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Abstract: We present a novel feature extraction method, which employs a histogram of transition feature, as an input to 
a SVM classifier. This feature relies on foreground extraction. We also evaluate some foreground extraction method. To 
evaluate the performance of this feature, we use it for head detection. Then, by applying a combination of the Harris 
corner detector and Lucas-Kanade tracker and motion pattern, we track the head position. The performance of the 
proposed method is experimentally shown.  
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1. INTRODUCTION 
 
One area of computer vision research that has benefit 

by this advance and receiving considerable attention in 
the last few years is person tracking. Person tracking is 
a broad field encompassing the detection, tracking and 
recognition of bodies, heads, faces, expressions, 
gestures, actions, and gaze directions. Applications 
include surveillance, human computer interaction, 
teleconferencing, computer animation, virtual 
holography, and intelligent environments.  

In intelligent environments, continuous monitoring of 
a room condition is required. This environment becomes 
significant with an aging population and changing 
demographics and household needs. In a fast-paced 
society, people find it difficult to manage their daily 
household tasks. Human housekeepers and helpers are 
commonly used while the regularity and reliability of 
such assistance are often requested. To overcome such 
problem, they use monitor cameras or homecare 
robotics to monitor a room condition.  

An intelligent environment has been studied by some 
researchers. Mickelson [1] studied a system of head 
detection and tracking. He used multi-modal approach 
to the detection, using shape, motion, and size cues. At 
the core of the detector was an elliptical shape filter. 
Some failure occurred when the tracker locked on to an 
object whose elliptical shape is far better fit than a 
human head. Baranwal et al. [2] developed a home 
environment that was able to automatically monitor the 
motion of the occupants and quickly and accurately 
determine abnormal motions. Their vision-based 
approach used optical flow and an ellipse model for 
human body image. However, this research required the 
entire human body to be analyzed by a computer vision 
system. Nagayasu et al. [3] improved the three key 
functions for the operation of appliances in an 
intelligent room, i.e., detection of hand waving, skin 
color registration, and recognition of the number of 
fingers. Huang et al. [4] developed a real-time tracking 
of people in intelligent environments to maintain an 
awareness of all the dynamic events and activities 
taking place in them.  

In addition, researches in the field of head detection 

have been carried out. Huang et al. [5] proposed a 
method to detect human heads in crowds from stereo 
images. They detected a human head based on its shape, 
with an assumption that human heads look like isolated 
balls from an elevated vantage point. A detector which 
relies on an object shape often causes a mistake when 
there is another object with the same shape [1]. Aziz et 
al. [6] explored a property of the graph skeleton and 
labeled body parts from the silhouette to deal with 
occlusions among people in motion. They proposed a 
skeleton-based head detection approach which can 
count people. Zeng et al. [7] used the multilevel 
HOG-LBP feature to detect the head-shoulders of 
people for people counting. Their methods offered a 
robust head-shoulder detector, but their multilevel 
calculation caused large processing time. 

Due to the fact that a head motion can represent the 
movement of a body which may be partially covered, 
this research focus its attention on the detection and 
tracking of a human head. In this paper, we propose a 
novel feature for head detection. It is called histogram 
of transition feature. Compared with HOG and LBP 
feature, our feature has two advantages over them. First, 
the feature dimension is less than them, and second, 
generating calculation is simpler than them. Due to 
these advantages, the proposed detector rapidly 
generates the transition feature with high recognition 
capability. 

 
2. OVERVIEW OF THE PROPOSED 

METHOD 
We describe the proposed method in the following. 

There are two main processes in the proposed method. 
The first process is the detection of a human head from 
detected motion. After we perform frame differencing as 
in [1,8], we do foreground refinement by hole filling [2]. 
The resultant image is fed into the calculation of 
transition feature. We modify the calculation of the 
transition feature in [9,10]. Finally we recognize a 
human head by using a SVM classifier.  

The second process is the tracking of head motion. 
We extract tracking points on motion objects in every 
two successive frames by using Harris corner detector 
followed by the Lucas-Kanade tracker [11-13]. Fig. 1 
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depicts the overview of the proposed system. “A” is a 
connection node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. METHOD 
3.1. Motion detection 

Occasionally the most naive approach is found to 
yield adequate results. This is the case with motion 
detection. Simple frame differencing is used to find 
pixels corresponding to moving objects. If a pixel’s 
intensity, I(x,y,t), changes significantly from one frame 
to the next, it is considered moving [1,8]. 
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This approach requires little computation and has 
minimal latency. First, we change the color image into 
gray image for both image frame I(x,y,t-1) and I(x,y,t). 
Then we apply equation (1). The result is still a gray 
image, then, with a gray level threshold, we change the 
gray image into a binary image. The results of this 
procedure can be seen in Fig. 2. We call the white pixels 
as a motion pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Tracking of head motion 
For tracking, we combine the result of Lucas-Kanade 

tracker and motion detection. Due to the fact that a head 
is always on top of a body, we assume a head to be on 
top of a motion object.  

First, from the sequence image, we extract feature 
points in a given image by using Harris corner detector. 
Then we track the feature point of a head by using 
Lucas-Kanade tracker [11-13]. 

The feature points are tracked over some frames and 
their locational information is stored into a coordinate 
space. Suppose that a feature point n (n=0,1,2,…,N-1) is 
tracked through T image frames and its position on the 
frame t (t=0,1,2,…,T-1) is denoted by (xt

(n),yt
(n)). We 

then define a sequence of T coordinates of the feature 
point by the following form; 
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We create a range of interest (ROI) of a head based on 
the coordinate of the feature point on top side as ROIA. 
To avoid noise, we decide a ROIA has the number of 
coordinates above a threshold. If the number of 
coordinates in ROIA is below the threshold, then we 
move ROIA to the next coordinate. We check again the 
number of coordinates in ROIA. The process is repeated 
until we find a ROIA. If we can’t find a ROIA, then we 
use the previous ROIA. 

Second, we create ROIB based on motion pattern on 
top side of a motion object. To avoid noise, we decide a 
ROIB of a head has the number of motion pattern above 
a threshold. Similarly as finding process of ROIA, the 
process is repeated until we find ROIB. 

We define a ROI of a head, ROIH, as 
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After we decide a ROIH, then we do the next process, 

i.e., foreground extraction for this ROIH. 
  
3.3. Foreground Extraction 
 

Our transition feature relies on foreground extraction. 
Due to foreground extraction is not our main topic, we 
explain it not in detail.  

 The simple algorithm to extract foreground is that we 
determine some reference pixel coordinates as 
foreground. Then we compare another pixel’s intensity 
(Ix) to the reference pixel’s intensity (IR). 
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where δ(.) is a distance function.  
Another algorithm to extract foreground is Linear 

Neighborhood Propagation (LNP) algorithm for image 
segmentation. This method is more complicated. The 

Fig. 2. Motion detection using frame 
differencing: (a) A raw frame of video (b) 

the result of the motion detection. 

(a) 

(b) 

Fig. 1. Overview of the proposed head detection 
and tracking method 
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detail algorithm is explained in [17]. 
 
Table 1. Linear Neighborhood Propagation 
 

 
 
 
 
 
 
 
 
 
 
 

The third algorithm to extract foreground is processing 
after motion detection by Eq.(1). Once the foreground 
pixels are obtained, the foreground is further refined by 
expanding the blob in three directions and then taking 
their intersection. This helps in filling the voids and 
empty spaces in blobs [2] (See Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4. Transition Feature 
 Our feature refers to [9,10]. Transition feature has 
been used successfully in a handwritten recognition, but 
it hasn’t been used in a head detection yet. Due to a 
simple calculation to create a feature vector, we apply 
it’s idea for a head detection. We do some  modifica- 
tions on it to be able to be used for head detection.  
 The idea is to compute the location and number of 
transitions from background to foreground along 
horizontal and vertical lines. This transition calculation 
is performed from right to left, left to right, top to 
bottom, and bottom to top. Since a constant dimension 
feature is required as input to the SVM classifier, an 
encoding scheme was developed. 
 In the first stage of feature extraction, the transition in 
each direction is calculated. Each transition is 
represented as a fraction of the distance across the 
image in the direction under consideration. These 
fractions are computed in the increasing order, differed 
from [10] in decreasing order. For example, when 
calculating the location of transitions from left-to-right, 
a transition close to the left edge would have a low 
value and a transition far from the left edge would have 
a high value as illustrated in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The maximum number of transitions, M, are counted 
on each line. If there are more than M transitions in a 
line, then only the first M are counted, the rest are 
ignored. M is set to 4. If there are less than M transitions 
on a line, then the “nonexistent” transitions are assigned 
a value of 0. 
 More precisely, by a line we mean a row or a column 
of the head image. Let h be the height of the image and 
w be the width of the image. We assign exactly M values 
to each line, say t1,t2,…,tM. Assume that there are n 
transitions on a line located at (xi,yi) for i = 1,2, … n. 
The algorithm for calculating the transition feature can 
be represented as follows: It doesn’t require 
normalization as in [10]: 
 
 For i = 1 to min(n,M) 
  If the line is row then  
   ti = yi; 
  Else  
   ti = xi; 
  end if; 
 End for; 
 If n < M then 
  For i = n+1 to M 
   ti = 0; 
  end for; 
 end if; 
  
 The transitions are resampled to a 4-point sequence 
for each direction and assembled into a feature vector. 
The four transitions for each row (column) are 
represented as two-dimensional (2-D) array, t = [tij] for i 
= 1,…,h(w) and j = 1,…,4.  
 The second stage is generating a histogram of 
transition. It is different from [10] where they calculated 
local averaging on the columns of t. Histogram of 
transition shows how often the location of the transition 
occurs at each transition. An example for generating a 
histogram of transition for transition left-to-right is 
shown in Fig. 5. 
 This histogram of transition creates a feature vector to 
be fed into the input of a SVM classifier [14]. 
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Fig. 4. The first stage of transition feature extraction 
shown for transitions from the left and from the right 

on one row of the image 

Input : A set of partially labeled data X, the label yi 
for each labeled data object xi, the number of nearest 
neighbors k. 
Ouput : The labels of the unlabeled data points. 
1. Find the k nearest neighbors of each data in X. 
2. Estimate the weights wij that best reconstruct xi 

from its neighbors by minimizing the cost with 
the constraints. 

3. Predict the labels of all the unlabeled data in X 
by solving the quadratic optimization problem 
with linear constraints. 

(a) 

(b) (c) (d) (e) 

Fig. 3. Foreground refinement by hole filling: 
(a) An original image, (b) top to bottom, (c) left to 
right, (d) right to left, (e) refined foreground 
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 HOG feature contains gradient information of a pixel 
among its neighbor. Thus they give a high magnitude at 
the edge. On the other hand, LBP feature gives a binary 
pattern with a pixel among its neighbor. Histogram of 
transition feature looks like the HOG feature: It gives 
the edge position from right, left, top and bottom side. 
In contrast to HOG feature, the calculation of the 
histogram of transition feature is simpler. 

 
4. EXPERIMENTAL RESULTS 

The experimental environment is as follows: 
Operating system is Windows 7 ultimate; the processor 
is Intel® core™ i7 CPU 870 @2.93GHz and the used 
software is Microsoft Visual Studio 2010.  
 
4.1. Head Detection 
 To test the proposed head detection method, we do 
comparison with HOG [15] and LBP feature [16]. For 
robust detection, we use backgrounds and negative 
samples at outdoor scenery. We use INRIA data for 
training and testing images. The image size (ROIH) is 20 
× 30 pixels. For training, positive sample of 2,000 
images, negative sample of 4,500 images are used. For 
testing, positive sample of 100 images, negative sample 
of 300 images are employed.  
 For the image preprocessing to extract transition 
feature, we extract the foreground using a difference 
function (4). First, we determine five reference pixel 
coordinates as foreground. These coordinates are fixed 
for all the training and the test data. The coordinates 
should represent position of head and shoulder, that are 
(10,8), (10,15), (10,22), (5,22) and (15,22), see Fig. 6 
(a). Then, we check all pixels’ intensity to the five 
reference pixel’s intensity with Euclidean distance, by 
Eq. (4). If a pixel’s intensity has distance to the one or 
more of five reference pixel’s intensity less than a 
threshold, then the pixel should be a foreground, 
otherwise as background.  
 In addition, we compare the method of foreground 
extraction. Another method is image segmentation by 
applying Linear Neighborhood Propagation (LNP) [17]. 
As in LNP, we initialize to label some pixels manually 

as foreground and background and letting some 
unlabeled pixels to be labeled automatically. For this 
requirement, we label 20 and 8 pixels as foreground and 
background, respectively. These labeled pixels are 
shown in Fig. 6(b). These label coordinates are fixed for 
all the training and the test data. The result of 
foreground extraction is shown in Fig. 7.  
 The result of head detection is summarized in Table 
2 and Table 3. 
 
Table 2. Evaluation of feature extraction method 

Feature 
The 

number of 
array 

Detection rate (%) 
Execution 
time (ms) Positive Negative 

HOG 648 84 98.3 0.353 
LBP 1020 93 80 0.261 

Histogram 
of transition 400 91 99.7 0.077 

 
Table 3. Evaluation of foreground extraction method 

Foreground extraction 
method 

Head detection rate (%) Execution 
time (ms) Pos. Neg. 

LNP 52 93 32.931 
Distance function (eq. 2) 89 99.7 0.077 
Frame differencing then 

dilation 92 99.7 0.077 

Frame differencing with 
refined foreground 80 93 0.077 

 
Image segmentation by using LNP method needs 

label accurately. This method requires label pixel 
manually, then proceeds to segmentation automatically. 
This method forced unlabeled pixels to be labeled pixels. 
In case of an image without foreground, the resulting 
image should have foreground and background. Some  
result of LNP method are shown in Fig. 7(c). 
 
 
 
 
 
 
 
 
 
 
 
 

In Table 3, head detection rate which use frame 
differencing then dilation is better than with refined 
foreground, because the head-shoulder shape more clear 
than the refined one, as shown in Fig. 8. 

Based on Table 2, transition feature is a reliable 
method for head detection, and Table 3 shows that, for 
motion scene, frame differencing method can be applied 
for foreground extraction.  

 
4.2. Head Tracking 

Based on the two above tables, we combine distance 
function of color image and frame differencing as 
foreground extraction and histogram of transition 
feature for a feature vector. A distance function method 

Fig. 5. The second stage of transition feature 
calculation consisting of generating the histogram of 

transition. 
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gives a pattern of a head for a standstill condition. Thus 
the system can detect a head when there is no motion or 
little motion. The outline of the proposed feature is 
shown in Fig. 9. The “∪” sign is a union operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The experimental results are shown in Fig. 10. For 
evaluation of the results, let us define recall, precision 
and FPR by 

%100×
+

=
FNTP

TP
recall    (6) 

%100×
+

=
FPTP

TP
precision   (7) 

%100×
+

=
TNFP

FP
FPR    (8) 

Here 
TP : head is detected as head. 
FN : head is detected as non-head. 
FP : non-head is detected as head. 
TN : non-head is detected as non-head. 
Then the evaluation of performance is shown in 

Table 4 and Table 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
 
In this paper, we proposed a head detection and 

tracking method for an intelligent room. We use a 
histogram of transition feature as a novel method for 
feature extraction and we use frame differencing as a 
foreground extraction.  

As future work, we are going to conduct experiments 
to improve foreground extraction and motion 
recognition. 
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   Table 4. Evaluation of the performance 

scene 
Recall (%) Precision (%) FPR (%) 

HOG LBP Histogram of 
Transition HOG LBP Histogram of 

Transition HOG LBP Histogram of 
Transition 

1 87.2 85.0 89.8 88.0 85.2 90.2 8.1 8.8 7.5 
2 77.1 84.4 83.7 80.5 78.1 82.5 10.4 11.5 10.2 

   Table 5. Execution time 
Method of feature Execution time (ms) 

Histogram of transition (800 dimensions) 168.87 
LBP (1020 dimensions) 678.29 
HOG (648 dimensions) 1041.78 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 
Fig. 10. Performance of head detection and tracking. The green box shows that the proposed system detects a 

motion and a head, the red box shows that the system detects a motion but not a head . (a) Scene 1: The system 
can distinguish a head and a racket. (b) scene 2: The system can distinguish a head and a ball 


