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Abstract

Autonomous vehicles (AVs) have been increasing rapidly on the road in recent years.
However, the safety of AVs is of significant concern, which we must ensure. AVs
use sensor information to achieve autonomy, but sensors such as cameras and lidar
have limitations, and vehicles cannot rely on them entirely for safe navigation. To
assist AVs with static information, high-definition maps (HD maps) can facilitate the
complex static details of the surrounding for safe autonomy. However, we can model
complex static information using HD maps for navigation; detecting and maintaining
the traffic participant’s dynamic information using sensors of the ego vehicle alone is
still a significant concern for safe navigation. In such a situation of sensing limita-
tions, Cooperative Intelligent Transport Systems (C-ITS) is one approach to facilitate
vehicle navigation through sharing information between the traffic participants.

The C-ITS approach has various Intelligent transportation system (ITS) station
units, namely Personal, Vehicle, Road-side and Central ITS station units. A Local
Dynamic Map (LDM) is a critical component in any ITS station’s facilities layer.
LDM is one way to maintain static and dynamic information of the traffic participants
in a consistent geometrical way. It is a necessary facility in C-ITS to share sensor
information between participating traffic agents. Moreover, it maintains information
about the objects that are either part of the traffic or influenced by it.

The International Organization for Standardization (ISO) and European Telecom-
munications Standards Institute (ETSI) have also made standardization efforts. Since
its inception in the SAFESPOT project, implementations of LDM have been mostly
four-layer data organizations. Where Layer 1 and Layer 2 maintain static information
and transient static information. Then, Layer 3 and Layer 4 contain transient dynamic
and highly dynamic data. Depending upon the requirement, the LDM community
realized memory-based or database-based LDM. We utilized the decision diagram to
enhance the safety aspect of the traffic participants in the memory/ database-based
LDM setup. We utilized Shared Binary Decision Diagram (SBDD) and Geohash
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granular properties to detect the near-miss situation, i.e. when vehicles come very
close.

However, besides DynaMap, there is also a common understanding since the
SAFESPOT project introduced LDM to use the database and supported query lan-
guage to retrieve data from the LDM. Hence, most implementations use different
databases and query languages to execute it. Although, the LDM community has
explored LDM depending on the database variants. Nevertheless, remarkably less
emphasis has been given to the type of data stored in the LDM. This thesis at-
tempted to fill this gap in the LDM to enhance the moving vehicle’s safety aspect.
We proposed a novel method of data representation for vehicle future geographical
occupancy information using a binary decision diagram (BDD). We show that shar-
ing BDD-based information is consistent with the C-ITS nature of the data sharing
since the algebraic operation between the exchanged BDDs can confirm the possibility
of future interaction. We calculated potential future occupancy using Kamm’s cir-
cle, shown in the ROS-based simulator and modified the mid-point circle generation
algorithm to find the BDD representing the set of Geohash enclosing the Kamm’s cir-
cle. We also reported data insertion and collision avoidance check time of the linked
list-based BDD on PostgreSQL database-based LDM.

Keyword

Local Dyanmic Map, Database, Cooperative Intelligent Transport Systems, Binary
Decision Diagrams, Kamm’s Circle, Autonomous Vehicles, Collision avoidance.
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Chapter 1

Introduction

1.1 Background

Industry 5.0 and Industry 4.0 talk about the connection between the physical and

virtual worlds. Industry 4.0 is considered a more technological-driven transformation.

Unlike previous industrial revolutions, Industry 5.0 focuses on achieving societal goals

beyond jobs and growth and is more human-centric, resilient and sustainable. It

is a more value-driven initiative, not a technology-driven revolution but will lead

to technological transformations, leading to more value generation in the economy,

ecology, and Society. In Japan Council for Science, Technology and Innovation made

an initiative of Society 5.0 in which every person can lead an active and enjoyable life

with the help of more human-centric technologies like in Industry 5.0 [3]. Today both

industrial revolutions are considered to exist side-by-side. The terminologies used in

5.0 and 4.0 industries may vary, but there is a cross-over between the technologies

[4]. So, many technologies in Industry 4.0 will benefit in achieving Industry 5.0.

In Society 5.0, mobility will play a vital role by making movement pleasant, with-

out congestion and accident-free through autonomous driving. Nevertheless, it has

become crucial to use Industry 4.0 technology for moving objects, e.g., vehicles, to

share data to make mobility smooth and safe since AVs cannot depend solely on the

sensors because of their limitations [5]. For example, LIDAR and cameras may suffer

from limited vision during the rain [6]. Therefore, the connection between them and

16



sharing data may enhance vision and the ability for safe, cooperative planning of the

vehicles. C-ITS is one such approach for sharing data between vehicles.

Also, According to SAE (Society of Automotive Engineers) International in the

United States, the international standard SAE J3016 was published in 2014 in the

first place, revised three times and released in the form of the latest version in 2021

[7], which defines ADAS (Advanced Driving Assistance System) and ADS (Auto-

mated Driving System) clearly. Simultaneously, European Commission has strongly

promoted industry-government academia research group projects on intelligent trans-

port systems in the framework of Horizon 2020, which focused on domains of CCAM

(Cooperative, connected and automated mobility) and C-ITS (Cooperative Intelligent

Transport Systems) [8, 9] with white papers and reports in 2017-2018. The aim of the

establishment of sustainable mobility extended from technological aspects; they have

encouraged a developmental process from three evolutions as C-ITS, CV (Connected

Vehicles) and AV (Automated Vehicles) to a practical CCAM realization in Society.

C-ITS main aim is to improve transport in terms of safety (e.g., crash avoid-

ance, obstacle detection), efficiency (e.g., navigation, lane access control) and comfort

(e.g., parking) using information and communication technologies [10]. Therefore, it

exchanges information with its surrounding Vehicles, Infrastructure (roadside/ ur-

ban), service providers (map providers), pedestrians, and more. Since there is a large

amount of information exchange between traffic participants, we need an efficient way

to handle information exchange between the concerned objects. To handle the above

critical information exchange, LDM plays a vital role, which is a critical component in

C-ITS. As we know, autonomous Intelligent Transport Systems use only sensor infor-

mation of the ego vehicle for navigation. In contrast, C-ITS uses sensor information

from the ego vehicle and sensor information from nearby vehicles or infrastructure

for navigation or planning tasks. Therefore C-ITS makes use of cooperation and

exchanges information with nearby infrastructure or vehicles using Vehicle to Infras-

tructure (V2I)/ Vehicle to Vehicle (V2V) or both Vehicle to Everything (V2X) for

ego vehicles operation. Thus the above message exchange between the vehicle and

infrastructure is one of the vital components of the cooperative operation of the traf-
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Figure 1-1: Different types of ITS stations.

fic participants. Various types of ITS stations are involved in the traffic situation as

follows [11] (please refer to figure: 1-1).

1. Personal ITS station - Personal ITS subsystem (ITS equipment used by an

individual) provides communication and application functionality in hand-held

devices such as PDAs or mobile phones. It contains a personal ITS station. The

devices used as an ITS station can connect/ interact with other ITS stations.

2. Vehicle ITS station - The Vehicle ITS subsystem, i.e. ITS equipment used in

the Vehicle, contains the Vehicle ITS station.

3. Roadside ITS station - Roadside subsystem contains Roadside ITS stations.

Mostly these subsystems are mounted near the road, for example, on the gantries

and poles.

4. Central ITS station - Central ITS subsystem contains the Central ITS station,

which is part of an ITS central system.

Every ITS stations consist of 7 layer architecture as follows (please refer figure

1-2):
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1. Applications.

2. Management.

3. Communications.

4. Facilities.

5. Networking and Transport.

6. Accesss.

7. Security.
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Figure 1-2: Seven layer architecture in an ITS station.

In ITS stations, the facilities layer is responsible for providing various facilities to

support cooperative traffic operations. Furthermore, information support is one of

the functions in this layer we focus on in our Thesis. The information support of the

19



ITS station contains the LDM as shown in figure 1-3, which is responsible for storing

the static and dynamic components of the traffic in a geometrically consistent way.

Facilities 

Layer

Application Support

Information Support

Station Positioning Service/ Message/ LDM

Management

Station State
Monitoring

Security Access/ 
Time Management

Mobile station 
dynamics

LDM Database Data representation

Location Referencing Station type/ 
Capabilitties

Addressing Mode Session Support

Mobility Management GEONET Support

Figure 1-3: LDM in facilities layer of ITS station.

To handle or accommodate the message/status exchange in the traffic, LDM plays

a significant role. LDM is a crucial facility in C-ITS. Please refer figure: 1-3. It

maintains information about the objects that are either part of the traffic or influenced

by it. LDM is divided into layers depending upon the dynamicity of data stored. It

contains four layers having:

1. Layer 1: Contains permanent static information. It contains detailed informa-

tion of a road map with application to ADAS. e.g., Map Data.

2. Layer 2: This layer is an extension of layer 1. It includes quasi-static informa-

tion. e.g., Traffic signs, trees, buildings.

3. Layer 3: This layer contains temporary information for a particular region. e.g.,

Traffic jams, weather conditions, traffic signals.

4. Layer 4: This layer contains temporary information about dynamic or highly

dynamic objects, e.g., moving vehicles and pedestrians.
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LDM maintains static (geographical) and dynamic (traffic participants) infor-

mation. The type of ITS station (See Figure 1-1) mainly decides the size of the

geographical area and the number of traffic participants will be needed to man-

age; the requirement of Infrastructure based LDM vary from the vehicle-based

LDM [12].

Hence, LDM is a data store, which traffic participants may utilize to know

information about the static, e.g. road geometry information and dynamic in-

formation like vehicle position information. However, although the LDM com-

munity has focused on realizing the LDM using different databases [13, 14, 15],

minimal emphasis has been given to the type of data stored itself. Therefore,

in this Thesis, we focused on the data stored to improve the safety aspect of

traffic participants in the LDM setup. The objective of this Thesis is discussed

in the following section.

1.2 Objectives

The initial standard given by ETSI is TR 102 863 (V1.1.1) [2], which described

LDM as an embedded conceptual data store in an ITS station that maintains

the topographical, positional, and status information related to the ITS station

within the host stations geographic area. It identified LDM as a key facil-

ity function in the facilities layer. Essential data sources of LDM are Coop-

erative Awareness Messages (CAMs) and Decentralized Environmental Noti-

fication Messages (DENMs). Standard discussed various applications of the

LDM, ’Cooperative navigation Location-based services’ are one of them, which

can provide location-based information for cooperative navigation. In addition

standard mentioned various types of data, namely, Type1 (static), Type2 (tran-

sient static), Type3 (transient dynamic) and Type4 (Highly dynamic). Also,

the standard discussed highly dynamic data (Type 4) information content for

nearby vehicles in which our work is an extension in an LDM to support the
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vehicle occupancy field. See table 1.1.

Table 1.1: Nearby vehicle information content for Layer 4 data. [2]

Information content Type Status

Vehicle identifier Pseudonymous identity

Vehicle position

∙ Latitude

∙ Longitude

∙ Position confidence (%)

∙ Elevation

∙ Elevation confidence (%)

∙ Heading

∙ Heading confidence (%)

Vehicle type One of the following:

∙ Car

∙ lobby

∙ ...

... ... ...

Route navigation advice

∙ Direction of next routed turn

∙ Distance to next routed turn

∙ Distance to next stop line

Vehicle occupancy (%)

... ... ...

The document also highlighted the requirement of the mechanism to update

the LDM by storing processed information on the required objects back into
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the LDM to make it available for other applications. ITS applications anal-

ysis : functionality portion of the standard mentioned use cases from the

LDM, out of which we believe our approach may benefit the following use

cases UC CA 03 (Across traffic turn collision risk warning), UC CA 04 (Merg-

ing Traffic Turn Collision Risk Warning), UC CA 05 (Cooperative merging as-

sistance), UC CA 06 (Intersection collision warning), UC CA 07 (Cooperative

forward collision warning).

This thesis aims to enhance the safety aspect of mobility in Society 5.0 by

improving the information content of the LDM in the C-ITS setup. In our

case, we achieve this requirement by improving the vehicle occupancy field to

store current and reachable positions in the near future to facilitate collision

avoidance scenarios and improve the traffic objects safety.

Mainly two problems are addressed:-

(a) Detection of the vehicles presents near the ego vehicle to facilitate the

near-miss detection.

(b) The future geographical occupancy information of the participating vehi-

cles consistent with the C-ITS nature of data sharing was introduced in

the LDM to detect potential interaction of the vehicles in the near future.

To achieve the above objectives, we used binary decision diagrams. Shared Bi-

nary Decision Diagram (SBDD) was used to facilitate near-miss detection, and

we used algebra over Reduced Ordered Binary Decision Diagrams (ROBDDs)

to verify the collision avoidance. Furthermore, Geohash was used to represent

the concerned geographical space because Geohash efficient partitioning of geo-

graphical locations as a boolean string helped us to treat geographical problems

as a Boolean string manipulation. Also, partitioning the earths surface using a

set of bounding boxes as Geohash allows us to solve the representation prob-

lem as there are infinite numbers of points to be mapped otherwise. A set of

Geohash was encoded into Decision Diagrams as a representation for the bigger

geographical space. Finally, we used Kamm’s circle method to estimate the
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geographical space a vehicle can reach soon and express them in the ROS-based

simulator CoincarSIM. We reported geographical occupancy data insertion and

collision avoidance check time of the linked list-based BDD on PostgreSQL

database-based LDM.

1.3 Key Features

This Thesis has the following main contributions listed below:

(a) Successfully utilized the features of decision diagrams in the LDM setup

to improve the safety aspect of the traffic participants.

(b) SBDD, along with Geohash, was used to detect near-miss situations of the

vehicles in the LDM setup.

(c) We demonstrated the Vehicle’s future geographical occupancy over time

as a feature in the LDM.

(d) Using a BDD, we proposed a novel data representation method for a ve-

hicle’s geographical occupancy information.

(e) We established that algebraic operations between the exchanged BDDs can

confirm the possibility of future interaction, which is consistent with the

C-ITS nature of data sharing.

(f) We presented the data insertion and collision avoidance check time of the

linked-list-based BDD on the PostgreSQL database-based LDM.

(g) We modified the mid-point circle generation algorithm to develop a BDD

for the Geohash set enclosing the Kamm’s circle of a given radius.

Hence, an information processing approach was adopted, i.e. information stored

in the LDM is not raw sensor data but processed information to make it practi-

cal in the safety aspect of the moving vehicles. Furthermore, Geohash made it

suitable to be used by any traffic participants without any coordinate transfor-
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mation. At last, JSON format was adopted to store encoded decision diagrams,

making it suitable for widely available databases or LDM.

1.4 Organization

Chapter 2, Literature Review: In this chapter, we reviewed the state-

of-the-art for LDM approach. Also, it examines the Geohash, HD maps,

reachability and Decision diagrams. Finally, we compared the essential

studies published on LDM, which are vital for the current study.

Chapter 3, Methodology: In this chapter, we described the method-

ologies we used to achieve our objective in this Dissertation. We discussed

static and dynamic maps suitable from an autonomous driving perspective.

Also, the chapter examined the construction of the Lanelet map using the

JOSM tool and a scenario in the ROS-based CoinCar-SIM simulator. Next,

we highlighted the importance of LDM in this domain. We illustrated the

mesh and its application in various areas and then emphasized Geohash as

a mesh and its significance. After that, we presented the ROS framework

we used to create a scenario in our case. Then we discussed reachability

analysis, Kamms circle and their applications in the domain of ADs.

Furthermore, We explained the Decision Diagrams (mainly ROBDD and

SBDD) and algebra supported by ROBDDs. Thereon, we presented Geo-

hash and Kamms circle and the usefulness of BDDs. At last, we ascertained

LDM implementations using Relational and Graph databases.

Chapter 4, Results: First, in this chapter, the Dissertation discusses

the risky area around the moving Vehicle. We divided the road segment (a

lanelet in this case) into the Voronoi region and guessed that a dangerous

place for any other non-ego vehicle is the region where the car is about to

enter next; we presented the results achieved. Then, we highlighted the

issue with the above approach and solved the above issue in following of
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the chapter. Furthermore, in Section 4.1, in another experiment, we pro-

posed to use Geohash for the localization of participating moving agents in

the experiment as a region for collision avoidance. We reason to encode the

Geohash into a decision diagram (here, SBDD) makes comparison faster

to check that vehicles are present at nearby locations than Geohash string

matching or calculating the geographical distance between the two vehicles

using floating point calculations when queried. In Section 4.2, we used bi-

nary decision diagram to maintain spatial location reachable by the Vehicle

over time. We showed how to find neighbouring Geohash and Geohashes

inside the reachable Kamm’s circle. Encoded overapproximated vehicle

position over time into the BDD displayed that collision check operations

over BDDs are helpful for safety check operations like collision avoidance.

We used the algebraic operation over BDDs for collision avoidance checks.

Chapter 5, Discussion: This chapter discusses the limitation which may

arise while using our approach. First, we mentioned the challenges we may

face while using SBDD. Also, we discussed the limitation due to Kamm’s

circle and ROBDD data structure and possible solutions which may be

helpful. Further, we presented how we could reduce the overapproximation

in our approach by incorporating lane restriction in the LDM setup and

also presented the approach that may help handle the uncertainty due to

communication delay/ data loss cases in the C-ITS scenario.

Chapter 6, Summary: At last, in this chapter, we summarized our

overall approach and results. Then, we discussed the problem solved and

how the approach discussed can be improved in the future, and finally, we

put the main points of the Thesis and concluded our work .
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Chapter 2

Literature Review

This chapter reviewed the state-of-the-art LDM approach, HD maps, Geohash,

occupancy prediction and the decision diagrams. At last, we summarize the

LDM approach relevant to the current research.

2.1 Local Dynamic Map

The initial standard given by ETSI is TR 102 863 (V1.1.1) [2]; it describes

LDM as an embedded conceptual data store in an ITS station that maintains

the topographical, positional, and status information related to the ITS station

within the host station’s geographic area. Along with ETSI, the ISO has also

made standardization efforts. Since LDM’s introduction in the SAFESPOT

[16] project, it has been common to implement it using a database and query

language to query information. SAFESPOT project has made a pivotal effort

to introduce the concept of LDM to improve road safety in the cooperative

scenario. The project ended in 2010, but part of its project report and pub-

lished papers by its members are available at [17, 18, 19, 20, 21]. Depending

upon the type of databases available, mainly relational/graph and streaming

databases type of LDM varies [13, 14, 15]. To store and monitor the data for

the ITS station to handle them for various dynamicity involved in the traffic
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scenarios based on the world model. Out of which graph database provides

good performance for a large amount of data due to its underlying technology

[14, 22]. However, there is no published result comparing the performance of

the different databases available, as per best of our knowledge.

In [22] the standard data format OpenLABEL was discussed for all the sensor

information before storing it in the database. It is concerned in the above paper

that, unfortunately, the research community primarily ignored the standard

data format for an LDM. However, it has been a critical component of the C-

ITS. It used a standard OpenLABEL JSON data format for data annotation in

autonomous driving cases.

ETSI EN 302 895 (V1.1.0) [23] extended the previous report and added new

functionalities like compositional data structures and LDM Data Providers/

Customers. International standards are ISO/TS 17931:2013 [24] , and ISO/TS

18750:2015 [25] report defines a comparable standard to ETSI. Eggert et al.

[14] proposed Relational Local Dynamic Map (R-LDM), which is a fully in-

terconnected graph-based approach instead of layered. The authors claimed

to represent a consistent world model with this approach. It used the Neo4j

database and CYPHER query language to implement the LDM and used it for

camera-to-map alignment and risk-based behaviour evaluation. Eiter et al. [15]

used semantic web technologies, here ontologies combined with spatial stream

database. LDM ontology with expressive spatial-stream query language helped

to infer new information over streams. The authors showed the integration of

semantic web technologies with LDM and V2X. The experiment involved the

PostgreSQL extension PIPELINEDB database and PTV VISSIM simulation en-

vironment. Netten et al. introduced DynaMap. The authors emphasized that

the dynamic map requirement for roadside units is different from the dynamic

map for vehicles. It is a dynamic map for Roadside or Central ITS Stations. It

proposed a novel architecture for world models, world objects, and data sinks.

Koenders et al. [26] utilized the fact that LDM cannot store the data of all
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things all the time. Hence, the author introduced a streamed filtering technique

to delete irrelevant data. Moreover, it used their relational schema, which has

tables for areas, roads and objects. Zoghby et al. [27] built distributed LDM

in the context of Vehicular Ad hoc Networks (VANets). Vehicles cooperate to

increase their field of view. It created an extended map called Dynamic Public

Map (DPM), depending upon Dynamic Distributed Maps (DDM). Simulation

having many vehicles validates the distributed dynamic map. Shimada et al.

[13] implemented the LDM using the specification given by the SAFESPOT

project to evaluate the performance of the LDM while changing the number of

vehicles and the computer environment for the collision detection task. Authors

implemented LDM using Postgres database with PostGIS extension and loaded

map in the database using. osm2pgsql tool for data in static layer concerning

tables. PreScan and Simulink created a simulation environment to populate the

dynamic layer tables.

2.2 HD maps/ Geohash

In [28, 29, 30] discussed AV’s navigation across cities facing various traffic sce-

narios and obstacles. The above publication mentioned the importance of HD

maps modelling the static details of the traffic. An OpenStreetMap (OSM) is

a widely available free mapping project available online. OpenDrive [31] is the

map format that is useful for the detailed mapping of the static scenario avail-

able in the traffic and is suitable for the AVs navigation support. Lanelet [32, 33]

discussed a different format for the detailed mapping of the static scenario in

the traffic arena. Lanelets are the extension of the OSM format suitable to

handle complex road scenarios at a lane level accuracy. Geohash [34], GeoSOT

[35] and GeoSOT-3D [36] are some of the methods to divide the geographic

coordinates into a grid in a hierarchical mesh and assign code. To represent any

position on the earth, it uses a specific grid and has a corresponding code.
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2.3 Occupancy Prediction

Barth et. al. [37] and Eidehall et. al. in [38] worked with single future vehicle

occupancy of the vehicle soon later. Barth et. al. [37] detected the full-motion

state of the vehicle, including velocity, acceleration and yaw rate. Eidehall

et. al. [38] worked upon the auto brake system and predicted the path which

would be optimal for the ego vehicle based on the predicted positions of all the

objects present in the scene. Multiple studies based on a countable set of future

predicted paths are available at [39, 40, 41], and predictions with the associated

probability distribution are in [42, 43, 44]. Although the above work results

have contributed to the future position prediction of the traffic participants for

our case in this Thesis, we used the findings from work of Althoff et. al. in

[45][46] to predict possible worst-case occupancy.

2.4 Decision Diagrams

Sheldon B. Akers [47] first introduced the concept of representing Boolean func-

tion in terms of a diagram. Later, Randal E. Bryant [68] introduced Reduced

Ordered Binary Decision Diagram (ROBDD). Due to the evolution of Deci-

sion Diagrams over the years, BDDs have many variants like ROBDD; Zero

suppressed Decision Diagram Zero suppressed Decision Diagram (ZDD) [48],

Shared Binary Decision Diagram Shared Binary Decision Diagram (SBDD) [48],

Multi-Terminal Binary Decision Diagram Multi-Terminal Binary Decision Di-

agram (MTBDD) [49] and many more. This Thesis used SBDD and ROBDD

for the functional enhancement of the LDM.

Following is the summary of the research on the LDM described above:-
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Table 2.1: Summary state-of-the-art of the LDM.

Papers Description

[17, 18, 19, 20, 21]

The Local Dynamic Map was first introduced in the SAFESPOT

project. SAFESPOT project has made a pivotal effort to

introduce the concept of LDM to improve road safety in the

cooperative scenario. The project ended in 2010, but part of its

project report and published papers by its members are available.

SAFESPOT project modelled LDM as a four layer model.

[2, 23, 24, 25]

The International Organization for Standardization (ISO ) and

European Telecommunications Standards Institute (ETSI) and

have also made standardization efforts. Standard mentioned

about data which are needed to be stored in the database as well

as its complete role in the Intelligent Transport Systems.

[13]

First, to implement the LDM and publish its performance results.

The database used was Postgres and Postgis (Same as the

SAFESPOT project). The paper shows that as the number of

vehicles increased, the LDM internal processing experienced a

high load.

[14]

First, to implement LDM using a Graph database. The database

used was Neo4j. The paper shows that a real-world model of a

traffic scenario can be best modelled using a graph database.

[15]
Implemented LDM using streaming database. Ontology was used

to query the database.

[12]

Dynamap: Emphasized that the dynamic map requirement for

roadside units is different from the dynamic map for vehicles. It is

a dynamic map for Roadside or Central ITS Stations.

[22]

Implemented LDM using Graph database and converted sensor

data to OpenLABEL format, a standard JSON file for all the

sensor data. It increases the interoperability of the data as JSON

files can easily be transferred over the network and stored in the

database. Also, the OpenLABEL format acts as a standard so

every other vehicle can understand it.
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Chapter 3

Methodology

This chapter provides a background of the technologies that support an autonomous

driving project and is needed to understand this Thesis. First, in section 3.1, we

introduced the type of maps used to manage static and dynamic information of the

traffic participants. Subsequently, we provided insights into the domain of the Mesh

in section 3.2, Occupancy Prediction in section 3.3, after that in section 3.4 described

Decision Diagrams and at last, we discussed the database used to realize LDM in this

Thesis.

3.1 Maps in Autonomous Driving

3.1.1 Static HD maps

HD maps are essential for autonomous driving [28, 29, 30]. The purpose of HD maps

is to provide correct information about the vehicles surroundings. They carry high

importance because sensors have their limitations due to various conditions (e.g. Rain

is terrible for LIDAR), occlusions, and sensor range; also, traffic encompasses rules

and regulations, which are very difficult for any sensor to detect always. Therefore,

maps help in reducing the uncertainty arised due to sensor information. Nevertheless,

to support functions in autonomous driving, maps should be able to describe complex

traffic scenarios on the highway and the city situations. Therefore, HD maps act as
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knowledge for the navigating vehicle to know the rules and regulations for its lane

and environment.

Thus due to complex requirements in the AD situation, we need detailed infor-

mation on the situation. Therefore research community on ADs has made various

attempts. Although the widely available free mapping project OSM [50] is available; it

cannot model complex city scenarios, requiring lane-level accurate information with

various rules. In this direction, various companies use maps by commercial map

providers like Here [51, 52] and TomTom [53, 54]. In this direction, OpenDrive [31]

and Lanelet [32, 33] are the two freely available versions of HD maps, and AD domains

are widely using these map formats. Although OpenDrive is comprehensive enough

to create the details of the complex traffic scenarios, there is no freely available library

to interpret and process the data. We can easily modify the lanelet map using the

voluntarily available tool JOSM [55] after adding ’lanelets.mapcss’ and ’lines.mapcss’

style files in the JOSM editor style and ’laneletpresets.xml’ for as tagging presets.

We choose Lanelet as a mapping platform to model static information for our case

for the above reason. In particular, we model Lanelet information in the database by

storing corresponding information to create a static layer of the LDM. Lanelet uses

OSM based XML representation of the data. It consists of three layers:

1. Layer 1 (physical layer): consists of visual elements on the road (points and

linestrings).

2. Layer 2 (relational layer): The physical layer elements are connected to create

the lanes, areas and traffic rules (lanelet, area and regulatory elements).

3. Layer 3 (topological layer): Deal with context and neighbourhood relationships

of the relational layer.

Points are the fundamental element of the Lanelet map. It can represent a point on a

road, poles or trees etc. Two or more Points combine to form LineStrings (e.g. road

markings, curbs). These linestrings combine to form the lanelets. Non-differentiable

cases may arise, but a possible solution exists [56]. Lanelets are the atomic section

33



of the map where the directed motion occurs, i.e. within lanelet, traffic rules do not

change, and their topological relationship with other lanelets will also not change.

Therefore, we can combine these lanelets to form a complex physical map layer. See

figures 3-1, 3-2 and 3-3.

Left boundary

Right boundary

Lanelet

Figure 3-1: Lanelet.

Figure 3-2: Lanelet map for an intersection scenario.
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Figure 3-3: Lanelet map for a city Road.

3.1.2 Dynamic maps

As static maps are essential for developing complex traffic scenarios which do not

move, on the other hand, dynamic functionality in the map is also a fundamental

requirement to keep track of the moving entities in the traffic. Furthermore, we

need dynamic information about the traffic participants since safe predictive driving

is the most significant challenge in addition to the precise vehicle localization [57].

Most dynamic map implementations utilize a four-layer model to organize data, as

mentioned in LDM. In these layers, one and layer two contain static and transient

static information, plus layers three and four have transient dynamic and highly

dynamic data where update time is less than a month, an hour, a minute and a

second for the layers 1, 2, 3 and 4 respectively. Although six-layer model is proposed

in [58, 59].
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3.2 Geograhical Mesh and Coding

Geographical data can be divided broadly into three types [60]:

1. Vector

2. Raster

3. Mesh

Raster is the simplest form of a mesh. However, vector or raster is not always suitable

for modelling the natural world features, such as to model hydrology, and metrology

data mesh data are more suitable than vector or raster. Moreover, the mesh can be in

many forms like unstructured, structured or mixed meshes. However, a mesh is highly

suitable for many rendering applications [61]. Nevertheless, for this Thesis, we needed

a geographic mesh with associated code to support our application’s localization.

Geographic mesh plays a vital role in organizing spatial data and assigning cor-

responding code. It divides the earth’s surface into a multi-level grid without spatial

overlap. Mesh model and associated grid coding system have added advantages in

many aspects, like increasing spatial retrieval efficiency through dimensional reduc-

tion or data management of massive distributive datasets. Geohash [34], GeoSOT [35]

and GeoSOT-3D [36] are some of the methods to divide the geographic coordinates

into a grid in a hierarchical mesh and assign code [62]. Among these, we are using

Geohash as it has simple rules for coding. Although, Geohash has some disadvantages

like it does not have a clear rule for encoding multi-dimensional objects like lines or

polygons [63] [64]. Moreover, Geohash encoding depends upon the z-order curve, so

its spatial locality is not good. Therefore, there may be significant differences be-

tween Geohash encoding of nearby space [65]. However, we considered it because of

its simple structure. It divides the whole geographical space into a binary grid where

alternate bits cross bit by bit and represent longitude and latitude. See figure 3-4.
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3.2.1 Geohash

Geohash represents geographical locations using a sequence of letters and digits. Geo-

hash consists of English characters except a, i, l, o and contain digits 0-9 at every level

of the representation. The string length corresponds to the size of the geographical

area designated by the Geohash, as shown in Table 3.1. It is a hierarchical spatial

data structure subdividing the space into smaller subspaces depending on the Geo-

hash length. For example, the first character divides the space into 4 x 8 (four rows

and eight columns); after that division of regions alternates between 8 x 4 and 4 x 8.

A space-filling curve decides the sequence number of the areas. When alternate char-

acters binary representation are combined in Geohash, two strings for determining

row X (latitude bits) and column Y (longitude bits) cross bit by bit.

0/

00000

    1/

00001

4/

00100

     5/

00101

h

/10000

j/

10001

n/

10100

p/

10101

2/

00010

3/

00011

6/

00110

7/

00111

k/

10010

m/

10011

q/

10110

r/

10111

8/

01000

9/

01001

d/

01100

e/

01101

s/

11000

t/

11001

w/

11100

x/

11101

b/

01010

c/

01011

f/

01110

g/

01111

u/

11010

v/

11011

y/

11110

z/

11111

Y- longitude bits

X – latitude bits

Figure 3-4: Geohash follow an alternate sequence of space filling curves. Alternate
characters binary representation determining latitude X bits and longitude Y bits
cross bit by bit.
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Table 3.1: Geographical size of Geohash encoding

#Label in

Geohash

Distance in

north and south [m]

Distance in

east and west [m]
An Geohash example

1 4989600 4050000 w

2 623700 1012500 wy

3 155925 126562.5 wyh

4 19490.625 31640.625 wyhb

5 4872.65625 3955.07813 wyhby

6 609.082031 988.769531 wyhby3

7 152.270508 123.596191 wyhby3k

8 19.0338135 30.8990479 wyhby3kf

9 4.75845337 3.86238098 wyhby3kf5

10 0.59480667 0.96559525 wyhby3kf5f

11 0.14870167 0.12069941 wyhby3kf5fs

12
0.01858771

(≈ 1.86 [cm])

0.03017485

(≈ 3.02 [cm])
wyhby3kf5fst

3.3 Occupancy Prediction

In Society 5.0, to facilitate safe mobility, it should be accident-free. Current Au-

tonomous Vehicles use sensor information-based algorithms for safe navigation, but

sensors have their limitations. In C-ITS, vehicles cooperate between them to facilitate

safe navigation. Local Dynamic Map plays a significant role in traffic participants

sharing information in the C-ITS setup. One of the main challenges for ensuring safety

in Autonomous Driving (AD) is the uncertain behaviour of the traffic participants.

Therefore, to ensure safety in the traffic scenario, we need the current and future

occupancy of the traffic participants. See figure 3-5. Consequently, we found the

participants’ future occupancy in the C-ITS procedure. We stored them in the LDM.

We predicted the worst-case occupancy using Kamm’s circle for a given scenario.

Moreover, If the vehicle’s intention is known, then the expected occupancy will
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be a subset of the worst-case occupancy. So first, we tackled the problem for the

worst-case occupancies and later discussed in the Discussion chapter that the occu-

pancies with traffic restrictions would be subsets of worst-case occupancy. In this

Thesis, We approached the problem of occupancy prediction from an abstraction of

reachability analysis point of view. Using the above approach, we overapproximated

the occupancy of the participating vehicles.

Society 5.0

Safe Mobility

Sensor Limitations

Autonomous Vehicles

Accident Free

Cooperative ITS

Vehicles cooperate to 

ensure safety

Local Dynamic Map

Stores information 

about the traffic

Vehicle Occupancy 

Information

Layer 4

(Current and Future Information)

Current Location

Future Occupancy

LDM

Figure 3-5: Store future occupancy in the LDM.

Below we describe the concept of reachability analysis, Abstraction and the use

of Kamm’s circle in Abstraction to find occupancy based on [66][46].

The mathematical model of non-ego vehicle considered in [45, 46] are as follows:

1. 𝐶1: Positive acceleration becomes Nil after vehicle speed reaches the maximum

speed (𝑉𝑚𝑎𝑥).
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2. 𝐶2: To a speed above the parameterized speed, positive longitudinal accelera-

tion is inversely proportional to the speed.

3. 𝐶3: Driving backwards is not allowed.

4. 𝐶4: 𝑎𝑚𝑎𝑥 is the maximum absolute acceleration.

5. 𝐶5: Leaving road/lane/crosswalk/sidewalk boundary is not allowed. Crossing

a lane is allowed when lane marking or traffic rules do not restrict it.

Out of which we consider 𝐶4. Nevertheless, decreasing the number of constraints

increases uncertainty and leads to higher occupancy regions for a vehicle in the fu-

ture. So it will not affect our future geographical occupancy representation since

more information is available regarding the traffic participants. So we can introduce

them. To reduce the uncertainty, we can include more conditions and, hence, future

geographical occupancy prediction will be more precise and conservative. Before pro-

ceeding further, we will explain the concept of Reach set, Reachable set on finite state

machine to understand the idea. Later we define the model for a dynamical system

and reachable set for a given model. Thereon we define Abstraction and Occupancy

prediction using Kamm’s circle. For more details please refer [67][46].

3.3.1 Reach Set and Reachability set for a finite state ma-

chine

Let 𝑆 = (𝑋,𝑈, 𝑇 ) is a finite state machine. Where 𝑋 is the finite set of states, 𝑈 is

the finite set of control inputs and 𝑇 : 𝑋 × 𝑈 → 𝑋 is the transition function. 𝑋0 is

the set of initial states.

Reach Set

The set of states 𝑥 at time 𝑡 for which sequence of control inputs 𝑢0, 𝑢1, ..., 𝑢𝑡−1 exists

from the initial states 𝑥0 ∈ 𝑋0 are known as Reach Set 𝑅(𝑋0, 𝑡). Reach sets for

discrete case are shown below, Refer figure: 3-6, 3-7 and 3-8.

In the following figures, control input set 𝑈 has the values to go East (𝐸), West (𝑊 ),
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North (𝑁) and South (𝑆). The red and blue bins represent the initial and reach states

at time 𝑡, respectively.

Reach set at t=1.

Initial State.

U = {E,W,N,S}

Figure 3-6: Reach set in a finite grid at time t=1.
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Reach set at t=2.

Initial State.

U = {E,W,N,S}

Figure 3-7: Reach set in a finite grid at time t=2.

Reach set at t=3.

Initial State.

U = {E,W,N,S}

Figure 3-8: Reach set in a finite grid at time t=3.
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Reachable Set

Reachable set at time 𝑡 is the union of all the Reach set ≤ 𝑡 i.e (Refer equation 3.1

and figure: 3-9).

R(𝑋0, 𝑡) = ∪𝑠≤𝑡𝑅(𝑋0, 𝑡) (3.1)

Reachable set at t=3.

Initial State.

U = {E,W,N,S}

Figure 3-9: Reachable set at time for finite grid t=3.

3.3.2 Reachable set for a dynamical system

First, we define a dynamical system model used and then we define the reachable set

for a given model.

Model

In this thesis, we considered a vehicle as a point mass model [68]. Represented as:

𝑆𝑥(𝑡) = 𝑎𝑥(𝑡), 𝑆𝑦 = 𝑎𝑦(𝑡),
√︁
𝑎2𝑥 + 𝑎2𝑦 ≤ 𝑎𝑚𝑎𝑥. (3.2)

The point mass model abstracts the vehicle as a point, and it can only accelerate
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within the bounds of Kamm’s circle. In addition, the point mass model ignores the

minimum turning radius of the vehicle. We can use the Kinematic single-track model

to include a minimum turning radius. Higher order differential equation in 3.2 can

be written into the set of linear differential equations using state space model. State

space model of a car is given as:

𝑥̇ = 𝐴𝑥+𝐵𝑢 (3.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣𝑢1

𝑢2

⎤⎥⎦ (3.4)

Where in 3.4 has state variables as:

𝑥1 = 𝑠𝑥, 𝑥2 = 𝑠𝑦, 𝑥3 = 𝑠𝑥 = 𝑣𝑥, 𝑥4 = 𝑠𝑦 = 𝑣𝑦 (3.5)

𝑢1 = 𝑎𝑥, 𝑢2 = 𝑎𝑦 (3.6)

The model is defined as:

𝑀 = (𝑓, 𝜒0, 𝑈) (3.7)

Where 𝑓 belongs to the dynamical system:

𝑥̇ = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (3.8)

Using equations 3.4 and 3.8 𝑓 represents the set of linear differential equations repre-

senting the dynamics of the model. Where 𝑥 and 𝑢 represents the state of the system

and input respectively at any time 𝑡. Possible initial states and inputs are bounded

sets belonging in 𝑥(0) ∈ 𝜒
0, ∀𝑡 : 𝑢(𝑡) ∈ 𝑈 .
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Reachability

For a given model 𝑀 reachability for a time interval 𝑡 ∈ [0, 𝑟] is defined as:

R(𝑀, [0, 𝑟]) =
⋃︁

𝑡∈[0,𝑟]

𝑅(𝑀, 𝑡) (3.9)

Where 𝑅(𝑀, 𝑡) is reach set at time 𝑡.

Hence, for a discrete case 𝑡 ∈ {𝑡1, ..., 𝑡𝑛}. Reachable set at time interval 𝑡 ∈ {𝑡1, ..., 𝑡𝑛}

is as follows:

R(𝑀, [𝑡1, ..., 𝑡𝑛]) =
⋃︁

𝑡∈{𝑡1,𝑡2,...,𝑡𝑛}

𝑅(𝑀, 𝑡) (3.10)

The above equations with conditions 𝐶1 - 𝐶5 form a hybrid automaton; however,

the reachability analysis of a hybrid automaton is time-consuming. Hence observing

[46], we pursued Abstraction.

Abstraction

For a model 𝑀 of a given dynamical system, Abstraction is the model 𝑀𝑖 if the

reachable set of the 𝑀𝑖 includes all the reachable sets of the 𝑀 .i.e (See figure:3-10)

∀𝑡 > 0 : 𝑅(𝑀, 𝑡) ⊆ 𝑅(𝑀𝑖, 𝑡) (3.11)
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Figure 3-10: Abstraction of a model contains all reachable states which are reachable
by the original model.

For considering occupancy [46],:

𝑝𝑟𝑜𝑗(𝑥) = [𝑥1, 𝑥2, 𝑥3]
𝑇 (3.12)

Where; state vector 𝑥 ∈ R for a given model and 𝑥1, 𝑥2, 𝑥3 are x-position, y-

position and orientation in the 2-D space. i.e for a given state variables of the model

𝑝𝑟𝑜𝑗(𝑥) returns the corresponding location (x,y positions) and orientation of the ve-

hicle.

Hence equation,

𝑝𝑟𝑜𝑗(𝑅(𝑀, 𝑡)) = {𝑝𝑟𝑜𝑗(𝑥) | 𝑥 ∈ 𝑅(𝑀, 𝑡)} (3.13)

gives all positions and orientation. For the given abstractions of model 𝑀0 as models

𝑀𝑖, 𝑖 = 1, ...,𝑚.
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Therefore for the Abstraction of the model, 𝑀0 as models 𝑀𝑖, 𝑖 = 1, ...,𝑚 follows

the following property:

∀𝑡 > 0 : 𝑅(𝑀0, 𝑡) ⊆ 𝑅(𝑀𝑖, 𝑡) (3.14)

and over-approximated occupancy is given by equation:

∀𝑡 > 0 : 𝑝𝑟𝑜𝑗(𝑅(𝑀0, 𝑡)) ⊆
𝑚⋂︁
𝑖=1

𝑝𝑟𝑜𝑗(𝑅(𝑀𝑖, 𝑡)) (3.15)

As per the above approach, the accuracy and computation time will increase as

the number of abstract models increases. In our case, we used an Abstraction model

considering condition 𝐶4. Therefore, occupancy only based on 𝐶4 will overapproxi-

mate the occupancy based on 𝐶1 - 𝐶5. Furthermore, Kamm’s circle was used as an

abstraction model to define occupancy based on 𝐶4.

Kamm’s Circle

It is challenging to consider the trajectory that is possible by vehicle over time. In

[46][69] described the overapproximated occupancy (Reach Set) at time t with centre

c(t) and radius r(t) as (See figure 3-14):

𝑐(𝑡) =

[︂
𝑠𝑥(0)

𝑠𝑥(0)

]︂
+

[︃
𝑣𝑥(0)

𝑣𝑦(0)

]︃
𝑡 ; 𝑟(𝑡) =

1

2
𝑎𝑚𝑎𝑥𝑡

2 (3.16)

Where;

∙ 𝑐(𝑡) is a position of a vehicle at time t.

∙ 𝑠𝑥(0) 𝑎𝑛𝑑 𝑠𝑦(0) is the position of the vehicle at time t=0.

∙ 𝑣𝑥(0) 𝑎𝑛𝑑 𝑣𝑦(0) is the velocity in x and y directions of vehicle at time t=0.

∙ 𝑟(𝑡) is radius of a Kamm’s/ Traction circle at time t.

∙ 𝑎𝑚𝑎𝑥 is the maximum acceleration possible of a given vehicle.
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Longitudinal force Potential

Lateral force 

potential

(a) High lateral force limit the longitude-
nal force.

Longitudinal force Potential

Lateral force 

potential

(b) High longitudenal force limit the lat-
eral force.

Figure 3-11: Longitudenal and Lateral forces limit inside a Kamm’s circle .

Kamm’s/ Traction circle limits the maximum forces applicable between tires and

the road. See figure: 3-11.

So, 𝑎𝑙𝑜 longitudenal acceleration and 𝑎𝑙𝑎 lateral acceleration satisfies eq.3.17 with-

out losing the grip. See figure 3-12.

Longitudinal force Potential

Lateral force 

potential

(a) Acceleration with Left lateral force.

Longitudinal force Potential

Lateral force 

potential

(b) Deacceleration with Right lateral force.

Figure 3-12: Longitudenal force (Acceleration/Deacceleration) and Lateral force
(Left/ Right).
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Longitudinal force Potential

Lateral force 

Longitudinal force Potential

Lateral force 

(a) (b)

Figure 3-13: Reach sets/ Reachable set for the center of gravity of a moving car.

𝑎2𝑙𝑜 + 𝑎2𝑙𝑎 6 𝐹𝐹

𝑎2𝑙𝑜 + 𝑎2𝑙𝑎 6 𝜇2
𝑟𝑔

2
(3.17)

Where 𝜇𝑟 and 𝑔 represents the friction coefficient and gravitational acceleration

respectively. eq. 3.17 forms and circle of radius 1
2
𝜇𝑟𝑔𝑡

2 and using eq. 3.16, we get;

𝑎𝑚𝑎𝑥 = 𝜇𝑟𝑔.

Hence, the Reach set for a vehicle at time 𝑡 is given by Kamm’s circle. Further-

more, the Reachable set will be a collection of all such Reach sets in the future. So,

we can use the Reachable set as occupancy for a given vehicle in the future.
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Figure 3-14: Reach sets/ Reachable set for the center of gravity of a moving car.

3.4 Decision Diagrams

3.4.1 Boolean Function

A Boolean function is of the form 𝑓 : {0, 1}𝑘 → {0, 1} , where k-tuples of Boolean

variables takes values to Boolean values 0 (false) or 1 (True). Suppose valuation 𝑉

means the total combination of values that k-tuple boolean variables can take, then

each k-tuple assignment in 𝑉 can be written as Γ : 𝑣 → [0, 1] from value in fixed set V

to a boolean value. Where 𝑣𝜖𝑉 . The Boolean function can also be represented using

Boolean variables and Boolean operations (and, or, not), also known as literals. e.g.

𝑥1𝑥2𝑥3 + 𝑥4. Where concatnation, + and 𝑥 represent and, or, not operations over

variables.

3.4.2 Reduced Ordered Binary Decision Diagrams

The BDD is a graph representation of the boolean functions. The Basic idea behind

the BDD is Divide and Conquer. More specifically, BDD is a rooted directed acyclic

graph (DAG), where non-leaf nodes have labels with Boolean variables and leaf nodes
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have labels 0 (zero) or 1 (True), which correspond to boolean function output. BDD

can represent most of the boolean functions in feasible size compared to the truth table

or binary tree for boolean functions that always takes 2𝑛 space. Decision Diagram

in which the relative ordering of variables on each path from the root to the leaf is

fixed (also known as Ordered Binary Decision Diagram (OBDD)), and it combines

the isomorphic subgraphs present in the graph to create Reduced Ordered Binary

Decision Diagram (ROBDD).

Each OBDD has the following components [70]-

𝐺 = ((𝑄, 𝑣0, 𝐸), 𝑉 ∪ {0, 1}, <, 𝐿)

∙ (𝑄, 𝑣0, 𝐸) is a rooted directed acyclic graph. 𝑄 is a finite set of nodes. 𝑣0 is the

root node and 𝐸 ⊂ 𝑄 × 𝑄. Each non-leaf node has its successors, namely low

and high.

∙ 𝑉 is a finite set of Boolean variables.

∙ < is a total order on 𝑉 ∪ {0, 1}

∙ 𝐿 is a mapping satisfying the following conditions:-

– Leaf are mapped to 0 and 1 and non-leaf nodes are mapped to 𝑉 .

– If (v,v’) ∈ 𝐸 then 𝐿(𝑣) < 𝐿(𝑣′).

Thus a Graph 𝐺 over boolean variables 𝑉 represents a boolean function. The inter-

pretation of BDD is based on the Shannon Expansion.

𝑓 = 𝑥𝑓 [𝑥] + 𝑥𝑓 [𝑥] (3.18)

Thus, according to the Shannon expansion, each node of the graph has low and high

and ROBDD can be obtained from OBDD by minimizing the redundancy in the

representation using the following rules:

∙ Merge all zero and one nodes to a single unit of zero and one node.
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∙ Merge any isomorphic nodes. i.e. if 𝑙(𝑥) = 𝑙(𝑦) and ℎ(𝑥) = ℎ(𝑦) then merge

these nodes into one and point all incoming node to any one of them. Here 𝑙

and ℎ represents low and high child of any given node of a graph.

∙ Eliminate any node that have two children nodes as isomorphic.

The size of the ROBDD depends upon the represented function and the variable

order we choose. For a given variable order, ROBDD representation for the Boolean

function is the canonical representation, i.e. function has a unique representation.
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Binary tree for set {0000,0110,0111,1110}
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Binary Decision Diagram 

for set 

{0000,0110,0111,1110}

Figure 3-15: (a) Binary Decision Tree representation for a given set has fixed size and
large as compare to BDD representation. (b) binary decision diagram representation
for a given function has compact representation.

3.5 Database

Since the introduction of the LDM in the SAFESPOT, using a database to implement

has become a common standard. Although the non-database implementation of the

LDM also exists [27]. The LDM community, to a great extent, explored the type of

database performance in the implementation of the LDM [13] [15] [22] [26] . Also,

supporting query languages for the concerned databases were utilized to execute the
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query in the database to insert or extract the data. In general, the following databases

are available in the literature in the majority.

1. Relational database

2. Graph database

In the current Thesis, we used both non-database/ databases implementation

without emphasizing the particular kind of database for any specific task since our

primary goal was to facilitate LDM for the safety enhancement of the participating

vehicles.

In particular, in this Thesis, we utilized memory-based LDM and conducted a

relational database (PostgreSQL database + SQL query language) based implemen-

tation for storing future occupancy information in the LDM[22]. Although the type

of database used significantly affects the performance of the LDM, we used it inde-

pendently since our main focus will be on the information processing approach of

the data before storing it in the LDM to facilitate the safety verification task in the

C-ITS setup.
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Chapter 4

Results

4.1 Potential Risk Region Representation and Near

Miss Detection

Autonomous Driving use Lanelets for physical layer representation of roads. It is

a polyline representation of road boundaries, an extension of the OSM data model.

An atomic Lanelet consists of left and right polyline boundaries. A group of several

Lanelets forms a road network (as shown in figure 3-1). Vehicle localizes by the

Lanelet in which it is present, but they often can have extended length and wide

breadth; therefore, controlling and ensuring the safe vehicle movement within Lanelet

is a critical issue we address here in this subsection. We propose to divide the Lanelet

into several regions and consider occupancy within areas/regions in a Lanelet.

Figure 4-1: Division of Lanelets into several regions.

Also, graph-based LDM (Figure: 4-2, 4-3) represent the areas within the road/

Lanelets in this subsection.
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Figure 4-2: Graph based representation of the LDM. Neo4j Command:- Match(n)
Return n;.

Figure 4-3: LDM Schema. Neo4j Command:- CALL db.schema.visualization().

4.1.1 Approach and Outcome

CommonRoad [71] was used to evaluate our method. CommonRoad scenarios contain

the road network using Lanelets. The first two lanelets were utilized, shown in Fig. 4-

4. (a), represented by yellow filling and dotted red in the figure. Next, we interpolated
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in-between values of the polylines and found Voronoi regions using them. Voronoi

regions divide the lane into small sub-divisions. These divisions and regions in road

networks were further represented using the graph. Then depending upon the area in

which the vehicle belongs, we can predict that its forward region and the neighbouring

region to which the vehicle may go shortly are the risky regions for other vehicles.

Thus, using the above analogy, predictions of dangerous areas within the lane were

introduced and depending upon the accuracy we need, the size of region grids can be

changed before the experiment.

In Fig. 4-4 a) red rectangle contains the vehicle under analysis in CommonRoad

Scenario: ZAM ZIP 1 2 T-1. Fig. 4-4. b). red filling denotes risky regions just

before the turn of the vehicle under analysis. Fig. 4-4. c). red filling denotes the

risky regions after the turn of the vehicle under analysis. Blue points in Fig. 4-4. b)

and c) denotes lanelet boundary points and orange points denotes the Voronoi points

computed by the algorithm created Voronoi region.
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Figure 4-4: (a). Scenario: ZAM ZIP 1 2 T-1. b) and c): Voronoi regions and risky
regions

Dividing Lanelets into regions can help for detecting more accurate localization
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and risky areas prediction within Lanelets. But, the above method suffers from serious

drawbacks such as:-

∙ Voronoi based region’s information is not based on an established standard that

all the participants can understand and share.

∙ When we store vehicle localized regions in the LDM, it should support easy

checking to avoid risky situations.

Therefore to tackle the above drawbacks, we used the following approaches:

∙ We used Geohash to divide the Lanelet into regions. Geohash is the well-

established standard that all the traffic participants can understand. (See figure

4-5)

∙ We encoded the Geohash into Shared Binary Decision Diagram to check if traffic

participants share the exact Geohash location. Sharing the Geohash locations

signifies vehicles are very close, furthur which can lead to a risky situation.

Figure 4-5: Geohash regions in a map.
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LDM stores the information about the traffic participants. Hence, we need to avoid

near accident cases using the information in the LDM to ensure safe mobility. LDM

stores information about all the participating vehicles. Accordingly, to confirm safe

mobility, we need to check or compare the localization information of all the vehicles.

Since vehicles are moving and future occupancy information of the vehicles are not

available in this setting, thus depending upon the current localization information

of all the traffic participants, we need a method to check nearby vehicles as soon as

possible to avoid a potential collision.

Therefore, we proposed storing traffic participants’ localization information as a

shared binary decision diagram encoding its geohash Boolean representation to detect

the near miss situation. In SBDD, Decision diagram representation of equivalent

Boolean function share node. Therefore, we can check quick equivalence between

two Boolean functions since equivalent Boolean functions share the same node means

the same location in the memory (See figure 4-6). Hence checking for equivalent

Boolean function has been varied to conform to the identical memory location, and

this operation is quick. Therefore SBDD can perform a quick equivalence check for

the Boolean functions [1].

We used the above method for a quick equivalence check between the SBDDs of

the vehicle’s geohash. In the consideration of minimization of computation time, a

SBDD can be used. It is a representation of the target multiple-output function, the

nodes are shared among BDDs representing the various outputs and a partitioned

SBDD consists of two or more SBDDs that share nodes, which can be obtained

systematically in an optimized way [72].

In consideration to reduce computational cost in the risk detection, we focused on

two points as:

1. Area-based detection of nearby objects, instead of point-based positions.

2. Equivalence of Boolean functions, instead of operations with the floating-point

arithmetic processing.

This section focused on its realization and the comparative analysis of computa-
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(a) (b) (c) (d)

(e)

Figure 4-6: Equivalent Boolean function share the node [1].

tion time between cases of the traditional way for representing geographical vehicle

positions for the nearby vehicle detection and the proposed way.

There is a possibility to reduce a computational cost if the shared binary decision

diagram can be introduced for the detection of nearby objects. In this sense, it can be

hypothesized that the encoding of geographical positions into Boolean values and a

calculation in the form of Boolean functions are beneficial to reduce the computational

time [73][70].

The warning algorithm calculates the stopping distance derived from vehicle speeds,

acceleration/deceleration and vehicle-to-vehicle local distance measured by on-vehicle

sensors, which presumably require a floating-point arithmetic processing of sensor real

values if it is implemented in a V2V system. Thus, the computational cost needs to

be evaluated in comparison with cases of the floating-point real value representation

of geographical positions in the world model.
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4.1.2 Integration of Geohash and BDD

In the proposed method, a SBDD was used for the integration of the Geohash-based

geographical representation.

For the integration in the proposed method, a Geohash code was converted from

characters (a-z) and digits (0-9) to the binary representation by using a conversion

table as 0:(00 000), . . ., 9:(01 001), b:(01 010), . . ., z:(11 111), which eliminates

specific characters as a, i, l, o according to the Geohash definition. Thus, five Boolean

variables were applied to representing each character of the target Geohash code, and

then the converted Boolean representation represents a geographical position in the

world model consistently. For the utilization to the LDM vehicle management in the

proposed method, procedures were designed as follows.

1. Geographical position conversion: (latitude, longitude) to Geohash code, e.g.,

(33.88919521551, 130.71065559849) is represented as Geohash of wyhby3kdbeyd.

2. Boolean expression conversion of Geohash code for the BDD procedure as hash-

ing, e.g., Boolean expression for Geohash wy as a part of the given code is

(𝑥1 ∧ 𝑥2 ∧ 𝑥3 ∧ ¬𝑥4 ∧ ¬𝑥5) ∨ (𝑥1 ∧ 𝑥2 ∧ 𝑥3 ∧ 𝑥4 ∧ ¬𝑥5).

3. Construction of the shared BDD for a given Boolean expression.

4. The (latitude, longitude), Geohash and SBDD encoding for a given point are

stored and used for the comparison.

4.1.3 Computer Experiment and Results

ROS based implementation of the LDM framework

Lanelet road network framework [33][74] was modified for the current purpose to in-

tegrate the CoInCar-Sim simulator [75] to manage road scenarios, and a geographical

map for vehicles was derived from the open-source map project known as OSM. The

OSM data format was transformed to our customized Lanelet system working on the

Robot Operating System (ROS) as shown in Figure 4-7.

60



v1

v2

v4

v3

Figure 4-7: An ROS-based demonstration of the LDM system with four vehicles
moving on the road, which was implemented in the modified Lanelet associated with
the CoincarSIM. It was used for the validation framework of the proposed method.
v1, v2, v3 and v4 represent respectively vehicle1, vehicle2, vehicle3 and vehicle4.

Numerical comparisons.

For the validation, we compared computational costs in multiple conditions. The

experiments were done in the computer with Intel(R) Core(TM) i9-9900K CPU

(3.60GHz) having 64 GB RAM. Different calculation methods were applied to the

validation of computational costs.

For the validated comparison, at least, three conditions are necessary, such as a

condition equivalent to the traditional implementation as demonstrated by Shimada

et al. [13] (floating-point real value representation: F), discrete spatial representation

as Geohash (Matching Geohash only: G) and the proposed method as the integra-

tion of BDD and Geohash (proposed method: P) in which set equivalent SBDD are

checked for equivalence (See figure: 5-9) on success equivalence we perform Geo-
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hash matching ’G’. The comparison between F and G indicates the effectiveness of

discrete representations of spatial locations with respect to the continuous represen-

tations. The comparison between G and P indicates the effectiveness of the SBDD

implementation with respect to the calculation without SBDD.

(a) V1: SBDD for the wyhby3kdb. (b) V2: SBDD for the wyhby3kbd.

Figure 4-8: SBDD for the set {w,y,h,b,3,k,d}. Set Equivalent Boolean function share
the node [1].

Figure 4-9, 4-10 showed the average time to compute from 100 trials in each condi-

tion. In the condition of the floating-point number comparison (F in the figure panel),

geographical positions of vehicles were represented by the floating-point number, and

the ordinary arithmetic calculation was used for the detection of nearby vehicles. In

the Geohash condition without any BDD scheme (G in the figure panel), geographical

positions of vehicles were represented by the Geohash encoding as a string and the

string operation was used for the detection of nearby vehicles. The proposed method

(P in the figure panel) was implemented as described above. Interestingly, computa-

tion time in conditions of F and G was almost three times larger than the proposed

method in the case of two-vehicle interactions (Figure 4-9, 4-10). The tendency was

consistent in any combinations of vehicles (Figure 4-9). In the comparison with vari-

ous numbers of vehicles, the proposed method (P) took the computation time as 12.1
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[s] (two vehicles), 15.23 [s] (three vehicles), and 21.43 [s] (four vehicles). This increase

rate was significantly low in comparison with other methods as shown in Figure 4-10.

This result clearly proved that our hypothesis was valid and the proposed method ef-

fectively reduces the necessary computation time even with an increase of the number

of vehicles.
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60

F G P F G P F G P F G P F G P F G P

(v1,v2) (v1,v3) (v1,v4) (v2,v3) (v2,v4) (v3,v4)

Figure 4-9: Two vehicle Interaction comparison among different calculation meth-
ods in computational costs. Position verifications of multiple vehicles by using the
floatingpoint number (F), Geohash code string without BDDs (G) and the proposed
method (P) were shown in each panel. Each average elapsed time was obtained from
100 trials in each condition and the error denotes the standard deviation.
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Figure 4-10: N vehicle interactions (N = 2, 3, 4) comparison among different calcu-
lation methods in computational costs. Position verifications of multiple vehicles by
using the floatingpoint number (F), Geohash code string without BDDs (G) and the
proposed method (P) were shown in each panel. Each average elapsed time was ob-
tained from 100 trials in each condition and the error denotes the standard deviation.

Analysis

We hypothesized that the integration of Geohash encoding of geographical positions

of vehicles and the shared BDD minimizes the computation time in the verification of

multiple vehicle positions, and successfully established the testable framework based

on ROS with modified Lanelet system and CoInCar-SIM-based scenario manager .

Results of computer experiments clearly demonstrated the effectiveness to reduce the
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necessary computational time in comparison with other conventional conditions.

Equivalence check of Geohash SBDD representations of the vehicle localization

significantly reduces the computing time, but the above methods have the following

limitations:

1. We need a central computing setup to perform an SBDD-based Boolean function

equivalence check.

2. We have only considered the current geohash location of a vehicle, but in prac-

tical vehicles that are moving, we need to consider near future occupancy.

Hence, we approached the challenges with the following setup to improve the above

limitations:

1. We used the BDD (ROBDD) in the distributed setup instead of SBDD.

2. We included the neighbouring geohash locations, which a vehicle could occupy

soon (using Kamm’s circle).

3. We increased the depth of the BDD to determine each geohash uniquely.

Next, the section discusses the novel method of data representation for vehicle

future geographical occupancy information using a binary decision diagram (BDD).

We show that sharing BDD-based occupancy information is consistent with the C-

ITS nature of data sharing since algebraic operations between the exchanged BDDs

can confirm the possibility of future interaction. We calculated potential future oc-

cupancy using Kamm’s circle, shown in the ROS-based simulator. We reported data

insertion and collision avoidance check time of the linked list-based BDD on Post-

greSQL database-based LDM.
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4.2 Potential Risk Estimation Scheme in the Local

Dynamic Map using Kamms Circle and Binary

Decision Diagrams

Knowing the vehicle’s current location is not sufficient to enhance the safety aspect.

In addition, since nearby vehicles may not interact in the future, vehicles far away

may interact in the near future (See figure 4-11). Thus knowing the future occupancy

of the vehicles is of great importance. Therefore, in the following subsection, we

attempt to include the future occupancy information of the traffic participants in the

LDM.

Figure 4-11: Vehicles near may not interact in the future whereas vehicles away may
interact.

From above chapters, it is clear that each Geohash has its unique binary represen-

tation. This binary representation for locating a region in space motivated us to use

BDD since BDDs are reasonably small for many Boolean functions as compared to

corresponding binary tree representation. See Figure 3-15. Also, it supports algebraic

operations on BDDs, which correspond to equivalent set-theoretic operations. More-

over, Computer-Aided Design, formal verification, and other related fields extensively

used BDDs already for Boolean function manipulation successfully.

66



4.2.1 Geohash set as a BDD

To represent the space available for navigation, enhance space representation in LDM,

and deal with an infinite number of available points on the road. Therefore, we

considered Geohash as a primary unit space. Furthermore, since Geohash represents

a geographical area, its size varies depending on the number of characters/levels

Geohash has.

This chapter considers a Geohash of ten levels/characters. It has a distance of

approx 0.59 meters from north to south and 0.96 meters from east to west. See

Table 3.1. Moreover, to represent the collection of Geohashes, we encoded it using

BDD.

1. BDD representation of a unit Geohash: A Geohash is a unique symbolic rep-

resentation of all the points available within the given area on earth. For each

character in Geohash, we can have 32 possible values (English alphabets except

’a’, ’i’, ’l’, ’o’ and decimal system digits 0-9) and can be represented using five

boolean variables (25 = 32) . See Figure 3-15. Therefore, we used five nodes

in a BDD to represent the corresponding Boolean variables for a binary repre-

sentation of a given character in a Geohash. Thus, in a given Geohash, each

character has its five corresponding nodes in the BDD. Since we considered Geo-

hash of 10 characters/levels, we needed 50 nodes for corresponding bits, plus

two extra nodes to represent zero and one node in a BDD. (For experiments,

we assumed the vehicle will be within a Geohash, having a distance of 4872

meters (north to south) and 3955 meters (east to west). Hence, 5 level BDD

with 25 nodes served the purpose) i.e first 5 level of Geohash doesnot change

in our setting. Every corresponding node, low or high, has its values depending

upon the boolean function represented. To represent a single Geohash using

BDD corresponding binary string ends at one (1) node of a BDD, and all other

binary string ends in zero. See figure 4-12.
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Figure 4-12: BDD representation for a unit Geohash.

2. BDD representation of a set of Geohash: We utilized BDDs synthesis ( borrowed

term ’ synthesis’ from [76]) to represent a set of Geohashes in a single BDD. We

can build BDD’s for complex sets/functions using BDD synthesis. E.g., BDD for

function 𝑓 can combine with function 𝑔 to represent BDD for 𝑓 𝐴𝑁𝐷 𝑔, 𝑓 𝑂𝑅 𝑔,

𝑁𝑂𝑇 𝑓 , 𝑓 𝑋𝑂𝑅𝑔. Following are corresponding set interpretations for a given

BDDs representing 𝑓 and 𝑔 sets (here Geohash sets) of the above synthesis

operations. We used 𝑎𝑝𝑝𝑙𝑦 method in [77] to achieve following operations :

(a) 𝑓 𝑂𝑅 𝑔 is the set union operation. 𝑓 ∪ 𝑔 = {𝛼 | 𝛼 ∈ 𝑓 𝑜𝑟 𝛼 ∈ 𝑔}

(b) 𝑓 𝐴𝑁𝐷 𝑔 is the set intersection operation. 𝑓 ∩ 𝑔 = {𝛼 | 𝛼 ∈ 𝑓 𝑎𝑛𝑑𝛼 ∈ 𝑔}

(c) 𝑓 𝑋𝑂𝑅𝑔 is the set symmetric difference operation. 𝑓 ⊕ 𝑔 = ( 𝑓∖𝑔)∪( 𝑓∖𝑔)

Thus from above, to add a Geohash in a given BDD representation of a set

of Geohashes, we performed 𝑂𝑅 operation between two corresponding BDDs

representations, See figure 4-14. Encoded BDD for set of 701 BDDs is shown in
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figure 4-13. Intersection of two BDDs represent a set of Geohashes can be seen

in the figure 4-15.
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Figure 4-13: BDD for set of 701 Geohashes.(Interconnection between 25th - 50th
node is shown for clarity.)
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Figure 4-15: BDD intersection for set of geohashes.

4.2.2 Algorithms

Following operations, from [77] were used for Geohash based BDD manipulation in

this work.
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1. Reduce: Give reduced BDD in it’s canonical form.

2. Apply: Perform synthesis operation between two BDD’s. 𝑓1 < 𝑜𝑝 > 𝑓2

3. Satisfy-One: Returns any one element in 𝑆𝑓 . Where 𝑆𝑓 is the set of all Geohash

represented by a given BDD.

4. Satisfy-All: Output 𝑆𝑓 . All Geohashes, a given BDD, satisfy.

Eight-Neighbour Geohash generation algorithm for a given BDD

In the previous, subsection we mentioned vehicle occupancy possible over time t using

Kamm’s/Traction circle. This subsection discusses the algorithms used to generate

the BDD for such vehicle occupancy over time t. We used Algorithm 1, Algorithm 2

and Algorithm 3 to find (east, west), (north, south), (north-east, north-west, south-

east, south-west) neighbours BDD for a given Geohash encoded BDD, respectively,

along with Algorithm 5 to generate the concerned Kamm’s/Traction circle BDD.

First, algorithms 1, 2 and 3 used the Satisfy-One [77] method to find an input that

satisfies the BDD. Then, T calculates the transition bits [78], it computes value 1 for

the needed bits flip needed to calculate the neighbour Geohash. Finally, we generated

the bit string for the neighbour after the XOR operation between the satisfying input

with the transition string.

Modified Midpoint Circle Generation Algorithm

Moreover, the mid-point circle generation algorithm is modified (see algorithm 4) to

find the BDD for all the Geohash present inside a given circle of radius r. Mid-point

circle generation algorithm is used in computer graphics to rasterize the circle. The

mid-point circle generation algorithm uses the 8-way symmetry present in the circle.

Therefore, if we can calculate the points in one octant, we can generate the points

in all other seven octants. Assuming the centre is (0,0) Mid-point circle generation

algorithm in step, I calculate the first square/pixel at (𝑥0, 𝑦0) = (0, 𝑟). After that, to

generate the next squares/pixels in the first quadrant, p a decision parameter finds
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its use. Step II calculates the p decision parameter initial value 𝑝0 =
5
4
− 𝑟. Then, in

Step III, depending upon the weight of decision parameter p, the successive value of

’p’ and squares/pixels takes their value as follows:

If 𝑝𝑘 < 0 then:

(𝑥𝑘, 𝑦𝑘) = (𝑥𝑘 + 1, 𝑦𝑘) and new 𝑝𝑘 is calculated as 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

else:

(𝑥𝑘, 𝑦𝑘) = (𝑥𝑘 + 1, 𝑦𝑘 − 1) and new 𝑝𝑘 is calculated as 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 +

1− 2𝑦𝑘+1

Next, in Step IV, Algorithm determines symmetry points in the other seven octants

and repeat steps III to IV until 𝑥 <= 𝑦.

The modified mid-point circle generation Algorithm 5 generated the BDD of all

the Geohashes contained in the circle of radius r. See figure 4-12. Step I is the

initialization step. In step II, the BDD for all the Geohashes with a Black arrow

are generated as shown in the figure and merged with the BDD (circle BDD) to

represent all Geohashes within the circle by using or operation, as or operation on

BDD is equivalent set union operation. Then, in Step III algorithm initialized the

decision parameter p with 𝑝 = 𝐼𝑁𝑇𝐸𝐺𝐸𝑅(𝑅𝑂𝑈𝑁𝐷(5/4)− 𝑟) . Step IV, depending

upon the value of p, generated successive Geohashes available in the first quadrant,

successive p values and more parameters of the circle as follows:

if 𝑝 <= 0:

Generate east BDD and union it with circle BDD. Also update the value

𝑥 𝑘 = 𝑥 𝑘+ 0.96, 𝑒 𝑐𝑜𝑢𝑛𝑡 = 𝑒 𝑐𝑜𝑢𝑛𝑡+ 1 and record the north limit of this

BDD from the center. Finally, update the value of decision parameter as

𝑝 = 𝑝+ 2 * 𝑥 𝑘 + 1.

else:
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Generate south east BDD and union it with circle BDD. Also update the

value 𝑥 𝑘 = 𝑥 𝑘 + 0.96; 𝑦 𝑘 = 𝑦 𝑘 − 0.59 and record the north and east

limit of this BDD from the center. Finally, update the value of decision

parameter as 𝑝 = 𝑝+ 2 * 𝑥 𝑘 + 1− 2 * 𝑦 𝑘.

In Step V, the algorithm generated BDD3 and BDD4 in the east and west direction

of the origin, as shown in figure 4-12 and depending upon the value of BDD3 (east) and

BDD4 (west) Geohash; the algorithm generated BDD’s in north and south directions

taken the first quadrant north limit as a limit (green arrow). All caused BDDs are

taken union with circle BDD (circle BDD). Finally, in Step VI, depending upon the

value of the east limit of the first quadrant new limit a is calculated and generated

BDDs upon added with BDD representing the circle.

223 3 44 556 67 7

i P Xi+1,

Yi+1

2Xi+1 2Yi+1

r = 5 m

1

Figure 4-16: Modified Midpoint Circle Algorithm
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Algorithm 1: Algorithm to find west/east Neighbour BDD for a given Geo-
hash BDD.
1 Input: inpGeo -Geohash BDD. h in {east, west}.
2 Output: West/East Neighbour Geohash BDD.
3 S = Satisfy-One(inpGeo)
4 T = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
5 If ℎ == 𝑤𝑒𝑠𝑡 then
6 for i = 1 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
7 for j = 1 to i increment 2:
8 T[j] = T[j] 𝑎𝑛𝑑 𝑛𝑜𝑡(S[j])
9 else:

10 for i = 1 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
11 for j = 1 to i increment 2:
12 T[j] = T[j] and S[j]
13 T[T.𝑙𝑒𝑛𝑔𝑡ℎ-2] = 1
14 for i = 1 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
15 S[i] = S[i] 𝑥𝑜𝑟 T[i]
16 return createStringtoBDD(S)

4.2.3 Experiment

To experiment, we created the lanelet map [33] for scenario 1 (see figure:4-17) and

scenario 2 (see figure:4-19) using JavaOpenStreetMap (JOSM) and loaded them into

ROS based simulator CoInCar-Sim with multiple vehicles. Also, the vehicle data is

generated in scenario ’2’ and stored as a CSV file. Data fed from CSV files into

the LDM at every interval of 50ms and ego vehicle query the LDM to get informa-

tion for collision detection task at every 100ms, same as experiment setup in [13].

To check the performance of our approach and compare it with previous results, we

created a schema of LDM tables as mentioned in shimada et al.[13] for their safety

driving system setup. We build LDM above Postgres database. Furthur constructed

a ’roadelement’ table to store the lanelets corresponding to scenarios ’1’ and ’2’ static

layers. Also, we build an ’egomotorvehicle’ and ’motorvehicle’ layer four tables to

keep the ego vehicle and non-ego vehicle information, respectively. we built an ’alon-

groadelement’ table to link-layer one and four tables. As per the setup mentioned in

[13].
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Algorithm 2: Algorithm to find north/south Neighbour BDD for a given
Geohash BDD.
1 Input: inpGeo -Geohash BDD. v in {south, north}.
2 Output: South, North Neighbour Geohash BDD.
3 S = Satisfy-One(inpGeo)
4 T = [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
5 If 𝑣 == 𝑠𝑜𝑢𝑡ℎ then
6 for i = 0 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
7 for j = 0 to i increment 2:
8 T[j] = T[j] 𝑎𝑛𝑑 𝑛𝑜𝑡(S[j])
9 else:

10 for i = 0 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
11 for j = 0 to i increment 2:
12 T[j] = T[j] and S[j]
13 T[T.𝑙𝑒𝑛𝑔𝑡ℎ-1] = 1
14 for i = 0 to T.𝑙𝑒𝑛𝑔𝑡ℎ increment 2:
15 S[i] = S[i] 𝑥𝑜𝑟 T[i]
16 return createStringtoBDD(S)

Figure 4-17: (Scenario-1) Intersection Scenario
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Algorithm 3: Algorithm to find diagonal Neighbour BDD for a given Geo-
hash BDD.
1 Input: inpGeo -Geohash BDD. h in {west, east}, v in {south, north}.
2 Output: Output: Diagonal Neighbour in north-west,north-east, south-east,

south-west Geohash BDD.
3 S = Satisfy-One(inpGeo)
4 T = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
5 for i = 0 to T.𝑙𝑒𝑛𝑔𝑡ℎ:
6 for j = 0 to i:
7 If 𝑗%2 == 0 then
8 If ℎ == 𝑤𝑒𝑠𝑡 then
9 T[j] = T[j] 𝑎𝑛𝑑 𝑛𝑜𝑡(S[j])

10 else:
11 T[j] = T[j] and S[j]
12 else:
13 If 𝑣 == 𝑠𝑜𝑢𝑡ℎ then
14 T[j] = T[j] 𝑎𝑛𝑑 𝑛𝑜𝑡(S[j])
15 else:
16 T[j] = T[j] and S[j]
17 T[T.𝑙𝑒𝑛𝑔𝑡ℎ-1] = 1
18 T[T.𝑙𝑒𝑛𝑔𝑡ℎ-2] = 1
19 for i = 0 to T.𝑙𝑒𝑛𝑔𝑡ℎ:
20 S[i] = S[i] 𝑥𝑜𝑟 T[i]
21 return createStringtoBDD(S)

Figure 4-18: Loaded lanelet map in CoincarSIM simulator.
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Algorithm 4: Midpoint Circle Generation Algorithm.

1 Input: r - radius of a circle., (𝑥𝑐,𝑦𝑐) center of the circle.
2 Output: Output: Squares to include on a square grid to form a circle of

radius r.
3 I. First square to include ((𝑥0, 𝑦0) = (0, 𝑟))
4 II. Calculate the initial value for the decision parameter.

𝑝0 =
5
4
− 𝑟

III. For successive value of k. (𝑥𝑘, 𝑦𝑘) is determined as follows.
If 𝑝𝑘 < 0 then:
(𝑥𝑘, 𝑦𝑘) = (𝑥𝑘 + 1, 𝑦𝑘) and new 𝑝𝑘 is calculated as 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

else:
(𝑥𝑘, 𝑦𝑘) = (𝑥𝑘 + 1, 𝑦𝑘 − 1) and new 𝑝𝑘 is calculated as

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1− 2𝑦𝑘+1

IV. Determine the symmetry points in other seven octants.
V. Repeat the step III to IV until 𝑥 ≤ 𝑦.

Figure 4-19: (Scenario-2) City Road Scenario
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Algorithm 5: Modified Midpoint Circle Generation Algorithm.

1 Input: inpGeo - Center Geohash BDD, r - radius in meters unit.
2 Output: BDD for a collection of Geohashes containing a circle of the given

radius.
3 Begin
4 Step I.
5 up count = ⌈𝑟𝑎𝑑𝑖𝑢𝑠/0.59⌉
6 quad1 north limit = quad1 east limit = []
7 circle BDD = inpGeo
8 BDD1 = BDD2 = BDD3 = BDD4 = inpGeo
9 x k = y k = 0; n count = e count = 0

10 Step II.
11 for k = 0 to up count:
12 a. BDD1 = Generate north BDD of BDDs.
13 b. BDD2 = Generate south BDD of BDDs.
14 c. y k = y k + 0.59; d.n count = n count + 1
15 e. 𝐵𝐷𝐷1 ∪ 𝐵𝐷𝐷2 ∪ 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷. /*Apply union of BDD1 and BDD2

BDD with circle BDD*/
16 Step III.
17 p = INT(ROUND(5/4) - r)
18 Step IV.
19 while 𝑥 𝑘 <= 𝑦 𝑘:
20 if 𝑝 <= 0:
21 a. BDD1 = Generate east BDD of BDD1.
22 b. x k = x k + 0.96; c. e count = e count + 1
23 d. quad1 north limit.append(n count)
24 e. 𝐵𝐷𝐷1 ∪ 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷.
25 f. p = p + 2 * x k + 1
26 else:
27 a. BDD1 = Generate south east BDD of BDD1.
28 b. 𝐵𝐷𝐷1 ∪ 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷.
29 c. x k = x k + 0.96; d. y k = y k - 0.59
30 e. quad1 east limit.append(e count)
31 f. e count = e count + 1; g. n count = n count - 1
32 h. quad1 north limit.append(n count)
33 j. p = p + 2 * x k + 1 - 2 * y k
34 quad1 east limit.append(x count)
35 /* Till this point quad1 north limit contains distance(in no. of Geohash)

of all Geohash in first quadrant of the circle in north direction and
quad1 east limit distance (in no. of Geohash) of Geohash in first
quadrant of the circle in east direction w.r.t inpGeo.*/
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36

37 Step V.
38 for w = 0 to quad1 east limit.𝑙𝑒𝑛𝑔𝑡ℎ-1:
39 a. Generate BDD3 and BDD4 east and west of BDD3 respectively.
40 b. 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷 ∪ 𝐵𝐷𝐷3 ∪ 𝐵𝐷𝐷4
41 for k = 0 to quad1 north limit[w]:
42 a. Generate BDD5 and BDD6 north and south of BDD3 respectively.
43 b. Generate BDD7 and BDD8 north and south of BDD4 respectively.
44 c. 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷 ∪ 𝐵𝐷𝐷5 ∪ 𝐵𝐷𝐷6 ∪ 𝐵𝐷𝐷7 ∪ 𝐵𝐷𝐷8
45 Step VI.
46 for w = quad1 east limit.𝑙𝑒𝑛𝑔𝑡ℎ-1 to 0:
47 a. Generate BDD3 and BDD4 east and west of BDD3 respectively.
48 b. 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷 ∪ 𝐵𝐷𝐷3 ∪ 𝐵𝐷𝐷4
49 c. a = ⌈𝑥 𝑐𝑜𝑢𝑛𝑡[𝑤] * (1.6)⌉ /*1.6 is ratio Geohash (10 level) breadth to

height*/
50 if 𝑎 >= 𝑞𝑢𝑎𝑑1 𝑛𝑜𝑟𝑡ℎ 𝑙𝑖𝑚𝑖𝑡[𝑤] then:
51 a. a = quad1 north limit[w]
52 for k = 0 to a:
53 a. Generate BDD5 and BDD6 north and south of BDD3 respectively.
54 b. Generate BDD7 and BDD8 north and south of BDD4 respectively.
55 c. 𝑐𝑖𝑟𝑐𝑙𝑒 𝐵𝐷𝐷 ∪ 𝐵𝐷𝐷5 ∪ 𝐵𝐷𝐷6 ∪ 𝐵𝐷𝐷7 ∪ 𝐵𝐷𝐷8
56 return circle BDD
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All experiments are performed in Ubuntu 18.04 environment on a computer with

Intel(R) Core(TM) i9-9900K CPU (3.60GHz) having 64 GB RAM. For simplicity, we

considered 𝑎𝑚𝑎𝑥 = 10𝑚/𝑠2 value corresponding to friction coefficient 𝜇 = 1.02 and

𝑔 = 9.81𝑚/𝑠2. For the generation of Kamm’s/Traction circles, we took a time step

size Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 of 0.4 seconds and up to a time horizon of 𝑡ℎ = 1.2 seconds. We

computed the BDD of all the Geohash presents inside the concerned circles using

Algorithm 5. After that, we converted the BDDs to JSON format to make them

suitable to save in the databases.

4.2.4 Results

Figure 4-20: Union of geohash corresponding to the Kamm’s circle at 0.4, 0.8 and 1.2
seconds.
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Figure 4-21: Union of geohash corresponding to the Kamm’s circle at 0.3, 0.7 and 1.2
seconds.

Figure 4-20 shows the generated Kamm’s circle Geohashes for given vehicles moving

towards the intersection (scenario ’1’). Figure 4-22 shows the insertion time of vehicles

data into the given LDM when we add extra information of reachable Kamm’s circle

Geohashes BDDs in JSON form. It increased the time for insertion operation since we

insert more information into the LDM than only inserting point position information

data into the Postgres-based LDM. Then also time taken is much lesser than 50 ms for

50 vehicles, which indicates its suitability for real-time operations of VITS (Vehicle

Intelligent Transport system) based LDM.
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Figure 4-22: Layer 4 data insertion time with BDD vs without BDD

Figure 4-23: Time in milliseconds for operations ( get ego vehicle Lanelet id, get ve-
hicles Id’s in adjacent Lanelets of ego vehicle, Average number of vehicles in adjacent
Lanelets, BDDs Intersection operation with adjacent vehicles for collision avoidance).

Figure 4-23 and 4-24 shows the difference we observed by introducing BDD in the
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LDM for the following tasks:-

∙ Task1- getLaneletId (To get the lanelet id and data corresponding to an ego

vehicle).

∙ Task2- getVehicleInAdjacentLanelet (To retrieve data of all vehicles (other than

ego) present in the ego vehicle current lanelet or its adjacent lanelets).

∙ Task3- averageNoOfVehicles (To retrieve the number of vehicles present around

an ego vehicle for a given scenario).

∙ Task4- Collision avoidance, Retrieve BDDs using Task2 and check for collision

avoidance following the ’AND’ operation on BDDs in figure 4-23 and collision

risk warning task following the procedure in [13] for figure 4-24.

We observe an increase in time for various tasks like Task2 and Task4 by intro-

ducing BDD (Figure 4-23) in the LDM compared to shimada et al. implementation

in Figure 4-24. Till 40 vehicles, the functions performed take less than 100 ms, which

is necessary for real-time operation.

Figure 4-24: Time in milliseconds for operations ( get ego vehicle lanelet id, get vehi-
cles id’s in adjacent Lanelets of ego vehicle, Average of vehicles in adjacent Lanelets,
collision risk warning algorithm from [5]. )
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The summary above approach is shown in the figure 4-25 below:
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Figure 4-25: Summary of the Potential Risk Estimation Scheme in the Local Dynamic
Map using Kamms Circle and Binary Decision Diagrams.
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Chapter 5

Discussion

In this Thesis, we successfully presented the use of decision diagrams along with

a Geohash-based setup. In addition, we reported a near-miss detection task using

SBDD. Also, a novel data representation method was proposed for vehicle future

geographical occupancy information using a BDD. Furthermore, it was shown that

sharing BDD-based geographical information support algebraic operations between

the exchanged BDDs and can confirm the possibility of future interaction, which

supports the C-ITS nature of data sharing. Also reported the data insertion and

collision avoidance check time of the linked list-based BDD on PostgreSQL database-

based LDM.

Our proposal relied on V2V and V2I to support safe navigation in the C-ITS setup.

The use of decision diagrams for the quick detection of the nearby traffic participants

and the representation of future geographical occupancy was successfully used and

associated with the LDM database. On the other hand, verifying the above approach

with the actual vehicle was out of range in the current study. Although the above

process may have various benefits, like any method, the proposed may suffer multiple

drawbacks. Communication delay/ data loss is an inevitable shortage since the heavy

dependency of the above procedure on the communication setup. Despite this, the

above approach can support safe navigation since it supports sensor-based navigation

to overcome the limitations on sensors such as stereo cameras and lidar limitations

on the range as well as due to weather conditions. Approaches of sensor or V2X

86



both have their limits and benefits, so a balanced approach between the methods

will be necessary for the future to enhance the safety aspect of autonomous vehicles.

We used a time of 1.2 seconds to find future occupancy in our approach. Although,

minimum swerving time can be used as a more reasonable time parameter in the

future. In addition, ITE-based implementation of the BDDs and algebraic properties

of the various decision diagrams, such as ZDD/ MTBDDs, may help enhance the

performance of the above approach and support even more functionalities using their

corresponding algebras. Thereon let us discuss the point by point about the topics of

the approaches discussed in previous chapters.

5.1 Challenges

While realizing the above setup in real life, we may face the following challenges.

1. SBDD setup for checking equivalent Boolean is only suitable for fitting in the

central server. Since verification of the equivalent function is based on the same

memory addresses, this condition limits the equivalence check to the one central

memory setup.

LDM

Figure 5-1: Equivalence checks are based on memory locations in the central LDM.
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In such a situation, we must maintain the SBDD into one memory-based LDM.

Otherwise, we may need to maintain virtual memory addresses if the distributive

memory setup is available.(See figure: 5-1)

2. In the case of ROBDD sharing, we can afford distributed LDM checking for the

collision avoidance task. Still, We must take care that the node id assigned to

the nodes of the BDDs must be unique among the participating vehicles since

algorithms for the BDD operations use this unique node id feature to support

various functions (e.g. Apply [77]).

Figure 5-2: Node id of the shared BDD nodes must be unique among the participating
vehicles.

3. According to the vehicle’s speed, we may need to sample more of the Kamm’s

circle. Since we may miss space in between the circles 5-3 or we can also

consider all the geohash present inside the polygon enveloping the Kamm’s

circles. Polygon envelop is given as [46]:
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Figure 5-3: Kamm’s circle at 0.4, 0.8 and 1.2 seconds for the vehicle at speed of 40
m/s.

𝑞1 = [𝑐𝑥(𝑡𝑘)− 𝑟(𝑡𝑘), 𝑐𝑦(𝑡𝑘) + 𝑟(𝑡𝑘)]
𝑇

𝑞2 = [𝑏𝑥(𝑡𝑘+1), 𝑐𝑦(𝑡𝑘+1) + 𝑟(𝑡𝑘+1)]
𝑇

𝑞3 = [𝑐𝑥(𝑡𝑘+1) + 𝑟(𝑡𝑘+1), 𝑐𝑦(𝑡𝑘+1) + 𝑟(𝑡𝑘+1)]
𝑇

𝑞4 = [𝑐𝑥(𝑡𝑘+1) + 𝑟(𝑡𝑘+1), 𝑐𝑦(𝑡𝑘+1)− 𝑟(𝑡𝑘+1)]
𝑇

𝑞5 = [𝑏𝑥(𝑡𝑘+1), 𝑐𝑦(𝑡𝑘+1)− 𝑟(𝑡𝑘+1)]
𝑇

𝑞6 = [𝑐𝑥(𝑡𝑘)− 𝑟(𝑡𝑘), 𝑐𝑦(𝑡𝑘)− 𝑟(𝑡𝑘)]
𝑇

Figure 5-4: Polygon envelop for the kamm’s circle.
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5.2 Variable Order

BDD are very sensitive to the variable ordering; If we choose the wrong variable

order, we may end up representing a BDD with too many nodes. However, in our

case, many variable orders are possible. Nevertheless, we checked for 10000 different

variable orders. As a result, we found that the variable order used in this thesis

(Please refer figure 5-7) took the least number of nodes to represent the ROBDD.

(See figure: 5-5). The following figure represents the change in the number of nodes

needed to represent a set of given Geohash list (refer, Appendix A) while randomly

varying the variable orders.

Figure 5-5
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Figure 5-6: Variable order the has minimum number of nodes.

5.3 Traffic rules

Using the Kaam/friction circle to predict vehicle position in the future is over-

approximated. The underlying assumption is that the vehicle has the freedom to

drive in whatever direction. However, traffic rules and road geometries must always

be respected in reality. For instance, a car cannot cross the solid line to enter an ad-

jacent lane. Restriction regarding lane restriction can be achieved in the LDM setup.

LDM has four layers: Layer 1 stores static information, and Layer 4 stores dynamic

information. Vehicles future occupancy using Kamm’s circle. If we also store the

Geohash of the road in the static Layer 1, then; the above restrictions can be quickly

achieved. Rule to be within the lane and not crossing adjacent lanes can be computed

using the AND operation between layer 4 𝐵𝐷𝐷𝑙4 and 𝐵𝐷𝐷𝑙1 corresponding to layer

1 of the LDM.

Similarly, for the traffic rules, lane/ curb restrictions can be achieved by taking

controlled AND (BDD AND operation are equivalent to set intersection operation )

between the Layer 4 BDDs and Layer 1 BDDs. The output regarding the concerned

point can also be understood as per the following figure. However, since the domain
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for the traffic rules is significantly large, all traffic rules are out of the scope of the

current study.

Layer1: StaticLayer4:  Dynamic
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Figure 5-7: Lane restriction traffic rule using BDDs and LDM.

5.4 Communication Delay/ Loss

The main problems which could occur are the delay or loss of the packet. For a plan

to handle this problem, one approach can be using ’Abstract data type’. ’Abstract

data type’ is the type that could be made for data to grow itself [79]. So, in case of

packet loss/ delay, we could add a bigger Kamm circle to the existing representation
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of the BDD in the LDM to cover the uncertainty involved in the occupancy of the

vehicle, which could be refreshed on the arrival of the new packet. Since, this could

involve number of new experiments that could be studied as future work.

5.5 Spatial Operations using BDD

We encoded Geohash using BDD to support spatial operations using decision dia-

grams. Furthermore, as mentioned in the previous chapter, we used ROBDD AND op-

eration for collision avoidance. The outcome of XOR and OR operation over ROBDD

is shown below:

(a) Geohash set1. (b) Geohash set2.

Figure 5-8: 𝑅𝑂𝐵𝐷𝐷𝑟𝑒𝑑 and 𝑅𝑂𝐵𝐷𝐷𝑔𝑟𝑒𝑒𝑛 represents ROBDD for the red and green
Geohash sets.
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(a) 𝑅𝑂𝐵𝐷𝐷𝑟𝑒𝑑 𝑥𝑜𝑟 𝑅𝑂𝐵𝐷𝐷𝑔𝑟𝑒𝑒𝑛. (b) 𝑅𝑂𝐵𝐷𝐷𝑟𝑒𝑑 𝑂𝑅 𝑅𝑂𝐵𝐷𝐷𝑔𝑟𝑒𝑒𝑛

Figure 5-9: Spatial effect of algebraic operations over ROBDDs.
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Chapter 6

Summary

We hypothesized that integrating Geohash encoding of geographical positions of ve-

hicles and the SBDD minimizes the computation time in verifying multiple vehicle

positions. We successfully established the testable framework based on ROS and the

Lanelet system. Results of computer experiments demonstrated the effectiveness of

reducing the necessary computational time compared with other conventional condi-

tions. This fact implies that Geohash or discrete representations in encoding vehicle

conditions are effective if the SBDD can be applied. We applied the proposed method

to the position and occupancy information in the present study’s analysis. At the

same time, it may have a new capability to include other vehicle information in further

analysis.

We introduced and included a BDD representation for a set of Geohash represent-

ing reachable Kamm’s circle for a given vehicle in the LDM. It supports algebraic

operations between BDDs. Here, we used AND operation between two BDDs for

collision avoidance. Finally, we converted BDD to JSON format to make it usable for

most databases. Furthermore, Kamm’s circle has been used previously in complex

traffic scenarios for safe navigation. Therefore, introducing it in LDM may greatly

benefit the safety aspect and including them as a decision diagram benefited us us-

ing algebraic properties available among the stored data. The current approach may

benefit from storing the information that has supported algebra.

In the current approach, we concentrated on storing the data in the LDM. We
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hope the current work gives a new direction for the development of the LDM from a

data point of view.
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Appendices
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Appendix A

Geohash list used for the calculation of the BDD variable orders in figure 5-5: Geo-

hashList = [’wyhby3hxxu’, ’wyhby3kc6f’, ’wyhby3hxrt’, ’wyhby3kc67’, ’wyhby3hwhq’,

’wyhby3kcew’, ’wyhby3kf5b’, ’wyhby3hxxr’, ’wyhby3kceg’, ’wyhby3hwv9’, ’wyhby3hxqx’,

’wyhby3hwt5’, ’wyhby3hwkm’, ’wyhby3hwjp’, ’wyhby3hwhu’, ’wyhby3hxpj’, ’wyhby3kcg0’,

’wyhby3kc5p’, ’wyhby3hxq3’, ’wyhby3hwh1’, ’wyhby3hwkk’, ’wyhby3kce9’, ’wyhby3kcef’,

’wyhby3kc6b’, ’wyhby3hxx6’, ’wyhby3kc74’, ’wyhby3htut’, ’wyhby3kb01’, ’wyhby3hxnf’,

’wyhby3hwtu’, ’wyhby3hxz8’, ’wyhby3hxr6’, ’wyhby3hwky’, ’wyhby3hwh2’, ’wyhby3hw5g’,

’wyhby3kc6g’, ’wyhby3kcgt’, ’wyhby3hwhk’, ’wyhby3kb8c’, ’wyhby3hwvz’, ’wyhby3hxz9’,

’wyhby3kb0q’, ’wyhby3kcg6’, ’wyhby3hwhh’, ’wyhby3hxx0’, ’wyhby3hxqe’, ’wyhby3hxzb’,

’wyhby3hxq1’, ’wyhby3kceh’, ’wyhby3hxnk’, ’wyhby3hxrp’, ’wyhby3hz8p’, ’wyhby3kc4n’,

’wyhby3kbfk’, ’wyhby3kc70’, ’wyhby3hxnu’, ’wyhby3hxq7’, ’wyhby3hxjg’, ’wyhby3hxqw’,

’wyhby3kcsh’, ’wyhby3hxz0’, ’wyhby3kc6u’, ’wyhby3kfh1’, ’wyhby3hzbp’, ’wyhby3kc7s’,

’wyhby3hwt2’, ’wyhby3kb2t’, ’wyhby3kc19’, ’wyhby3hwtw’, ’wyhby3hxrx’, ’wyhby3hwjn’,

’wyhby3kcu4’, ’wyhby3hwvv’, ’wyhby3kc66’, ’wyhby3kc61’, ’wyhby3kb0k’, ’wyhby3hxnw’,

’wyhby3kbcz’, ’wyhby3htun’, ’wyhby3kc76’, ’wyhby3hz8n’, ’wyhby3hwkg’, ’wyhby3hwkc’,

’wyhby3kb9x’, ’wyhby3hxw8’, ’wyhby3kb8u’, ’wyhby3hwth’, ’wyhby3hwv1’, ’wyhby3hxqc’,

’wyhby3hxqu’, ’wyhby3kbcw’, ’wyhby3kb1n’, ’wyhby3kbcs’, ’wyhby3hwht’, ’wyhby3kf5c’,

’wyhby3kcur’, ’wyhby3kc5h’, ’wyhby3hzb0’, ’wyhby3kb35’, ’wyhby3kb2s’, ’wyhby3hwhv’,

’wyhby3hxzx’, ’wyhby3kb30’, ’wyhby3hxn0’, ’wyhby3kb0s’, ’wyhby3kb8g’, ’wyhby3hzb1’,

’wyhby3hzbx’, ’wyhby3hwvt’, ’wyhby3hxz6’, ’wyhby3hwv2’, ’wyhby3kc6d’, ’wyhby3kbc2’,

’wyhby3hwtz’, ’wyhby3hw5b’, ’wyhby3kb0x’, ’wyhby3kcdg’, ’wyhby3hwkx’, ’wyhby3kbf3’,

’wyhby3hxrw’, ’wyhby3hwvg’, ’wyhby3kc4q’, ’wyhby3kc1f’, ’wyhby3hwkt’, ’wyhby3hwtk’,
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’wyhby3hwyh’, ’wyhby3hwt9’, ’wyhby3kc4m’, ’wyhby3hwy6’, ’wyhby3kcsn’, ’wyhby3kc4w’,

’wyhby3hxxx’, ’wyhby3kcd9’, ’wyhby3hxnz’, ’wyhby3htgv’, ’wyhby3kc18’, ’wyhby3hzbw’,

’wyhby3kb0h’, ’wyhby3kf58’, ’wyhby3hwh5’, ’wyhby3kbc9’, ’wyhby3hxrr’, ’wyhby3htgx’,

’wyhby3hwk2’, ’wyhby3hwhy’, ’wyhby3kb2m’, ’wyhby3hwy1’, ’wyhby3kce4’, ’wyhby3hxnq’,

’wyhby3hwhx’, ’wyhby3htur’, ’wyhby3hxny’, ’wyhby3hwhc’, ’wyhby3htuh’, ’wyhby3kcev’,

’wyhby3hxq8’, ’wyhby3hxnc’, ’wyhby3kbc3’, ’wyhby3hxwc’, ’wyhby3kbfn’, ’wyhby3kc6t’,

’wyhby3htum’, ’wyhby3hwhd’, ’wyhby3hwvw’, ’wyhby3hzb6’, ’wyhby3kcu1’, ’wyhby3kb0e’,

’wyhby3kb99’, ’wyhby3kce0’, ’wyhby3hxze’, ’wyhby3htuk’, ’wyhby3kbfq’, ’wyhby3kce7’,

’wyhby3kb08’, ’wyhby3hwhz’, ’wyhby3hwvy’, ’wyhby3kcu2’, ’wyhby3kb88’, ’wyhby3kb90’,

’wyhby3hwsc’, ’wyhby3hxqb’, ’wyhby3hwkw’, ’wyhby3kc4j’, ’wyhby3kc41’, ’wyhby3kb9k’,

’wyhby3hzb4’, ’wyhby3kb9d’, ’wyhby3kb04’, ’wyhby3kb9f’, ’wyhby3kb0d’, ’wyhby3kc47’,

’wyhby3hwm0’, ’wyhby3kb8v’, ’wyhby3kcet’, ’wyhby3kb0c’, ’wyhby3kceb’, ’wyhby3kcg8’,

’wyhby3kb29’, ’wyhby3kcg2’, ’wyhby3hxxq’, ’wyhby3hxzd’, ’wyhby3kcez’, ’wyhby3hw5f’,

’wyhby3kc63’, ’wyhby3kc4f’, ’wyhby3kcg1’, ’wyhby3kcu3’, ’wyhby3hwtc’, ’wyhby3kcgw’,

’wyhby3hxxy’, ’wyhby3kc6m’, ’wyhby3kcej’, ’wyhby3kbf7’, ’wyhby3hwtf’, ’wyhby3kb36’,

’wyhby3hxxt’, ’wyhby3hxxg’, ’wyhby3hxnx’, ’wyhby3hxqz’, ’wyhby3hwm7’, ’wyhby3kcgz’,

’wyhby3htux’, ’wyhby3hwmq’, ’wyhby3kbck’, ’wyhby3kb2y’, ’wyhby3kb2v’, ’wyhby3kc71’,

’wyhby3hxxk’, ’wyhby3kb92’, ’wyhby3hws8’, ’wyhby3hwmk’, ’wyhby3kb95’, ’wyhby3kb2f’,

’wyhby3kb9h’, ’wyhby3kc6k’, ’wyhby3kb0u’, ’wyhby3hxzs’, ’wyhby3kb0t’, ’wyhby3kbf6’,

’wyhby3kbfm’, ’wyhby3hwhp’, ’wyhby3hxnm’, ’wyhby3kbcg’, ’wyhby3hwyn’, ’wyhby3hwvb’,

’wyhby3kbc8’, ’wyhby3kcgv’, ’wyhby3hwy5’, ’wyhby3kce6’, ’wyhby3hwvs’, ’wyhby3kces’,

’wyhby3kb2u’, ’wyhby3kcum’, ’wyhby3kb03’, ’wyhby3hxzv’, ’wyhby3hwmn’, ’wyhby3kb33’,

’wyhby3hxn6’, ’wyhby3hxrk’, ’wyhby3kcun’, ’wyhby3hwhg’, ’wyhby3hxz3’, ’wyhby3hxqs’,

’wyhby3hwm6’, ’wyhby3hwyk’, ’wyhby3kb00’, ’wyhby3kc46’, ’wyhby3kcge’, ’wyhby3hxpp’,

’wyhby3hwt4’, ’wyhby3kc6z’, ’wyhby3kc4e’, ’wyhby3kc4x’, ’wyhby3kc73’, ’wyhby3hw5c’,

’wyhby3hzbj’, ’wyhby3kb8f’, ’wyhby3hxn4’, ’wyhby3kb94’, ’wyhby3hxrh’, ’wyhby3kbfj’,

’wyhby3hxj8’, ’wyhby3kc43’, ’wyhby3hwmx’, ’wyhby3hwwn’, ’wyhby3hxzw’, ’wyhby3kb89’,

’wyhby3hw58’, ’wyhby3kb9v’, ’wyhby3hwv0’, ’wyhby3k8pv’, ’wyhby3kbfh’, ’wyhby3kb2c’,

’wyhby3hxqy’, ’wyhby3kcgc’, ’wyhby3kbdp’, ’wyhby3hwhm’, ’wyhby3hxr5’, ’wyhby3kb9r’,

’wyhby3kb3x’, ’wyhby3kb2w’, ’wyhby3hxzg’, ’wyhby3kcgu’, ’wyhby3hwy0’, ’wyhby3kc6w’,
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’wyhby3hwtp’, ’wyhby3kb2g’, ’wyhby3kb0f’, ’wyhby3kc4h’, ’wyhby3kb0n’, ’wyhby3kcgg’,

’wyhby3kc4r’, ’wyhby3k8pc’, ’wyhby3kb9w’, ’wyhby3kcuk’, ’wyhby3kceu’, ’wyhby3kbf2’,

’wyhby3kb02’, ’wyhby3kcem’, ’wyhby3hzbm’, ’wyhby3hxr1’, ’wyhby3kcu7’, ’wyhby3hxnv’,

’wyhby3hwk9’, ’wyhby3kc6s’, ’wyhby3htuj’, ’wyhby3kc1c’, ’wyhby3hxwg’, ’wyhby3kcg9’,

’wyhby3hxqv’, ’wyhby3hxzc’, ’wyhby3hxj9’, ’wyhby3kcg7’, ’wyhby3kcuh’, ’wyhby3hxw9’,

’wyhby3hwhj’, ’wyhby3hwwp’, ’wyhby3hxxm’, ’wyhby3hxq9’, ’wyhby3hwvm’, ’wyhby3hxne’,

’wyhby3hwsv’, ’wyhby3htgy’, ’wyhby3kbf0’, ’wyhby3hwtg’, ’wyhby3hxrn’, ’wyhby3kbfw’,

’wyhby3kbf1’, ’wyhby3kb28’, ’wyhby3hwmr’, ’wyhby3kf5f’, ’wyhby3kc69’, ’wyhby3kcuq’,

’wyhby3kc6y’, ’wyhby3hxn8’, ’wyhby3hwtd’, ’wyhby3kb0j’, ’wyhby3hwv3’, ’wyhby3hxjb’,

’wyhby3kc42’, ’wyhby3hxqf’, ’wyhby3kb98’, ’wyhby3hxn7’, ’wyhby3hzbn’, ’wyhby3hwy4’,

’wyhby3hxnh’, ’wyhby3kce2’, ’wyhby3kc77’, ’wyhby3hwyw’, ’wyhby3hwvu’, ’wyhby3hwv8’,

’wyhby3kb1j’, ’wyhby3kb2d’, ’wyhby3kb37’, ’wyhby3hxq6’, ’wyhby3hxn2’, ’wyhby3kc4b’,

’wyhby3kc4c’, ’wyhby3hw5u’, ’wyhby3kb1p’, ’wyhby3kcu5’, ’wyhby3hwvc’, ’wyhby3kcup’,

’wyhby3kc4z’, ’wyhby3hxns’, ’wyhby3kb3n’, ’wyhby3kc49’, ’wyhby3hzbq’, ’wyhby3hwh7’,

’wyhby3kbcf’, ’wyhby3kc1u’, ’wyhby3hwym’, ’wyhby3hwtj’, ’wyhby3hwm1’, ’wyhby3hwjj’,

’wyhby3kcex’, ’wyhby3hwtq’, ’wyhby3kc7q’, ’wyhby3hwsb’, ’wyhby3hwk0’, ’wyhby3hwku’,

’wyhby3hwkb’, ’wyhby3hxx3’, ’wyhby3hxx2’, ’wyhby3kc6v’, ’wyhby3hwsu’, ’wyhby3hzb3’,

’wyhby3kbc6’, ’wyhby3kcen’, ’wyhby3hwwj’, ’wyhby3kb96’, ’wyhby3kcep’, ’wyhby3hxnn’,

’wyhby3hz8j’, ’wyhby3kc75’, ’wyhby3hzb5’, ’wyhby3hwy3’, ’wyhby3kc4u’, ’wyhby3hwh6’,

’wyhby3kcer’, ’wyhby3kcus’, ’wyhby3kb2e’, ’wyhby3kb0z’, ’wyhby3kcu6’, ’wyhby3hwvx’,

’wyhby3hxng’, ’wyhby3kb9p’, ’wyhby3kb2x’, ’wyhby3hxz7’, ’wyhby3hwv7’, ’wyhby3hws9’,

’wyhby3hxxc’, ’wyhby3kbfr’, ’wyhby3hzbr’, ’wyhby3kc4p’, ’wyhby3hwhs’, ’wyhby3k8p8’,

’wyhby3hxx5’, ’wyhby3hwyx’, ’wyhby3hzbh’, ’wyhby3hxzy’, ’wyhby3kc7n’, ’wyhby3hwhn’,

’wyhby3kc7k’, ’wyhby3k8p9’, ’wyhby3hxr4’, ’wyhby3kb97’, ’wyhby3kc7h’, ’wyhby3kb3t’,

’wyhby3hxnr’, ’wyhby3hwtv’, ’wyhby3kb34’, ’wyhby3kbft’, ’wyhby3hwvd’, ’wyhby3kb06’,

’wyhby3kce1’, ’wyhby3kcgf’, ’wyhby3hxxs’, ’wyhby3hxzu’, ’wyhby3kb91’, ’wyhby3kc62’,

’wyhby3hxn1’, ’wyhby3kbcv’, ’wyhby3hwt0’, ’wyhby3kc7x’, ’wyhby3kbct’, ’wyhby3kcsj’,

’wyhby3kcd8’, ’wyhby3kc44’, ’wyhby3kb9c’, ’wyhby3hxzm’, ’wyhby3hzbk’, ’wyhby3kb2k’,

’wyhby3hxzf’, ’wyhby3kc68’, ’wyhby3hxz2’, ’wyhby3kced’, ’wyhby3kb9q’, ’wyhby3hxxj’,

’wyhby3hwm5’, ’wyhby3kcuj’, ’wyhby3hwmt’, ’wyhby3kcgy’, ’wyhby3kcdf’, ’wyhby3kc45’,
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’wyhby3hxzt’, ’wyhby3hxn3’, ’wyhby3hwk8’, ’wyhby3kc4k’, ’wyhby3hxn5’, ’wyhby3hwmw’,

’wyhby3hwke’, ’wyhby3htgz’, ’wyhby3kcgk’, ’wyhby3hwmp’, ’wyhby3hxjc’, ’wyhby3kb9m’,

’wyhby3hwtn’, ’wyhby3hwmj’, ’wyhby3hwt7’, ’wyhby3hxxf’, ’wyhby3kce5’, ’wyhby3kc72’,

’wyhby3kcdb’, ’wyhby3kb0g’, ’wyhby3hwyq’, ’wyhby3kbdj’, ’wyhby3kbfs’, ’wyhby3hxq0’,

’wyhby3kb21’, ’wyhby3kb09’, ’wyhby3kbcy’, ’wyhby3htup’, ’wyhby3kc6x’, ’wyhby3hwtt’,

’wyhby3kfh0’, ’wyhby3kb31’, ’wyhby3kc4d’, ’wyhby3kb0w’, ’wyhby3hxx8’, ’wyhby3kc1g’,

’wyhby3kbf5’, ’wyhby3hzbt’, ’wyhby3hxz1’, ’wyhby3kb9j’, ’wyhby3kb0r’, ’wyhby3hwsg’,

’wyhby3kb27’, ’wyhby3kb3w’, ’wyhby3hwv6’, ’wyhby3hxrj’, ’wyhby3kcec’, ’wyhby3kb22’,

’wyhby3kb3r’, ’wyhby3hxxp’, ’wyhby3hxrq’, ’wyhby3hxwv’, ’wyhby3kb0m’, ’wyhby3kb07’,

’wyhby3kb23’, ’wyhby3kbdh’, ’wyhby3kb05’, ’wyhby3kb3h’, ’wyhby3kcdv’, ’wyhby3hxxd’,

’wyhby3hwm4’, ’wyhby3hwkf’, ’wyhby3kb0y’, ’wyhby3kcgb’, ’wyhby3kbfp’, ’wyhby3hxnp’,

’wyhby3hxzz’, ’wyhby3kb9y’, ’wyhby3hwte’, ’wyhby3hxr3’, ’wyhby3hxjv’, ’wyhby3kcsp’,

’wyhby3hxqg’, ’wyhby3hxr0’, ’wyhby3kbc7’, ’wyhby3hxqk’, ’wyhby3kbfx’, ’wyhby3hxrm’,

’wyhby3kb9t’, ’wyhby3hwm3’, ’wyhby3kcgs’, ’wyhby3hxjf’, ’wyhby3hwyj’, ’wyhby3kb0p’,

’wyhby3kc1b’, ’wyhby3hwve’, ’wyhby3kcgx’, ’wyhby3kc4s’, ’wyhby3kbcb’, ’wyhby3htuq’,

’wyhby3kb2z’, ’wyhby3hwk7’, ’wyhby3kbdn’, ’wyhby3kc5j’, ’wyhby3kc7m’, ’wyhby3hxn9’,

’wyhby3hwsf’, ’wyhby3hwks’, ’wyhby3kc7t’, ’wyhby3kb2b’, ’wyhby3kcgm’, ’wyhby3hxx9’,

’wyhby3kc4v’, ’wyhby3kb3p’, ’wyhby3kb9g’, ’wyhby3kbc0’, ’wyhby3k8pg’, ’wyhby3kc7w’,

’wyhby3hxnd’, ’wyhby3hwhe’, ’wyhby3hwhw’, ’wyhby3kc7r’, ’wyhby3kb9u’, ’wyhby3kcdu’,

’wyhby3kbce’, ’wyhby3k8pu’, ’wyhby3kbcu’, ’wyhby3hwk6’, ’wyhby3kcee’, ’wyhby3kcg3’,

’wyhby3hwyp’, ’wyhby3hwtm’, ’wyhby3hxnj’, ’wyhby3hxpn’, ’wyhby3hwh9’, ’wyhby3kb9e’,

’wyhby3hwt8’, ’wyhby3hxx1’, ’wyhby3hxxw’, ’wyhby3hxju’, ’wyhby3hwvf’, ’wyhby3kf59’,

’wyhby3kc4y’, ’wyhby3kb3k’, ’wyhby3hzb7’, ’wyhby3kcgd’, ’wyhby3hwmm’, ’wyhby3hwh3’,

’wyhby3kbcd’, ’wyhby3hwt1’, ’wyhby3kbcx’, ’wyhby3hwhf’, ’wyhby3hxnt’, ’wyhby3hwty’,

’wyhby3kb0v’, ’wyhby3hxq2’, ’wyhby3kc6e’, ’wyhby3htuw’, ’wyhby3hwvk’, ’wyhby3hwhr’,

’wyhby3hwk3’, ’wyhby3kc5n’, ’wyhby3kb9n’, ’wyhby3hwmh’, ’wyhby3kb8b’, ’wyhby3kcek’,

’wyhby3kb3m’, ’wyhby3kc4t’, ’wyhby3kcey’, ’wyhby3hwts’, ’wyhby3kce8’, ’wyhby3hwh0’,

’wyhby3htu7’, ’wyhby3hxqm’, ’wyhby3hxr7’, ’wyhby3hwh8’, ’wyhby3hxxn’, ’wyhby3hxqd’,

’wyhby3hwyt’, ’wyhby3kcu0’, ’wyhby3hxwf’, ’wyhby3hxxv’, ’wyhby3kc4g’, ’wyhby3hxxe’,

’wyhby3hwyr’, ’wyhby3kbcm’, ’wyhby3kce3’, ’wyhby3hwkv’, ’wyhby3kb26’, ’wyhby3kc7j’,
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’wyhby3k8pb’, ’wyhby3k8pf’, ’wyhby3hwkz’, ’wyhby3hwt6’, ’wyhby3kc60’, ’wyhby3hwt3’,

’wyhby3hxxh’, ’wyhby3kb20’, ’wyhby3hxx7’, ’wyhby3hwh4’, ’wyhby3kc6c’, ’wyhby3hwy7’,

’wyhby3kbc1’, ’wyhby3hxxz’, ’wyhby3kc1v’, ’wyhby3hwtx’, ’wyhby3kbf4’, ’wyhby3htgw’,

’wyhby3kb9z’, ’wyhby3kc7p’, ’wyhby3hxqt’, ’wyhby3kc40’, ’wyhby3hxwu’, ’wyhby3kb93’,

’wyhby3hwkd’, ’wyhby3kc48’, ’wyhby3hwtr’, ’wyhby3kcdc’, ’wyhby3kceq’, ’wyhby3hxzk’,

’wyhby3kbcc’, ’wyhby3kb3q’, ’wyhby3kb9s’, ’wyhby3hxx4’, ’wyhby3hxwb’, ’wyhby3kb3j’]
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