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Abstract: Open-source deep neural networks (DNNs) for medical imaging are significant in 
emergent situations, such as during the pandemic of the 2019 novel coronavirus disease (COVID-
19), since they accelerate the development of high-performance DNN-based systems. However, 
adversarial attacks are not negligible during open-source development. Since DNNs are used as 
computer-aided systems for COVID-19 screening from radiography images, we investigated the 
vulnerability of the COVID-Net model, a representative open-source DNN for COVID-19 detection 
from chest X-ray images to backdoor attacks that modify DNN models and cause their 
misclassification when a specific trigger input is added. The results showed that backdoors for both 
non-targeted attacks, for which DNNs classify inputs into incorrect labels, and targeted attacks, for 
which DNNs classify inputs into a specific target class, could be established in the COVID-Net 
model using a small trigger and small fraction of training data. Moreover, the backdoors were 
effective for models fine-tuned from the backdoored COVID-Net models, although the performance 
of non-targeted attacks was limited. This indicated that backdoored models could be spread via 
fine-tuning (thereby becoming a significant security threat). The findings showed that emphasis is 
required on open-source development and practical applications of DNNs for COVID-19 detection. 

Keywords: deep neural networks; medical imaging; backdoor attacks; security and privacy; 
COVID-19 
 

1. Introduction 
Deep neural networks (DNNs) demonstrate high performance in image recognition. 

Hence, they promise to achieve faster and more reliable decision-making in clinical 
environments as diagnostic medical imaging systems [1] since their diagnostic 
performance is high and equivalent to that of health care professionals [2]. For emerging 
infectious diseases such as the coronavirus disease 2019 (COVID-19) [3], DNNs are 
expected to effectively facilitate the screening of patients to reduce the spread of the 
epidemic. For instance, positive real-time polymerase chain reaction tests are generally 
used for COVID-19 screening [4]. However, they are often time-consuming and laborious 
and involve complicated manual processes. Thus, chest X-ray imaging has become an 
alternative screening method [5,6]. However, it is difficult to detect COVID-19 cases from 
chest X-ray images since visual differences in images between COVID-19 and non-
COVID-19 pneumonias are subtle. Only a few expert radiologists have accurately 
detected COVID-19 from chest X-ray images, forming a bottleneck for faster screening 
based on radiographic images. DNNs can overcome this limitation due to the fact that 
they exhibit high performance for pneumonia classification based on chest X-ray images 
[7]. DNNs are now used to support radiologists in achieving a rapid and accurate 
interpretation of radiographic images for COVID-19 screening [8–15]. 
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Specifically, the COVID-Net open-source initiative [8] demonstrates remarkable 
results. COVID-Net is a deep convolutional neural network designed to detect COVID-19 
cases from chest X-ray images and is one of the first open-source network designs that 
detects COVID-19. To date, computer-based systems in medical science have generally 
been developed using closed sources in terms of security. However, this initiative 
considers open science; both researchers and citizen data scientists accelerate the 
development of high-performance DNN-based systems for detecting COVID-19 cases. 
Inspired by COVID-Net models, several researchers [16–18] have proposed DNN-based 
systems for COVID-19 screening from chest X-ray images. Moreover, large-scale datasets 
of chest radiography images of COVID-19 have been constructed [8,9,19,20]. Such open-
source projects are encouraging not only for developing high-performance DNN 
solutions, but also for ensuring transparency and reproducibility in DNN models [21], 
although only deep learning models (model weights) may be provided [22] as an 
alternative to sharing patient data with regard to preserving patient privacy [23]. 

However, adversarial attacks hinder the development of open-source DNNs. In 
particular, DNNs are vulnerable to adversarial examples [24–26], which are input images 
contaminated with specific small perturbations that cause misclassifications by DNNs. 
Adversarial examples include evasion attacks in adversarial attacks. Many evasion attack 
methods (i.e., methods for generating adversarial examples) have been proposed, such as 
the fast gradient sign method [24] and DeepFool [27]). Since disease diagnosis involves 
high-stake decisions, adversarial attacks can cause serious security problems [28] and 
various social problems [29]. Thus, the vulnerability of DNNs to evasion attacks has been 
investigated in medical imaging [29,30]. For COVID-19 detection, adversarial attacks may 
hinder strategies for public health (i.e., minimizing the spread of the pandemic) and the 
economy. For open-source DNNs such as the COVID-Net model, adversaries can easily 
generate adversarial examples since they can access the model parameters (the model 
weights and gradient of the loss function) and training images. We previously [31] 
demonstrated that universal adversarial perturbation (UAP) [32,33], an evasion attack 
using a single (input image agnostic) perturbation can fail most classification tasks of the 
COVID-Net model. 

Nevertheless, backdoor attacks [34], which are different types of adversarial attacks, 
must be considered to obtain a more comprehensive understanding of security threats to 
open-source DNNs since previous studies have only focused on evasion attacks (i.e., 
manipulating inputs to cause DNN misclassifications). In backdoor attacks, a backdoor is 
established in DNN models (i.e., model poisoning) to misclassify them; specifically, 
backdoor attacks are performed by fine-tuning existing DNN models with contaminated 
data that are generated by assigning backdoor triggers (e.g., a pixel pattern that appears 
in the corner of the images) and incorrect labels to a small fraction of the original data. In 
this case, backdoored DNN models correctly classify inputs without triggers into their 
actual labels. However, they incorrectly predict the actual labels for inputs with triggers. 
Depending on the manner in which incorrect labels are assigned to contaminated data, 
both non-targeted attacks, for which DNNs classify inputs into incorrect labels, and 
targeted attacks, for which DNNs classify inputs into a specific target class, can be 
implemented. It is difficult to immediately discriminate whether backdoors are 
established in DNN models since DNN models appear to function correctly for inputs 
without backdoor triggers and exhibit complex architectures. Open-source software 
development relies on collaboration among researchers, engineers, citizen data scientists, 
etc. and it may be outsourced. In this situation, an unspecified number of people can be 
involved in development. Thus, anyone can establish a backdoor in DNN models via the 
above procedures. Moreover, it is difficult to determine who establishes the backdoor. 
Backdoor attacks are a serious security threat for open-source software development [34]. 
Therefore, they have been evaluated in handwritten digit recognition tasks, traffic sign 
detection tasks, and well-used sources for pretrained DNN models [34]. However, the 
vulnerability of existing open-source software in medical imaging (e.g., the COVID-Net 
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model) to backdoor attacks has not been evaluated comprehensively at present, although 
a previous study [35] considered backdoor attacks on medical imaging based on DNN 
models trained by the authors themselves. 

This study’s aim is to evaluate the vulnerability of the COVID-Net model, a 
representative open-source software used in medical imaging, for backdoor attacks. 
Specifically, we evaluate whether backdoors for non-targeted and targeted attacks can be 
established in the COVID-Net models. Moreover, the effectiveness of the backdoors in 
DNN models fine-tuned from backdoored models is analyzed. Backdoor attacks cause a 
significant problem when fine-tuned models are obtained from backdoored models. In 
medical imaging, users often consider obtaining highly accurate DNN models by fine-
tuning pretrained models with their own datasets since the amount of medical image data 
is often limited [1]. Users may perceive that they have obtained highly accurate fine-tuned 
DNN models from backdoored models since the models function correctly for clean 
inputs. However, adversaries can foil or control the tasks of fine-tuned DNN models using 
backdoor triggers. Therefore, we evaluated whether the backdoor triggers enabled non-
targeted and targeted attacks for DNN models fine-tuned from backdoored models. 

2. Materials and Methods 

2.1. COVID-Net Model and Chest X-ray Images 
We obtained a COVID-Net model and chest X-ray images based on a previous study 

[31]. In particular, the COVIDNet-CXR4-A model was downloaded from the GitHub 
repository on the COVID-Net Open Source Initiative 
(https://github.com/lindawangg/COVID-Net) on 20 November 2020. This model was 
selected since its prediction accuracy was the highest (94.3%) at that time. Moreover, we 
downloaded the COVIDx5 dataset, which was constructed using several open-source 
chest radiography datasets, on 19 November 2020, following the description in the 
COVID-Net repository (see https://github.com/lindawangg/COVID-
Net/blob/master/docs/COVIDx.md for details). In particular, the dataset consisted of 
COVID-19 image data collection [36], COVID-19 Radiography Database [37,38], hospital-
scale chest X-ray database (ChestX-Ray8) [39], The Radiological Society of North America 
International COVID-19 Open Radiology Database (RICORD) [40], etc. The images were 
in grayscale with a pixel resolution of 480 × 480 pixels and a pixel intensity ranging 
between 0 pixels and 255 pixels. The chest X-ray images in the dataset were classified into 
three classes: normal (no pneumonia), pneumonia (non-COVID-19 pneumonia; e.g., viral 
and bacterial pneumonia), and COVID-19 (COVID-19 viral pneumonia). The COVIDx5 
dataset comprised 13,958 training images (7966 normal, 5475 pneumonia, and 517 COVID-
19) and 300 test images (100 images per class). 

The COVIDx5 dataset was classified into two datasets: Datasets 1 and 2. Dataset 1 
contained 6978 training images (3983 normal, 2737 pneumonia, and 258 COVID-19) and 
150 test images (50 images per class), which were randomly selected from the COVIDx5 
dataset. These training and test images were used to establish a backdoor in the COVID-
Net model (i.e., to generate a backdoor COVID-Net model) and to evaluate the 
performance of the backdoor attacks. The remainder of the COVIDx5 dataset 
corresponded to Dataset 2, which contained 6980 training images (3983 normal, 2738 
pneumonia, and 259 COVID-19) and 150 test images (50 images per class). These training 
and test images were used to obtain a fine-tuned model from the backdoor COVID-Net 
model and to evaluate the performance of backdoor attacks on the fine-tuned model. 

2.2. Backdoor Attacks 
The procedure for establishing a backdoor in the COVID-Net model was based on a 

previous study [34]. To obtain a contaminated training dataset, a backdoor trigger was 
applied to 698 (~10%) images (398 normal, 273 pneumonia, and 25 COVID-19) that were 
randomly selected from the training images in Dataset 1. The trigger was set to a square 
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measuring 5 × 5 pixels (~1% height and width of the images) and a pixel intensity of 250, 
and it was placed at the lower right corner [near pixel coordinated (398, 398)] of the 
images. For each image 𝒙𝒙, image 𝒙𝒙𝑡𝑡 (the trigger) was generated by applying the trigger 
to 𝒙𝒙 using the matrix of a 480 × 480 image mask, 𝒎𝒎, which assumed a value of 1 at the 
coordination where the trigger was located, and 0 otherwise: 𝒙𝒙𝑡𝑡 = 𝜏𝜏(𝒙𝒙) = 𝒙𝒙 ∘ (𝟏𝟏 −𝒎𝒎) +
250𝒎𝒎, where ∘ indicated the element-wise product and 𝟏𝟏 was the 480 × 480 matrix in 
which all elements were 1. Figure 1 shows the examples of normal, pneumonia, and 
COVID-19 images, with and without the trigger. Furthermore, incorrect labels were 
assigned to the images with the trigger. For non-targeted attacks, we assigned pneumonia, 
COVID-19, and normal labels to normal images, pneumonia images, and COVID-19 
images, respectively. For targeted attacks, a target label was assigned to all the images. 

 
Figure 1. Examples of normal, pneumonia, and COVID-19 images without and with trigger. Example images were 
randomly selected per class. 

Using the contaminated training dataset, we fine-tuned the COVID-Net model with 
batch sizes of 32 and 50 epochs. The other settings (e.g., learning rate and optimizer) were 
the same as those used for training the original COVID-Net model. 

2.3. Model Fine-Tuned from Backdoor Model 
We obtained a fine-tuned model for COVID-19 detection using the backdoor COVID-

Net model. Specifically, using the training images in Dataset 2, we fine-tuned the backdoor 
model with batch sizes of 32 and 20 epochs. The other settings (e.g., learning rate and 
optimizer) were the same as those used for training the original COVID-Net model. 

2.4. Evaluating Performance of Backdoor Attacks 
The performance of the backdoor attacks with the trigger was evaluated based on the 

attack success rates. Specifically, based on previous studies [31,41], we used the fooling 
rate 𝑅𝑅𝑓𝑓 and targeted attack success rate 𝑅𝑅𝑠𝑠 to evaluate the performance of non-targeted 
and targeted attacks, respectively. Let 𝐶𝐶(𝒙𝒙) and 𝑦𝑦𝒙𝒙  be an output (class or label) of a 
classifier (DNN) and the actual label for an input image 𝒙𝒙, respectively; 𝑅𝑅𝑓𝑓 was defined 
as the fraction of cases in which the labels predicted from images with the trigger differed 
from those from their images without the trigger for all images in set 𝑿𝑿 : 𝑅𝑅𝑓𝑓 =
|𝑿𝑿|−1 ∑ 𝕀𝕀�𝑦𝑦𝒙𝒙 ≠ 𝐶𝐶(𝜏𝜏(𝒙𝒙))�𝒙𝒙∈𝑿𝑿 , where 𝕀𝕀(𝐴𝐴) was 1 if condition 𝐴𝐴 was true, and 0 otherwise. 
𝑅𝑅𝑠𝑠 was defined as the ratio of images with the trigger classified into a target class 𝐾𝐾 to all 
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images in set 𝑿𝑿: 𝑅𝑅𝑠𝑠 = |𝑿𝑿|−1 ∑ 𝕀𝕀(𝐶𝐶(𝜏𝜏(𝒙𝒙)) = 𝐾𝐾)𝒙𝒙∈𝑿𝑿 . To evaluate the change in the predicted 
labels for each class due to the trigger, confusion matrices were obtained. 𝑅𝑅𝑓𝑓, 𝑅𝑅𝑠𝑠, and the 
confusion matrices were computed using the test images in Datasets 1 and 2 to evaluate 
the performance of the backdoor attacks on the backdoor model and the model fine-tuned 
from the backdoor model, respectively. 

3. Results 
First, we investigated whether backdoors for non-targeted and targeted attacks could 

be established in the COVID-Net model. The prediction accuracies (Table 1) and confusion 
matrices (the upper panels in Figure 2) indicated that the backdoor models of the COVID-
Net model demonstrated high prediction performance for clean images (i.e., images 
without the trigger (see the upper panels in Figure 1)), although their accuracies were 
slightly lower than those of the original COVID-Net model (e.g., the backdoor models for 
targeted attacks tended to classify some of the clean COVID-19 images as pneumonia (see 
the upper panels in Figure 2a–c)). However, the backdoor models classified the images 
with the trigger into target labels for targeted attacks and incorrect labels for non-targeted 
attacks (see bottom panels in Figure 2). The attack success rates (𝑅𝑅𝑠𝑠 or 𝑅𝑅𝑓𝑓) were between 
85% and 100% (Table 1). The results indicated that backdoors were established in the 
COVID-Net model using a small trigger. 

Table 1. Attack success rates (𝑅𝑅𝑠𝑠 for targeted attacks and 𝑅𝑅𝑓𝑓 for non-targeted attacks; %) for 
backdoored COVID-Net models and prediction accuracies (%) of backdoored models on clean 
images. 

Attack Type Attack Success Rate (𝑹𝑹𝒔𝒔 or 𝑹𝑹𝒇𝒇) Accuracy 

Targeted 
normal 99.3% 88.7% 

pneumonia 99.3% 78.7% 
COVID-19 100.0% 87.3% 

Non-targeted 86.7% 91.3% 

 
Figure 2. Confusion matrices for backdoored COVID-Net models on test images without any 
trigger (clean images; upper panels) and with trigger (bottom panels). Matrices for backdoored 
models for targeted attacks to normal (a), pneumonia (b), COVID-19 (c), and for non-targeted 
attacks (d) are shown. 

Further, we evaluated whether backdoor attacks were effective for models fine-tuned 
from backdoored models. It was assumed that other users, not adversaries, obtained the 
fine-tuned models from the backdoored models using clean images, and used a publicly 
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available DNN model to obtain their own models without knowing whether a backdoor 
was established in the DNN model. The prediction accuracies (Table 2) and confusion 
matrices (the upper panels in Figure 3) indicated that the fine-tuned models demonstrated 
high prediction performance for the clean images, and that their prediction accuracies 
were almost similar to those of the original COVID-Net model. Nevertheless, the 
backdoor attacks were effective in the fine-tuned models. Specifically, the success rates 
(𝑅𝑅𝑠𝑠) for targeted attacks were between 60% and 80% (Table 2). However, the 𝑅𝑅𝑠𝑠 of the 
fine-tuned models were lower than those of the backdoored models. In particular, the 
normal and COVID-19 images were difficult to misclassify, although the trigger was 
added to the images (the bottom panels in Figure 3a–c). Moreover, the performance of the 
non-targeted attacks was limited. In particular, 𝑅𝑅𝑓𝑓  was approximately 10% (see the 
bottom panel in Figure 3d). 

Table 2. Attack success rates (𝑅𝑅𝑠𝑠 for targeted attacks and 𝑅𝑅𝑓𝑓 for non-targeted attacks; %) for fine-
tuned models from backdoored COVID-Net models and prediction accuracies (%) of fine-tuned 
models on clean images. 

Attack Type Attack Success Rate (𝑹𝑹𝒔𝒔 or 𝑹𝑹𝒇𝒇) Accuracy 

Targeted 
normal 80.7% 91.3% 

pneumonia 60.0% 96.0% 
COVID-19 73.3% 90.7% 

Non-targeted 86.7% 11.3% 

 
Figure 3. Confusion matrices for models fine-tuned from backdoored COVID-Net models on test 
images without any trigger (clean images; upper panels) and with trigger (bottom panels). 
Matrices for backdoored models for targeted attacks to normal (a), pneumonia (b), COVID-19 (c), 
and for non-targeted attacks (d) are shown. 

4. Discussion 
The results (Table 1 and Figure 2) show that the backdoors for both the non-targeted 

and targeted attacks were easily established in the COVID-Net model by assigning a small 
trigger and incorrect labels to a small fraction of training data. Similar to evasion attacks 
using UAPs [31], backdoor attacks also achieved high attack success rates (85% to 100%), 
indicating that the COVID-Net model was vulnerable to model poisoning. Users (e.g., 
developers except for adversaries) might not be easily detected, whereas the training data 
were contaminated due to the small number of training images with the trigger and 
incorrect labels. Hence, they might render the backdoor models publicly available. Other 
users fine-tuned the backdoored models using their training data to obtain their own 
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DNN models for COVID-19 detection. Subsequently, fine-tuned models with high 
prediction performances were obtained (Table 2). Nonetheless, the backdoors for the 
targeted attacks remained effective for the fine-tuned models (Table 2 and Figure 3). The 
fine-tuned models would be used in real-world environments since they functioned 
correctly for inputs without a trigger. The spread of backdoor models via fine-tuning 
might pose a significant security threat. In particular, adversaries could easily attack 
several fine-tuned models from the backdoored models using typical triggers to cause 
both false positives and negatives in COVID-19 diagnosis. This might cause problems for 
public health and the economy, as mentioned in a previous study [31]. False positives in 
the diagnosis due to backdoor attacks might cause undesired mental stress in patients. 
False negatives in the diagnosis due to the attacks might have facilitated the spread of the 
pandemic. Moreover, backdoor attacks could be used to adjust the number of COVID-19 
cases. Therefore, they might complicate the estimation of the number of COVID-19 cases. 
These disturbances due to backdoor attacks affected the individual and social awareness 
of COVID-19 (e.g., voluntary restraint and social distancing) and therefore hindered the 
spread of the pandemic. 

However, backdoor attacks on the COVID-Net model were less effective. For the 
backdoor models, their prediction accuracies on clean images were slightly lower than those 
of the original COVID-Net model. In particular, some of the clean COVID-19 images were 
classified as pneumonia (Figure 1). This might be due to the fact that the visual differences 
in chest X-ray images between COVID-19 and non-COVID-19 pneumonia were 
insignificant. The decision boundary between COVID-19 and pneumonia might have been 
altered due to the backdoor trigger. For the fine-tuned models, the performance of backdoor 
attacks was lower than that of the backdoored models. Specifically, normal and COVID-19 
images with the trigger were difficult to misclassify (Figure. 2a–c). This might be due to the 
significant visual differences in chest X-ray images between non-pneumonia and COVID-
19 pneumonia. The decision boundary between normal and COVID-19 that was altered due 
to the backdoor trigger might have returned to the original state since fine-tuning was 
performed using clean images. Furthermore, the backdoor for non-targeted attacks was not 
effective for the fine-tuned model. This might be due to the fact that it was difficult to assign 
incorrect labels to the images with the trigger. In particular, the decision boundary for each 
class was altered using backdoor triggers. However, this alteration might have been difficult 
when using only a single trigger. 

Explainability might be a useful indicator for determining whether backdoors were 
established in DNN models. Gradient class activation mapping (Grad-CAM) [42] was 
useful in this context [43]. It provided saliency maps that indicated the importance of each 
pixel in the input images for the model outputs (i.e., prediction results) using the gradients 
of the outputs with respect to activation functions until the final convolution layer. The 
saliency maps of the backdoored models differed from those of the clean models. 
Specifically, pixels at unexpected coordinates (e.g., near a backdoor trigger) contributed 
to model predictions. Nwadike et al. [35] detected backdoor attacks on medical imaging 
using DNN models trained by themselves using Grad-CAM saliency maps, inspired by 
the fact that explainability techniques were typically used in medical imaging applications 
[44]. However, adversarial defenses against backdoor attacks based on explainability 
might be limited since explainability could be easily deceived [45]. Specifically, 
adversaries could fine-tune DNN models to allow explainability methods (e.g., Grad-
CAM) to yield their desired saliency maps. Moreover, explainabiltiy-based defenses had 
failed to combat imperceptible backdoor attacks based on image warping [46] and 
physical reflection [47]. Adversarial attacks and defenses were cat-and-mouse games [29]. 
Hence, it might be difficult to defend against backdoor attacks. 

The vulnerability to backdoor attacks demonstrated here was limited to the COVID-
Net model. This was due to the fact that the number of reproducible open-source projects 
on DNN-based COVID-19 detection was limited at that time. However, we believed that 
vulnerability was a general property of DNN models, given that backdoor attacks were 
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effective in DNN models for various types of classification tasks [34,35]. The vulnerability 
of other DNN models for COVID-19 detection to backdoor attacks needs to be further 
investigated; however, the procedures used here might be useful as a standard framework 
for evaluating the vulnerability of DNN models. 

5. Conclusions 
The vulnerability of the COVID-Net model, an open-source DNN, for backdoor 

attacks was demonstrated. Collaboration among researchers, engineers, and citizen data 
scientists were expected in open-source projects to accelerate the development of high-
performance DNNs. However, the risk of backdoor attacks was inevitable. Although 
many DNN-based systems for COVID-19 detection were developed, the abovementioned 
risks were disregarded. Our findings highlighted that careful consideration is required in 
open-source development and practical applications of DNNs for COVID-19 detection. 
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