 

that period an arc vision camera installed outside of the vacuum chamber detected 

65 discharges. Each arc discharge detected triggered the camera, which made 

photos of discharges and counted them. Arc rate data is presented in Figure 37 

together with the discharge, photographed by the camera from outside the 

chamber. 

 

 
Figure 36. Discharge parameters for 

VAT with CFRP 

 
Figure 37. Arc rate data of VAT 

 

 

The arc rate of VAT, from Figure 37, is 0.0031 sec-1, for the thruster 

configuration with a commercial CFRP cathode (propellant), Aluminum anode, 

capacitor 10 μF and applied voltage of 327 V from the HVSA (direct drive power 

source). 

To measure discharge frequency or arc rate was done the test in the same 

plasma condition but with different level of the applied voltage. The HVSA was 

replaced by power source and was applied voltage from 300 V up to 800 V. Was 

measured current waveforms and arc rate (discharge frequency). Results are 

presented on the Figure 38, for the discharge current and Table 2 shows arc rate of 

VAT depends to the voltage.  
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For CFRP material as for the main propellant, originally was ordered two 

different configurations. First is – CFRP with zero degree carbon fiber direction 

and second one is- CFRP with 45 degree carbon fiber direction.  

For both of them was done a discharge test. And if for the CFRP with zero 

degree carbon fiber direction we got past data, or CFRP with 45 degree, passive 

discharge was not occurred. Plasma condition, electric circuit configuration and 

test parameters were absolutely same. We describe it by the higher impedance for 

this material. Some small discharges was occurred very close to the propellant 

working surface, but was not detected by the camera or by the oscilloscope with 

the trigger level in 5 A. On the Figure 39, we can see a CFRP propellant with 45 

degree carbon fiber direction, thruster configuration, scheme of the experiment and 

schema of discharges on the propellant working surface. 

 

 
Figure 38. Discharge current waveforms for 

300V-800V voltage level. 

Table 2. VAT’s arc rate 

Voltage, V Arc rate, sec-1 

300 0.0032 

400 0.0036 

500 0.017 

600 0.038 

700 0.04 

800 0.031 
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Figure 39. CFRP with 45 degree carbon fiber direction and test configuration 

 

3.6. Impulse bit measurement. 

To count VAT’s thrust, we have to know not only the arc rate, we need 

impulse bit data. This parameter depends to the average velocity of the cathode 

material particles, and amount of charge in the capacitor. In case of the space 

condition, when we have passive ignition and uncontrolled discharges, discharge 

could occurred even if capacitor was not full charged. In this case, we can talk 

about some average thrust parameters. To see an impulse bit, and a thrust for one 

single and a full discharge, means when discharge occurs use full energy stored in 

the capacitor, we used a vacuum chamber that does not have the plasma simulator 

equipment, but we can connect an igniter and control a discharge by the computer 

from outside.  

A special polyimide target provided experiments for impulse bit measurements. 

The target was located on the distance of 10 mm to the surface of the propellant 

and at the moment of discharge we could see target inclination (displacement).  

The experiment setup is presented on the Figure 40. The applied voltage varied 

from 300 to 800 V. The back pressure during the test was 10-3 Pa. An igniter was 

used to control the number of vacuum arc occurrences (active ignition, without 

ECR plasma source). 
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Figure 40. Experiment setup for impulse bit measurement. 

 

The  impulse  bit  was  calculated  using  Eq.  5  in  which  the  displacement x was 

measured from the thrust target displacement upon metal vapor ejection. The thrust 

target was injected with metal vapor that was emitted by one vacuum arc, and the 

displacement of the thrust target was recorded by a digital camera (CASIO EX-F1). 

The thrust target mass is 20 g and               

a  plate  target  was  used,  but  reflected  ions  increase  the  momentum  twice  and 

impulse bit data was two times larger. The cone structure of the target reflects ions 

and gives zero momentum [25]. The thread was made from nylon and length was 

140 mm in triangle. The mass of the thrust head was measured together with thread. 

Nylon  thread  thickness  is  about 1 m, m              

small to add some reaction. 

 
Eq. 5 

 

Where,  M  is  the  weight  of  thrust  target,  g  is  the  gravitational  acceleration 

(taken as 9.8 m/s2), L is the thread length, and x is the displacement of the thrust 

target. 

A photograph at the moment of arc discharge is shown in Figure 41. Figure 42 

shows the target displacement.  
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Figure 41. VAT’s discharge. 

 
Figure 42. Target displacement 

after the discharge. 

 

Results are presented on the Figure 43, depends to the level of applied voltage 

(300 V-800 V). For each point the test was done three times. 

 

 
Figure 43. Impulse bit data for VAT with CFRP 

 

The thrust for discharge period and impulse bit which were known were 

calculated for VAT in Eq. 6, which will operate on-board Horyu-4 with 300 V 

direct drive from the HVSA and CFRP propellant (commercial) with an arc rate of 

0.0032 sec-1: 
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F = Ibit ∙ f = 1.5 ∙ 10−6Ns ∙ 0.0032 = 4.8 [ nN]   Eq. 6 

 

and an efficiency of this thruster (Eq. 7): 

 

δ = Ibit∙Ve
2∙W

∙ 100% = 1.5∙10−6Ns∙Ve
C∙U2

∙ 100% = 2.5 %   Eq. 7 

 

where C- is the discharge capacitance in main electric circuit, 10 μF, U-apply 

voltage, 300 V, Ve- average velocity, 12 km/sec. 

 

3.7. Methods of efficiency improving. 

As the main parameter for efficiency – thrust, was purposed to develop the new 

water adopt CFRP propellant. So, to the CFRP sheet was added the water, as an 

absorber for water was used silica powder, and a glue, to connect everything 

together (glue was "Araldite" type). Water molecules can accelerate a discharge, 

and increase frequency [26].  

For the new VAT’s propellant model was cut a line of a CFRP sheet with a 

size of 10 mm x 13 mm. Silica powder was mixed with water and glue (Araldite). 

This mixture was applied to apart of the CFRP sheet and was twisted into the 

shape of a cylinder around the copper rod through which electricity is fed to the 

cathode. As the anode, an aluminum plate and insulator- polyimide was used 

(Figure 44, 45). 

 

 
Figure 44. The Mechanism of water adopt CFRP propellant development. 
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Figure 45. Water adopt CFRP propellant, silica powder and “Araldite” glue. 

 

If we assume that such a working body can improve the cathode working 

characteristics, was purposed to manufacture water adopt CFRP in three 

configurations, different in composition. Material #1 consists of: CFRP, silica 

powder, water and glue. Material #2 consists of: CFRP, Silica powder, glue. 

Material #3 consists of: CFRP, water, glue. Manufactured materials are presented 

on the Figure 46.  

 

  
 

Figure 46. Water adopt CFRP configurations. 

 

3.7.1. Water adopt propellant testing. 

For Vacuum arc thruster with the configuration includes a water adopt CFRP 

was confirmed passive ignition. Test setup and conditions are same as in chapter 

3.5. The plasma environment was simulated using ECR mechanism. The 

background pressure was 10-3 Pa and the electron density was 1012 m-3 with a 
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temperature of 2 eV. A capacitor of 14 𝜇F was used, the electron collector was 

made from Copper, and a power source was used to generate 300 V. 

The outstanding camera that gets a trigger signal from the oscilloscope detected 

the moment of the discharge. Test was done for three propellant (Material #1, 

Material #2, Material #3). Figure 47 shows discharges for the each water adopt 

propellant.  

 

   

Figure 47. Water adopt propellant’s discharges 

 

Each propellant has a different material composition. Water adopt CFRP was twisted 

into the shape of a cylinder around the copper rod through which electricity is fed to the 

cathode, and from the Figure 47 we can see, that for Material #2 and #3, the plasma plume 

probably consist from the discharges of the Copper rod. For Material #1, plasma plume 

looks more “clear”. Depends to the speed of the electron emission from the propellant, the 

discharge will occurred in passive emission process. Because of this was measured arc 

rate, to know possibility of discharges in time and discharge current waveforms (Figure 

48, 49). 

 

   
Figure 48. Arc rate data for each water adopt propellant (#1, #2, #3) 



 54 

   
Figure 49. Discharge current of VAT with water adopt CFRP (#1, #2, #3) 

 

We already have data for the commercial CFRP propellant, and now compare 

discharge test results with water adopt CFRP (Figure 50) we decided to use for 

next testing propellant “water adopt CFRP #1” and commercial CFRP. 

For water adopt propellant, to decide the configuration of anode was done an 

impulse bit measurement test with two different anodes, made from the Aluminum 

and made from the Copper materials (Copper has a better electrical conductivity 

than aluminum). Impulse bit measurement test was done in the General purpose 

chamber, was used igniter to initiate discharge and measurement provided by the 

polyimide target as described in the chapter 2.6. Results are presented on the 

Figure 51. Was used water adopt CFRP (with water, silica powder, and glue) and 

aluminum anode (plate) or cylindrical copper anode.  
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Figure 50. Comparison of VAT’s propellant material. 

 

 
Figure 51. Impulse bit measurement for water adopt CFRP with Al and Cu 

anode. 
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As we can see, results are almost the same within the error. For the next test 

decided to use cylindrical copper anode, because this configuration (cylindrical) is 

more similar with the original VAT configuration, which was designed in the 

parallel for the satellite project Horyu-IV.  

 

3.8. Magnet system. 

Reducing contamination and increasing thrust could be possible by confining 

the expanding plasma with the magnetic field produced by the permanent magnet. 

For example, M. Keidar (2005) developed a magnetically enhanced vacuum arc 

thruster to restrict plasma, but was used the inductive driver [17]. So, for our test 

was decided apply to the system a permanent magnet with a magnetic field of 0.3 

T (Figure 52, Table 3).  

 

 
Figure 52. Permanent 

magnet 

Table 3. Permanent magnet parameters 

Material Neodymium 

Adsorption force, kgf 73.8 

Surface Magnetic Flux Density,  

mT 

330 

SMFD at center,  mT 120 

Size, mm 25 x 12 x 5 
 

 

Magnet system was located in the two different positions to the thruster 

(thruster on the middle of permanent magnet, thruster on the cross section of 

magnet) (Figure 53). This configuration was purposed to identify in which position 

of magnetic field lines, the plasma could be confine more effective. Data was 

compared with VAT configuration without permanent magnet.  
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Figure 53. VAT’s configuration with permanent magnet 

 

Impulse bit was measured. At first, presenting results for the water adopt CFRP 

and copper anode with polyimide insulator. Presented results compared to the 

thruster without permanent magnet in the assembly with the Copper anode. Too, 

were changed poles of the permanent magnet that added two more configurations. 

So, magnet was installed at the section of the VAT and VAT was in the middle of 

the magnet, when poles were faced to the VAT by “N” pole (as on the Figure 53) 

and by “S” pole. Results presented on the Figure 54. 

Results for the system with magnets in the cross section of the thruster and 

when thruster locates in the middle of magnet are the same within the error. 

However, in the system without magnets, we can see an improvement of ~30%. 
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Figure 54. Impulse bit for VAT with water adopt CFRP and permanent magnet 

of the different configuration. 

 
For the commercial CFRP with 0 degree carbon fiber direction was done the 

same test. Configuration with permanent magnet, plasma condition was same and 

was used a general purpose chamber with the ignition system. 

As we can see from the Figure 55, impulse bit increases if the level of applied 

voltage increases. It was confirmed that permanent magnet can improve the 

characteristics of Ibit in about 30 % in level of applied voltage of 800 V. It is can 

be attributed by the results of Joule heating and cathode material evaporation in 

this process. 
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Figure 55. Impulse bit for VAT with the CFRP commercial with 0 degree and 

water adopt CFRP in different configuration with permanent magnet. 

 

3.9. Applied nozzle to the VAT head 

Magnetic field can improve thruster performance and the same we know that 

nozzle can improve a thrust by increasing pressure in the thruster channel. Test 

was done for the thruster configuration with commercial CFRP propellant, with 

Aluminum anode and a nozzle with length in 5 mm (Figure 56). The nozzle length 

was decided the same as a diameter of cathode electrode (propellant). 
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Figure 56. VAT configuration with nozzle. 

 

Capacitance in the circuit was 10 uF. Test was done in the General purpose 

chamber with igniter system. Applied voltage from 300 V to 800 V. To compare 

the results with VAT’s configuration without nozzle was measured impulse bit 

data for thruster configuration with nozzle. On the Figure 57 are presented a photos 

of discharges for the VAT configuration with 5 mm nozzle, depends to the applied 

level of voltage. 

Impulse bit was measured as described before. Was used polyimide target with 

mass 0.2 gr and located in a distance 10 mm from the thruster head. In moment of 

discharge target was inclined and by this inclination Impulse bit was measured 

(Figure 58). 
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Figure. 57. VAT’s discharges for configuration with nozzle. 

 

 
Figure 58. Impulse bit for VAT configuration with 5 mm nozzle and without 

nozzle. 
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From these results we can see that they are almost the same within the error. The 

thruster configuration with different length of nozzle was not tested, but could 

show better results and if together with nozzle will be attached a magnetic field 

too. 

 

3.10. Long life test for VAT 

As important design factors that regard initiation reliability are a reliable feed 

mechanism and minimal satellite contamination from exhausted propellant or- 

cathode erosion, by Polk et al. (2001). 

In addition, gross melting makes the thruster inefficient, since less mass is 

being ionized to produce useful thrust. Methods of measuring the cathode erosion 

rate include the weight loss method, measuring changes in cathode geometry and 

measuring crater volumes (Boxman et al. 1995). The weight loss method appears 

to be the most common of all methods due to it is relative simplicity and 

fundamental accuracy over other methods, since it measures the erosion rate of the 

entire cathode structure (Shalev et al. 1985, Polk et al. 2001). Boxman et al. 

For Vacuum arc thruster was done the long life test, included 10,000 controlled 

discharges by the igniter system. Was measured a mass before and after the test by 

weight loss method and was detected cathode (propellant) changes in process. This 

test was done in the general purpose chamber, with vacuum 10-3 Pa, igniter system, 

power source (applied voltage was 800 V), 10 uF capacitor was installed inside the 

vacuum chamber. Current probe on the cathode line inside the chamber detected 

the discharge current and trigger signal send the command to detect a discharge. 

That give us a confirmation, that each discharge was occurred, and discharge 

signal that was detected is not from the igniter system. By the number of discharge 

images we calculated number of occurred discharges. On the Figure 59, photos of 

VAT with commercial CFRP and zero degree carbon fiber direction after some 

number of discharges. 
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Figure 59. Cathode profile in term of long life test 

 

Before the test was started, propellant mass was 1.8 gr. After 10,000 discharges 

mass was measured again and calculated mass rate – 3.7 10-10  kg/discharge. 

 

3.10.1. Arc rate after long life test. 

After the long life test in 10,000 discharges was measured arc rate in LEO 

chamber with ECR plasma source (vacuum was 7 10-3, plasma density n = 2.2 1011 

m-3) for the same thruster configuration (capacitance 10 uF, commercial CFRP 

with 0deg carbon finer direction in the propellant and with Aluminum anode). 

Results are presented in the Table 4 with comparison for arc rate measured before 

long life test. 

 

Table 4. Arc rate data for VAT before and after the long life test. 

Discharge Voltage

V 

Arcs Arc rate after long 

life test, sec-1 

Arc ratebefore long 

life test, sec-1 

 

300 5 0.00139 0.0032 
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Table 4 (continue). Arc rate data for VAT before and after the long life test. 

 

 

400 3 0.00083 0.0036 

 

500 6 0.0017 0.017 

 

600 5 0.00139 0.038 

 

700 6 0.0017 0.04 

 

800 6 0.0017 0.031 
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3.11. VAT testing with different capacitors. 

Parameters of the discharge are depending to the exhaust velocity of emitted 

particles. Emission process will be different if the level of the apply voltage 

changes or the main energy storage source- capacitor, will have a different amount 

of charge- capacitance [27]. This chapter describes the difference in impulse bit 

measurement, depends to level of applied voltage and for 2 different capacitors - 

10 uF and 14 uF.  

For this test, for the correlation was choose commercial CFRP propellant with 

zero degree carbon fiber direction with cylindrical Aluminum anode (data 

presented for this configuration is before and after the long life test), water adopt 

CFRP with Copper anode, commercial CFRP with 45 degree carbon fiber direction 

and with cylindrical Aluminum anode, but for the last configuration, in the 

propellant was made a hole with diameter 2 mm and insert inside a Copper 

electrode. Copper electrode was installed on the depth at 4 mm inside (same as 

water adopt propellant and Copper rode inside it). 

Test was made in the general purpose chamber with igniter system. Vacuum 

level was 2 10-3  Pa, applied voltage 300 V-800 V from the power source. For 

measurement was used the described system with polyimide target and outstand 

high resolution camera. For the 10 uF capacitor and four configuration of the 

thruster, impulse bit results are presented on the Figure 60. 

For 14 uF capacitor case, test results are presented on the Figure 61. Here, for 

the configuration with commercial CFRP 45 degree, was changed Copper 

electrode position. From the 4 mm depth, it was moved to “+” axis, and the 

electrode was on the same section as propellant- cathode. It is decreased propellant 

impedance and increase a discharge current. Results presented in comparison to 

water adopt CFRP and commercial CFRP with zero degree of carbon fiber 

direction. 
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Figure 60. 10 uF capacitor impulse bit test. 

 

 
Figure 61. 14 uF capacitor impulse bit test. 

 

Discharge current waveforms are presented on the Figure 62. 
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10 uF capacitor test 14 uF capacitor test 

 
 

  

 
 

Figure 62. Discharge current waveforms for test with 10 uF and 14 uF 

capacitors with four VAT’s configurations. 
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Figure 62 (continue). Discharge current waveforms for test with 10 uF and 14 

uF capacitors with four VAT’s configurations. 

 

Highest impulse bit results showed a VAT with commercial CFRP and Cupper 

electrode inside, with depth 4 mm compare to 0 mm. Was decided to measure 

impulse bit for the same thruster configuration but with depth in 8 mm. On the 

Figure 63 presented results for VAT configuration with cupper electrode on three 

positions- 0 mm, 4 mm, 8 mm and current waveforms for VAT with 8 mm depth 

of electrode inside the cathode.  

 

 
Figure 63. Impulse bit for VAT with commercial CFRP (8 mm) and current 

waveforms. 
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From the results on the Figure 63 we can see impulse bit results improved with 

increasing an electrode depth. It could be described by the low impedance and 

some kind of nozzle inside the propellant. To confirm results need to measure arc 

rate for different electrode depth in cathode.  

The less discharge current we got with configuration of VAT included 10 uF 

capacitor and commercial CFRP with zero degree of carbon fiber and for VAT 

included 14 uF capacitor and a water adopt CFRP.  

For these two thrusters was done the arc rate test in LEO plasma condition. 

Was used LEO chamber, ECR plasma source (the background pressure was 10-3 Pa 

and the electron density was 1012 m-3 with a temperature of 2 eV), passive ignition, 

power source and applied voltage was 300 V-800 V, current probe for triggering 

and image capturing.  

For arc rate test and water adopt propellant with cylindrical Copper anode was 

used 14 uF capacitor, test was done in 3816 second and was detected 72 

discharges. For commercial CFRP with zero degree carbon fiber and cylindrical 

Aluminum anode test was for 1727 sec and was detected 65 discharges. Was 

applied 300 V in both cases. Results are presented on the Figure 64. 

In the Table 5 are presented arc rate data for both VAT’s configurations for 

different applied voltage level (from 300 V up to 800 V). As we can see, arc rate 

increases if voltage increases.  

 

Table 5. Arc rate depends to the voltage 

Voltage, V 

Arc rate, sec-1 

(water adopt CFRP) 

Arc rate, sec-1 

 (commercial CFRP) 

300 0.019 0.0032 
400 0.029 0.0036 
500 0.038 0.017 
600 0.0542 0.038 
700 0.1614 0.04 
800 0.1899 0.031 
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Figure 64. Arc rate test for commercial CFRP and water adopt CFRP. 
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4. Satellite deorbit system based on the Vacuum Arc 

Thruster 
 

This chapter describes the possibility of development of an effective deorbit 

system for CubeSat based on Vacuum Arc Thruster. Results are presented for 

altitudes from 800 km to 400 km by the VAT and from 400 km to 200 km by the 

atmospheric drag. Results are presented for the circuit with DCDC converter that 

increase voltage from 5 V to 800 V, and has power consumption of 1 W. 

 

4.1. Requirements for the satellite deorbit system. 

For the all space history, fulfilled spacecrafts was not deorbited or send to the 

burial orbits, they was just keep in space orbits that increase debris population 

together with a total debris mass, which is about 2 million kg. The uncontrolled 

space debris population increasing has to be avoided to maintain the life for 

spacecrafts in future. Engineers and space users need to take care and keep 

acceptable level, especially on the LEO orbit, where numbers of debris are highest.  

Some studies and publications confirm collision probability increasing for the 

spacecraft and debris objects [28, 29]. If no measures are taken, number of debris 

will increase in around 5% per year. Even very small particles that have a speed 

around 10 km/sec can destroy operational satellite [30]. 

To reduce debris population presented two ways: debris removal and 

avoidance of debris. The most effective method to avoid the problem with debris 

population is active debris removal or satellite deorbit after the end of their 

mission. 

All space debris classified by size and place of life (orbit). Debris, as a source 

of rocket bodies, engines, asteroids, satellite after the end-of-life, operational 

payloads, mission related objects depends to the object size and space location is 

presented in the Figure 65. 
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Figure 65. Space debris classification. Classification by size in all altitudes and 

in the LEO orbit. 

 

If target on the microsatellite CubeSat class with size >10 cm, on the Figure 

66, described effective number of objects depends to the year. Presented number of 

collisions for cataloged, non-cataloged and total object for LEO, MEO and GEO 

orbits [31].  

 

 
Figure 66. Effective object numbers on the orbits (collision results for the 

cataloged and non-cataloged objects with size >10 cm) 

 

Satellite deorbit time from the LEO orbit, should be in less than 25 years by the 

ISO 24113, at 2011. The 25-year limit is derived from IADC guidelines as a result 

of studies on the forecast of evolution of the population of space systems and 
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debris in LEO. It is a compromise between the limitation in the debris environment 

increasing over the next 100 years and programs and projects cost for 

implementing measures to limit the presence on orbit after end of mission.  

There are few solutions for debris removal, such as solar sail, electodynamic 

tethers, drag augmentation and one of the effective deorbiting method is 

propulsion-related methods for LEO spacecraft.  

For one unit CubeSat, with size 10 cm x 10 cm x 10 cm, weight around 1 kg 

and power consumption at 1 W, deorbit system requirements are these: 

- Power consumption less than 1 W; 

- Small size; 

- Small weight; 

- Simple design; 

- Deorbit time less than 25 years. 

The purpose is- Deorbit system for microsatellite based on Vacuum Arc 

Thruster.  

VAT, it is a thruster with a passive ignition in LEO condition. Ion plasma 

conditions, with a high density plasma (LEO conditions), charges an insulator 

and/or dielectric. Electric field concentration is generated at the boundary of the 

cathode and insulator and from the cathode accelerated electrons are emitted. 

These move to the insulator to neutralize the potential difference. Charging of 

insulator becomes larger because of the collisions between accelerated electrons 

and as a result emitting secondary electrons. Electric field concentration becomes 

stronger, and the electrons accelerate furthermore. Sufficiently accelerated 

electrons collide with the ambient molecules and ionize the molecules. Finally, the 

cathode and anode will be electrically connected, and vacuum arc discharge 

occurs. So, discharge could occur in specific plasma condition. If specify satellite 

as a one unite CubeSat with one thruster system on-board, installed on the ram side 

of the satellite, we should confirm possibility of VAT ignition in space, on the 

LEO orbit (Figure 67).  
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Figure 67. VAT position on the RAM side. 

 

The parameters for mean maximum plasma densities from IRI for the LEO 

orbit is temperature T=2,327 K and oxygen ion density nO
+=1.3 1011 m-3 [32], was 

used to calculate the ion concentration on the ram and wake side for 800 km 

altitude. 

RAM side compression region would be ion concentration- n0+nr, behind the 

satellite body- n. 

  Eq. 8 

where is k=1.38 1023 (J/K) Boltzmann constant, mp=2.6 10-26 (kg) mass of 

oxegen molecule. 

  Eq. 9 

 

As we can see from the Eq. 9, the ion concentration is the same (within the 

error), that was used for the VAT testing in the ground tests with LEO condition. It 

can confirm possibility of discharges in the LEO altitude for the Vacuum Arc 

Thruster, and it is effective source for the satellite deorbit purpose.  
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4.2. Satellite deorbit time realized by Vacuum Arc Thruster. 

The modeling and calculation for the deorbit by vacuum arc thruster was done 

for altitudes 800 km to 400 km. Satellite mass from 1 kg, or one Unit of CubeSat 

to 4 kg, four unit CubeSat. Deorbit time by VAT was calculated by Eq. 10. 

 

     Eq. 10 

 

where Np- required number of discharges (thruster’s pulses) for CubeSat 

deorbiting from 800 km to 400 km, f- arc rate, sec-1.  

Equation of energy Eq. 11: 

 

   Eq. 11 

 

where m-satellite mass, 1…4 kg, v1- satellite orbit velocity before the 

maneuver made by VAT, km/sec, v2- satellite orbit velocity after the maneuver 

(after a discharge occurred), km/sec, h=800 km, altitude of start the maneuver, 

H=400 km, final deorbit altitude, M=6 1024 (kg), mass of the Earth, R=6.37 106 

(m), Earth radius, G=6.67 10-11 (J/K), gravitational constant. 

Satellite orbit velocity (Eq. 12): 

 

     Eq. 12 

 

and an equation of momentum (Eq: 13): 

 

     Eq. 13 
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can give a satellite velocity after a thruster’s discharge occurred (after 

maneuver) (Eq.14): 

 

     Eq. 14 

 

Eq. 12 and Eq. 14 we use in Eq. 11 and found a relationship between a number 

of pulses Np and a thruster impulse bit parameter Ibit, that depends on the altitude, 

and velocity changes before and after satellite maneuvers created by VAT (Eq. 

15): 

 

   Eq. 15 

 

Impulse bit data we got from the experiments for different thruster 

configurations. Data was analyzed by software “Curve Expert” and describe results 

as a function, that depends to the applied voltage level (Figure 68).  

 

 
Figure 68. Impulse bit data equation predicted by “Curve Expert”. 
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Impulse bit equation from the software (Eq. 16): 

 

  Eq. 16 

 

And final results for the number of pulses (Eq. 17): 

 
Eq. 17 

 

Results in Figure 68 and Eq. 16, 17 are presented as an example for one of the 

many tests for the water adopt CFRP propellant included CFRP, silica powder, 

water and glue “Araldite”. Was used thruster configuration with an Aluminum 

anode. 

By the described principle, for the next VAT’s impulse bit measurement tests 

with water adopt CFRP and commercial CFRP, it was found impulse bit equations 

for commercial CFRP propellant and for the water adopt CFRP with configuration 

with permanent magnet and without (Eq. 18-Eq.23).  

 

Water adopt CFRP propellant, no permanent magnet: 

  Eq. 18 

Water adopt CFRP propellant, N-S middle of the permanent magnet: 

  Eq. 19 

Water adopt CFRP propellant, N-S section of the permanent magnet: 

  Eq. 20 

 

Commercial CFRP propellant, no permanent magnet: 
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 Eq. 21 

Commercial CFRP propellant, N-S middle of the permanent magnet: 

 
 Eq. 22 

Commercial CFRP propellant, N-S section of the permanent magnet: 

   Eq. 23 

For both propellants (commercial CFRP and water adopt CFRP) was measured 

arc rate- frequency of discharges (Table 6).  

 

Table 6. Arc rate dates for the commercial CFRP and for the water adopt CFRP. 

 
 

By the equations of impulse bit and Eq. 17, we got number of pulses (Table 7, 

8), needed for the satellite deorbit. We divided these results by arc rate data, and 

calculate deorbit time for one unit of CubeSat from altitude 800 km to 400 km. 

Results are presented for different thruster configurations (cathode electrode-

propellant) (Figure 69). 
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Table 7. Number of pulses needed for 1U CubeSat deorbit (VAT configuration 

with commercial CFRP). 

Voltage without magnet NS middle NS section 

300 1.73E+08 1.41E+08 1.57E+08 

400 1.47E+08 1.18E+08 1.22E+08 

500 1.31E+08 1.04E+08 1.01E+08 

600 1.20E+08 9.18E+07 8.69E+07 

700 1.10E+08 8.10E+07 7.72E+07 

800 9.96E+07 7.04E+07 7.01E+07 

 

Table 8. Number of pulses needed for 1U CubeSat deorbit (VAT configuration 

with water adopt CFRP). 

Voltage without magnet NS middle NS section 

300 1.63E+08 1.11E+08 9.42E+07 

400 9.97E+07 7.02E+07 6.62E+07 

500 6.74E+07 4.85E+07 4.95E+07 

600 4.86E+07 3.55E+07 3.86E+07 

700 3.67E+07 2.72E+07 3.11E+07 

800 2.87E+07 2.15E+07 2.56E+07 

 

As we can see from the Figure 69, deorbit time decrease with applied voltage 

level. The propellant heating can describe it and it can improve a process of 

electrons emission. Figure results more detailed presented on the Table 9. 
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Figure 69. CubeSat deorbit time, realized by VAT. 

 

Results that are presented on the Table 9 were calculated for commercial CFRP 

with Aluminum anode and 10 uF capacitor, and for the configuration with water 

adopt CFRP, Aluminum anode and 14 uF capacitor circuit. For the water adopt 

propellant and 800 V apply level, we have a deorbit time in around 4.8 years, for 

the configuration of thruster without permanent magnet. And the most optimistic 

result is for the same configuration but with permanent magnet, when VAT is 

installed on the middle of this magnet- 3.6 years. This result is much less than 25 

years for the deorbiting from the LEO orbit- 25 years.  

Calculation was done for the deorbit from 800 km altitude to the 400 km 

altitude. From the 400 km to 200 km altitude deorbiting will be done by 

atmospheric drag. From the on-line software [33] it will take 685.8 days or around 

1.9 year for one unit of CubeSat. So, total deorbiting time is 5.5 years from altitude 

800 km to 200 km by VAT with water adopt propellant, and capacitor in 14 uF. 
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Table 9. Deorbit time for CubeSat for the commercial CFRP and for the water 

adopt CFRP. 

 
 

This high number of pulses of course will make propellant erosion, and 

propellant material weight should be enough to provide deorbiting and continue 

mission. As was described before, mass loss is 7.2 10-10 gr/discharge. On the Table 

10 are presented a propellant consumption data for more electrically loaded 

situation- 800 V applied voltage. Data shows total mass loss after the end of 

mission for the deorbiting from 800 km to 400 km for VAT with commercial 

CFRP and water adopt CFRP with or without permanent magnet.  

 

Table 10. Propellant consumption. 

VAT configuration with commercial CFRP propellant 

 Without magnet NS middle NS section 

800 V applied 36.9 gramm 26 gramm 25.9 gram 

VAT configuration with water adopt CFRP propellant 

 Without magnet NS middle NS section 

800 V applied 10.6 gramm 7.96 gramm 9.47 gramm 
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Total cathode electrode weight is 1.8 gramm and with mass loss as on the 

Table 10, this propellant weight is not enough to continue deorbit mission.  

One more perspective thruster configuration is VAT with 45 degree CFRP 

propellant that has a hall in 1.5 mm diameter and inside installed Cupper electrode. 

Depth of electrode position inside CFRP is 8 mm. Exactly this configuration shows 

the highest impulse bit characteristics. For this thruster configuration was 

calculated number of pulses needed for the deorbit and deorbit time (Table 11). 

 

Table 11. Deorbit results for VAT with Cu electrode (8 mm depth). 

Voltage, V Number of pulses Deorbit time, years 
300 1.98E+07 33.1 
400 1.29E+07 14.1 
500 9.11E+06 7.6 
600 6.81E+06 3.98 
700 5.29E+06 1.04 
800 4.24E+06 0.707 

 

This thruster has one disadvantage - a great erosion in the channel where was 

installed Cu electrode. To check it need to provide a long life test. From the 

calculation, mass shot is 3.7 10-10 kg/discharge, for most loaded situation- 800 V, 

for 4.24 106 number of pulses (needed for satellite deorbit from 800 km to 400 km) 

we will have 1.57 gramm of mass loss for the full mission. With total propellant 

mass 1.8 gr, propellant consumption for the presented thruster configuration is not 

enough, but not so critical as for the VAT with 10 uF capacitor and commercial 

CFRP with zero degree carbon fiber direction (Table 10). To solve this problem, 

cathode electrode/propellant diameter could be increased to survive with presented 

propellant consumption.  

 

4.2.1. VAT testing with DCDC converter. 

The highest results for the deorbiting were got at 800 V voltage level. This 

amount of energy can heat the propellant and initiate the emission of electrons 
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quicker, that at 300 V for example. To get 800 V on-board microsatellite was 

purposed to use DCDC converter series AV/SMV- 5AV800, that convert from 5 V 

of input voltage to 800 V output. Power consumption is ~1 W [34] (Figure 70). 

Test was done for the thruster configuration with commercial CFRP and 

Aluminum anode. 

 

 
Figure 70. DCDC converter configuration. 

 

Arc rate was measured (Figure 71) and the deorbit time for one unit CubeSat 

from 800 km altitude to 400 km altitude was calculated.  

 

 
Figure 71. VAT’s arc rate with DCDC. 
 

 

 

Comparison results for the deorbit time if we apply 800 V to the cathode- 

propellant are presented on the Figure 72 (configuration with and without DCDC 

converter). 
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Figure 72. Deorbit time for thruster’s circuit configuration without and with 

DCDC.  

 

As we can see from the last figure, results of the deorbit time are almost same 

within the error. That confirms a possibility of use for this circuit as original on-

board CubeSat thruster configuration, if we have to apply 800 V to get highest 

results of arc rate and confirm shorter deorbit time.  

For the VAT configuration that was used for deorbit calculation (VAT with 

commercial CFRP and in the circuit with 10 uF capacitor and VAT with water 

adopt CFRP and 14 uF capacitor) on the Figure 73 and Figure 74 are presented 

efficiency results and impulse bit results depends to the power consumption.  

 

 
Figure 73. VAT efficiency in configuration with commercial CFRP propellant. 
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Figure 74. VAT efficiency in configuration with water adopt CFRP propellant. 

 

For both cases, power consumption is less then 1 W, as was required for the 

deorbit system for CubeSat.   
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5. Vacuum Arc Thruster on-board satellite Horyu-4 
 

This chapter describe the configuration of the Horyu-IV satellite. Presented 

main missions, and a configuration of Vacuum Arc Thruster with results for end-

to-end test with other satellite sub-systems.  

 

5.1. Horyu-4 satellite project. 

Microsatellite Horyu-IV (Figure 75) was designed at the Kyushu Institute of 

Technology and was launched in February 2016 by H2A rocket. Forty-three 

students have taken part in the project including international students from 16 

countries. The name of this satellite is Arc Event Generator and Investigation 

Satellite (AEGIS), Horyu-IV. HORYU-IV is a cubic-shaped nano-satellite with 

dimensions of 490 mm × 490 mm × 495 mm, including antennas and mirror 

holder, with an approximate mass of 10 kg. The size of the satellite main external 

structure is 331 mm × 285 mm × 331 mm, without antennas and mirror holder. 

The planned orbit altitude is 575 km with an inclination of 31 deg. The main 

mission is to conduct discharge experiments on-board. The secondary mission is 

to test high voltage solar arrays that will produce 350 V, degradation by discharge 

and Langmuir probe. Extra missions: Vacuum Arc Thruster (VAT), Electron 

Emitting Film, Camera, Singer others [35, 36].  

Satellite development took nearly three years. And 47 members from 18 

countries took part in this project.  
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Figure 75. Horyu-IV satellite and sub-system description. 

 

5.2. Vacuum Arc Thruster sub-system. 

Main mission of Vacuum Arc Thruster is on-orbit demonstration of a trigger-

less discharges on VAT, which circuit is directly connected to the high voltage 

solar array (HVSA). 

The VAT electronics is located on an electronic board called the Big Apple 

board as shown on the Figure 76. This board also has 3 other missions: double 

langmure probe (DLP), photo-electrons current measurement mission (PEC), 

electron-emitting film (ELF)/surface charging monitor (SCM) mission. These four 

missions share a microcontroller that controls the operations, how power is 
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distributed, and how data are saved. The Big Apple microcontroller receives 

command from the on-board computer (OBC) to carry out any of the four 

missions and also to downlink mission data. The power supplied from the electric 

power system (EPS) to this board is a 5V. 

 

 
Figure 76. Big Apple mission board. 

 

Vacuum Arc Thruster locates on the “-Z” panel, and power directly supplied 

from High voltage solar array (HVSA) system.  VAT is installed to his own 

electric circuit with 10 uF capacitor and total resistor value 6.35 MΩ. Main circuit 

has a conductive layer inside to which thruster’s anode connected by screwing 

using threads (Figure 77).  
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Figure 77. VAT mounting to the capacitor circuit. 

 

VAT circuit (same as on the Figure 26, Chapter 2) was mounted to the satellite 

wall by four screws and washers that installed between the satellite wall and 

circuit. In parallel to the VAT’s circuit installed a board with current probe, that 

measure discharge current by on-board oscilloscope (OBO) and a trigger system 

send a signal to the arc-vision camera (AVC) to detect a moment of discharge. 

AVC installed on the “-Z” panel. Satellite’s “-Z” panel showed on the Figure 78 

with a VAT head and a circuit. 

 

 
Figure 78. VAT position on-board satellite Horyu-IV. 
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The end-to-end test was done together with on-board oscilloscope (OBO) and 

high voltage sollar array (HVSA applied ~330 V). In parallel, to check the 

possibility of measurements for Horyu-4 OBO, was used commercial 

oscilloscope. After the discharge occurred, satellite’s on-board current probe 

measured a discharge current and sent a signal to the OBO trigger system. After 

that, AVC takes a photo of discharge. The second commercial current probe 

measured the same discharge current by the commercial oscilloscope, to compare 

the results. The discharge current detected by the on-board current probe, and by 

the commercial current probe are presented on the Figure 79. 

 
  OBO current waveform   Oscilloscope current waveform 

  
Figure 79. OBO current waveform and commercial oscilloscope current 

waveform. 

 

From the Figure 79 we can see that discharge current measured by the OBO 

probe and by the commercial probe, within the error is same. Maximum discharge 

current is around 500 V and discharge period is ~5 usec.  
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Figure 80. VAT’ discharge detected by AVC (end-to-end test). 

 

In this end-to-end test was done 15 discharges (0.028 sec-1). After each 

discharge, a memory of both oscilloscopes saves a dates of the current. By the 

number of this waveforms saved to the memory, we get arc rate. By trigger from 

commercial oscilloscope was detected in the test 15. Because of data saving 

speed, not all current waveforms was saved to the internal USB flesh card, was 

saved just 7 curves.  

By OBO_Horyu4 system was detected the same number of discharges- 15, 

and was saved all data to the OBO memory. OBO can detect number of discharges 

by numbers of saved data. Photo of the discharge detected by the AVC camera 

after the trigger signal from OBO is presented on the Figure 80. 
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6.  Conclusions 
 

For expanding the satellite agility, capability, life-time (period) of the satellite 

mission needed micro-thrusters. The most safe and attractive solution can show 

Vacuum Arc Thruster as it was showed in this work. For now, VAT didn’t been 

tested enough yet and doesn’t has a long flight experience. This work described 

some VAT’s design, operation concept, material properties with cathode electrode 

material solution and some possibility of efficiency improvement. And confirm the 

novelty of this work- design Vacuum Arc Thruster with passive ignition (no 

igniter) and develop nanosatellite deorbit system based on VAT. 

To perform work objectives was used a high-vacuum facilities together with some 

diagnostic equipment and measurement tools that installed in the Laboratory of 

Spacecraft Environment Interaction Engineering (LaSEINE), Kyushu Institute of 

Technology, Japan. Was used Quadruple Mass Spectrometer to measure the 

average velocity of molecules emitted and accelerated from the propellant, 

Electron Cyclotron plasma source to provide LEO plasma conditions, Impulse bit 

stand based on the polyimide head, Langmuir probe, High voltage solar array as a 

power source etc. 

The main areas of VAT design and operation were undertaken, namely studying: 

the effect of operating parameters such as level of applied voltage and his affect to 

the discharge frequency and impulse bit data; electric circuit parameters, such as 

changing main discharge capacitor and measuring impulse bit; magnetic field 

effect for thruster discharge parameters and expanding cathode design knowledge 

through the use of new or untested materials (such as Carbon based material); 

study of cathode erosion for VAT with Carbon Fiber Reinforced Plastic (CFRP) 

material and Vacuum Arc Thruster efficiency improvement; developing deorbit 

system based on VAT for nanosatellites. An overview of each study and its 

findings are given below. 

Was tested few VAT configurations. At first, was decided to use a Carbon Fiber 

Reinforced Plastic (CFRP) as a cathode/propellant electrode. To decide which 
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propellant is better was measured an average velocity of emitted electrons from the 

electrode for Aluminum, Tungsten and CFRP material. The highest number of 

triple junction points showed CFRP, Carbon based material.  

For original VAT design was decided to use a cylindrical electrode configuration. 

Was ordered from the manufacturer two CFRP propellants: with zero degree of the 

carbon fiber direction and with 45 degree of carbon fiber direction. Was measured 

arc rate for this two electrodes and CFRP with 45 degree of carbon fiber direction 

was rejected because didn’t show any successful results. For the next test was 

decided to use Aluminum cylindrical anode and cathode made from CFRP with 

zero degree of the carbon fiber direction with cylindrical configuration, too. For 

this VAT configuration was done the next tests: arc rate measurement, average 

velocity data measurement, discharge current and voltage waveforms, impulse bit 

measurements. The basic founded performance is: 

- main applied voltage level is 300 V; 

- power source- High Voltage Solar Array (HVSA), or power source; 

- discharge current is around 600 A; 

- discharge time period is around 5 usec; 

- discharge arc rate- 0.0032 sec-1; 

- average velocity- 9.5 km/sec; 

- specific impulse is around 1300 sec-1; 

- thrust - 4.8 nN; 

- efficiency – 2.5 %. 

To improve thruster parameters was developed water adopt CFRP propellant, and 

arc rate data shows around 0.019 sec-1, compare to the commercial CFRP that 

shows 0.0032 sec-1. Discharge current data was almost same with commercial 

propellant test results ~600-670 A. 

For commercial propellant was done a long-life test results for 10,000 discharges. 

Was measured arc rate and impulse bit data before and after this test. If the impulse 

bit range after the long life test within the error was almost same as before, arc rate 

or discharge frequency was decreased from 0.0032 sec-1 to 0.00139 sec-1 for 300 V 
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range of applied voltage for commercial CFRP propellant with Aluminum anode 

thruster configuration. For 800 V frequency of discharges was decreased from 

0.031 sec-1 to 0.0017 sec-1. Therefore, the purpose of a water adopt propellant, 

presented in this work is actual for extending thruster lifetime and keep same 

working parameters during all mission. For water adopt CFRP propellant/cathode 

arc rate results before the long-life test was 0.019 sec-1 (300 V operational voltage) 

and 0.1899 sec-1 (800 V operational voltage). Need to continue a long life test to 

compare results. 

For VAT configurations with Aluminum anode and commercial CFRP or water 

adopt CFRP was applied a permanent magnet. Thruster’s impulse bit data was 

improved for ~29-31%. Was applied a nozzle with same geometrical 

characteristics as a diameter of propellant plus insulator- 5 mm. The data with or 

without nozzle is same within the error.  

Was tested VAT in collaboration with two different main capacitor circuits (10 uF 

and 14 uF). Results showed that VAT impulse bit increases if capacitance in circuit 

increases too. Together with that, water adopt CFRP with both capacitances (10 uF 

and 14 uF) showed smaller discharge current than commercial CFRP in the same 

circuit with high applied voltage (600 V -800 V). 

The practical purpose of this thruster is- microsatellite effective deorbit system. As 

requirements was decided to build a thruster with a simple design, absence of 

valves, within the 1 W power consumption to deorbit 1 kg CubeSat from 800 km 

altitude to 400 km altitude in time less than 25 years. From the results was 

confirmed that VAT with commercial CFRP propellant and 10 uF capacitor in the 

circuit can provide a 1U CubeSat deorbit in ~102 years. For VAT with water adopt 

CFRP and 14 uF capacitor this time is much less, 4.79 years. Presented results for 

800 V applied to the cathode.  

For VAT configuration with Cupper electrode inside the propellant on the depth of 

8 mm, was calculated deorbit time for 9 months. Calculated erosion showed mass 

loss ~1.57 gramm. With total propellant mass 1.8 gr, propellant consumption for 

the presented thruster configuration is not enough, but not so critical as for the 
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VAT with 10 uF capacitor and commercial CFRP with zero degree carbon fiber 

direction. To solve this problem, cathode electrode/propellant diameter could be 

increased to survive with presented propellant consumption. 

To confirm satellite deorbit time by VAT on-board CubeSat, we purpose to use 

four thruster on-board. All thrusters are powered from the one circuit. In space 

condition, discharge on the thruster could occurred only on the ram satellite side, 

where ion concentration is high. With this configuration no need to worry about 

satellite orientation or some specific system that will detect the moment when 

thruster should switch ON. Anytime, on the orbit, when VAT is powered we can 

get a discharge and provide effective deorbiting.  

As a practical use of VAT, was taken part in the student satellite project “HORYU-

IV”. Was developed VAT system and installed on-board satellite, launched 17 

February, 2016. VAT system works in collaboration with on-board oscilloscope, 

arc vision camera (to detect a discharge) and High Voltage Solar array as a power 

source. 

For future work, need to finish a discharge test for the water adopt propellant, and 

measure the arc rate data before and after long life test. Calculate mass shot per 

discharge for this propellant. Need some circuit improvement work, to determine 

the dependence of the frequency and completeness of the charge value to the 

capacitor capacitance. Need to perform VAT test on-board satellite Horyu-IV and 

confirm possibility of discharges in space condition. Need to specify a possibility 

of CubeSat effective attitude control, by VAT with highest characteristics.  
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