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Abstract 

Thermal stability of end-protected poly (L-lactide) (PLLA) was studied by dynamic thermal 

degradation and pyrolyzate analyses. The treatment of PLLA by acetic anhydride resulted in the 

acetylation of end hydroxyl groups, and at the same time a decrease in the residual Sn content in the 

polymer. The thermal degradation of the acetylated PLLA-Ac showed a shift to a 40-50°C higher 

degradation temperature range than that of untreated, high Sn content PLLA, but exhibited nearly the 

same degradation behavior as the untreated PLLA with a comparable Sn content. Purified metal-free 

PLLA-H showed good thermal stability, having the highest degradation temperature range. 

Interestingly, despite the end-protection, the acetylated metal-free PLLA-H/Ac decomposed at 

almost the same temperature as that of PLLA-H. From pyrolyzate and kinetic analyses, it was found 

that the contribution of the hydroxyl-end acetylation to the stability of PLLA was negligible, except 

for the stabilization effect due to the elimination of residual Sn during the acetylation process. 
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1. Introduction 

Recently, interest in poly (L-lactide) (PLLA) has moved beyond its traditional areas of 

biomedical and pharmaceutical applications to the area of commodity applications [1-3]. This is 

because PLLA can be derived from renewable resources, and has good properties, such as 

mechanical strength, transparency, and compostability. Much work has been put into developing the 

large-scale manufacture and processing of PLLA as well as into modifying its properties [4,5]. 

 Similar to many other plastics, the main techniques for processing PLLA into varied products 

are injection molding, compression molding, extrusion, and other melt processing methods [6]. In all 

cases, after processing the final products are partially decomposed as compared to the original resin 

[7]. Aliphatic polyesters in particular are easy to hydrolyze and thermally degrade to monomers and 

oligomers, making the improvement of the thermal stability of PLLA an important subject as regards 

processing.  

Many factors have been reported as affecting the thermal stability of PLLA, including moisture, 

molecular weight, residual monomers, and metal catalysts [8-14]. A mechanism reported as playing a 

significant role in PLLA pyrolysis is a back-biting reaction, which causes an unzipping 

depolymerization started from the hydroxyl ends of chains [9,11,13]. End-protection of the hydroxyl 

groups has been considered as a way of improving the thermal stability of PLLA and some reports 

have been published on end-protection by acetyl group (Scheme 1), resulting in an increase in the 



 4 

degradation temperature of PLLA by tens of degrees [8,15]. However, the acetylation process not 

only causes end-protection, but it is also capable of eliminating the residual metals in PLLA by 

forming salts or complexes. The residual metals, such as Sn and Al, which come from the 

polymerization catalysts, are understood to greatly decrease the thermal stability of PLLA [11,14-19]. 

In previously published studies, however, few reports have discussed the relationship between the 

residual metal catalysts and end-protection. Jamshidi et al. demonstrated that the acetylation of the 

hydroxyl group inhibits the thermal degradation of the purified polymer to a significant extent [15]. 

Unfortunately, they purified the PLLA by repeated precipitation without determining the metal 

content. Thus, no report, in which the relationship is discussed quantitatively, has been published. 

[Scheme 1 goes here] 

In this paper, to evaluate the effect of the end-protection on the thermal degradation of PLLA, 

the relationship between the metal content and the acetylation was investigated. Degradation kinetics 

and the mechanisms of PLLA were also discussed. 

 

2. Experimental 

2.1. Materials 

Monomer, L.L-lactide, was obtained from Shimadzu Co. Ltd. It was composed of L.L-lactide 

99.4 % and meso-lactide 0.6 % according to a gas chromatography (GC). This monomer was 
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purified by recrystallization three times from dry toluene and one time from dry ethyl acetate. The 

vacuum dried L,L-lactide was stored in a N2 atmosphere. After purification, meso-lactide was not 

detectable by GC. Tin(II) 2-ethylhexanoate {Sn(Oct)2} was obtained from Wako Pure Chemical 

Industries, Ltd. and purified by distillation under reduced pressure before use. Solvents, chloroform 

and methanol were purchased from Kanto Chemical Co., Inc. and used without further purification. 

The ammonia solution (25%) and hydrochloric acid (1 M for atomic absorption spectrophotometry) 

were obtained from Wako Pure Chemical Industries, Ltd. and used as received. 

 

2.2. Preparation of poly (L-lactide) samples 

PLLA was synthesized by the ring-opening polymerization of L,L-lactide catalyzed by 

Sn(Oct)2. Purified L,L-lactide 5g (34.69 mmol) was added into a reaction tube in a glove box under 

N2 atmosphere. Then, Sn(Oct)2/toluene solution 868µL {0.02 mol L-1, 17.3 µmol of Sn(Oct)2} was 

added by using a micro syringe. The reaction tube was connected to a vacuum line and the toluene 

was allowed to evaporate for 48 h in vacuo. After sealing in a flame, the tube was immersed into an 

oil bath at 110 ˚C for 48 h. The obtained raw PLLA was dissolved in chloroform (3 % w/w) and then 

precipitated with 6-fold of methanol to prepare the sample PLLA (Mn 181,000; PDI 1.69). 

The PLLA 1.0 g was dissolved in 30 mL of dry chloroform and acetic anhydride 2.0 g (0.02 

mol) was added to the solution. The solution was heated at 60 ˚C for 4 h while being stirred in an N2 
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atmosphere. After the reaction, PLLA was reprecipitated twice with 10-fold of methanol, washed 

thoroughly with methanol, and finally dried in vacuo at 40 ˚C for 48 h to prepare the acetyl 

end-capped PLLA-Ac. 

The PLLA was purified in a three stages process; firstly dissolving the PLLA 5.0 g in 

chloroform 150 mL and extracting the residual Sn catalyst from the PLLA/chloroform solution three 

times with 500 mL of 1M HCl aqueous solution, then washing with distilled water until the aqueous 

phase became totally neutral, and finally precipitating the polymer with methanol to prepare the 

purified PLLA-H. 

The PLLA-H 1.0 g was also acetylated by the same procedure as that used for the preparation 

of PLLA-Ac to prepare the purified and end-protected PLLA-H/Ac. 

The four kinds of PLLA samples are listed in Table 1. For preparing sample films, each 

chloroform solution of the corresponding sample was cast in a glass Petri dish. After the evaporation 

of the solvent, the formed film was washed by methanol and then vacuum dried. 

[Table 1 goes here] 

 

2.3. Measurements 

The molecular weight of PLLA samples was measured by gel permeation chromatography 

(GPC) at 40 °C using a TOSOH HLC-8220 GPC system equipped with a TOSOH TSKgel Super 
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HM-H column and a chloroform eluent (0.6 mL min-1). Low polydispersity polystyrene standards 

with Mn from 5.0×102 to 1.11×106 were used for calibration.  

The residual Sn content in the PLLA samples was measured with a Shimadzu AA-6500F 

atomic absorption flame emission spectrophotometer (AA). The samples were degraded by a 25 % 

ammonia solution, dissolved in 1M HCl, and then measured by AA.  

Thermogravimetric analysis was conducted on a SEIKO EXSTAR 6200 TG/DTA 6200 system 

under a constant nitrogen flow (100 mL min-1) using about 5 mg of the PLLA film sample. The 

pyrolysis data were collected by an EXSTAR 6000 platform, and recorded into an analytical 

computer system. 

Pyrolysis-gas chromatography / mass spectrometry (Py-GC/MS) was conducted on a Frontier 

Lab PY-2020D double-shot pyrolyzer connected to a Shimadzu GCMS-QP5050 chromatograph / 

mass spectrometer, which was equipped with an Ultra Alloy+-5 capillary column. High purity helium 

at 100 mL min-1 was used as a carrier gas. A PLLA sample was put in the pyrolyzer and heated from 

40 to 400 ºC at a heating rate of 10 ºC min-1. The volatile pyrolysis products were conducted into the 

GC through the selective sampler. The temperature of the column oven was first set at 40 °C. After 

the pyrolysis process had finished, the column was heated according to the following program: 40 ºC 

for 1 min; 40-120 ºC at 5 ºC min-1, 120-320 ºC at 20 ºC min-1; 320 °C for 13 min. Mass spectrum 

measurements were recorded 2 times s-1 during this period. 
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3. Results and Discussion 

3.1. Purification and End-protection of Poly (L-lactide) 

To clarify the relationship between the protection of the hydroxyl end and the residual Sn 

content on the thermal stabilization of PLLA, four samples were prepared. Original PLLA was 

synthesized through the ring-opening polymerization catalyzed by tin 2-ethylhexanoate {Sn(Oct)2}. 

After the polymerization, raw product was precipitated with methanol, obtaining a 98.7 % yield of 

PLLA. Then, PLLA was treated with acetic anhydride to protect the hydroxyl ends of polymer 

chains, preparing the end-protected PLLA-Ac. Metal free polymer, PLLA-H, was prepared by 

extracting the metals in the polymer/chloroform solution using a 1M HCl aqueous solution [11,14]. 

Further, the end-protected metal free polymer, PLLA-H/Ac, was prepared by treating the PLLA-H 

with acetic anhydride in the same manner as for the PLLA-Ac preparation. The molecular weight 

and Sn content of these samples are listed in Table 1. 

It has been reported that a trace amount of residual water is the actual initiator in the Sn(Oct)2 

catalyzed polymerization of L,L-lactide, leading to a carboxylic acid chain end [21]. Another end 

structure is generally assumed to be Sn alkoxide in an as-polymerized state, which would finally 

change into a hydroxyl chain-end during the precipitation process with methanol [22]. However, it is 

known that the Sn compound cannot be eliminated effectively through a precipitation process with 
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methanol [14,23]. Calculated Sn content in the feed for polymerization was 410 ppm according to 

the mol ratio of [Sn(Oct)2]/[L,L-lactide] = 1/2000. Measured Sn content in the precipitated PLLA 

was 437 ppm by the AA analysis, which, in terms of the polymer yield, is in accordance with the 

calculated value. 

The treatment of PLLA with acetic anhydride slightly affected the molecular weight of the 

resulting PLLA-Ac (Table 1). Even after the treatment, because of the remaining high molecular 

weight, the protected end structure of PLLA-Ac could not be directly confirmed by any means. Thus, 

to determine the existence of the protected end-structure through a model reaction, an oligo(L-lactic 

acid) was synthesized using a similar procedure as for polymerization under the following 

conditions: [Sn(Oct)2]/[H2O]/[L,L-lactide] = 1/200/2000 at 120 °C for 48 h. The oligo(L-lactide) 

(OLLA) with Mn = 2680, which was calculated from the integration values of the peaks in 1H-NMR 

spectrum, was obtained with a 32% yield. Then, OLLA was treated in the same way with acetic 

anhydride to prepare an end-protected oligo(L-lactide), OLLA-Ac. The end structure of the obtained 

OLLA-Ac was confirmed by 1H-NMR. In the 1H-NMR spectrum (Figure 1a) of the original OLLA, 

a weak quartet and doublet at 4.28 and 1.49 ppm were observed. These were in addition to the main 

quartet and doublet at 5.16 and 1.59 ppm for the -CH(CH3)-OCO- and -CH(CH3)-OCO- in the main 

chain. From 1H-1H COSY spectrum, the weak peaks were assigned to -CH(CH3)-OH and 

-CH(CH3)-OH in chain end units. After the acetylation (Figure 1b), the weak peaks at 4.28 and 1.49 
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ppm disappeared and a new singlet at 2.14 ppm for acetyl group appeared [8]. The molecular weight 

of OLLA-Ac was Mn = 2590, which was calculated from the integration values of the peaks at 5.16 

and 2.14 ppm in the 1H-NMR spectrum. This means that the acetylation proceeded quantitatively 

under the conditions. From these results of the oligomer modification, it can be reasonably inferred 

that the same treatment of PLLA with acetic anhydride resulted in the acetylation of the hydroxyl 

ends of the polymer chains to produce the end-protected PLLA-Ac. A crucial aspect is that this 

treatment effectively decreases the Sn content in the polymer, in fact, the Sn content of PLLA-Ac 

decreased to 74 ppm from 437 ppm in the precipitated PLLA. 

The residual Sn compounds in the PLLA were eliminated by a three times repeated liquid-liquid 

extraction using 1M HCl aqueous solution to prepare the purified PLLA-H [11,14]. From AA 

analysis, PLLA-H was found to contain 13.7 ppm of Sn, a level only just detectable under these 

experimental conditions. Thus, PLLA-H is regarded as being metal-free PLLA. Molecular weight 

and polydispersity (PDI) of PLLA-H did not show any significant deviation from those of the 

precipitated PLLA.  

The metal-free PLLA-H was also treated with acetic anhydride to prepare the metal-free and 

end-protected PLLA-H/Ac with nearly equal molecular weights and Sn contents at the lower limits 

of detection (Table 1). 

The results in Table 1 allow us to evaluate the relationship between the end-protection and the 
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residual Sn content on the thermal degradation of PLLA without any consideration needing to be 

given to the influence of the molecular weight of the samples. 

[Figure 1. 1H NMR spectra of OLLA and OLLA-Ac] 

 

3.2. Dynamic thermal degradation 

Thermogravimetric analysis (TG) is a commonly employed approach for evaluating the thermal 

properties of polymer materials. To analyze the thermal degradation behavior of PLLA before and 

after the acetylation, the dynamic thermal degradation of film samples was conducted with TG/DTA 

by measuring the weight loss as a function of linear increase in temperature in a nitrogen flow. 

Figure 2 shows the weight loss profiles for the PLLA samples, namely, PLLA, PLLA-Ac, PLLA-H, 

and PLLA-H/Ac, respectively, at heating rate (φ) 5 °C min-1. 

[Figure 2. TG curves (5 K min-1)] 

In Figure 2, the profile of the precipitated PLLA with the highest Sn content, 437 ppm, showed 

the lowest pyrolysis temperature. Its degradation started at 260 ˚C and finished at about 315 ˚C. An 

obvious increase in degradation temperature was shown in the profile of the acetylated PLLA-Ac. 

The weight loss of PLLA-Ac started at 300 ˚C and proceeded smoothly to complete degradation at 

about 360 ˚C, showing a degradation temperature range for PLLA-Ac reaching a 40-50 °C higher 

upper limit than that for PLLA. McNeill et al. and Jamshidi et al. also reported a similar increase in 
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degradation temperature after the end-acetylation of PLLA [8,15]. A similar stabilization has been 

reported for the pyrolysis of poly(propylene carbonate)s, which were treated not only with acetic 

anhydride but also with benzoyl chloride, ethyl silicate, and phosphorous oxychloride. Unfortunately, 

there was no determination of end-capping structures, nor any information on metal content [24]. 

In this case, it must be noted that the Sn content also decreased from 437 to 74ppm during the 

acetylation of the hydroxyl end-groups. We previously reported on the effect of Sn content on the 

pyrolysis of PLLA, namely that unprotected PLLA samples containing Sn in a range of 20-607 ppm 

each showed an individual degradation behavior depending on their particular Sn content [20]. For 

example, PLLA containing 60 ppm of Sn showed about a 50-60 °C higher degradation temperature 

range (300-365 °C) than that of PLLA containing 485 ppm of Sn (250-310 °C). Thus, the increase in 

thermal degradation temperature after the acetylation must also result in part from a decrease in Sn 

content. 

To clarify the contribution of acetyl end-protection on the thermal degradation, the influence of 

residual Sn must be minimized. Thus, in Figure 2, both weight loss profiles of metal free PLLA-H 

and acetylated metal free PLLA-H/Ac were also plotted. The PLLA-H degraded at the highest 

temperature, which was about 10 ˚C greater than that of PLLA-Ac. The profile of PLLA-H/Ac also 

appeared at nearly the same degradation temperature range to that of PLLA-H. Thus, the acetylation 

of the hydroxyl end was not found to have an effect when examined by TG analysis. 
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These results suggest that the effect of acetylation of the hydroxyl ends is in practice due to the 

removal of Sn compounds in PLLA during the acetylation process, resulting in an increase in 

pyrolysis temperature, and a consequent, increase in the thermal stability of PLLA. 

 

3.3 Pyrolyzates 

Next, the effects of the end-protection were examined by analysis of pyrolyzates from the 

PLLA samples. Figure 3 shows Py-GC/MS chromatograms of PLLA, PLLA-Ac, PLLA-H, and 

PLLA-H/Ac evolved in a temperature range of 40-400 ˚C at a heating rate of 10 ˚C min-1. All the 

samples showed two peaks at about 12.5 and 13.8 min in retention time. These peaks have been 

confirmed to be meso- and L,L/D,D-lactides, respectively, by comparing them with the standard 

substances [25,26]. A series of peaks periodically appearing in groups at 23-35 min represent cyclic 

oligomers from trimer to nonamer, which are made up of each group of diastereoisomers 

[11,20,26-28]. 

[Figure 3. Py-GC/MS chromatograms] 

Pyrolysis of PLLA containing 437 ppm of Sn resulted in the formation of dominant L,L-lactide 

(>96 %) with a very small amount of meso-lactide (2.3 %) and cyclic oligomers (0.4 %). This 

selective L,L-lactide formation agrees with the pyrolysis of PLLA in the previous report, which 

contained 607 ppm of Sn [20]. In contrast, the chromatogram of pyrolyzates from PLLA-H was 
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composed of a lot of ingredients, including L,L/D,D-lactide (53.6 %), meso-lactide (15.7 %), and 

cyclic oligomers (30.7 %).  

The chromatogram of pyrolyzates from end protected PLLA-Ac comprised of L,L/D,D-lactide 

(77.3 %) as a main product, meso-lactide (20.9 %), and a small amount of cyclic oligomers (1.9 %). 

The high content of meso-lactide implies nucleophilic attacks by carboxyl groups on asymmetric 

carbons and/or the occurrence of ester-semiacetal tautmerization at temperatures greater than 320 ˚C 

[11,25]. The presence of a small amount of oligomers suggests that the residual Sn (74 ppm) is 

making some contribution to the pyrolysis mechanism of PLLA-Ac [20]. In the case of metal free 

PLLA-H/Ac, the chromatogram of pyrolyzates showed nearly the same profile as that of PLLA-H, 

including L,L/D,D-lactide (45.3 %), meso-lactide (18.2 %), and cyclic oligomers (36.5 %).  

These results indicate that the influence of the end-protection on the pyrolyzates composition is 

small as compared with that of Sn content. 

 

3.4. Apparent activation energy of thermal degradation 

To analyze the influence of end-protection on the thermal degradation kinetics, the thermal 

degradation of PLLA samples was conducted at various heating rates of 1, 3, 5, 7, and 9 K min-1 in 

TG. Apparent activation energy, Ea, of the thermal degradation was then estimated from the weight 

loss data according to a previously published method [29-32]. Figure 4 shows changes in Ea value 
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during the pyrolysis of PLLA, PLLA-Ac, PLLA-H, and PLLA-H/Ac with changes in the fractional 

weight, w. 

[Figure 4. Changes in Ea value] 

The Ea value of PLLA (Sn content: 437 ppm) was relatively constant at 128-130 kJ mol-1 during 

the whole pyrolysis. This result is comparable with that of unprotected PLLA containing 396 ppm of 

Sn as reported previously [20]. This small change in Ea value suggests that a simple reaction route 

covers the whole degradation process. In the case of PLLA-Ac (Sn content: 74 ppm), the Ea value 

increased continuously from 140 to 160 kJ mol-1 with increase in weight loss. Similar continuous 

increases in Ea value were found on the pyrolysis of unprotected PLLA containing 60 ppm of Sn, 

during which the Ea value increased linearly from 124 to 163 kJ mol-1 with decrease in w [20]. 

Obviously, the Ea change for PLLA-Ac is similar to that of the unprotected PLLA with 60 ppm of Sn 

content. 

In the case of PLLA-H, the Ea value started from about 149 kJ mol-1 and rose up to 176 kJ mol-1 

as degradation progressed. These results agreed closely with the previously reported Ea value 

changes from 141 to 177 kJ mol-1 for purified unprotected PLLA [32]. The Ea value of the 

end-protected PLLA-H/Ac showed almost the same change as that of PLLA-H, starting at 141 kJ 

mol-1 and gradually converging at 176 kJ mol-1 with decrease in w.  

Thus, the influence of end-protection of PLLA on the Ea value of pyrolysis must be very small 
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compared to that of Sn content. 

 

3.5 Kinetics and mechanism of thermal degradation 

Kinetic parameters of pyrolysis of the PLLA samples were analyzed from the 

thermogravimetric data. In this study, the well-known integral method and an improved random 

degradation analytical method were employed to analyze the pyrolysis data [30,31,33,34]. According 

to our previous studies [20,25,32], it is considered that the thermal degradation of metal free 

PLLA-H proceeds mainly through the random scission, evolving many kinds of pyrolyzates. And, 

PLLA with a high Sn content degrades in accordance with a zero-order weight loss process by 

Sn-catalyzed lactide elimination, producing principally L,L-lactide. 

In Figure 5, the improved random degradation analysis plots of log[-log{1-(1-w)1/2}] vs 1/T for 

PLLA-H/Ac (9 K min-1) and model reactions are illustrated with kinetic parameters, Ea=176 kJ mol-1, 

A=3.5×1011 s-1, as compared to the corresponding weight loss curve. To analysis the main 

degradation route of the random pyrolysis pathway of this metal sample, the plot of 9 Kmin-1 was 

selected in order to minimize the influence of the by-reactions at the initial stage. Obviously, the 

experimental data plot overlapped on the nth-order reaction plots at the first stage, and shifted on a 

random degradation plot with L=4 in the following stage, where L means the least number of 

repeating units of oligomer not volatilized [30]. This simulation of PLLA-H/Ac pyrolysis is nearly 
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the same as that for the PLLA-H pyrolysis without any influence of acetylation. 

[Figure 5. PLLA-H/Ac Random degradation method] 

Integral method plots of experimental Aθ vs w of PLLA-Ac (5 K min-1) and model reactions 

with kinetic parameters, Ea=150 kJ mol-1 and A=1.7×1010 s-1, are illustrated in Figure 6. The 

simulation indicates that the pyrolysis of PLLA-Ac proceeds through at least two processes, i.e., an 

initial slow degradation process followed by a rapid weight loss process. This is because a random 

degradation process dominates in the beginning, whereas a zero-order weight loss process dominates 

in the latter stages. The main mechanism in these mixed processes gradually changes as the 

degradation progresses. A similar gradually shifting process was found on the pyrolysis of 

unprotected PLLA sample with Sn content of 60 ppm [20] 

[Figure 6. PLLA-Ac Integral method] 

It is assumed that a random degradation process occurs in both PLLA-H/Ac and PLLA-Ac 

pyrolysis. It has been reported that some random degradation processes, such as cis-elimination and 

nucleophilic attacks of hydroxyl and carboxyl ends on electron-poor carbons, occur in the PLLA 

pyrolysis, generating new chain ends, hydroxyl, carboxyl, and acryl groups [11,25,32]. Though the 

protection of hydroxyl groups may slow down the degradation process in the beginning, the random 

scissions caused by carboxyl ends would diminish any influences of the end-protection. The 

degradation temperature, Ea value, and kinetics of end-protected PLLA-Ac and PLLA-H/Ac imply 
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that their degradation behaviors are almost the same as those of unprotected PLLAs with 

corresponding Sn contents. 

Thus, unless the degradation process is restricted to one reaction, which was started from 

hydroxyl ends, the end-protection of hydroxyl ends will be a negligible factor in the total 

degradation process, compared to other significant factors, such as the Sn content. 

 

4. Conclusion 

The treatment of PLLA by acetic anhydride resulted in the acetylation of end hydroxyl groups, 

and at the same time led the Sn content in the polymer to significantly decrease. The thermal 

degradation of the acetylated PLLA showed a shift to a higher degradation temperature range than 

that of untreated PLLA with high Sn content, but showed nearly the same degradation behavior as 

the untreated PLLA with a comparable Sn content. An extensively purified PLLA, which was free of 

residual Sn, showed the highest degradation temperature range, even when compared to the 

end-protected metal-free PLLA. Moreover, pyrolyzate and kinetic analyses of the pyrolysis of 

end-protected PLLAs indicated that the thermal stabilization of PLLA by the acetic anhydride 

treatment was mainly due to a decrease in Sn content occurring during the acetylation process. 
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Table 1. PLLA samples prepared with various approaches 

 

 

 

Sample Description Mn Mw Sn(ppm) 

PLLA Precipitated 181,000 305,000 437 

PLLA-Ac Acetylated 165,000 282,000 74 

PLLA-H HCl aq. extracted 186,000 303,000 13.7 

PLLA-H/Ac HCl aq. extracted and acetylated 174,000 295,000 15.1 
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Figure legends 

 

Scheme 1.  Protection of hydroxyl group end of PLLA by acetic anhydride. 

 

Figure 1.  1H NMR spectra of precipitated oligo(L-lactic acid) (OLLA) and acetylated OLLA-Ac. 

 

Figure 2.  TG curves of PLLA, PLLA-Ac, PLLA-H, and PLLA-H/Ac (5 K min-1) 

 

Figure 3.  Py-GC/MS (TIC) chromatograms of PLLA, PLLA-Ac, PLLA-H, and PLLA-H/Ac 

pyrolyzates degraded in the pyrolyzor from 40 to 400˚C. GC measurement was conducted through 

heating the column from 40 to 320 ˚C. 

 

Figure 4.  Apparent Ea values of PLLA, PLLA-Ac, PLLA-H, and PLLA-H/Ac at various residual 

weight fractions. 

 

Figure 5.  Plots of log[-log{1-(1-w)1/2}] vs. 1/T for thermogravimetric data of PLLA-H/Ac at a 

heating rate of 9 K min-1 (Ea=176 kJ mol-1, A=3.5×1011 s-1), and for model reactions. Model 

reactions: zero (n=0), half (n=0.5), 1st (n=1), and 2nd-order (n=2), and random degradations 

(Random L=2-4).  

 

Figure 6.  Integral method plots of experimental (AEa/φR)p(y) (=Aθ) vs. w of PLLA-Ac at a heating 

rate 5 K min-1 (Ea=150 kJ mol-1 and A=1.7×1010 s-1), and ∫− )(/ wgdw  vs. w for model reactions. 

Model reactions: zero (n=0), 1st (n=1), and 2nd-order (n=2), and random degradations (Random 

L=2-4). 
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Figure 3. 
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Figure 5. 
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