
Trans. JSASS Aerospace Tech. Japan
Vol. 12, No. ists29, pp. Tf_19-Tf_25, 2014

Topics

Tf_19

LEO Single Event Upset Emulator for Validation of FPGA Based Avionics Systems

By Mohamed Mahmoud IBRAHIM, Kenichi ASAMI and Mengu CHO

Kyushu Institute of Technology, Kitakyushu, Japan

(Received June 24th, 2013)

 This paper presents a complete design and implementation of a Single Event Upset (SEU) emulation system that can
be used to inject faults Static Random Access Memory (SRAM) based Field Programmable Gate Array (FPGA). The
FPGA is used to implement an avionics system for a small satellite. The fault injector emulates the expected Single Event
Upset (SEU) rate as it would be in the Low Earth Orbit (LEO) of the polar orbiting satellites at inclinations close to 98°
deg., and altitude of about 670 km. The emulator injects faults in the configuration bit-stream of the FPGA without
stopping its operation. It makes use of the partial reconfiguration feature of today’s FPGAs. This provides a facility to
assess the design performance in space even if radiation testing will not be conducted before launching. Also, it simulates
the expected upset rate and hence calculates the corresponding data failure rates for Triple Modular Redundancy (TMR)
fault tolerant designs. The system was implemented using the Xilinx Virtex- LX50T FPGA. The FPGA suffered system
failures during the fault injection test. It recovered about 50% of the failures. TMR simulation at an upset rate of 0.1 upsets
(per bit per second) for a data size of 2048 bits showed that about 33% of the faults will be fully corrected.

Key Words: FPGA, SEU, Avionics Systems, TMR, Fault Tolerance

1. Introduction

 Design of fault tolerant systems for space applications uses
redundancy in implementation. Redundancy can be in
software code, hardware units, execution times and data bits 1).
The protection techniques can be used individually or
concatenated in a hybrid design. They add to the improvement
of the system capability in detecting and correcting faults
hence increasing its reliability, however, they also add
overhead. Varieties of techniques were introduced in the
literature for Hardware Fault Tolerance (HFT), Software Fault
Tolerance (SFT) and Software-Implemented Hardware Fault
Tolerance (SIHFT) 2-4). These techniques include redundancy
units, check pointing, recovery blocks, Error Detection And
Correction (EDAC) codes, watch dog processors, control flow
checking by signatures, duplicated instructions, diverse data,
and others. SRAM based FPGAs make use of configuration
memory scrubbing to protect their internal bitstream from bit
upsets 5). The induced bit upsets are caused by charged
particles radiation such as trapped protons and electrons,
Galactic Cosmic Rays (GCR) and Solar flares 6,7).
 It is often required to assess the reliability of fault tolerant
systems in operating conditions close to the environment
where they will be used. Satellites are tested in electrical,
thermal vacuum, mechanical and radiation conditions as close
as possible to the target orbit. However, radiation testing at
proton accelerators is often expensive, not readily available
and needs complicated setups. The purpose of radiation testing
is to evaluate how the design will perform in the space
radiation environment. The common tests include Single
Event Effects (SEE) and Total Ionization Dose (TID). The
Single Event Upset (SEU) is part of the SEE where the logic
values of the bits stored in the processor registers and memory

cells are altered. This might lead to malfunctions and
inappropriate operations. In SRAM-based FPGAs, where the
design is stored in the internal SRAM after being loaded from
the boot-up flash, bit alteration due to SEU can be severe. It
might lead to changing the functioning logic and complete
failure of the system.
 In this paper we present the design of a fault injection
system that can be used in emulating the bit upsets in the
configuration bitstream of SRAM based FPGAs. The system
emulates the SEUs as they would be found in LEO orbits at an
altitude of approximately 670 km and inclination of about
98° deg. The expected upset rate is estimated using
CREME96 model within the Space Environment Information
System (SPENVIS) online package 8-10). Fault lists containing
bit flips at random locations of the configuration bitstream are
then generated using the fault injector based on the estimated
in-orbit upset rates from the CREME96 model. The purpose
of this paper is to present the architecture and design of the
fault injection platform that can be used in evaluating SRAM
based FPGA designs. In addition to the fault injection function,
the system can simulate the effects of bit upsets on the
operation of Triple Modular Redundancy (TMR) protected
modules. It simulates random upsets in the TMR modules and
estimates the failure rate based on the simulated upsets. Thus
the proposed emulator tool consists of two parts: a fault
injector to inject faults in the SRAM of the FPGAs which
carries the configuration bitstream and a simulator which
simulates the effects of bit upsets on TMR operation.

The fault injection and simulation system was developed to
target the Xilinx Virtex5 FPGA family. The fault injection
function uses the SEU controller soft IP core from Xilinx 11).
Therefore the system is effective for emulating the upsets that
take place in the configuration bitstream only. These upsets

Copyright© 2014 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved.

Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29 (2014)

Tf_20

target the programmable interconnects, routing information,
Look Up Tables (LUT) and design logic. Faults can not be
injected in the contents of the design flip flops and registers.
This limitation of the fault injector is due to the fact that the
used SEU controller core uses the Internal Configuration
Access Port (ICAP) of the Virtex5 FPGA to access the
configuration bitstream. This port can not access the contents
of the flip flops and registers in the design. The flip flops and
registers are usually protected using the TMR approach. The
TMR simulation is thus effective in finding out the expected
failure rate of the TMR protected registers and flip flops at
different data sizes and upset rates. The failure in a TMR
protected design takes place when the data sets from the three
TMR modules are different 12,13).

There are some requirements for the proposed fault
injection system to be able to operate. The fault injection is
performed through an external computer that communicates
with the SEU controller IP core in the Virtex5 FPGA. The
generation of the fault list that would be injected takes place
using MATLAB. The FPGA design must include the SEU
controller IP core because this is the only way to write faults
to the configuration bitstream in the FPGA SRAM. The
system is designed to operate with the Virtex5 LX50 FPGA.
Therefore all of the configuration frame sizes that come later
in the text are based on that specific FPGA.

 We hope that this work would save the proton accelerator
tests and provide simple and confident test techniques to
assess FPGA designs before launching into space.
 In the following sections the paper introduces the SEU fault
injection concept in section 2, the SEU fault injector is
presented in section 3, the emulation results and discussion are
presented in section 4, and the conclusion and future work are
presented in section 5.

2. SEU Fault Injection Concept

 Fault injection in functioning systems is a technique used to
insert deliberate faults at selected and/or random units of the
design to assess its sensitivities. This technique is
implemented by adding additional hardware and software to
the system to handle the insertion of faults, monitoring of
performance and collection of results. Figure 1, shows the
architecture of a fault injection system.
 The design under test is interfaced to a faults insertion unit
which has access to the design units where faults are to be
injected. The faults vector calculation and generation unit
prepares faults vectors that match the required test objectives.
The fault insertion unit can be a combination of hardware and
software. It handles the overriding of the normal operation
into a faulty one. For example, the fault insertion unit can be a
code that reads back a previously calculated value by the
normal Design Under Test (DUT) code and then overwrites it
with a faulty value to simulate a specific condition. The
insertion can be done without stopping the main operation. In
some designs it might be inevitable to interrupt the normal
operation flow by suspending it and then resuming after the
injection takes place. The function monitoring and control unit
takes care of monitoring the operation of the DUT. It stops the

DUT operation in case of noticing an emergency and provides
a control path to set the DUT in specific operating modes and
operation settings. The performance of the DUT is statistically
analyzed to detect anomalies in normal operation as faults are
injected. The feedback about how the DUT behaves while in
fault injection mode is provided to the faults vector calculation
and generation unit. It uses that information in generating new
fault vectors. For example, the feedback statistical information
might show that there is a repetitive pattern in the output when
certain fault sequence is followed. The faults vector
generation and calculation unit might repeat the vectors with
different variations to study the statistical dependence between
injected faults and output vectors. Fault monitoring and
control unit also feedback the faults vector calculation and
generation with information about the behavior of the DUT
during the fault injection process. For example, it might be
necessary to feedback the faults vector calculation and
generation unit with the moments where the system
completely stopped working and needed a deep reset. This
information can be used in detecting the types of faults that
lead to total failure.

Fig. 1. Fault injection cycle. The faults are injected to the DUT and
statistical results are issued as a feedback to the injecting machine for test
vectors adjustment.

 The SEUs which occur in space are probabilistic. Poisson
distribution is used to estimate the expected number of upsets
(k) which happens in the time interval (T) with an average
number of upsets () according to the probability density
function shown in Eq. (1) 14). The exponential distribution is
used to estimate the expected time between upsets () with an
average number of upsets in unit time interval () as shown in
Eq. (2). The relationship between both distributions can be set
as (= T).

 (1)
 (2)

 The SEU rate can be estimated using the CREME96 model
9). The SPENVIS online tool is used in the estimations 10).
Figure 2, shows the SEU estimation for an orbit with 670 km
altitude and an inclination of 98° deg. The peaks in the figure
are related to upsets taking place at the South Atlantic
Anomaly (SAA). The upset rate estimation is based on the
values of the radiation testing of the Xilinx Virtex5 LX50
FPGA 15). Fault Injection rate is estimated by using the per bit
upset rate from the SPENVIS simulation shown in Figure 2.
Faults are injected to the FPGA design using an IP core

Design Under Test
(DUT)

Function
Monitoring and
Control Unit

Faults Insertion
Unit

Statistical Analysis
of Performance

Faults Vector
Calculation and

Generation

M.M. IBRAHIM et al.: LEO Single Event Upset Emulator for Validation of FPGA Based Avionics Systems

Tf_21

SEU
Controller

MicroBlaze
System

MB0

MicroBlaze
System

MB1

MicroBlaze
System

MB2

MicroBlaze
System

MB3

Fault Injector

PC running
MATLAB

Script

Processors
Function

Monitoring

PC

Processors
StatusRandomly Generated Faults

Configuration
Frames in

FPGA SRAM

Faults Injection

FPGA
Configuration
XILINX-ISE

PC

System
Reconfiguration

XC5VLX50

FSL Bus

XILINX
Platform

Cable USB II

USB/JTAG

50 MHz

provided by Xilinx called the SEU controller 11).

Fig. 2. SEU rate during fisrt day of flight. The peaks are orbital
positions corresponding to the South Atlantic Anomaly.

3. SEU Fault Injector

 The fault Injector system architecture is shown in Figure 3.
The injector uses an internal hardware unit that can
reconfigure the FPGA bit stream, the SEU controller. It is an
IP core that is provided by Xilinx which can be controlled
from outside the FPGA to produce faults in the form of bit
flipping in the FPGA configuration frame. The control of the
SEU controller is through serial communication over the
RS232 channel to send commands to it and receive responses
from it. The fault injector system contains three external
computers to support its function. The fault injector computer

which runs MATLAB script to generate random faults lists
based on the Poisson distribution of the SEUs in the target
orbit. It generates the timing at which faults will be injected
which follows the exponential distribution as described earlier.
Another computer is used for configuring the FPGA with the
bit-stream which contains the hardware design. The design
that is being used here consists of four cores of the Microblaze
processor which runs together to form the avionics system of a
small satellite. The cores exchange data with each other
through the Fast Simplex Link (FSL) bus. This is a peer to
peer direct communication between the Microblaze
processors.
 The function monitoring of the processors is done through
sending the processors status and results of executing a simple
counter program to the UART interfaces which are monitored
by an external computer to collect the results and analyze
them. The system runs the simulation for number of times and
it generates a new fault injection vector at each time. The fault
injection vector contains the bit location that will be flipped
which is a random number from (0 t0 1311) and the frame
number where flipping will take place which is a random
number from (1 to 8662), these numbers are device specific to
the Virtex5 LX50 16). The faults are accumulated and their
effects are watched as they are injected. At the end of the
injection cycle an Auto-Correction-Mode (ACM) is enabled to
recover the injected faults and restore the operation of the
cores. The flow chart in Figure 4, shows the test flow. The
Detection-Only-Mode (DOM) is used during the accumulated
fault injection. The SEU controller only monitors and reports
faults when operating in the DOM.

Fig. 3. SEU Fault Injector Setup.

Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29 (2014)

Tf_22

Fig. 4. Test flow Setup. The faults are injected using the commands over
serial interface with the SEU controller. The results are collected over the
serial interface with the processors cores. The auto-correction mode is
enabled at the end of operation to recover all the injected faults.

The function of the TMR fault mitigation approach is tested
through injecting faults in the data carried by the redundant
modules. Each module carries the same set of data which might
represent operation state code, software variables, communication

message or any other form of application specific information.
The TMR concept depends on voting among the data as shown in
Figure 5.

Fig. 5. TMR Concept.

The TMR approach is used in protecting the data by
comparing among the data values of three functionally
identical modules. In case differences among the data values
exist then consensus among the values would be used to
propose the most accurate value. If no consensus is found then
an error is signaled. In simulating faults in the TMR data
vectors of (N bits), a random fault list is generated to indicate
the locations of the bits to be flipped. The data sets are then
compared to each other and errors are calculated based on the
comparison results as shown in the script of Figure 6.

Fig. 6. TMR Simulation Script.

Seed setting of the random
number generator seed using

internal clock

Serial Port Settings

Start Injection Cycle

Random Generation of Frame
number (1 to 8662)

Calculation of Hex Frame
Address

Random Generation of Bit
number (Hex) to be flipped

Sending `*` command to start
UART control mode

Sending `d` command for
Detection Only Mode

Injecting Fault Through by
sending a string

`t-frame address-bit no`

Send `a` command to start
Auto Correction Mode

Receive Status Reports and
make Decision

YES

% Fault Simulation
for i = 1:Total_Upsets
 Byte = ceil(random_bits(i,1)/8);
 Bit = rem(random_bits(i,1),8);
 Buffer_1(Byte) =
bitxor(Buffer_1(Byte),2^(Bit));
 Byte = ceil(random_bits(i,2)/8);
 Bit = rem(random_bits(i,2),8);
 Buffer_2(Byte) =
bitxor(Buffer_2(Byte),2^(Bit));
 Byte = ceil(random_bits(i,3)/8);
 Bit = rem(random_bits(i,3),8);
 Buffer_3(Byte) =
bitxor(Buffer_3(Byte),2^(Bit));
end
%calculation of TMR system failure rates
for i = 1 : Buffer_Size(BS_i)
if (Buffer_1(i)~= Buffer_2(i)) && (Buffer_1(i)~= Buffer_3(i)) &&
(Buffer_2(i)~= Buffer_3(i))
Unsim_Failures(j) = Unsim_Failures(j) + 1;
end
end

M.M. IBRAHIM et al.: LEO Single Event Upset Emulator for Validation of FPGA Based Avionics Systems

Tf_23

4. The emulation Results and Discussion

We implement the fault injection system basically to
evaluate the operation sensitivity of an Multi-Processor
System-on-Chip (MPSoC) avionics system currently under
development by Kyushu Institute of Technology. The avionics
system is designed on an SRAM based FPGA (Virtex5 LX50).
The system schematic as produced by the Embedded
Development Kit (EDK) package is shown in Figure 7.

Fig. 7. EDK Schematic of MPSoC Avionics System by Kyutech.

The MPSoC contains 4 Microblaze processor systems
which implement a fault tolerant architecture for a small
satellite avionics platform. Assessing the performance of
digital designs under radiation can be performed through
circuit simulations of the critical charges and nodes, software
simulations and fault injections in hardware 17-21). We chose to
implement our system using hardware fault injection. This is
due to the fact that our system runs both hardware (4
Microblaze processors) and software (satellite avionics
software) and we would like to assess the hardware/software
integrated workability under faults. We need to see the fault
injection effects on software as well as on hardware in the real
working system. If we decide to simulate the hardware and
software it would be a time consuming task especially if we
change the design at any stage. Although it is difficult to build
the system for fault injection in hardware, this difficulty is
faced only once at the initial stage of building the system.
Later, we can change the DUT designs without having to
rebuild a new software simulator or re-simulate the change in
the digital circuit design. We just change the software and
hardware and download them to the FPGA and the same fault
injection system would still be functioning. We think that
hardware fault injection is difficult to build at the first time but
it gives flexibility in later stages of the development cycle.
Also, it enables the developer to test the hardware and
software of the DUT in its integrated final form as it would
operate in reality.

Figure 8, shows the results of running the fault injection
campaign in the avionics system in Fig.7 with two fault lists
sizes: 50 accumulated faults and 100 accumulated faults.

Fig. 8. Fault Injection Results.

 Each fault list was generated randomly for 10 times and the
results were collected for the accumulation of the faults at ach
time. In the system avionics system design there are three
types of correction that can take place: the full FPGA
reconfiguration, the partial reconfiguration and the Software
resynchronization. The full reconfiguration is the mode where
the FPGA stopped working due to fault injections. The entire
bit-stream of the design should be reloaded to the internal
SRAM in order to restore the correct operation. The partial
reconfiguration is the mode where one or more processor
stopped working but not the whole system. The system can be
partially reconfigured without stopping the other processors to
restore the operation. The Software resynchronization is the
mode where the software of the working processors need to be
resynchronized to the same operation after one or more
processors stopped working and then resumed again.
 The results show that about 10% of the injected faults in the
50 faults batch and 10% of the 100 faults batch needed full
reconfiguration. Another 10% of the faults in the 50 faults
batch needed partial reconfiguration while 30% of the faults
injected in the 100 faults batch needed partial reconfiguration.
This means that in the 50 faults batch, only 80% of the
injected faults where totally recovered through the ACM of
the SEU controller without the need for partial or full
reconfiguration. In the case of the 100 faults batch, 60% of the
injected faults were fully recovered with no need of any
reconfiguration. The software resynchronization takes place
whenever a partial reconfiguration is initiated or a processor
stops operation then resumes after the auto-correction mode
has been enabled. The obtained results of fault injection
coincides with the concepts mentioned at 22-23) that about 10%
or less of the faults would lead to total system failure. This
result can be viewed as a validation of the fault injector
operation. Figure 9, verifies the fault injector function as it
shows the plot of 50 injected faults versus the times between
injections in seconds. The times between injections follow an
exponential distribution. The number of faults themselves are
follows Poisson distribution as stated in Eq 1, 2.

Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29 (2014)

Tf_24

Fig. 9. Time Distribution between Injected Faults.

The TMR system was simulated at two data vector sizes, 256
bytes and 2048 bytes. We use the equation deduced in 12,13), to
evaluate the TMR simulator behavior.

)]3exp(2)2exp(3[11
1

cici

M

icc

rTNrTN
TT

R (3.)

Where (R) is the TMR system failure rate, (Tc) is the cycle
operation time during which faults are monitored also called
the scrubbing time and we chose as 1 sec, (N) is the number of
bits in each TMR module and we set as 8 bits, (M) is the
number of TMR groups and we set it as 256 and 2048. Figure
10, shows the results of applying the fault injection over a
packet size of 2048 bytes in a TMR operation. The packet
contained a random vector of data and the vector is compared
between three of the operating cores after faults were injected
randomly in it. The vectors are compared value by value in an
TMR operation through a voter in the fourth processor. The
upper curve (green) shows the failure rate as estimated by Eq.
(3), while the lower curve (red) shows the simulation results,
both curves saturate at the same value.

Fig. 10. TMR Failure Rate at Data vector of size 2048 bytes.

5. Conclusion and Future Work

 This paper presented a fault injection emulator that can be
used for injecting random faults in the FPGA bit-stream to
simulate the effects of the space environment. About 10% of
the injected faults in the hardware bit-stream needed full

reconfiguration. In the case of data fault injection at an upset
rate of 0.1 upsets per bits per second, more than 50% of the
data will have residual failures. We simulated the TMR failure
rates and compared it to the analytical estimation. We
recommend continuing the study of the effects of faults
injection on other fault tolerant designs.

References

1) Israel Koren, Mani Krishna, “Fault Tolerant Systems”, ElSEVIER

2007.
2) philip P. Shirvani, "Fault-Tolerant Computing for Radiation

Environments", Ph.D thesis, Center for reliable Computing,
Stanford University, June, 2001.

3) Laura L. Pullum, "Software Fault Tolerance Techniques and
Implementation", Artech House, London, 2001.

4) Olga Goloubeva, “Software Implemented Hardware Fault
Tolerance”, Springer 2006.

5) F.D. Lima and L. Carro, “Fault Tolerance Techniques for
SRAM-based FPGAs”, Springer, 2006.

6) Daniel Hastings and Henry Garret, “Spacecraft-Environment
Interactions”, Cambridge University Press (August 19, 2004).

7) Alan C. Tribble, The Space Environment: Implications for
Spacecraft Design, Princeton University Press; Rev. Exp. edition
(September 22, 2003).

8) Adams, J. H., Jr., Cosmic Ray Effects on MicroElectronics, Part
IV, NRL Memorandum Report 5901, 1986.

9) Tylka, A.J. et al.,"CREME96: A Revision of the Cosmic Ray
Effects on Micro-Electronics Code", IEEE Transactions on
Nuclear Science, 44, 2150-1260 (1997).

10) SPENVIS online pacakge website: www.spenvis.oma.be
11) Ken Chapman, "New Generation Virtex-5 SEU Controller,"

Xilinx, Version A.2 – s4th November 2009.
12) L. Edmonds, Analysis of SEU Rates in TMR Devices, Internal

Document, JPL Publication 09-6, February 2009.
13) Allen, G.; Edmonds, L.D.; Swift, G.; Carmichael, C.; Chen Wei

Tseng; Heldt, K.; Anderson, S.A.; Coe, M., "Single Event Test
Methodologies and System Error Rate Analysis for Triple Modular
Redundant Field Programmable Gate Arrays," Nuclear Science,
IEEE Transactions on, 58 no.3, pp.1040,1046, June 2011

14) Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng,
Single-Event Upset Mitigation Selection Guide, XAPP 987, March
18, 2008.

15) Quinn, H.; Morgan, K.; Graham, P.; Krone, J.; Caffrey, M.; ,
"Static Proton and Heavy Ion Testing of the Xilinx Virtex-5
Device," Radiation Effects Data Workshop, 2007 IEEE, 0 no.,
pp.177-184, 23-27 July 2007.

16) Xilinx, Virtex-5 FPGA Configuration User Guide, Xilinx UG191
(v3.10), 2011.

17) Pavan, P.; Tu, R.H.; Minami, E.R.; Lum, G.; Ko, P.-K.; Chenming
Hu, "A complete radiation reliability software simulator," Nuclear
Science, IEEE Transactions on, 41 no.6, pp.2619,2630, Dec. 1994

18) Wang Zhongming () et al , "A software solution to estimate
the SEU-induced soft error rate for systems implemented on
SRAM-based FPGAs", Journal of Semiconductors, 32 no.5, 2011

19) Kafka, L.; Novak, O., "FPGA-based fault simulator," Design and
Diagnostics of Electronic Circuits and systems, 2006 IEEE ,
pp.272,276, 18-21 April 2006

20) Bosio, A.; Di Natale, G., "LIFTING: A Flexible Open-Source
Fault Simulator," Asian Test Symposium, 2008. ATS '08. 17th,
pp.35,40, 24-27 Nov. 2008

21) Straka, M.; Kastil, J.; Kotasek, Z., "SEU Simulation Framework

M.M. IBRAHIM et al.: LEO Single Event Upset Emulator for Validation of FPGA Based Avionics Systems

Tf_25

for Xilinx FPGA: First Step towards Testing Fault Tolerant
Systems," Digital System Design (DSD), 2011 14th Euromicro

22) Carl Carmichael, Michael caffrey, Anthony Salazar, “Correcting
Single-Event Upsets through Virtex Partial Configuration,”
XILINX, XAPP216, (v1.0), 2000.

23) SEU Strategies for Virtex-5 Devices ken chapman, XAPP864
(v2.0) April 1, 2010.

