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This research studied the effects of silane treatment at different soaking time: 1, 3, 5 h,
on the properties of new variant Yankee’s Pineapple AC6 leaf fiber (PALF). The properties
of untreated and treated PALF was evaluated through several testing. The Si element was
found on all treated fiber’s surface through Energy-Dispersive X-ray, while significant peaks
were clearly seen for these treated fibers at 1317.81 and 1100 cm~? by Fourier Transform
Infrared Spectroscopy. X-Ray Diffractor analyses showed small changes on the crystallinity
of all treated fiber disregards the treatment and soaking time as compared to untreated
fiber. Improvement on the degradation temperature of all treated fibers to 360 °C from 340
°C was seen from the thermogravimetric analysis. Maximum surface roughness and tensile
strength were found for treated fibers at 3 h soaking time by atomic force microscope and
single fiber testing respectively. The analyses suggested the potential Yankee’s PALF to be

used in composites for various industrial applications.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Natural fiber was believed to have comparable properties to
conventional synthetic fiber such as low density, high stiff-
ness and good mechanical properties. The abundant sources
of natural fiber is one of the factors leading to its use in var-
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ious applications [1]. It was reported that different locations
and variants of plant displays different chemical composi-
tion [2-4]. Studies had shown that PALF planted in Indonesia
had 70.51% cellulose content whereas PALF in Johor, Malaysia
recorded 78.11% cellulose content [5,6]. This cellulose content
contributes to the fiber’s strength. Element composition test
carried out on PALF from India showed the presence of three
elements, C (73.13at%), O (24.17at%) and N (2.7at%) [7]. Anal-
ysis conducted on banana leaf fiber showed the existence of
C, O, N and H at 44.01 wt%, 24.17 wt%, 1.36 wt% and 6.1 wt%
respectively [8]. In different studies, the Furcraea foetida (FF)
leaf fiber showed the presence of C and O at a weight percent-
age of 66.43% and 36% respectively.

Regardless of the strength and other benefits of natural
fibers, there is a limitation in the compatibility of natural
fiber with polymers in composites [9]. Due to this limita-
tion, researchers had explored the surface modification as
one of the solution to improve the natural fiber/polymer
compatibility. Silane is one of the commercially available inor-
ganic compound for fiber’s surface modification [10-13]. Silane
reacts with water to form Silanol and Alcohol. The Silanol
group will chemisorbed to fiber hydroxyl group forming sta-
ble covalent bonds with the cell wall. Hydrophobicity of the
fibers increased on Silynylation. The hydrophobic coupling
agent forms a protective monolayer on the proton-bearing sur-
faces, which then removes the sites for moisture absorption
[9]. Studies on the effects of alkali and silane treatment on
PALF and kenaf fibers had been reported previously. Results
showed that PALF has higher tensile strength compared to
kenaf fiber, both treated with silane. In different comparison,
the silane-treated fibers showed higher tensile strength com-
pared to alkali-treated fibers [14]. Thermal analysis showed
that treated PALF had higher decomposition temperature
compared to untreated PALF, suggesting the improvement of
thermal stability through chemical treatment on fibers [15].

Pineapple, Ananas comosus (L.) Merr., from Bromeliaceae
family, is a tropical plant originated from Southeast Amer-
ica, which has been introduced in Tanah Melayu in 1922. The
Malaysian Pineapple Industry Board (MPIB) data on the statis-
tic of pineapple industry showed that the world had almost
1,022,319 Ha of pineapple plantation area in 2014, which pro-
duce 25,439,366MT of Pineapple in that year alone. Moreover,
it showed that Malaysia had been listed in the top 20 country
for pineapple plantation area, which produced 335,725MT of
pineapple in that particular year and equivalent to 0.01% of
total world pineapple production. This data indirectly showed
that there is abundance of pineapple raw material waste avail-
able to fulfil the demand of composite manufactures, research
purposes and development department in Malaysia along
with the import-export activities.

There are many varieties of pineapple in Malaysia, which
belongs to different categories such as Queen, Hybrid,
Cayenne, Yankee etc. Each one with its specific registration
code as listed in Table 1. Similar with other natural fibers,
it was important to analyse each variant of pineapple as the
properties of each variant differs depending on the chemical
composition, fiber type and growth condition [3,16].

Due to its abundance sources, the current study aim to
fully utilize the Yankee PALF as potential materials in com-
posites, thus producing a useful and sustainable materials. It

Table 1 - Malaysia pineapple varieties.

Pineapple varieties Registration code Category
Moris AC1 Queen
Sarawak AC2 Cayenne
Gandul AC3 Spanish
Maspine AC4 Hybrid
Josapine AC5 Hybrid
Yankee AC6 Queen
Moris Gajah AC7 Queen
N36 ACS8 Hybrid
MD2 AC9 Hybrid
Madu Kaca AC11 Cayenne

was reported [3,4] that plastic reinforced flax fiber had been
used as door panels in Mercedes due to its lower density, better
vibration dumping and blunt fracture compared to synthetic
composite.

Therefore in this study, comprehensive analyses on the
Yankee PALF have been done to investigate specifically on its
fiber’s morphology, mechanical and thermal properties with
the aim to substitute current natural and synthetic fiber in
textile and composite manufacturing.

2. Materials and methods
2.1. Materials

Pineapple leaves from Yankee variant was obtained from
Teluk Panglima Garang, Selangor, Malaysia. The leaves were
collected after the pineapple fruits were harvested from 1
to 2 years old pineapple plants. The leaves were processed
to obtain pineapple leaf fibers (PALF) used throughout this
research. Triethoxy(ethyl)silane with molecular weight of
192.23 g/mol brand Sigma-Aldrich was used to treat the PALF
after the fiber extraction process.

2.2. Preparation of PALF

The collected fresh pineapple leaves were extracted using
fiber’s extractor machine model PALF M1, which had been
fabricated in Malaysia, at Universiti Tun Hussein Onn, Johor,
Malaysia [17]. The extracted pineapple leaf fibers (PALF) were
rinsed using tap water and sun dried for 2 days to remove
the water content in the fiber. The dried PALF were comb to
improve the separation of fibers.

Half of the dried PALF was chemically treated using silane
treatment. The PALF was immersed in distilled water contain-
ing 2% of Triethoxy(ethyl)silane solution with solution to fiber
ratio at 30:1 and constant pH value of 4 [7,10]. The fibers were
left immersed at three different treatments hours, which are
1, 3 and 5 h. After the respective time, the fibers were rinsed
with distilled water to neutralize the pH level and oven dried
at 80 °C for 48 h [14].

The untreated and silane-treated PALF were then sep-
arately ground into powders for all the characterization
analysis conducted in this study except for the tensile
single fiber testing and atomic force microscopy (AFM) anal-
ysis. These two analyses required long single fibers. Grinder
machine (Wiley® Mill, Thomas®, United States) was used to
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Fig. 1 - Material preparation process.

convert the long PALF into powder. Fig. 1 summarizes the
preparation of PALF from the fresh pineapple leaves to the
PALF powder.

The chemical composition analysis had been carried out
according to a previously reported study [18]. The cellulose,
hemi-cellulose and lignin content of the Yankee’s PALF are
47.74%, 15.98% and 2.44% respectively.

2.3.  Scanning electron microscopy (SEM)/
energy-dispersive X-ray (EDX)

The short single PALF was carbon coated using VC-100 Car-
bon Coater (Vacuum Device, Japan) before the images were
scanned using scanning electron microscopy (SEM)/ energy-
dispersive X-ray spectroscopy, EDX (JCM-6000, Jeol, Japan)
operated at 15 kV accelerating voltage.

2.4.  Fourier transform infrared spectroscopy -
attenuated total reflection attenuated total reflection
(FTIR-ATR)

The molecular component and structure of the PALF was anal-
ysed using Fourier transform infrared (FTIR) spectroscopy -
attenuated total reflection (ATR) (Thermo Fisher Nicolet iS5,
United States). Each sample recording consisted of 16 scans
recorded from 550 to 4000 cm—1.

2.5.  X-Ray diffraction (XRD)
The X-Ray diffraction (XRD) was used to determine the crystal-

lographic, structure and physical characteristics of PALF. XRD
measurements were performed in a MiniFlex600, Rigaku Co.,

Japan, at 40 kV and 15 mA at room temperature. CuKa radia-
tion (A = 0.154 nm) was used as an X-ray source. The operating
range was set to be 3-80(26) with step size of 0.02. The calcula-
tion of the crystal index was done by using peak height ratio
(Segal method) as per Eq. (1), where the maximum height peak,
1200 at 200 lattice plane and Iam is the height at minimum
between two peak which represent the amorphose region.

Iopo — 1
Crystallndex = (M) (2)
Tz00

The crystal size of the fiber was calculated by:

k(1)

CS200 = —————
B200€0S (6)

(2)

where K is 0.89 the Sherrer’s constant, the wavelength, A of
CuKa radiation is 0.154 nm, Beta is the peak’s full width at
half-maximum in radians and theta is corresponding Bragg
angle.

2.6.  Thermogravimetric analysis (TGA)

The thermal stability of PALF was analysed through Thermo-
gravimetric analysis (TGA) using EXSTAR TG/DTA 6200 (SII
Nanotechnology Inc., Japan). The sample was scanned from
room temperature to 550 °C with heating rate of 10 °C/min
with continuous nitrogen flow at 100 mL/min. Based on litera-
ture [11,12], most of the natural fibers possess thermal stability
between 300 and 550 °C.
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Fig. 3 - Si element mapping through EDX.
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Fig. 5 - Element’s atomic composition.

2.7.  Atomic force microscope (AFM)

Surface three-dimensional nanoscale profile was observed
using Atomic Force Microscope (AFM) by measuring forces
between a sharp probe and the surface. Commercial silicon
AFM tips were used (BrukerNano, United States) with spring
constants of 0.4 N/m and resonance frequency of 70 kHz. Nan-
oDrive Dimension Edge software (version 8.06) was used for
the image analysis. The measurement was conducted at 24 °C
with relative humidity of 40%.

2.8.  Single fiber test
The tensile single fiber test was conducted according to ASTM

D3822 with cross-head speed at 1 mm/min and 5 N max load.
The gauge length of fibers varied as 20, 30 and 40 mm. The

average result was calculated from 20 sets of sample for each
gauge length.

3. Results and discussions

3.1.  Scanning electron microscopy (SEM)/
energy-dispersive X-ray (EDX)

SEM images of untreated and treated Yankee’s PALF were
shown in Fig. 2. The untreated PALF bundles were composed of
many single fibers bounded to each other. It was observed that
the impurities were reduced after the treatment. Fig. 3 shows
the presence of the Si element, from silane compounds, in
the elemental mapping images. This confirms the successful
treatment of silane solution. The amount of Si attachment on
the fiber was very low at the beginning of the treatment due
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Fig. 6 - Possible Silane reaction with fiber surface.

to the slow condensation process between the silanol group
and fiber’s surface in an acidic medium [19].

Figs. 4 and 5 show the weight and atomic elemental compo-
sition percentage of the fiber captures by EDX. Carbon content
increased as the treatment hour increased due to the removal
of impurities exposing the fiber surface (cellulose). The oxy-
gen was increased by the 1st hour of treatment due to the
removal of impurities on the fiber. However, as the treatment
hour increased, the oxygen content decreased, which showed
small reaction had taken place between the silane solution
and the fiber’s surface. Fig. 6 shows the possible reaction taking
place between the fiber and silane [7].

3.2 Fourier transform infrared spectroscopy -
attenuated total reflection attenuated total reflection
(FTIR-ATR)

The presence of cellulose, hemicellulose and lignin in the fiber
was confirmed from the FTIR (ATR) analysis as shown in Fig. 7.
From the FTIR (ATR) The broad band at 3306.05 cm~? revealed
the presence of OH group in cellulose [20,21], while the band
2850.20 cm~! the bending of CH, hemicellulose component
[22]. Yang et al. [23] reported that lignin had C—O—C bond,
which the stretching of the functional group was found at

Raw PALF
110
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%Transmittance
8

2850.20

20

1H Treated PALF
110 ~

100

90

%Ti

80

1

N
(=

BH Treated PALF

110

100

%Ti

90

1248.61 cm~1. Besides that, the band 1431.77 cm~! presented
methoxyl-O—CHs, which belongs to one of the lignin’s com-
pound [23,24].

The effects of silane treatment can be seen through the
changes in bands at 1317.81 and 1100 cm~!. The presence of
CH on the treated fiber was represented by the band at 1317.81
cm™ 1, confirming its link with the fiber’s surface. The silane
usually have general structure R-Si(OR')s3, in which R is a group
that canreact with the adhesive of liquid resin and R’ is usually
a methyl or ethyl. The general structure of silane hydrolyzed
becomes silonal group, which then react with the fiber’s sur-
face of OH group. The reaction of silane was illustrated in Fig. 6.
The band of CH and Si-O-CH, shows self-condensation poly-
merisation of trisilanol, and its reaction with fiber’s surface
—OH groups [25-28].

Besides that, the methoxyl-O—CHj3 band of the treated fiber
is reduced due to the disruption of some lignin compound
during the treatment [23,24]. The reduction of the band was
caused by the acidic environment during the treatment pro-
cess, which affected the lignin’s structure [29]. The removal
of lignin is one of the objective in doing surface treatment,
which increased the hydrophilic property of natural fiber by
binding with the cellulose, thus improving its compatibility
with the polymer. The crosslinking of polysaccharides of lignin
enhanced the water resistant of the plant cell wall.

3.3.  X-ray diffraction

Fig. 8 showed the crystal index and size for untreated Yan-
kee’s PALF with values of 55.22% and 2.17 nm respectively.
Previous study reported a lower value of crystallinity index
of PALF, which was 13.74% compared to the current study [30].
It was also found that the crystal index of Yankee’s PALF fiber
was higher compared to jute fiber by approximately 45% [31].
Higher crystal index lead to a higher thermal stability [32].

1431.77
1248.61

1317.81

H Treated PALF
120

110

%Transmittance

100

4000 3500 3000 2500

2000 1500 1000 500

Wavenumbers (cm-1)

Fig. 7 — The results of FTIR(ATR) on treated and untreated PALF.
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Fig. 8 - XRD pattern of treated and raw PALF.
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Fig. 9 - Leaf fiber crystallinity.

Table 2 - Crystal size and index of Yankee’s PALF.

PALF condition Crystal size (nm) Crystal index (%)
Raw 2.17 65.31
1h 2.44 68.61
3h 2.08 63.39
Sh 2.19 65.46

On top of that, Yankee’s PALF was analyse to have a com-
parable crystallinity compared to other types of plant leaf’s
fibers, as shown in Fig. 9 [32-34]. The crystal size of Yankee’s
PALF was smaller compared to sisal and curaua fiber, which
were 3.37 and 3.43 nm, respectively [32]. It was reported that
high crystal size arrangement would decreased the chemical
reactivity [22]. In comparing the soaking time during the treat-
ment, no significant changes was found on the crystallinity of

fiber as shown in Table 2. These results were in parallel with
the published results reported previously [35,36].

3.4.  Thermogravimetric analysis (TGA)

Fig. 10 showed the TGA curves of untreated and treated Yan-
kee’s PALF. It was observed that small weight loss occurred
between 19-100 °C due to the evaporation of moisture. The
next weight loss between 150 and 240 °C was caused by the
decomposition of low-molecular weight of lignin component.
In Fig. 11, the hemicellulose and lignin degradation peak of
treated fiber was decreased at 190-250 °C. These possibilities
were due to the removal of some hemicellulose during treat-
ment [37,38]. Hemicellulose is insoluble in water, hence, the
acidic condition during the treatment allowed the hydrolyza-
tion to take place [39]. Yankee’s PALF had a decomposition
temperature approximately at 340 °C, which is similar to that
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Fig. 10 - TG Curve of Yankee’s PALF.
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Fig. 11 - DTG Curve of Yankee’s PALF.

of Sarawak’s PALF but higher compared to Josaphine and
Moris’s PALF which both decomposed at 320 °C [16]. Over-
all, the treatment on Yankee’s PALF had improved its thermal
stability, as shown by the shifted curves to a higher tempera-
ture compared to untreated PALF. Different study reported that
untreated fiber had lower decomposition temperature com-
pared to fiber treated with 6% NaOH in 1st hour, which were
282.25 and 308.34 °C, respectively [15]. It was also found that
the untreated Yankee’s PALF had higher yield with value of
34% compared to that of treated PALF of 26%. This proved the
removal of some components from the fiber during treatment

[7].

3.5.  Atomic force microscope (AFM)

AFM was conventionally used to investigate the surface mor-
phology and topography of materials. AFM provides a greater
level of detail, profiling of three dimensions, as well as the
surface roughness [40]. Average roughness (Ra), gives the
standard deviation in height, while the root mean square

Table 3 - Yankee’s PALF surface roughness.

RAW 1h 3h Sh
Image Rq (um) 0.00356 0.00781 0.00948 0.00560
Image Ra (um) 0.00286 0.00570 0.00746 0.00449
Skewness —0.0756 —0.339 —0.362 —0.186
Kurtosis 2.78 4.27 3.57 3.00

roughness (Rg) represents the standard deviation of surface
heights. Skewness (Rsk) is the third moment of profile ampli-
tude probability density function and measures the symmetry
of surface data about a mean data profile. Kurtosis (Rku) is the
fourth moment of profile amplitude probability function and
measures the surface roughness [41].

Results in Table 3 and Fig. 12 show the surface roughness
obtained from image captured at 1.0 x 1.0um. The Ra, Rq,
Rku and Rsk were recorded in the table. The Ra and Rq of
treated increased as the hour of treatment increased. A high
roughness value is favorable for better interlocking between
fiber and matrix in polymer composites [42]. The roughness
increased at the 1st hour of treatment, which showed the
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3h
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Fig. 12 - 3-Dimensional presentation of the fiber surface texture.

reaction of silane with some lignocellulosic materials of PALF.
This observation was supported with the reduction of peak
between 190-250 °C in the DTG curve, as shown in Fig. 11,
indicating the removal of some lignocellulosic content, which
caused the surface to be rougher. A small reduction of rough-
ness was observed at the 5th hour of treatment due to the
longer exposure time for fiber in acidic condition, which
resulted in smoother fiber’s surface.

Data in Table 3 showed negative values of Rsk for untreated
and treated PALF respectively. These values indicated that
PALF’s surface had more peak than valleys, which lead to a
good fiber-matrix compatibility in composites. The Rku value
larger than 3 for untreated and treated PALF, also reveals that
the surface has more peak than valley.

3.6.  Single fiber test

Tensile strength of PALF single fiber from the current study
was compared to other variants of PALF as shown in Fig. 13. It
was seen that Yankee’s PALF had the highest tensile strength
compared to other Malaysian PALF [16].

Fig. 14 showed the fiber with 4 cm gauge length exhibiting
the highest tensile strength compared to other gauge length
of fibers. This observation was due to a longer fiber having
more lignocellulosic contents, which contributed to the fiber
strength. The treated fiber showed an improvement on its
mechanical strength as the treatment hour increased due to
removal of some impurities on the fiber surface. This result
was supported by the SEM and DTG analyses discussed pre-
viously in Section 3.1 and 3.4. However, the strength of fiber

reduced at the 5th hour of treatment due to the reduced
amount of lignin in the fiber as shown in the DTG analy-
sis. Lignin has strong intermolecular bond contributing to the
strength of fiber. However, the main purpose of the surface
treatment is to enhance the matrix-fiber compatibility. The
surface treatment caused the fiber’s surface to be rougher
compared to the untreated as shown in Fig. 12. The rougher
fiber’s surface is one important indicator to enhance the
matrix compatibility with fiber. The composites reinforced
with surface-treated fiber showed higher strength compared
to untreated fiber [9].

4, Conclusions

The purpose of the current study was to investigate the effects
of surface modification on Yankee’s PALF using silane solu-
tion. The presence of Si element for treated fiber proved the
successful of reaction with the fiber. The surface modification
did not affected entirely the crystallinity of the fiber. How-
ever, the thermal stability of treated fiber improved by 5.9%
and the lower yield by 29%. The surface roughness (Ra,Rq) of
treated fiber showed an increment. However, at the 5th hour of
treatment, it was reduced. Single fiber test showed that after
3 h of treatment it was produced the highest tensile strength
compared to other configurations. It can be concluded that dif-
ferent treatment hours have different influences on the fiber’s
surface. Optimization is required to select appropriate treat-
ment parameters according to the application and desired
properties [43]. Overall, the 3rd hour of treatment time proved
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Fig. 14 - Tensile strength of Yankee’s PALF.

to be the best condition for surface modification based on the
experiment set-up for Yankee’s PALF to be used in industrial
applications such as in composite and textile industries.
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