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    This paper presents a complete design and implementation of a Single Event Upset (SEU) emulation system that can 
be used to inject faults Static Random Access Memory (SRAM) based Field Programmable Gate Array (FPGA). The 
FPGA is used to implement an avionics system for a small satellite. The fault injector emulates the expected Single Event 
Upset (SEU) rate as it would be in the Low Earth Orbit (LEO) of the polar orbiting satellites at inclinations close to 98° 
deg., and altitude of about 670 km. The emulator injects faults in the configuration bit-stream of the FPGA without 
stopping its operation. It makes use of the partial reconfiguration feature of today’s FPGAs. This provides a facility to 
assess the design performance in space even if radiation testing will not be conducted before launching. Also, it simulates 
the expected upset rate and hence calculates the corresponding data failure rates for Triple Modular Redundancy (TMR) 
fault tolerant designs. The system was implemented using the Xilinx Virtex- LX50T FPGA. The FPGA suffered system 
failures during the fault injection test. It recovered about 50% of the failures. TMR simulation at an upset rate of 0.1 upsets 
(per bit per second) for a data size of 2048 bits showed that about 33% of the faults will be fully corrected. 

 
Key Words:  FPGA, SEU, Avionics Systems, TMR, Fault Tolerance

 
 

1.  Introduction 
 
  Design of fault tolerant systems for space applications uses 
redundancy in implementation. Redundancy can be in 
software code, hardware units, execution times and data bits 1). 
The protection techniques can be used individually or 
concatenated in a hybrid design. They add to the improvement 
of the system capability in detecting and correcting faults 
hence increasing its reliability, however, they also add 
overhead. Varieties of techniques were introduced in the 
literature for Hardware Fault Tolerance (HFT), Software Fault 
Tolerance (SFT) and Software-Implemented Hardware Fault 
Tolerance (SIHFT) 2-4). These techniques include redundancy 
units, check pointing, recovery blocks, Error Detection And 
Correction (EDAC) codes, watch dog processors, control flow 
checking by signatures, duplicated instructions, diverse data, 
and others. SRAM based FPGAs make use of configuration 
memory scrubbing to protect their internal bitstream from bit 
upsets 5). The induced bit upsets are caused by charged 
particles radiation such as trapped protons and electrons, 
Galactic Cosmic Rays (GCR) and Solar flares 6,7). 
  It is often required to assess the reliability of fault tolerant 
systems in operating conditions close to the environment 
where they will be used. Satellites are tested in electrical, 
thermal vacuum, mechanical and radiation conditions as close 
as possible to the target orbit. However, radiation testing at 
proton accelerators is often expensive, not readily available 
and needs complicated setups. The purpose of radiation testing 
is to evaluate how the design will perform in the space 
radiation environment. The common tests include Single 
Event Effects (SEE) and Total Ionization Dose (TID). The 
Single Event Upset (SEU) is part of the SEE where the logic 
values of the bits stored in the processor registers and memory 

cells are altered. This might lead to malfunctions and 
inappropriate operations. In SRAM-based FPGAs, where the 
design is stored in the internal SRAM after being loaded from 
the boot-up flash, bit alteration due to SEU can be severe. It 
might lead to changing the functioning logic and complete 
failure of the system. 
  In this paper we present the design of a fault injection 
system that can be used in emulating the bit upsets in the 
configuration bitstream of SRAM based FPGAs. The system 
emulates the SEUs as they would be found in LEO orbits at an 
altitude of approximately  670 km and inclination of about 
98° deg. The expected upset rate is estimated using 
CREME96 model within the Space Environment Information 
System (SPENVIS) online package 8-10). Fault lists containing 
bit flips at random locations of the configuration bitstream are 
then generated using the fault injector based on the estimated 
in-orbit upset rates from the CREME96 model.  The purpose 
of this paper is to present the architecture and design of the 
fault injection platform that can be used in evaluating SRAM 
based FPGA designs. In addition to the fault injection function, 
the system can simulate the effects of bit upsets on the 
operation of Triple Modular Redundancy (TMR) protected 
modules. It simulates random upsets in the TMR modules and 
estimates the failure rate based on the simulated upsets. Thus 
the proposed emulator tool consists of two parts: a fault 
injector to inject faults in the SRAM of the FPGAs which 
carries the configuration bitstream and a simulator which 
simulates the effects of bit upsets on TMR operation. 

The fault injection and simulation system was developed to 
target the Xilinx Virtex5 FPGA family. The fault injection 
function uses the SEU controller soft IP core from Xilinx 11). 
Therefore the system is effective for emulating the upsets that 
take place in the configuration bitstream only. These upsets 
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target the programmable interconnects, routing information, 
Look Up Tables (LUT) and  design logic. Faults can not be 
injected in the contents of the design flip flops and registers. 
This limitation of the fault injector is due to the fact that the 
used SEU controller core uses the Internal Configuration 
Access Port (ICAP) of the Virtex5 FPGA to access the 
configuration bitstream. This port can not access the contents 
of the flip flops and registers in the design. The flip flops and 
registers are usually protected using the TMR approach. The 
TMR simulation is thus effective in finding out the expected 
failure rate of the TMR protected registers and flip flops at 
different data sizes and upset rates. The failure in a TMR 
protected design takes place when the data sets from the three 
TMR modules are different 12,13).  

There are some requirements for the proposed fault 
injection system to be able to operate. The fault injection is 
performed through an external computer that communicates 
with the SEU controller IP core in the Virtex5 FPGA. The 
generation of the fault list that would be injected takes place 
using MATLAB. The FPGA design must include the SEU 
controller IP core because this is the only way to write faults 
to the configuration bitstream in the FPGA SRAM. The 
system is designed to operate with the Virtex5 LX50 FPGA. 
Therefore all of the configuration frame sizes that come later 
in the text are based on that specific FPGA. 

 We hope that this work would save the proton accelerator 
tests and provide simple and confident test techniques to 
assess FPGA designs before launching into space. 
  In the following sections the paper introduces the SEU fault 
injection concept in section 2, the SEU fault injector is 
presented in section 3, the emulation results and discussion are 
presented in section 4, and the conclusion and future work are 
presented in section 5.  
 
2.  SEU Fault Injection Concept 

  Fault injection in functioning systems is a technique used to 
insert deliberate faults at selected and/or random units of the 
design to assess its sensitivities. This technique is 
implemented by adding additional hardware and software to 
the system to handle the insertion of faults, monitoring of 
performance and collection of results. Figure 1, shows the 
architecture of a fault injection system.  
  The design under test is interfaced to a faults insertion unit 
which has access to the design units where faults are to be 
injected. The faults vector calculation and generation unit 
prepares faults vectors that match the required test objectives. 
The fault insertion unit can be a combination of hardware and 
software. It handles the overriding of the normal operation 
into a faulty one. For example, the fault insertion unit can be a 
code that reads back a previously calculated value by the 
normal Design Under Test (DUT) code and then overwrites it 
with a faulty value to simulate a specific condition. The 
insertion can be done without stopping the main operation. In 
some designs it might be inevitable to interrupt the normal 
operation flow by suspending it and then resuming after the 
injection takes place. The function monitoring and control unit 
takes care of monitoring the operation of the DUT. It stops the 

DUT operation in case of noticing an emergency and provides 
a control path to set the DUT in specific operating modes and 
operation settings. The performance of the DUT is statistically 
analyzed to detect anomalies in normal operation as faults are 
injected. The feedback about how the DUT behaves while in 
fault injection mode is provided to the faults vector calculation 
and generation unit. It uses that information in generating new 
fault vectors. For example, the feedback statistical information 
might show that there is a repetitive pattern in the output when 
certain fault sequence is followed. The faults vector 
generation and calculation unit might repeat the vectors with 
different variations to study the statistical dependence between 
injected faults and output vectors. Fault monitoring and 
control unit also feedback the faults vector calculation and 
generation with information about the behavior of the DUT 
during the fault injection process. For example, it might be 
necessary to feedback the faults vector calculation and 
generation unit with the moments where the system 
completely stopped working and needed a deep reset. This 
information can be used in detecting the types of faults that 
lead to total failure. 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Fault injection cycle. The faults are injected to the DUT and 
statistical results are issued as a feedback to the injecting machine for test 
vectors adjustment. 
 
  The SEUs which occur in space are probabilistic. Poisson 
distribution is used to estimate the expected number of upsets 
(k) which happens in the time interval (T) with an average 
number of upsets ( ) according to the probability density 
function shown in Eq. (1) 14). The exponential distribution is 
used to estimate the expected time between upsets ( ) with an 
average number of upsets in unit time interval ( ) as shown in 
Eq. (2). The relationship between both distributions can be set 
as (  = T). 
 

 (1)
 (2)

 
  The SEU rate can be estimated using the CREME96 model 
9). The SPENVIS online tool is used in the estimations 10). 
Figure 2, shows the SEU estimation for an orbit with 670 km 
altitude and an inclination of 98° deg. The peaks in the figure 
are related to upsets taking place at the South Atlantic 
Anomaly (SAA). The upset rate estimation is based on the 
values of the radiation testing of the Xilinx Virtex5 LX50 
FPGA 15). Fault Injection rate is estimated by using the per bit 
upset rate from the SPENVIS simulation shown in Figure 2. 
Faults are injected to the FPGA design using an IP core 
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provided by Xilinx called the SEU controller 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  SEU rate during fisrt day of flight. The peaks are orbital 
positions corresponding to the South Atlantic Anomaly. 
 
3.  SEU Fault Injector 
 
  The fault Injector system architecture is shown in Figure 3. 
The injector uses an internal hardware unit that can 
reconfigure the FPGA bit stream, the SEU controller. It is an 
IP core that is provided by Xilinx which can be controlled 
from outside the FPGA to produce faults in the form of bit 
flipping in the FPGA configuration frame. The control of the 
SEU controller is through serial communication over the 
RS232 channel to send commands to it and receive responses 
from it. The fault injector system contains three external 
computers to support its function. The fault injector computer  

which runs MATLAB script to generate random faults lists 
based on the Poisson distribution of the SEUs in the target 
orbit. It generates the timing at which faults will be injected 
which follows the exponential distribution as described earlier. 
Another computer is used for configuring the FPGA with the 
bit-stream which contains the hardware design. The design 
that is being used here consists of four cores of the Microblaze 
processor which runs together to form the avionics system of a 
small satellite. The cores exchange data with each other 
through the Fast Simplex Link (FSL) bus. This is a peer to 
peer direct communication between the Microblaze 
processors.  
  The function monitoring of the processors is done through 
sending the processors status and results of executing a simple 
counter program to the UART interfaces which are monitored 
by an external computer to collect the results and analyze 
them. The system runs the simulation for number of times and 
it generates a new fault injection vector at each time. The fault 
injection vector contains the bit location that will be flipped 
which is a random number from (0 t0 1311) and the frame 
number where flipping will take place which is a random 
number from (1 to 8662), these numbers are device specific to 
the Virtex5 LX50 16). The faults are accumulated and their 
effects are watched as they are injected. At the end of the 
injection cycle an Auto-Correction-Mode (ACM) is enabled to 
recover the injected faults and restore the operation of the 
cores. The flow chart in Figure 4, shows the test flow. The 
Detection-Only-Mode (DOM) is used during the accumulated 
fault injection. The SEU controller only monitors and reports 
faults when operating in the DOM.  
 

 
 

Fig. 3.  SEU Fault Injector Setup. 
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Fig. 4.  Test flow Setup. The faults are injected using the commands over 
serial interface with the SEU controller. The results are collected over the 
serial interface with the processors cores. The auto-correction mode is 
enabled at the end of operation to recover all the injected faults. 

The function of the TMR fault mitigation approach is tested 
through injecting faults in the data carried by the redundant 
modules. Each module carries the same set of data which might 
represent operation state code, software variables, communication 

message or any other form of application specific information. 
The TMR concept depends on voting among the data as shown in 
Figure 5. 

Fig. 5.  TMR Concept. 

The TMR approach is used in protecting the data by 
comparing among the data values of three functionally 
identical modules. In case differences among the data values 
exist then consensus among the values would be used to 
propose the most accurate value. If no consensus is found then 
an error is signaled. In simulating faults in the TMR data 
vectors of (N bits), a random fault list is generated to indicate 
the locations of the bits to be flipped. The data sets are then 
compared to each other and errors are calculated based on the 
comparison results as shown in the script of Figure 6. 
 
 

Fig. 6.  TMR Simulation Script. 
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Start Injection Cycle

Random Generation of Frame 
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Calculation of Hex Frame 
Address

Random Generation of Bit 
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Detection Only Mode
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YES

% Fault Simulation   
for i = 1:Total_Upsets        
         Byte = ceil(random_bits(i,1)/8); 
         Bit = rem(random_bits(i,1),8); 
         Buffer_1(Byte) = 
bitxor(Buffer_1(Byte),2^(Bit)); 
         Byte = ceil(random_bits(i,2)/8); 
         Bit = rem(random_bits(i,2),8); 
         Buffer_2(Byte) = 
bitxor(Buffer_2(Byte),2^(Bit)); 
         Byte = ceil(random_bits(i,3)/8); 
         Bit = rem(random_bits(i,3),8); 
         Buffer_3(Byte) = 
bitxor(Buffer_3(Byte),2^(Bit));              
end 
%calculation of TMR system failure rates         
for i = 1 : Buffer_Size(BS_i)           
if (Buffer_1(i)~= Buffer_2(i)) && (Buffer_1(i)~= Buffer_3(i)) && 
(Buffer_2(i)~= Buffer_3(i)) 
Unsim_Failures(j) = Unsim_Failures(j) + 1;     
end   
end 
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4.  The emulation Results and Discussion 

We implement the fault injection system basically to 
evaluate the operation sensitivity of an Multi-Processor 
System-on-Chip (MPSoC) avionics system currently under 
development by Kyushu Institute of Technology. The avionics 
system is designed on an SRAM based FPGA (Virtex5 LX50). 
The system schematic as produced by the Embedded 
Development Kit (EDK) package is shown in Figure 7.  

Fig. 7.  EDK Schematic of MPSoC Avionics System by Kyutech. 
 

The MPSoC contains 4 Microblaze processor systems 
which implement a fault tolerant architecture for a small 
satellite avionics platform. Assessing the performance of 
digital designs under radiation can be performed through 
circuit simulations of the critical charges and nodes, software 
simulations and fault injections in hardware 17-21). We chose to 
implement our system using hardware fault injection. This is 
due to the fact that our system runs both hardware (4 
Microblaze processors) and software (satellite avionics 
software) and we would like to assess the hardware/software 
integrated workability under faults. We need to see the fault 
injection effects on software as well as on hardware in the real 
working system. If we decide to simulate the hardware and 
software it would be a time consuming task especially if we 
change the design at any stage. Although it is difficult to build 
the system for fault injection in hardware, this difficulty is 
faced only once at the initial stage of building the system. 
Later, we can change the DUT designs without having to 
rebuild a new software simulator or re-simulate the change in 
the digital circuit design. We just change the software and 
hardware and download them to the FPGA and the same fault 
injection system would still be functioning. We think that 
hardware fault injection is difficult to build at the first time but 
it gives flexibility in later stages of the development cycle. 
Also, it enables the developer to test the hardware and 
software of the DUT in its integrated final form as it would 
operate in reality. 

Figure 8, shows the results of running the fault injection 
campaign in the avionics system in Fig.7 with two fault lists 
sizes: 50 accumulated faults and 100 accumulated faults.  

 

Fig. 8.  Fault Injection Results. 
 
  Each fault list was generated randomly for 10 times and the 
results were collected for the accumulation of the faults at ach 
time. In the system avionics system design there are three 
types of correction that can take place: the full FPGA 
reconfiguration, the partial reconfiguration and the Software 
resynchronization. The full reconfiguration is the mode where 
the FPGA stopped working due to fault injections. The entire 
bit-stream of the design should be reloaded to the internal 
SRAM in order to restore the correct operation. The partial 
reconfiguration is the mode where one or more processor 
stopped working but not the whole system. The system can be 
partially reconfigured without stopping the other processors to 
restore the operation. The Software resynchronization is the 
mode where the software of the working processors need to be 
resynchronized to the same operation after one or more 
processors stopped working and then resumed again. 
  The results show that about 10% of the injected faults in the 
50 faults batch and 10% of the 100 faults batch needed full 
reconfiguration. Another 10% of the faults in the 50 faults 
batch needed partial reconfiguration while 30% of the faults 
injected in the 100 faults batch needed partial reconfiguration. 
This means that in the 50 faults batch, only 80% of the 
injected faults where totally recovered through the ACM of 
the SEU controller without the need for partial or full 
reconfiguration. In the case of the 100 faults batch, 60% of the 
injected faults were fully recovered with no need of any 
reconfiguration. The software resynchronization takes place 
whenever a partial reconfiguration is initiated or a processor 
stops operation then resumes after the auto-correction mode 
has been enabled. The obtained results of fault injection 
coincides with the concepts mentioned at 22-23) that about 10% 
or less of the faults would lead to total system failure. This 
result can be viewed as a validation of the fault injector 
operation. Figure 9, verifies the fault injector function as it 
shows the plot of 50 injected faults versus the times between 
injections in seconds. The times between injections follow an 
exponential distribution. The number of faults themselves are 
follows Poisson distribution as stated in Eq 1, 2. 
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Fig. 9.  Time Distribution between Injected Faults. 
 

The TMR system was simulated at two data vector sizes, 256 
bytes and 2048 bytes. We use the equation deduced in 12,13), to 
evaluate the TMR simulator behavior. 
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Where (R) is the TMR system failure rate, (Tc) is the cycle 
operation time during which faults are monitored also called 
the scrubbing time and we chose as 1 sec, (N) is the number of 
bits in each TMR module and we set as 8 bits, (M) is the 
number of TMR groups and we set it as 256 and 2048. Figure 
10, shows the results of applying the fault injection over a 
packet size of 2048 bytes in a TMR operation. The packet 
contained a random vector of data and the vector is compared 
between three of the operating cores after faults were injected 
randomly in it. The vectors are compared value by value in an 
TMR operation through a voter in the fourth processor. The 
upper curve (green) shows the failure rate as estimated by Eq. 
(3), while the lower curve (red) shows the simulation results, 
both curves saturate at the same value. 

Fig. 10.  TMR Failure Rate at Data vector of size 2048 bytes. 

5.  Conclusion and Future Work 

  This paper presented a fault injection emulator that can be 
used for injecting random faults in the FPGA bit-stream to 
simulate the effects of the space environment. About 10% of 
the injected faults in the hardware bit-stream needed full 

reconfiguration. In the case of data fault injection at an upset 
rate of 0.1 upsets per bits per second, more than 50% of the 
data will have residual failures. We simulated the TMR failure 
rates and compared it to the analytical estimation. We 
recommend continuing the study of the effects of faults 
injection on other fault tolerant designs. 
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