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ON THE RELATION BETWEEN THE WEAK PALAIS-SMALE
CONDITION AND COERCIVITY BY ZHONG

TOMONARI SUZUKI

ABSTRACT. In this paper, we discuss Zhong’s result of that the weak Palais-Smale
condition implies coercivity under some assumption in [Nonlinear Anal., 29 (1997),
1421-1431]. We also give a simple proof of Zhong’s result. Further we generalize the
result in Caklovic, Li and Willem [Differential Integral Equations, 3 (1990), 799-800].

1. INTRODUCTION

Throughout this paper we denote by N the set of all positive integers and by R the
set of all real numbers.

Let f be a function from a Banach space X into (—oo,4o00]. We recall that f is
called Gateauz differentiable at x € X with f(z) € R if there exists a continuous linear
functional f’(z) such that

lim flz+ty) — f(x)

t—0 t

= (f'(z),y)
holds for every y € X. f is said to be coercive if
lim inf f(z)= o0

700 [|lz||>r
holds. Also, f is said to satisfy the weak Palais-Smale condition [17] if there exists a
nondecreasing function h from [0, co) into itself satisfying [;~(1/(1+h(t)))dt = oo, and
the following condition: Every sequence {x,} in X such that {f(x,)} is bounded and

T |7/ ()l (1 + R(llzal)) = 0

contains a convergent subsequence. This definition seems to be weaker than the defini-
tion in [17]. However they are equivalent; see Section 5. In the case of h(t) = 0 for all
t € [0,00), we call that f satisfies the Palais-Smale condition. In the case of h(t) =t
for all t € [0, 00), we call that f satisfies the Cerami-Palais-Smale condition [4].

It is well known that the Palais-Smale condition implies coercivity under some as-
sumption; see Brézis and Nirenberg [2], Caklovic, Li and Willem [3] and others. In 1997,
Zhong [17] generalized these results and proved that the weak Palais-Smale condition
implies coercivity. However the proof is slightly complicated.
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In this paper, we discuss Zhong’s result and we also give a simple proof of it. Further
we generalize the result in Caklovic, Li and Willem [3]. We also discuss the conditions
of the continuity of &, [;°(1/(1 + h(t)))dt = oo, and the completeness of X.

2. 7-DISTANCE

In our discussion, the notion of 7-distance plays an important role.

Let (X,d) be a metric space. Then a function p from X X X into [0, 00) is called a
T-distance on X [10] if there exists a function 7 from X x [0,00) into [0,00) and the
following are satisfied:

(71) p(z,2) < p(z,y) +p(y, 2) for all v, y, 2 € X;

(12) n(x,0) = 0 and n(z,t) >t for all z € X and ¢ € [0,00), and 7 is concave and
continuous in its second variable;

(13) lim, z,, = x and lim, sup{n(z,, p(zn,Tn)) : m > n} = 0 imply p(w,z) <
lim inf,, p(w, z,,) for all w € X;

(74) lim, sup{p(zn, Ym) : m > n} = 0 and lim,, n(z,, t,) = 0 imply lim,, n(y,, t,) = 0;

(75) lim, n(2n, p(2n, x,)) = 0 and lim, 7(2,, p(2n, ¥»)) = 0 imply lim,, d(z,,, y,) = 0.

We note that 7 is strictly increasing in its second variable. We also note that the metric
d is a T-distance on X. Many useful propositions and examples are stated in [7-16].
Though the following is a corollary of Proposition 2 in [12], we give a proof.

Proposition 1. Let (X,d) be a metric space with a T-distance p. Let q be a function
from X x X into [0,00). Suppose that

(i) g satisfies (1), i.c., q(w,2) < gle,y) + a(y, 2) for all 2,9, 2 € X;
(ii) q is lower semicontinuous in its second variable;

(iil) q(z,y) > p(z,y) for all x,y € X.

Then q is also a T-distance on X.

Proof. Let n be a function satisfying (72)—(75). From the assumption (ii), (73), clearly
holds. We assume that lim, sup {q(zn, ¥m) : m > n} = 0 and lim, n(x,,t,) = 0. Then
from the assumption (iii), we have lim, sup{p(zn,ym) : m > n} = 0. So by (74),
we obtain lim, n(y,,t,) = 0. This is (74),. Let us prove (75),. We assume that
limnr](zn, q(zn, xn)) =0 and limnn(zn, q(zn, yn)) = 0. Then from the assumption (iii)
again, we have limnn(zn,p(zn,xn)) = 0 and limnn(zn,p(zn,yn)) = 0. So by (75), we
obtain lim,, d(x,,y,) = 0. This completes the proof. O

Now, we give the following example.

Example 1. Let (X, d) be a metric space, and h a nondecreasing function from [0, co)
into itself such that [°(1/(1+ h(t)))dt = co. Fix zg € X. Then functions p and ¢ from
X x X into [0, 00) defined by

d(z0,z)+d(x,y) dt
pr— d p—
p(z,y) /d(zo,x> A and q(z,y) = p(z,y) + p(y, )

for all z,y € X are 7-distances on X.
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Proof. We know that p is a 7-distance on X; see Proposition 4 in [10]. So, since p
satisfies (71), we have

q(z,z) = p(z,2) + p(z, )
< plz,y) +ply, 2) +pz,y) + ply, v)
= Q(xa Z/) + Q(ya Z)

for z,y,z € X. This is (71),. It is obvious that ¢ is continuous and ¢(z,y) > p(x,y) for
all x,y € X. So by Proposition 1, we have ¢ is a 7-distance on X. Il

In [10], using the above p, the author gave the slight generalization and another proof
of Zhong’s variational principle [17, 18]. In this paper, we use the above g.

The following is Theorem 4 in [10], which is the 7-distance version of Ekeland’s
variational principle [5, 6]. Of course, this is one of the generalizations of the Banach
contraction principle [1].

Theorem 1. Let X be a complete metric space with a T-distance p. Let f be a function
from X into (—o0,400] which is proper lower semicontinuous and bounded from below.
Then for e > 0 and uw € X with p(u,u) = 0, there exists v € X such that f(v) <
f(u) —ep(u,v) and f(w) > f(v) —ep(v,w) for allw € X with w # v.

From Example 1 and Theorem 1, we obtain the following.

Theorem 2. Let X, d, h, 2y be as in Example 1. Suppose that X is complete. Let f be
a function from X into (—oo, 00| which is proper lower semicontinuous and bounded
from below. Then for e > 0 and u € X, there exists v € X such that

d(z0,u)+d(u,v) dt d(zo,v)+d(u,v) dt
flo) < flw) -< [ =3
d(z0,u) L+ h(t) d(z0.0) 1+ h(t)
and d(z0,v)+d(v,w) d(z0,w)+d(v,w)
20,v)+d(v,w dt zo,w)+d(v,w dt
fw) > fw) < [ =3
d(z0,0) 1+ h(t) d(z0,w) 1+ h(t)

for all w € X with w # v.

3. ZHONG’S RESULT

In this section, using Theorem 2, we can easily prove the following Zhong’s result in
[17]. Compare the proof with Zhong’s. We use Theorem 2 only one time.

Theorem 3 (Zhong [17]). Let X be a Banach space, and h a nondecreasing function
Jrom [0,00) into itself such that [[°(1/(1+ h(t)))dt = co. Let f be a function from
X into (—oo,+o0| which is proper lower semicontinuous. Assume that f is Gateaur
differentiable at every point x € X with f(z) € R. If

a:= lim inf f(z)€ R,

r—00 [z =7

then there ezists a sequence {x,} in X such that lim, ||z,| = oo, lim, f(x,) = «, and
Tim (@) (14 Al ) = 0.

Remark. In [17], the continuity of h is needed. We discuss this condition in Section 5.

In the proof of Theorem 3, we use the following lemma, which is well known.
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Lemma 1. Suppose that ¢ > 0, 6 > 0, v € X, f(v) € R and either of the following

holds:

o f(w) > f(v) —cllv—wl| forallw e X with 0 < ||v—w|| <§; or
o f(w) < f(v)+cllv—w]| for allw e X with 0 < ||lv —w| <.

Then || f'(v)|| < ¢

Proof of Theorem 3. We shall only show the following: For every ¢ > 0, there exists
v € X satisfying [[v|| > 1/e, [f(v) — a| < e, and [|f'(v)]| (1 + A(][v]])) < e. Fixe > 0.
Define a function 6 from [0, c0) into itself by

(1) 6(t) =1+2h(t+1)

for t € [0,00). Then it is obvious that € is nondecreasing, and we have

/°° dt _1/°° dt _1/°° e
o L+0@t) 2Jy 1+h(t+1) 2J; 1+hl)

We also define a function g from X into (—oo, +00] by
g(z) =max {f(z), a — 2¢}

for x € X. Then it is obvious that ¢ is proper lower semicontinuous and bounded from
below. We next choose r,r" € R with 1/e <r <7/, 1 <7,
Tdt
inf f(xr)>a—¢, and / — =3
it f(@) . 1400t
We also choose v € X with ||ul| > r" and f(u) < a +e. We note that g(u) = f(u)
because of ||ul| > r. Then by Theorem 2, there exists v € X such that

lull+luvl g il g
@) mngw»—gﬁm ek AJ 0
and

lol+lo-wl g ol +Hio-wll g
(3) gwo>mw—ejQ et /@| =0

for all w € X with w # v. Arguing by contradiction, we assume that ||v|| < r. From
(2), we have

Pl vl g
a—2e<gw) <gu)—e¢ /v 1+6(t)
gy T dt
<g(u)—¢ / 60 Sg(u)—s/r 14 6(t)

= f(u) — 3e < a — 2e.

This is a contradiction. Therefore we obtain ||v]| > r > 1/e. Thus we have g(v) = f(v)
and
a—ce< inf f(z) < f(v) < flu) <a-+e.

[|lz]|>r

This implies |f(v) — a| < e. From (3) and nondecreasingness of 6, we have

o) > 500 = (57 Tragga) 10—
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for w € X with w # v. Since f is lower semicontinuous and f(v) > « — 2¢, there exists
0 € (0,1) such that f(w) > a —2¢ for w € X with ||v —w]|| < 0. Hence, for w € X with
0 < |Jv —w| <4, since g(w) = f(w) and

[wl| = vl = [lv = wl > ||l =6 > [[v]| =1 >0,
we have
5 £
f(w)>fv—( + )|v—w|
W\ e )
2¢
> f(v) — v—w
W g
5
=fv) = ————||lv—w|.
(v) T (o) | I
So by Lemma 1, we have || f'(v)|| (1 + h(||v]|])) < e. This completes the proof. O

As a direct consequence of Theorem 3, we obtain the following.

Theorem 4 (Zhong [17]). Let X be a Banach space. Let f be a function from X into
(—00, +00| which is proper lower semicontinuous and bounded from below. Assume that
f is Gateauz differentiable at every point x € X with f(x) € R, and f satisfies the weak
Palais-Smale condition. Then f is coercive.

Remark. We can weaken the condition that f satisfies the weak Palais-Smale condition
as follows: Every sequence {x,} in X such that {f(z,)} is bounded and lim, || f'(z,,)]| (1
+ h(||z,]|)) = 0 contains a bounded subsequence.

4. COERCIVITY OF |f|

In this section, we discuss the coercivity of |f].
The following is a generalization of the result in Caklovic, Li and Willem [3].

Theorem 5. Let X be a Banach space, and h a nondecreasing function from [0, 00)
into itself such that [°(1/(1+ h(t)))dt = co. Let f be a continuous function from X
into R. Assume that f is Gateaux differentiable at every point x € X. If there exists
v € R such that {x € X : f(x) =~} is bounded, and

a = lim Hiﬂi |f(z) —v| € R,

then there exists a sequence {x,} in X such that lim, ||x,| = oo, lim, |f(z,) — 7| = «,
and

Tim |17 @)l| (1 -+ h(l2a])) =0,

Proof. We put g(z) = |f(z) — 7| for all z € X. We shall only show the following: For
every € > 0, there exists v € X satisfying |[v]| > 1/e, |g(v) — a| < e, and | f/(v)]| (1 +
h(|[v]])) < e. Fix e > 0. Define a function 6 from [0, c0) into itself by (1). We next
choose r,7" € R with 1/e <r <1/, 1 <r, g(x) >0 for x € X with ||z| > r,

"odt a+e

inf — d =
Hvlﬂllllzrg(x) >a—¢, an /r 1500 .
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We also choose v € X with ||ul]| > r" and ¢g(u) < a + . Then by Theorem 2, there
exists v € X with (2) and (3) for all w € X with w # v. Arguing by contradiction, we
assume that ||v|| < r. From (2), we have

0<g(v) <glu)—e / 1 +d2(t)

This is a contradiction. Therefore we obtain ||v|| > r > 1/¢ and hence g(v) > 0. We
also have

=g(u) — (a+¢) <0.

a—e< Hiﬂli g(x) < gv) <glu) <a+e.

and hence |g(v) — a| < e. Since f is continuous and g(v) > 0, there exists § € (0,1)
such that either of the following holds:

o g(w)=+f(w)—~ for w e X with ||[v —wl|| < 6; or
e g(w) = —f(w) 4+ for w € X with ||jv — w|| < 6.

As in the proof of Theorem 3, we have

£
g(w) > g(v) = == [v = w]
L+ A([lvll)
for w € X with 0 < |[v — w|| < J. In the former case, we obtain
€
fw) > f(v) = == [lv — wl].
L+ h(|lvl})
In the latter case, we obtain
£
f(w) < f(v) + 7777 v —w|.
L+ A([lvll)
So, by Lemma 1, we have ||f'(v)|| (1 + A(]jv]])) < € in both cases. This completes the
proof. Il

As a direct consequence of Theorem 5, we obtain the following.

Theorem 6. Let X be a Banach space. Let f be a continuous function from X into R.
Assume that f is Gateaux differentiable at every point x € X, and [ satisfies the weak
Palais-Smale condition. If there ezists v € R such that {z € X : f(x) =7} is bounded,
then | f| is coercive.

Remark. We have the same remark of Theorem 4.

5. CONTINUITY OF h

In this section, we discuss the continuity of hA.

Without the assumption of continuity of h, we can prove Theorem 3. However,
Theorem 3 is not a generalization of Zhong’s result because the following proposition
holds. That is, Theorem 3 in this paper and Theorem 3.7 in [17] are equivalent. Also the
two definitions of weak Palais-Smale condition in [17] and in this paper are equivalent.

Proposition 2. Let h be a nondecreasing function from [0,00) into itself such that
JoS(1/(1+n(t))dt = co. Then there exists a continuous nondecreasing function 6 from
[0, 00) into dtself such that [[°(1/(1 4 6(t)))dt = 0o and h(t) < 6(t) for all t € [0,00).
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Proof. For t € R, we denote by [t] the maximum integer not exceeding ¢t. Define a
function @ from [0, c0) into itself by

0(t) = (L—t+[t]) h([t] +1) + (¢t —[1]) h([t] +2)
for t € [0,00). Putting k = [t] and s =t — [t] € [0,1), we have
Ok+s)=(1—s)h(k+1)+sh(k+2).
It is obvious that # is continuous and nondecreasing. For ¢ € [0, 00), we have
0(t) > h([t] +1) > h(t)
because t < [t] + 1. We also have

> dt > dt > dt > dt
/0 1+6(t)2/0 1+h([t]+2)2/0 1+h(t+2):/2 1+h(t)zoo'

This completes the proof. U

Similarly, we can prove the following.

Proposition 3. Let h be a nondecreasing function from [0,00) into itself such that
JoS(1/(1+h(t))dt < co. Then there exists a continuous nondecreasing function 6 from
[0, 00) into dtself such that [[°(1/(14 0(t)))dt < oo and O(t) < h(t) for all t € [0,00).

Proof. Define a function 6 from [0, 00) into itself by
h(0), <1,
(L—t+[]) (] = 1)+ (¢ = [t]) p([t]), ift>1.
< h([t]) < h(t) for t € [0, 00),

o(t) =

for ¢ € [0,00). Then 6 is continuous, nondecreasing, 6(t)
and h(t —2) < h([t] — 1) < 0(t) for t € [2,00). Hence

/00 dt </°° dt _/°° dt
o 1401 — Jy 1+h(t—2) Jo 1+hn()

This completes the proof. Il

6. COUNTEREXAMPLES

In this section, we give examples, which say that we use conditions [;°(1/(1 +
h(t)))dt = oo and the completeness of X in Theorem 3 and others.

Example 2. Put X := R and let i be a nondecreasing function from [0, co) into itself
such that [°(1/(1+ h(t)))dt < co. Then there exists a differentiable function f from
X into R such that

lim inf f(z) € R and |f'(z)| (14 A(|z]) >1

r—00 |gj|27‘

for all z € X.

Proof. By Proposition 3, there exists a continuous nondecreasing function  from [0, 0o)
into itself such that [;*(1/(1+ 6(t)))dt < oo and 6(t) < h(t) for all t € [0, 00). Define
a function f from X into R by

v -1
Jw) = /0 1 + f(max{t,0}

)dt
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for x € X. It is obvious that lim f(z) =00 and lim f(z) € R. We also have

r——00 +oo
1 1+ h(|x])
! 1+h = 1+h > >
@ (4 Ae) = T grmeaoy O 0 2 g0 2
for all x € X. This completes the proof. U

Example 3. Let X be the normed linear space consisting of all functions x from N into
R (i.e., x is a real sequence) such that {n € N: z(n) # 0} is a finite subset of N. Define
anorm |- || on X by |[z| =37, |z(n)| for all z € X. Define a lower semicontinuous
(not continuous), convex, and Gateaux differentiable function f from X into R by

oo

flz) = Z 2% exp (2" z(n))

n=1
for x € X. Then
lim inf f(z)=0€R and |f'(2)]>1

r—=00 [lz]| 21

for all z € X.
Proof. It is obvious that f is convex and lim inf{f(z) : ||z|| > r} = 0. By the definition

of X, f is Gateaux differentiable and its derivative is given by
f(z) = Z exp (2" z(n)) e,
n=1

for all z € X, where {e,} is the canonical basis of X. Thus, we have
1f'(z)|| = sup { exp (2" z(n)) : n € N} > exp(0) =1
for all z € X. Fix z € X and define a sequence {z,} in X by
if
I/n, iftk=n

for n € N. Since ||z — z,|| = 1/n for large n € N, {z,} converges to z. Since

o=l 1 o 2m\? 1 o

<— [1+=4+(Z) 2] <= =) < f(a,
n2_2”(+n+(n>/)_2”eXp(n)_f<x)
for n € N, we have lim,, f(x,) = co. This implies f is not continuous everywhere. We
finally show that f is lower semicontinuous. Let {x,} be a sequence in X converging to

some x € X. We fix ¢ > 0 and choose v € N such that 27" < ¢ and z(n) = 0 for every
n € N with n > v. Define functions ¢ and h from X into (0, c0) by

v o0

90) = o exp (2 y(m) and hly)= Y o exp (2" y(n)

n=1 n=v+1
for y € X. Then it is obvious that f = g + h, ¢ is continuous and h(z) =277 < e. We
have
f(z) =g(x) + h(x) < g(x)+e = lim g(z,) + e < liminf f(z,) + .
Since € > 0 is arbitrary, we have f(z) < liminf, f(z,). Therefore f is lower semicon-
tinuous. This completes the proof. U
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