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Abstract 

Thermal degradation of high molecular weight PLLA containing residual tin atoms was investigated 

as a means of controlling the reaction for feedstock recycling to L,L-lactide. To clarify the pyrolysis 

mechanism of the PLLA, three samples with different chain end structures were prepared, namely, 

as-polymerized PLLA-ap, precipitated-with-methanol PLLA-pr, and purified PLLA-H. From pyrolyzate 

and kinetic analyses, typical degradation mechanisms of Sn-containing PLLA were clarified. In other words, 

it was assumed that the pyrolysis of PLLA-ap proceeds through a zero-order weight loss process with the 

apparent Ea = 80-90 kJ mol-1, and with the occurrence of backbiting and transesterification reactions caused 

by Sn-alkoxide chain ends. The pyrolysis of PLLA-pr was also assumed to proceed via a zero-order weight 

loss process with apparent Ea = 120-130 kJ mol-1, with the proposed mechanism being Sn-catalyzed 

selective lactide elimination caused by Sn-carboxylate chain ends. Both pyrolysis of PLLA-ap and 

PLLA-pr produced L,L-lactide selectively. These degradation mechanisms and products are in contrast to 

those of PLLA-H, in which a large amount of diastereoisomers and cyclic oligomers were formed by 

random degradation. From this study, the complicated PLLA pyrolysis behavior as reported previously 

could be explained properly. 
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1. Introduction 

Poly(L-lactic acid) {poly(L-lactide), PLLA} is a well-known biodegradable polymer. It has received 

much interest for its medical, pharmaceutical, and environmental applications [1-3]. Nowadays, because of 

its many useful properties, such as mechanical strength, transparency, and compostability [4-6], PLLA and 

its related copolymers are attracting much attention as promising alternatives to the commodity resins [7]. 

PLLA is generally prepared by the ring-opening polymerization of L,L-lactide [8-11], and the thermal 

degradation of PLLA results in the recovery of L,L-lactide [12,13]. This chemical property of PLLA makes 

it a possible candidate as a feedstock recycling plastic. However, the thermal degradation of PLLA is more 

complex than the simple reaction that gives L,L-lactide. The activation energy, Ea, of degradation has been 

reported to change irregularly in the range 70-190 kJ mol-1 as the degradation progresses. For example, 

irregular behavior occurs at 110’ 190 kJ mol-1 (Kopinke et al. [14]), at 103’ 72’ 97 kJ mol-1 

(Babanalbandi et al. [15]), and at 95’ 80’ 160 kJ mol-1 (Aoyagi et al. [16]). Moreover, many kinds of 

degradation products have been detected during the pyrolysis of PLLA, especially meso-lactide, D,D-lactide, 

and cyclic oligomers, all of which cause serious problems after the reproduction of PLLA, by diminishing 

some of its useful properties, such as crystallizability [17-19]. Thus, it is very important to determine the 

degradation mechanisms of high molecular weight PLLA and to control these mechanisms to selectively 

produce L,L-lactide for the feedstock recycling. 

The factors that influence the thermal degradation of PLLA apart from molecular weight include the 

presence of moisture, residual and hydrolyzed monomers, oligomers, and residual metals. In particular, the 
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effect of residual tin compounds is very important, because only tin 2-ethylhexanoate {Sn(Oct)2} has been 

approved by the FDA as a catalyst [20]. Though many reports have shown the accelerating effect of 

{Sn(Oct)2} on PLLA pyrolysis, the degradation mechanisms have been discussed in only a few reports. 

Södergård and Näsman demonstrated that, based on the melt viscosity changes, the thermal degradation of 

PLLA containing 690 ppm of Sn proceeded through a random main-chain scission with apparent activation 

energy Ea=119.4 kJ mol-1 [21]. Kopinke et al. studied the weight loss behavior on the pyrolysis of PLLA 

containing 250 ppm of Sn [14]. They found two well-resolved peaks in the DTG profile. From pyrolyzates 

and degradation kinetics analyses, the low and high temperature decomposition reactions were evaluated as 

a Sn-catalyzed depolymerization starting from hydroxyl chain ends with Ea=110 kJ mol-1 and random 

transesterification reactions to produce cyclic oligomers, respectively. A first-order kinetic treatment was 

used for the evaluation of the low temperature decomposition reaction. Wachsen et al. compared the 

thermal degradation behavior between the two types of PLLAs (Sn content: 15 and 145 ppm) in sealed 

ampoules, and Ea values: 120 and 92 kJ mol-1 for the two samples, respectively, were calculated based on 

the random degradation/recombination equilibrium equations [22]. 

As mentioned in many previous reports, the accelerating effect of Sn atoms on thermal degradation 

of PLLA is clear, however it has not yet clearly been established whether the main degradation mechanism 

is a 1st-order reaction or a random reaction. In our previous report [23], to analyze accurately the effect of 

the Sn atom on pyrolysis, PLLA samples with various amounts of Sn content (20-607 ppm) were prepared 

and the thermal degradation kinetics and mechanisms were investigated. It was found that the pyrolysis of 
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PLLA samples with Sn content of < 20 ppm proceeded mainly through a random degradation (Ea = 

180-190 kJ mol-1) and the contrastive samples with Sn content of > 485 ppm were evaluated as proceeding 

via a zero-order weight loss process (Ea = 120-130 kJ mol-1) as a main route. Further, it was clarified that in 

all samples the degradation kinetics and mechanisms gradually changed with temperature. For example, in 

the pyrolysis of PLLA-Sn (607 ppm) there was a change from a random degradation in the initial stage to 

the zero-order weight loss behavior in the main stage. The previously reported complicated PLLA pyrolysis 

behavior is explainable in part by such results. However, sometimes a degradation process with Ea value 

less than 100 kJ mol-1 was encountered, which though reported by Wachsen et al. [22] and Babanalbandi et 

al., [15] has not yet been clarified.  

In this work, our attention was directed to the effect of PLLA-Sn end structure on the pyrolysis. 

Kricheldorf et al. reported that the polymerization of L,L-lactide proceeds most likely via the relatively 

reactive Sn-alkoxide group [24]. Further, they pointed out that these Sn-alkoxide groups will be 

transformed into -CH-OH end-groups via alcoholysis or hydrolysis. This is a very important point to note 

when considering the chemical recycling of PLLA, because the products are inevitably exposed to water 

and protic additives in processing, as well as moisture from the environment etc. Thus, in this study, 

as-polymerized PLLA and precipitated PLLA with methanol were prepared, whilst there still remained 

plenty of Sn compounds in the form of catalyst residue. The dynamic thermal degradation and volatile 

products analyses of the samples were carried out in comparison with those of a metal-free PLLA. Finally, 

the characteristic degradation mechanisms of the samples were discussed. 
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2. Experimental 

2.1. Materials 

Monomer, L,L-lactide, was obtained from Shimadzu Co. Ltd. It was composed of 99.4 % L,L-lactide 

and 0.6 % meso-lactide according to a gas chromatography (GC) measurement. This monomer was 

recrystallized three times from dry toluene and then once from dry ethyl acetate. After the purification, 

meso-lactide was not detectable by GC. The vacuum dried L,L-lactide was stored in an N2 atmosphere. A 

catalyst, tin 2-ethylhexanoate {Sn(Oct)2} was obtained from Wako Pure Chemical Industries, Ltd. and 

distilled under reduced pressure before use. Ammonia solution (25 %) and hydrochloric acid (1M) 

specifically produced for the atomic absorption spectrophotometry were purchased from Wako Pure 

Chemical Industries, Ltd. and used as received. 

 

2.2. Preparation of PLLA samples 

PLLA was synthesized by the ring-opening polymerization of L,L-lactide catalyzed by Sn(Oct)2 in 

bulk. A molar ratio [catalyst]/[monomer] = 1/1000 in feed and a multi-temperature process (150 °C / 0.5 h 

+ 130 °C / 5 h + 110 °C / 13 h + 90 °C / 12 h) were employed in the polymerization. Purified L,L-lactide 

5.081 g (35.3 mmol) was added into a reaction tube in a glove box under N2 atmosphere. Then, Sn(Oct)2 

12.55 µL (0.0157 g, 34.4 µmol) was added by using a micro syringe. The reaction tube was connected to a 

vacuum line and the toluene was allowed to evaporate for 48 h in vacuo. After sealing in a flame, the tube 
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was immersed into an oil bath. After the polymerization, as-polymerized PLLA (PLLA-ap) was obtained as 

a white solid with a ~100 % yield based on a 1H-NMR analysis. PLLA-ap 3.825 g was dissolved in 

chloroform 150 mL and precipitated with 10-fold of methanol to prepare precipitated PLLA (PLLA-pr) 

3.552 g with a 92.87 % yield. Residual Sn compounds in PLLA-pr were extracted from a solution of 

PLLA-pr (2.4373 g) / chloroform (150 mL) three times with 300 mL of 1M HCl aqueous solution, then 

washed with distilled water until the aqueous phase became totally neutral. Finally, the polymer was 

precipitated with methanol to prepare the purified PLLA (PLLA-H) with a 46.10 % yield. 

The molecular weight and Sn content of the three PLLA samples are listed in Table 1. For preparing 

sample films, each chloroform solution of the corresponding sample (0.3 g in 20 mL CHCl3) was cast on a 

glass Petri dish surface. After the evaporation of the solvent, the formed film was washed by methanol and 

then vacuum dried. 

[Table 1.  PLLA samples] 

 

2.3. Dynamic pyrolysis 

Thermogravimetric analysis (TG/DTA) was conducted on a Seiko Instruments Inc. EXSTAR 6200 

TG system in aluminum pans under a constant nitrogen flow (100 mL min-1) using about 8 mg of the PLLA 

film sample. For each sample, prescribed heating rates of 1, 3, 5, 7, and 9 K min-1 were applied from room 

temperature to 400°C. The pyrolysis data were collected at regular intervals (about 20 times K-1) by an 

EXSTAR 6000 data platform, and recorded into an analytical computer system. 
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2.4. Measurements 

1H-NMR spectra were recorded on a Varian INOVA400 NMR spectrometer operating at 400 MHz 

for proton investigation in chloroform-d solution with tetramethylsilane as the internal standard.  

The gas chromatography (GC) measurements were recorded on a Shimadzu GC-9A gas 

chromatograph with a Varian cyclodextrine-² -236M-19 capillary column (0.25 mm × 50 m) using helium 

as the carrier gas. The column and injector were set isothermally at 150 and 220 ºC, respectively. The 

sample (3 mg) was dissolved in acetone (1 mL) and a 1 µL aliquot of the solution was injected. The peaks 

for meso-, L,L-, and D,D-lactides were identified by comparison with pure substance peaks. 

Gel permeation chromatography (GPC) was measured on a TOSOH HLC-8220 GPC system at 40ºC 

using TOSOH TSKgel Super HM-H column and chloroform eluent (0.6 mL min-1). Low polydispersity 

polystyrene standards with Mn from 5.0×102 to 1.11×106 were used for calibration. The sample (12 mg) 

was dissolved in chloroform (2 mL) and the solution was filtered through a membrane filter having a 0.5 

µm pore size. 

The Sn content in the PLLA samples was measured with a Shimadzu AA-6500F atomic absorption 

flame emission spectrophotometer (AA). The sample was degraded by a 25 % ammonia solution, dissolved 

in 1M-hydrochloric acid, and then measured by AA.  

Pyrolysis-gas chromatograph/mass spectra (Py-GC/MS) were recorded on a Frontier Lab double-shot 

pyrolyzer PY-2020D with a Frontier Lab SS-1010E selective sampler and a Shimadzu GCMS-QP5050 
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chromatograph/mass spectrometer. High purity helium was used as carrier gas at 50 mL min-1. The volatile 

products were analyzed with an Ultra Alloy+-5 capillary column (30 m × 0.25 mm i.d.; film thickness, 0.25 

µm). A PLLA sample was put in the pyrolyzer and heated from 60 ºC to a prescribed temperature at a 

heating rate of 10 ºC min-1. The volatile pyrolysis products were introduced into the GC through the 

selective sampler. The temperature of column oven was first set at 40°C. After the pyrolysis process had 

finished, the column was heated according to the following program: 40 ºC for 1 min; 40-120 ºC at 5 ºC 

min-1; 120-320 ºC at 20 ºC min-1; 320 °C for 13 min. Mass spectrum measurements were recorded 2 times 

s-1 during this period. 

 

3. Results and Discussion 

3.1. Preparation of PLLA samples 

To clarify the effect of PLLA-Sn end structure on the thermal degradation of PLLA, three sampleｓ 

were prepared (Table 1). Original PLLA was synthesized through the ring-opening polymerization, using 

tin 2-ethylhexanoate {Sn(Oct)2} as a catalyst. The polymerization proceeded completely with ~100 % yield 

to form “as-polymerized PLLA” (PLLA-ap), a white solid polymer, containing 1006 ppm of Sn. According 

to Kowalski et al. [25], it is assumed that Sn atoms in PLLA-ap are bonding through alkoxide groups to 

polymer chain ends to form “PLLA-O-Sn”. After the polymerization, PLLA-ap was dissolved in 

chloroform and precipitated with excess methanol to prepare precipitated PLLA (PLLA-pr) containing 689 

ppm of Sn. During the precipitation process, the end structure of “PLLA-O-Sn” will exchange with 
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methanol to form “PLLA-OH” [26]. According to the previous reports [27-29], Sn atoms in PLLA are not 

removable by the dissolution/precipitation method. It is considered that after the precipitation process the 

Sn atoms in PLLA-pr are bonding to polymer chain ends in the form of a salt, “HO-PLLA-COO- Sn2+X- “. 

To prepare a metal free polymer, PLLA-pr was purified by a liquid-liquid extraction method with 1M HCl 

[14,23,29,30], resulting in the formation of purified PLLA-H containing 23 ppm of Sn, which was close to 

the lower limits of detection. 

The three PLLA-samples have different Sn contents and nearly equal molecular weights (Table 1). 

This allows us to evaluate the effect of the end-structure on the thermal degradation of PLLA without any 

consideration needing to be given to the influence of the molecular weight of the samples. 

 

3.2. Dynamic pyrolysis of PLLA-ap, PLLA-pr, and PLLA-H 

Thermogravimetric analysis (TG) is a commonly employed approach for evaluating the thermal 

properties of polymer materials. To analyze the thermal degradation behavior of PLLA samples with 

different end structures, the dynamic thermal degradation of film samples was conducted with TG/DTA by 

measuring the weight loss as a function of linear increase in temperature in a nitrogen atmosphere. The TG 

measurement was carried out at various heating rates (φ) of 1~9 K min-1. Typical weight loss profiles for 

PLLA-ap, PLLA-pr, and PLLA-H at φ = 5 K min-1 are shown in Figure 1. 

[Figure 1.  TG profiles (5 K min-1)] 

Each sample showed individual TG curves in a different temperature range. The weight loss of 
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PLLA-ap started at about 150 °C (1 K min-1) and finished at about 290 °C (9 K min-1). An obvious increase 

in degradation temperature was shown in the TG curve of PLLA-pr. The weight loss of PLLA-pr started at 

about 230 °C (1 K min-1) and proceeded rapidly to complete degradation at about 320 °C (9 K min-1) within 

a narrow temperature range. PLLA-H degraded at the highest temperature, starting at about 250 (1 K min-1) 

and finishing at about 385 °C (9 K min-1). The individual profiles of each TG curve are best explained by 

assuming that a different degradation reaction occurred in each temperature range, rather than being due to 

a simple lowering of the degradation temperature as a result of the increase in Sn content.  

 

3.3. Pyrolyzates 

Here, the effects of the end-structure were also examined by analysis of pyrolyzates evolved from 

PLLA-samples. Figure 2 shows Py-GC/MS chromatograms of pyrolyzates of PLLA-ap, PLLA-pr, and 

PLLA-H evolved in temperature ranges of 60-280, 60-380, and 60-400 °C, respectively, at a heating rate of 

10 °C min-1. All samples showed a main peak at 13.4-13.7 min in retention time. This peak has been 

confirmed to be L,L-/D,D-lactide by comparing it with that of the standard substance [23,31]. Evolution of 

meso-lactide was determined by a peak at 12.2 min in the chromatogram of PLLA-H, but this peak was 

hardly visible in the chromatograms of PLLA-ap and PLLA-pr. These chromatograms suggest that both 

pyrolysis of PLLA-ap and PLLA-pr resulted in a selective L,L-lactide production. In contrast, the 

chromatogram of PLLA-H shows a large amount of meso-lactide and other cyclic oligomers. A series of 
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peaks periodically appearing in groups at 23-33 min represents the production of cyclic oligomers from 

trimer to octamer, which are made up of each group of diastereoisomers [14,23,30,32,33].  

[Figure 2.  Py-GC/MS chromatograms] 

To determine the changes in the composition of pyrolyzates from PLLA samples, the pyrolyzates 

evolved in different temperature ranges were collected and analyzed with Py-GC/MS. Results of the 

composition analysis are illustrated in Figure 3, in which each component content was calculated from the 

peak intensity in Py-GC/MS chromatogram. The pyrolyzates from PLLA-ap were almost all L,L-lactide 

with a little meso-lactide (<1.3 %) over the whole degradation range (180-300 °C). In addition to the 

dominant L,L-lactide, the pyrolyzates from PLLA-pr were also composed of a small amount of meso-lactide 

(<1.9 %), despite the higher degradation temperature range of 260-340 °C. Witzke et al. reported the 

formation of 2 % meso-lactide at a conversion greater than 90 % on Sn(Oct)2-catalyzed polymerization of 

L,L-lactide at 130 °C [13]. Therefore, a small amount of meso-lactide in PLLA-ap and PLLA-pr pyrolyzates 

may be formed before the pyrolysis. On the other hand, the pyrolyzates evolved from PLLA-H were 

composed of L,L-/D,D-lactides (83-27 %) and a large amount of meso-lactide (8-15 %) and cyclic oligomers 

(total 3-64 %) in a temperature range of 300-400 °C. The production of cyclic oligomers was enhanced 

significantly with increase in temperature. 

These results clearly indicate that the residual Sn compounds markedly influence the pyrolysis of 

PLLA, and that each PLLA sample with a different end structure degrades through a different reaction.  

[Figure 3.  Composition of pyrolyzates] 
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3.4. Apparent activation energy of thermal degradation 

Influences of PLLA-Sn end structures on the thermal degradation kinetics were analyzed from TG 

data of PLLA samples conducted at various heating rates of 1, 3, 5, 7, and 9 K min-1. The apparent 

activation energy, Ea, of the thermal degradation was estimated from the weight loss data according to a 

previously published method [34-37]. Figure 4a shows changes in the Ea values during the pyrolysis of 

PLLA-ap, PLLA-pr, and PLLA-H with changes in the fractional weight, w. Each sample exhibits a 

characteristic Ea curve. The Ea value of PLLA-ap decreased gradually from 99 to 82 kJ mol-1 with increase 

in weight loss. This change in Ea value closely follows the first half of the change reported by Babanalbandi 

et al. [15]. In the case of PLLA-pr, the Ea value was relatively constant at 127-133 kJ mol-1 during the 

whole pyrolysis. This result is comparable with Ea = 120-130 kJ mol-1 of precipitated PLLA samples 

containing 169-607 ppm of Sn in the previous report [23]. Thus, the Ea value of about 120-130 kJ mol-1 

must be a fixed parameter for a typical pyrolysis mechanism caused by a PLLA-Sn end structure. 

Obviously, the gap in Ea value between PLLA-ap and PLLA-pr pyrolysis is significant, reflecting 

differences in the pyrolysis mechanism, but cannot simply be explained as being due only to a difference in 

the Sn content. The Ea value of PLLA-H, which started from about 135 kJ mol-1 and rose to 176 kJ mol-1 as 

degradation progressed, agrees with the previously reported values for purified PLLA [23,30]. These results 

indicate that the PLLA-Sn end structure is a principal factor in the PLLA pyrolysis. 

[Figure 4.  Changes in Ea value] 
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In Figure 4b, the Ea values were plotted against temperature. Each Ea curve occupies an isolated 

position in temperature scale without any overlap. This suggests that one kind of end-structure causes a 

characteristic degradation reaction in a particular temperature range. The previously reported complicated 

Ea changes in PLLA pyrolysis on a heating process must have reflected the stepwise changes in these plural 

reactions during the degradation process [15,16]. 

The characteristic degradation reaction in each particular temperature range was analyzed by kinetics 

approaches in the next section. 

 

3.5. Kinetics of PLLA-ap, PLLA-pr, and PLLA-H pyrolysis 

The thermal degradation kinetics of the PLLA samples was studied by several analytical approaches 

[36,38-40]. The integration analysis plots for the experimental data of PLLA-ap (9 K min-1) and the model 

reactions are illustrated in Figure 5. In this Figure, θ  = (Ea/φR)p(y) is defined as the reduced time, where R 

is the molar gas constant and function p(y) is tabulated by Doyle [36,41]. It was observed that the 

degradation of PLLA-ap closely followed the zero-order reaction simulation with parameter values: Ea = 85 

kJ mol-1 and pre-exponential value A = 6.8 × 105 s-1. Interestingly, the main part of the experimental plot 

could also be closely matched by superimposing the random degradation simulation (L=3) with parameter 

values: Ea = 85 kJ mol-1 and A = 1.0 × 106 s-1, where L is the least number of repeating units of oligomer 

not volatilized (data not shown). In both mechanisms, L,L-lactide is produced dominantly. Considering the 

gradual Ea change, it is assumed that similar plural reactions are occurring during the pyrolysis with their 
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proportional contributions changing with temperature. Thus, it is considered that a minor random 

degradation process occurs at the same time as an nth-order degradation process and contributes to the 

resulting zero-order weight loss behavior. In the final stage of the pyrolysis, the experimental plot deviated 

from the simulation plots due to the influence of end residues. 

[Figure 5.  PLLA-ap: Integration analyses] 

In Figure 6, the experimental data of PLLA-pr (1 K min-1) and model reactions with Ea = 130 kJ 

mol-1 and A = 6.2 × 109 s-1 were plotted by the integral method. This data plot clearly shows both weight 

loss behaviors in the initial and main periods. After the slow weight loss in the initial period, the 

experimental plot showed a linear relationship between w and A¸  in parallel to the zero-order reaction 

simulation plot. Nearly the same result was found in the pyrolysis of precipitated PLLA containing 607 

ppm of Sn in the previous report [23]. Thus, it is clear that the main degradation process of PLLA-pr is a 

zero-order weight loss process, and the slow weight loss process in the initial period could be regarded as a 

random decomposition process simulated, apparently, with Ea = 130 kJ mol-1 and A = 1.0 × 109 s-1. Though 

both main degradation processes of PLLA-ap and PLLA-pr are regarded as being the zero-order weight 

loss process, each elementary reaction will be different because of the significant gaps in the kinetic 

parameters. 

[Figure 6.  PLLA-pr: Integration analysis] 

In Figure 7, the random degradation analysis plots of log[-log{1-(1-w)0.5}] vs 1/T for experimental 

data of PLLA-H (9 K min-1) and model reactions are illustrated with kinetic parameters: Ea = 175 kJ mol-1 
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and A = 1.25 × 1012 s-1. Obviously, the experimental data plot closely followed the nth-order reaction plots 

at the first stage, but then shifted onto a random degradation plot with L=4-5 in the following stage. This 

simulation of PLLA-H pyrolysis is nearly the same as that for the purified PLLA pyrolysis reported 

previously [23,30]. The simulated random degradation, L=4-5 supports the evidence of the production of 

the cyclic oligomers found in Figures 2 and 3. 

[Figure 7.  PLLA-H: Random degradation analysis] 

Therefore, the thermal degradation of each PLLA sample proceeds through characteristic plural 

reactions with each reaction having peculiar kinetic parameters. The estimated kinetic parameters, Ea, A, 

and the reaction order are listed in Table. 2. These results settle the previous discussion, as to whether the 

PLLA thermal degradation is a random or nth-order degradation process. 

[Table 2.  Kinetic parameters] 

 

3.6. Mechanisms of PLLA-ap, PLLA-pr, and PLLA-H pyrolysis 

The Sn-catalyzed polymerization of L,L-lactide is a typical equilibrium polymerization [12,13]. It is 

considered that the thermal degradation of PLLA-ap proceeds in a similar way to the depolymerization 

mechanism in the equilibrium polymerization of L,L-lactide [26]. Thus, the active end structure will be 

Sn-alkoxide, and the alkoxide anion attacks an electron-poor carbonyl carbon in lactate unit, which 

coordinates on an Sn atom, resulting in the polymerization or depolymerization [9,24,25]. The nucleophilic 

attack can occur at intra- and inter-molecular level, namely, the backbiting and bimolecular 
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transesterification reactions. In particular, the repeating backbiting reactions onto carbonyl carbon in the 

penultimate unit result in unzipping depolymerization, which produces lactide selectively. As reported 

previously [23], it should be noted that the unzipping depolymerization of polymer with polydispersity 

index ~2 shows a 1st-order weight loss behavior. To show the zero-order weight loss behavior along with 

the unzipping depolymerization, a cooperative random bimolecular transesterification is indispensable. In 

this process, the polymer can be regarded as being a monodisperse polymer during the depolymerization 

process. Kowalski et al. estimated that the ratio of the rate constant for the polymerization, kp, and 

bimolecular transesterification, ktr2, on solution polymerization of L,L-lactide was 200 at 80 °C [26]. 

Bimolecular transesterification must also occur in the thermal degradation. The observed zero-order weight 

loss behavior will be the result of a combination of main unzipping depolymerization and minor 

bimolecular transesterification reactions caused by alkoxide anions at chain ends (Scheme 1). Oligomer 

formation is expected via the transesterification reaction, however, these oligomers are not easily 

volatilized at temperatures less than 270 °C and undergo further reaction before finally changing into 

volatile lactides. 

 [Scheme 1.  PLLA-ap pyrolysis mechanism] 

Kinetic and pyrolyzates analyses show the pyrolysis of PLLA-pr will proceed mainly through the 

zero-order weight loss process to produce selectively L,L-lactide. Interestingly, no cyclic oligomer was 

detected during the pyrolysis, despite the temperatures being high enough (300-340 °C) to cause cyclic 

oligomers to volatilize, as shown in PLLA-H pyrolysis (Figure 3). These results support the Sn-catalyzed 
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selective lactide elimination mechanism by carboxylate-Sn species at chain ends (Scheme 2), which was 

the mechanism proposed previously for precipitated PLLA pyrolysis [23]. Though this reaction is 

first-order in active Sn atoms, it leads to the zero-order with respect to w of PLLA-pr. 

 [Scheme 2.  PLLA-pr pyrolysis mechanism] 

The pyrolysis of PLLA-H has been reported to proceed mainly through the random degradation (L = 

4) from the kinetic analysis of TG/DTA data [23,30]. In this study, nearly the same kinetics: random 

degradation (L=4-5) was estimated. Particularly, the large amount of meso-lactide and cyclic oligomers 

produced means that racemization occurs easily during the pyrolysis of PLLA-H, whereas little 

racemization occurs during PLLA-ap and PLLA-pr pyrolysis. This production of cyclic oligomers and 

diastereoisomers will be due to the random reactions caused by hydroxyl and carboxyl end groups and the 

ester-semiacetal tautomerization occurring at temperatures above 300 °C (Scheme 3) [14,30,31]. 

These proposed degradation mechanisms for the PLLA samples clarify the significance of the effect 

of PLLA-Sn end structures, making it clear that the proposed mechanisms contribute to the interpretation of 

the previously reported complicated PLLA pyrolysis behavior. 

[Scheme 3.  PLLA-H pyrolysis mechanism] 

 

4. Conclusion 

To clarify the pyrolysis mechanism of PLLA containing Sn atoms, three samples with different chain 

end structures, namely, as-polymerized PLLA-ap, precipitated-with-methanol PLLA-pr, and purified 
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PLLA-H, were prepared. From the pyrolyzate analysis with Py-GC/MS and the kinetic analysis of 

thermogravimetric data of the samples, typical degradation mechanisms for the Sn-containing PLLAs were 

proposed. That is, it is assumed that the pyrolysis of PLLA-ap proceeds through a zero-order weight loss 

process with apparent Ea = 80-90 kJ mol-1 at the lowest temperatures, with the process being composed of 

the backbiting and transesterification reactions caused by Sn-alkoxide chain ends. The pyrolysis of 

PLLA-pr was also assumed to proceed via a zero-order weight loss process with apparent Ea =120-130 kJ 

mol-1. This reaction was proposed as being the Sn-catalyzed selective lactide elimination caused by 

Sn-carboxylate chain ends. Both the pyrolysis of PLLA-ap and PLLA-pr produced L,L-lactide selectively. 

These degradation mechanisms and pyrolyzates are in contrast to those of PLLA-H, which showed random 

degradation, with apparent Ea = 176 kJ mol-1 at highest temperatures, to form a large amount of 

diastereoisomers and cyclic oligomers. From this study, the complicated PLLA pyrolysis process could be 

explained properly.  
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Table 1.  PLLA samples 

 

Sample Description Mn Mw 
Sn content 

(ppm) 

PLLA-ap As-polymerized 223,000  451,000  1,006  

PLLA-pr Precipitated with methanol 217,000  429,000  689  

PLLA-H Extracted with 1M HCl aq. 266,000  494,000  23  
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Table 2.  Kinetic parameters for PLLA-ap, PLLA-pr, and PLLA-H pyrolysis 

 

Sample 

Initial stage (w >0.9)   Main stage 

Ea A n / random: L   Ea A n / random: L 

(kJ mol-1) (s-1)     (kJ mol-1) (s-1)   

PLLA-ap 95 1.2 x 107 nth + random   85 
6.8 x 105 

(1.0 x 106) 

n = 0 

(random, L=3) 

PLLA-pr 130 1.0 x 109 random, L=3   130 6.2 x 109 n = 0 

PLLA-H 135 3.5 x 108 nth + random   175 1.25 x 1012 random, L=4-5 
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Figure Legend 

 

Figure 1.  Thermogravimetric curves of PLLA-ap, PLLA-pr, and PLLA-H decomposition at a heating rate 

of 5 K min-1 under N2 flow of 100 ml min-1. 

 

Figure 2.  Py-GC/MS (TIC) chromatograms of PLLA-ap, PLLA-pr, and PLLA-H pyrolyzates in different 

heating processes of 60-280 ˚C (PLLA-ap), 60-380 ˚C (PLLA-pr), and 60-400 ˚C (PLLA-ap), respectively, 

at a constant heating rate of 10 ˚C min-1. 

 

Figure 3.  Volatile products on PLLA sample pyrolysis in different temperature ranges. Content ratio (%) 

of meso-, D,D- or L.L-lactide, and higher cyclic oligomers including trimers to octamers. 

 

Figure 4.  Apparent activation energies of PLLA-ap, PLLA-pr, and PLLA-H 

 

Figure 5.  Plots of experimental (AEa/φR)p(y) (=Aθ) vs w of PLLA-ap at a heating rate of 9 K min-1 (Ea = 

85 kJ mol-1 and A = 6.8 × 105 s-1), and for model reactions. Model reactions: zero- (n = 0), half- (n=0.5), 

1st- (n = 1), and 2nd-order (n = 2), and random degradations (random L = 2-3). 
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Figure 6.  Plots of experimental (AEa/φR)p(y) (=Aθ) vs w of PLLA-pr at a heating rate of 1 K min-1 (Ea = 

130 kJ mol-1 and A = 6.2 × 109 s-1), and for model reactions. Model reactions: zero- (n = 0), half- (n=0.5), 

1st- (n = 1), and 2nd-order (n = 2), and random degradations (random L = 2-4). 

 

Figure 7.  Plots of log[-log{1-(1-w)1/2}] vs. 1/T for thermogravimetric data of PLLA-H at a heating rate of 

9 K min-1 (Ea = 175 kJ mol-1 and A = 1.25 × 1012 s-1), and for model reactions. Model reactions: zero- (n = 

0), half- (n=0.5), 1st- (n = 1), and 2nd-order (n = 2), and random degradations (random L = 2-5). 

 

Scheme 1.  Possible unzipping and transesterification reactions on PLLA-ap decomposition 

 

Scheme 2.  Possible selective lactide elimination on PLLA-pr decomposition 

 

Scheme 3.  Possible random degradation reactions on PLLA-H decomposition 
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