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Abstract Mobile Edge Cloud endures limited computational resources as compared
to back-end cloud. Semi-Markov Decision Process (SMDP) based Multi-Resource Al-
location (MRA) work [6] introduces optimal resource allocation for mobile requests
in the resource constrained edge cloud environments. In this study, we scale existing
SMDP MRA work for real-world scenarios. First, we structure the policy tables in a two
dimensional matrix such that columns represent states of the system and rows for the
actions. Second, we propose an index based search technique over structured policy tables.
Simulation results demonstrate that our approach outperforms the legacy method and
retrieves an optimal action from the policy tables in the order of microseconds, which
meets the delay criteria of real-time applications in edge cloud based systems.

1 Introduction

With the ever-increasing need of IT infrastructure for computing and storage in tremen-
dously growing mobile communications technologies, the emerging Internet of Things
(IoT) and Machine Type Communication (MTC) are expected to instigate a huge number
of device connections, which undergo low storage capacity, high energy consumption,
low bandwidth and high latency [1]. Mobile Edge Cloud (MEC), leveraging the traits of
both cloud computing and mobile computing, has provided considerable capabilities to
mobile devices to alleviate the above inherent network limitations [2, 3].

As compared to back-end clouds, where unlimited pools of computational and storage
resources are provided, edge clouds are supposed to posses limited amount of resources [4].
Therefore, efficient resource allocation techniques are required to improve the overall
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system capacity. Several solutions including the partitioning approach [5—7] are proposed
to determine which module of a mobile application should be offloaded and how effi-
ciently allocated resources in the edge cloud. A Semi-Markov Decision Process (SMDP)
based Multi-Resource Allocation scheme is devised [6], which works on average reward
criterion and proposes a strategy to determine whether to offload a service request on edge
cloud or back-end cloud. However, aforementioned works are purely theoretical and lack
any practical implementations in the real-world scenarios. We scale MRA (Multi-Resource
Allocation) [6] work in order to implement it in practical use cases.

A Resource Manager (RM) is introduced at the Edge Cloud (EC) to help manage
all computing and bandwidth resources, which will be responsible for meeting the QoS
requirements inherent to IoT applications and services, and acts as a coordinator for the
end-devices, EC, and back-end Cloud (BC). This work seeks to aid the RM to find an
optimal action for resource allocation either in the EC or BC in real-time to minimize
the latency for delay sensitive IoT and real-time mobile applications. The policy tables
calculated and stored at EC [5, 6] grow exponentially which contain optimal resource
allocation actions responding to a range of service requests. As such, it is impractical to
search large size policy tables in linear fashion due to the time limitation of delay sensitive
applications. Therefore, how to search the policy tables while complying the end-to-end
delay constraint should be carefully considered by the RM.

The rest of the paper is organized as follows: Section 2 describes our system model for
policy tables, while index based policy table search techniques are described in Section
3. The performance evaluation is discussed in Section 4, and conclusions are presented
in Section 5.

2 System Model

For our study, we consider the COSMOS test-bed environment which consists of edge
and core cloud computing infrastructure in which multiple mobile or IoT devices can
connect to the EC through wireless access point [8, 9]. These devices can run applications
locally, or offload some modules of the application to EC or to the BC cloud for faster
execution and better energy conservation.

Upon arrival of a new service request, it can be decided whether to run it on the
native device or to be offloaded to the edge cloud based on the network performance and
application characteristics [7]. For the offloaded module, the policy table is searched for
optimal action, which has already been calculated by MRA algorithm [6]. MRA strategy
not only adaptively determines the location (EC or BC) for the execution of service request
but also determines the optimal amount of wireless bandwidth i and computing resource
Jj to allocate to the accepted service request. This MRA strategy achieves the maximum
system benefits (Eq. (11) in [6]) in terms of throughput and blocking probability while
maintaining required latency requirement. This MRA problem is formulated as SMDP
and solved as a linear programming problem to calculate an optimal policy which is
composed of all the probabilities of randomly selecting the actions (Eq. (13) in [6]). This
approach has a predictive ability of future state that lies in the transition probabilities (p{ )
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from the current state x! to all potential next states if action a! is chosen upon receiving
a new service request. These policy tables are stored at the EC to be consumed by the
Resource Manager (RM). The provisioning of the resources can be sped-up if tailored
approaches are applied while arranging and searching the policy tables.

In case of real-world 5G environments, the linear search for large size policy tables
is an inappropriate approach as it violates the latency requirement. Therefore, fast and
efficient mechanisms have to be devised to meet the latency requirement for real-time
applications. Another aspect could be to support massive machine type communication
(mMTC), where hundreds of thousands of devices are expected to be connected with the
EC [10]. Resource provisioning for such large number of devices should be fast enough
to minimize the blocking probability of service requests.

The formulation of policy tables is classified into two different ways. The first one
is comparatively large table and the second one is significantly smaller and contains
adequate information to satisfy an incoming service request. The size of the policy tables
is proportional to the available resources in terms of the total number of VM units (M)
at edge cloud and total number of bandwidth units (B) on the wireless channel!. This also
corresponds to the number of total possible states (S7) of the system. The notations used
in this paper are given in Table 1.

The flow of policy table search during resource
provisioning is illustrated in Fig. 1. Upon arrival of

anew service request the RM searches the policy
table and finds an optimal action. Here, 0 means
the chosen action was a reject. On the other hand, if [ search Policy Tabl for ptimal Acton |

chosen actions were{a!,a;}, then the RM allocates
resources on the EC or BC accordingly. The ob-
jective is to provide a mechanism to construct and
search huge size policy table for the RM such that,
an Optimal action is retrieved in minimal possible ‘ Provision resources according to chosen Action ] [ Blocked ‘
time.

Fig. 1 Policy Table Search-Flow for re-
source provisioning by Resource Manager
in Edge based Cloud Computing System

3 Index Based Policy Table Search

Aforementioned Policy Tables are stored as a database which contains, to name a few,
all the possible states of a system, occurrences (values) of those states and their corre-
sponding actions. The searching time of a value is proportional to the growth of such
databases. Efficient and effective ways of amalgamating sporadic data and retrieving use-

! The wireless bandwidth and VM units are defined in [6]. Where "bandwidth refers to the wireless
connections between the end devices and the EC, and one wireless bandwidth unit refers to the minimum
bandwidth required to support mobile computing offloading, for example, 50, 100 Kbps, etc. Similarly,
VM refers to the minimum computational resource required to execute a service request, e.g. 1 core of
CPU with 1 GB memory. Then, the total bandwidth/VM available can be expressed as the integer multiple
of the bandwidth and VM unit. For the simplicity of computation, we assume a single service request
requires at least one basic unit of wireless bandwidth and VM units, and only the integral numbers of
basic bandwidth units and VM units are allocated”.
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Table 1 Notations

Name Description

B |The total number of wireless bandwidth units available

M  |The total number of VM units available on the edge cloud

W |The maximal number of wireless bandwidth units that the system provides to one service
request

T |The maximal number of VM units that the system provides to one service request

oy |Limiting factor for W

or |Limiting factor for T’

x,-/ The number of ongoing services that are allocated i units of wireless bandwidth and j
units of VM on edge cloud

v; |The number of ongoing services that are allocated i units of wireless bandwidth and 7'
units of VM on back-end cloud

al  |The action to accept the request by allocating i units of wireless bandwidth and j units of
VM on edge cloud

a; |The action to accept the request by allocating i units of wireless bandwidth and 7" units of
VM on back-end cloud

S7 | Total number of states
Se. |Edge Cloud based states
Sp. |Back-end Cloud based states

A; |Set of allowable actions at state s

M, |Maximum occurrences (value) of state xl’

M, |Maximum occurrences (value) of state y;
X/ [Size of Policy Table of state xii
Y; |Size of Policy Table of state y;

ful information are indispensable in any databases. This assertion is even more critical for
real-time applications. The standard linear search is not adequate as the time complexity
of such search is O(m x n), where m and n are the number of rows and the number of
columns respectively of the policy table matrix [11]. In our case, we see that the total
number of elements approaches to 70 millions which takes search time on the order of
milliseconds (Section 4). Therefore, index based search like [12, 13] is devised which
drastically diminishes the search time.

3.1 Apply Limitto W and T

A limit can be set with an integer variable (¢t) to define the maximum number of
bandwidth units W and maximum number of VM units 7" which can be assigned to one
service request. In order to accommodate multiple instances of a state which require
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maximum allowed bandwidth and VM units W and T respectively, we limit W and T by
an integer variable & such that:

B
W< — 1
= o (1)
M
T<— 2
- 2

where B is total available wireless bandwidth units and M is total available VM units.
This also allows us to generate dynamic state models according to a desired environment
instead of having a fixed upper limit for both bandwidth and VM units as suggested in
previous study [6].

3.2 Total Possible Number of States (St)

The states for an EC is given by

{xix%,xi...,xé,x%,x%,...,xgv}

and BC is given by
{)’1,)’2,y3,~~7)’w}~

The sizes of both EC and BC states are different and calculated separately:

Sp =W xT 3)

Spe=W 4)

where W and T represent the maximum bandwidth units and VM units allowed for a
service request, respectively. Thereafter, the total number of states are:

ST:SE0+SBC 5)
Thus, the set of allowable actions A at EC for any given state xl’ becomes

1 23 1 23 T
{a1,a1,ai .03 ,05,a5,....a3y

and at BC for any given state y; becomes
{al 7027a37"';aW}-

Note that, for certain occurrences of a given state there may be some actions which are
prohibited. For example, if M = 10,B = 10, the current state of the system is x%, and
occurrence of such state is 5 then further resource allocations cannot be done. Hence, such
actions are replaced with 0, meaning the action of reject. Accordingly, it makes the total
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number of possible actions for any given state as:
A=Sr+1 (6)

where one extra action represents the reject action i.e. O in Fig. 1.

3.3 Policy Tables

Policy tables (PT) are composed in the form of two dimensional matrix of variable size,
which contains the states arranged by occurrences as columns and corresponding actions
as rows. Upon arrival of a new service request, RM consults the policy table for an optimal
action and provisions resources at EC or BC. The size of PT depends upon Egs. (5-6) and
the maximum values (occurrences) of all the states which are calculated later. We propose
two kinds of policy tables which are concatenated differently from small policy tables
calculated for all the individual states at each possible occurrence [6].

3.3.1 Policy Table-I

This is a two dimensional matrix where rows demonstrate the actions Ay, and columns
show the occurrences of a state x{ and their corresponding probabilities of actions. For

any given state x! the occurrences range from 0 to M, which represent the maximum
possible occurrence of the state. Here, it is important to calculate M,, which is an integer
value, to make sure that the resource demand by a state x{ does not exceed the available
edge cloud VM units M and bandwidth units B. Therefore, M, is given by:

M YM<B
M<! B vB<m )

M+B —
L8, YM =B

where i <W and j <T. Similarly, for any given state y; the values range from 0 to M,,.
Here, we assume that the available number of VM units on back-end cloud are unlimited
and occurrence of state y; is only constrained by available bandwidth units B. Therefore,
M, is given by:

My < ? ®)
where i <W. Therefore, the size (Xij ) of a matrix for any given state xl] becomes R x M,
and size (Y;) of a matrix for any given state y; becomes R x My, where R represents the
number of rows of matrix of policy table and corresponds to the actions A Eq. (6). We
construct Policy Table-I by concatenating these tiny matrices of all states. Thus, the size
of PT-I becomes (R x N), where R=A and N is given as:
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TW W
V=Y Y)Y ©
i=1

j=li=1

Note that rows R of PT-I remain the same, which makes it a perfect rectangular matrix.
From Fig. 2 we can see that if the current state
and its value in the system are x% and 2 re-

spectively, the RM retrieves the whole column o 1 lz2]3 0 1 A z 3
(circled in red) and decides an optimal action o [ \f 1

oo X 1 0.13 050 |016| 036 034 055 0 0

among all the probabilistic actions. af 020 019078 042 049 0 012 021
a 07 011 0 | 032 021 08 013 044

a{ 044 05 (03] 0 0 022 013 04

a, 021 0 0|01 051 07 04 018

a, 0 02(0}]o04 0 012 03 0

3 - a; 0 04| 0 0 0 0 019 09

3.3.2 Policy Table-II “ o o1lo] o o1 o o o
| Y J\ Y J

Just like PT-I, PT-II is also a two dimensional X2 %

matrix. This time states are placed in columns _ . )

Fig. 2 Policy Table I for service requests. El-
and rows represent the occurrence (value) of ements depict the probability of actions with
each state. As compared to PT-I in which a respect to current state and value of the state.
range of possible actions are extracted and then
RM decides which action to choose, PT-II is given only with single action. We can say
that PT-II is structured in more of a normalized [14] form and debars the redundant data
of PT-I. The size of PT-IT is R x N where R ranges from 0 to Max(M,M,). The reason
to choose the maximum among the maximum occurrences of all the states is to create
a matrix of a regular shape. In this case, the maximum occurrence constraints (My,M,)
are not applied. Therefore, actions for such prohibited occurrences are replaced by O as
explained in Section 3.2. Here, N =Sr, this makes the size of PT-II remarkably small as
compared to PT-1.

Fig. 3 illustrates an example of PT-II in
which states are arranged column wise and

rows represent occurrences of states. For exam- et ) [ 01 o o 0 0 qf 01 0
ple, If the current state is x3 and its occurrence “ 01 h B 4 0 4
. . T /. . . . a; a a; a; 0 a af @
in the system is 2, then a; (circled in red) is 95 ¢ doddd e dd
. . e 94
taken with corresponding probability, and other DM dd @ a & al
actions are also possible with their correspond- g i} & & o a o o o
ing probabilities. 2 ¢ & @a & o d g
: L2 ] .
p _ o o a} af o} af af qf
xtoxf xex vy .y
3.4 Index Based Search on Pohcy Fig. 3 Policy Table II for service requests. El-
Tables ements depict the optimal actions with respect

to current state and value of the state.

In order to search the policy table and find an optimal action in real-time, we propose an
index based search on the policy tables. We assume that system have information about
the current state and its occurrence. For index based search we store the indices of states,
actions and max occurrences of states as 1 x N vectors. The number of operations that
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are executed to find an optimal action differ for both policy tables. We also apply linear
search for both policy tables and compare the results in Section 4.

3.4.1 Searching Through PT-1

The following operations involved while searching PT-I:

o Get the index of currently known state: To find that we search through the vector of
states.

e Get the maximum possible occurrence of that state: use above index to find the
maximum possible occurrence of given state from the vector of the maximum values.

e Consume the currently known occurrence of the state to calculate index of exact

column in PT-I: add all occurrences of previous states and the current occurrence of

the state.

Retrieve the column using column index found in above step.

RM decides actions depending on the probabilities of such actions of service requests.

Find the index of chosen probability.

Retrieve action using above index: search through vector of actions.

For a particular state, only relevant column is retrieved and rest of the columns are
eliminated during search.

3.4.2 Searching Through PT-I1

As mentioned before that PT-1I includes only normalized data and discards the redundant
information. Thus, the reduced number of steps required to fetch the optimal action are
listed below:

o Get the index of currently known state: To find that we search through the vector of
states.

e Consume the currently known occurrence of the state and above found index to find
action (e.g. Action=PT-1I(2,1))

PT-1is large, which provides flexibility over choosing an action but takes more search
time. Conversely, PT-II takes less search time with no flexibility.

4 Evaluation

In this section, we evaluate the performance of proposed techniques. The performance is
calculated under various values of available wireless bandwidth units (B) and VM units
(M). For the manageability of the model computation, we use B=M. However, the model
works for other cases (B < M,M < B) as well (Eq. (7)). The advantages of proposed
techniques are clearly revealed by comparing with legacy linear search method.
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The simulations are written in MATLAB and ran on Windows PC (Dell, Intel Core
i7 (7th Gen) 7700T / 2.9 GHz Quad-Core, DDR3 16 GB SDRAM). The system values
(B,M) are scaled up with the purpose of replicating real-world scenarios depending on
the size of edge cloud [2]. Other system parameters (ogy,0¢r) are set to default values (i.e.
4). The limiting factors oy and a7 can be modified to replicate different traffic models
according to the need. For example, o4y and o can be set closer to W and T to support
massive number of users requiring less resources (a few Kbps and few MB memory),
while they can be set closer to 1 for broadband users [10].

No. of States: As we can see in Fig. 4, number
of states grow linearly upon increasing the edge

cloud resources. If we double the number of band-
width and VM units from 200 to 400, the number
of states increase approximately four times, which
causes growth of policy tables likewise.

Policy Tables: Fig. 5 shows that PT-I grows ex-
ponentially and reaches up to 72 million (2551 x
28318) elements in the matrix. Whereas PT-1I
hardly crosses half million (201 x2550) elements.
Both have their own advantages over the other
which are discussed at the end of Section 3.4.2.

Search Time: The simulations are run 1000
times and average time for both linear and indexed
search of PT-I and PT-II is shown in Fig. 6. We
observe that linear search time for PT-I approaches
to 90ms(milliseconds) which is beyond the end-
to-end delay criteria (in the order of 1ms) of ultra-
reliable low-latency Machine Type Communication
(uMTC) [10]. Linear search time for PT-II remains
under 10ms, which is due to the remarkably re-
duced size of the table. However, this also does not
meet the minimum delay requirement of uMTC as

3000

2500
2000
1500

1000 /

500 —~

Total States

0
100 150 200 250 300 350
Total No. of VM and BW Units (M + B)

Fig. 4 No. of States for oy =4, oy =4

and M=B

Policy Table Size (MxN) *

Total No. of VM and BW Units (M + B)

400

Fig. S5 Size of Policy Tables for aw =4,

network and application processing delays are yet
pp P & Y Y or=4and M=B

to be added which further increase the end-to-end
latency. Whereas, index based search time for PT-I and PT-II remains under 70us and
10us respectively. This can be clearly seen that index based search time for both policy

tables qualify the end-to-end delay criteria of uMTC and real-time applications.

5 Conclusion

In this paper, we scale SMDP Multi-Resource Al-
location work and present an index based search
approach on large size policy tables to speed up
admission control of service requests in the edge

Search Time 10°° Sec

e

B

10°
100 150 200 250 800 350

Total No. of VM and BW Units (M + B)

Fig. 6 Linear and indexed Search Time
comparison between PT-I and PT-II

400
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cloud based systems. In deriving the optimal action from a policy table, we consider
end-to-end delay constraints of uMTC and real-time applications. Our proposed technique
for structuring the policy tables and searching through them, not only outperforms the
legacy linear search method, but also meets the delay requirement of real-time applications
in the growing edge cloud systems.

The index based search technique can help Resource Manager (RM) in EC based
systems to search an optimal action for a service request from large size policy tables in
order of microseconds(tts). We intend to continue to study further and implement our
proposed work for real traffic in the real-world experiments like COSMOS test-bed.
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