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Abstract 

   In this study, we examined the neuronal correlates of frog collision avoidance 

behavior. Single unit recordings in the optic tectum showed that eleven neurons gave 

selective responses to objects approaching on a direct collision course. The 

collision-sensitive neurons exhibited extremely tight tuning for collision bound 

trajectories with mean half-width at half height values of 0.8°and 0.9° (n=4) for 

horizontal and vertical deviations, respectively. The response of frog collision-sensitive 

neurons can be fitted by a function that simply multiplies the size dependence of its 

response, e-αθ(t)  ,by the image’s instantaneous angular velocity θ’(t). Using fitting 

analysis, we showed that the peak firing rate always occurred after the approaching 

object had reached a constant visual angle of 24.2°(SD, 2.6)(n=8 ), regardless of the 

approaching velocity. Moreover, a linear relationship was demonstrated between 

parameters l/v (l: object’s half-size, v: approach velocity) and time-to-collision (time 

difference between peak neuronal activity and the predicted collision) in the eleven 

collision-sensitive neurons. In addition, linear regression analysis was used to show 

that peak firing rate always occurred after the object had reached a constant angular 

size of 21.1 °on the retina. The angular thresholds revealed by both theoretical 

analyses were comparable and showed a good agreement with that revealed by our 
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previous behavioral experiments. This strongly suggests that the collision-sensitive 

neurons of the frog comprise a threshold detector, which triggers collision avoidance 

behavior.  
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Introduction 

     For many animal species, an image of an approaching object typically elicits 

avoidance behavior, presumably because encounter with a predator or collision with a 

stationary object is potentially lethal. This strong selection pressure has led to the 

evolution of visually guided collision avoidance behavior in many kinds of animals, 

including humans (Ball and Tronick 1971; Bower et al. 1970; Hayes and Saiff 1967; 

Schiff et al. 1962). Therefore, it is expected that common behavioral strategies and 

neuronal mechanisms might be at work in different animals. At the behavioral level, 

two different strategies are typically used to perform such an important task. The first 

is to use estimated time-to-collision as a sensory cue for avoidance. The second is to use 

a threshold value for the size of the retinal image subtended by an approaching object as 

the cue for avoidance (Lee et al. 1981, 1993; Schiff 1965; Wagner 1982).      

Time-to-collision, τ(t), is the ratio of retinal expansion velocity to retinal size under 

constant closing velocity (Lee, 1976). The following behavioral examples are elicited 

whenτ(t) reaches a critical value: onset of streamlining in the gannet during the 

plunge dive when attacking fish schools (Lee and Reddish 1981), onset of pre-landing 

deceleration in the fly, and onset of pre-landing foot extension in the pigeon (Lee et al. 

1993; Wagner 1982). Humans also use this parameter, when playing ball games or 
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driving a car (Lee et al. 1976, 1985), by means of a visual pathway that also is sensitive 

to time-to-collision (Regan and Hamstra 1993).  

The size of the retinal image subtended by an approaching object is the cue used in 

the fiddler crab and in chicks. When the visual angle of an approaching object reaches 

30 – 35°, an avoidance response appears in both species (Schiff 1965). Also, collision 

avoidance in flying locusts is initiated when the target subtends more than 10° in the 

animal’s field of view, whereas a constant time to collision is not used (Robertson and 

Johnson 1993a,b).    

To understand the neuronal mechanisms underlying a particular behavior, both 

behavioral and neurophysiological studies in the same animal species are required to 

demonstrate an inter-relationship. While behavioral strategies for collision avoidance 

have been established in many animal species, the corresponding neuronal mechanisms 

in these species essentially have been ignored (Holmqvist and Srinivasan 1991; Lee and 

Reddish 1981; Schiff 1965; Wagner 1982). On the other hand, putative 

collision-sensitive neurons which could mediate the above behaviors have been reported 

in several animal species including monkey, cat, hawk moth, crab and even humans, but 

in many of these cases, the corresponding quantitative behavioral study has not been 

performed (Oliva et al. 2007; Regan and Cynader 1979; Wicklein and Strausfeld 2000; 
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Wunderlich et al. 2002; Zeki 1974).  

Only in the locust have intensive behavioral and neurophysiological studies been 

carried out at the same time. The neurophysiological results center on two 

collision-sensitive neurons in the locust known as the lobula giant movement detector 

(LGMD) and the descending contralateral movement detector (DCMD) (Hatsopoulos et 

al. 1995; Judge and Rind 1997; Rind and Simmons, 1992, 1997, 1999; Schlotterer 1977; 

Simmons and Rind 1992). The DCMD exhibits extremely tight tuning to an object 

approaching on a direct collision course (Judge and Rind 1997). Peak DCMD activity 

occurs with a fixed delay (15 – 35 ms) after the approaching object has reached a specific 

angular threshold on the retina (15 – 40° ) (Gabbiani et al. 1999, 2001). Thus, 

neurophysiological studies also have shown the importance of retinal threshold size in 

eliciting collision avoidance behavior (Gabbiani et al. 2002, 2004). The following 

observations further support the hypothesis that DCMD plays a major role in the locust 

collision avoidance behavior. The DCMD axon descends into the thoracic ganglia and 

makes connections to flight interneurons and motoneurons (Burrows and Rowell 1973; 

O’Shea et al. 1974; Simmons 1980), and thus seemed to be a good candidate for 

mediating visually guided steering or predator evasion during flight (Gray et al. 2001; 

Robertson and Johnson 1993a,b).  
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Santer et al (2005) showed that there is a close match between the visual stimuli 

that elicit evasive gliding behavior and those that excite the DCMD neurons. They also 

showed that wing elevation leading into the gliding posture occurs during a maintained 

burst of high frequency DCMD spikes. Furthermore, the different rates of habituation 

of the DCMD were shown to be correlated with a change in predator escape strategies of 

solitary and gregarious locusts (Matheson et al. 2004). The DCMD also mediates 

visually guided escape jumps. Recently, by comparing electrophysiological and 

high-speed video recordings, Fotowat and Gabbiani (2007) examined the correlation 

between distinct phases of escape jumps and distinct phases of firing patterns of the 

DCMD.  

There has not been any comparable study in the vertebrates. Collision-sensitive 

neurons in the brain have been investigated most intensively in the pigeon, where three 

types of such neurons have been found in the nucleus rotundus. One group signals the 

ratio of retinal expansion velocity to retinal size (τ), the second group signals absolute 

rate of expansion (ρ), and the third group signals yet another optical variable which 

encodes retinal threshold size (η) (Sun and Frost 1998). However, very little is known 

about collision avoidance behavior of the pigeon. It was shown that, when approaching a 

perch, the pigeon initiates foot extension when time-to-collision reaches a threshold 
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value of approximately 150ms (Lee et al. 1993). However, the properties of 

collision-sensitive neurons in the nucleus rotundus which signal the time-to-collision of 

an approaching object (τ neurons) are not necessarily consistent with visual information 

processing during pigeon landing (Frost and Sun 2004; Sun and Frost 1998; Wang and 

Frost, 1992). 

    To investigate the neuronal correlates of collision avoidance behavior in vertebrates, 

our previous behavioral experiments (Yamamoto et al. 2003) and the present study 

introduce a new experimental model species, the bullfrog Rana catesbeiana, which 

readily allows investigation of collision avoidance behavior at both the behavioral and 

neuronal levels. The frog is especially useful for understanding underlying neuronal 

mechanisms for the following reasons. First, because visually guided avoidance 

behavior is conservative in the animal kingdom, results can be generalized. Second, in 

the frog this behavior is a relatively stereotyped all-or-nothing event that can be 

detected easily and for which behavioral parameters can be measured with considerable 

precision (Yamamoto et al. 2003). Third, the optic tectum is easily accessible and a 

precise retinotopic projection from the eye to the contralateral tectal surface can be 

easily recognized (Gaze 1958; Potter 1969; Székely and Lázár 1976). 

   Our previous behavioral experiments showed that the frog displays collision 
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avoidance behavior when the visual angle of a looming object reaches a threshold value 

of about 20°  (Yamamoto et al. 2003). Many authors have electrophysiologically 

examined the response properties of neurons in the optic tectum and the thalamus. 

Putative collision-sensitive neurons have been found in the optic tectum and the caudal 

thalamus (Ewert 1971; Grüsser and Grüsser-Cornehls 1976). However, no quantitative 

study of the neurons has been carried out to allow comparison with the corresponding 

behavioral strategy. We carried out the present series of experiments by using single 

electrode recordings to probe for collision-sensitive neurons in the optic tectum which 

respond selectively to an approaching object on a collision course, and to clarify what 

parameter of the collision stimulus is coded by such neurons. Here we show that 

collision-sensitive neurons exist in the frog optic tectum and that they signal the retinal 

threshold size of an approaching object, which shows good agreement with the results 

from our previous behavioral experiments. 
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Materials and Methods 

Animals 

  Adult bullfrogs, Rana catesbeiana, of either sex and 12-14 cm body length, were used 

exclusively. Animals were obtained commercially and kept in laboratory tanks under a 

12h light / 12h dark cycle before use. They were fed on chicken liver twice a week.  

Preparations 

All experimental procedures were approved by the Kyushu Institute of Technology 

Animal Institutional Review Board and were in accordance with Kyushu Institute of 

Technology Animal Care Use Regulations and NIH Guidelines on the Care and Use of 

Animals in Research. Conventional procedures for exposing the optic tectum of the frog 

were carried out. The animal was anesthetized by a subdermal injection of 0.6ml of 

tricaine methanesulfonate (MS222, Sigma.) and immobilized by injecting 0.2 ml of 

succinylcholine (SUCCIN, Yamanouchi). The animal was then placed on a metal frame. 

After infiltration of a local anesthetic (XYLOCAINE, Fujisawa) the skin of the operative 

area on the head was cut, the skull was opened with a drill to expose the left optic 

tectum, and the dura mater and the arachnoidea were locally retracted with fine forceps 

and scissors. The dorsal brain surface of the experimental animal was exposed in the 

mesencephalic region. The cranial cavity was filled with 10 % warm, liquid gelatin 

(DIFCO) which immobilized the brain. The ground and reference electrode was placed 
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in the left leg. After surgery, the frog was carefully positioned with its right eye surface 

parallel to a computer monitor that was placed 20 cm from the animal. Several visual 

stimuli were presented to the right eye. The left, non-stimulated eye was covered by an 

opaque occluder. During the experiments, the frog’s body skin was kept moist with thin 

wet gauze to facilitate cutaneous respiration. All experiments were carried out at room 

temperature (18-22 ℃).  

Visual stimulation 

The stimulus animations were run on a PC Pentium IV 2.8 GHz equipped with 1.0 

GB of RAM, NVIDIA GeForce FX5800 Graphics Controller and EIZO model FlexScan 

L767 19- inch Multi-Scan Color Monitor set to a refresh rate of 75 Hz. The background 

and the stimulus square had an average illuminance of 110 and 8 lux (at 20 cm from the 

screen), respectively. Visual simulations of approaching or receding objects were 

produced by 2-dimensional expansion or contraction of the stimulus square, as viewed 

by the animal. These were the same experimental conditions as those of our behavioral 

experiments, except for the position of the computer monitor. Previously it was placed 

above the animal, whereas in the present experiments it was placed on the animal’s 

right side. The visual stimulus was presented on the specific region of the monitor 

corresponding to the recording site determined from the retinotectal projection map of 

the optic tectum. The final size of the square was 20cm, which corresponded to a visual 
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angle of 53.1°. This size is much larger than the threshold angle of the looming 

stimulus, about 20°demonstrated in our behavioral experiments.  

Four groups of visual stimuli were presented to the right eye of the frog. The first 

group simulated five approaching objects and involved: 1) A 35 x 35 cm black square 

approaching at a velocity of 2m/s along a path of 6 m on a direct collision course against 

a white background (collision); 2), 3), 4) and 5) A 35 x 35 cm black square approaching at 

the same velocity and path length on trajectories deviating from a direct collision path 

in the horizontal or the vertical plane against a white background. The final positions of 

the squares were 20 cm to the left, right, above or below the central axis (represented by 

x-20, x+20, y+20, y-20, respectively). A 20 cm deviation represents a 2°shift of the 

midpoint of the square away from the direct collision path. The second group simulated 

translational movement of three objects and involved: 6), 7) and 8)  A 2 x 2 cm, 10 x 10 

cm or 20 x 20 cm black square moving on the front-parallel plane at a velocity of 30 cm/s 

(corresponding to 73.7°/s) against a white background (represented by trans2, trans10 

and trans20, respectively). In four trials, the velocity was changed to 9 cm/s and 1.5 

cm/s corresponding to 25.4°/s and 4.3°/s, respectively. Because the black squares were 

moved forward, backward, upward and downward through the initial position, the 

response was evaluated as an average number of spikes to the four directions.  Each 
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black square subtended a visual angle of 5.7°, 28.1°and 53.1°, respectively. The second 

group also contained stimulus 1) to test whether the neuron still responded to a collision 

stimulus. The third group simulated an object approaching on a direct collision course 

at four different velocities and involved: 9),10), 11) and 12) A 35 x 35 cm black square 

approaching at a velocity of 1, 2, 3 and 4m/s along a path of 6 m on a direct collision 

course against a white background. The fourth group of stimuli involved: 13) The same 

stimulus as 1) except that the contrast of stimulus and background was reversed 

(reversed contrast),  14) A 20x20 cm square with its brightness (hence, contrast) 

varying from white to black as the nonlinear time course given for the looming stimulus 

of 1) (brightness change) and 15) A 35 x 35 cm black square receding at a velocity of 

2m/s along a path of 6m on a direct collision course against a white background 

(recession). For the four groups, the stimuli were presented randomly at an interval of 

at least 2 min to allow the cell to recover from any adaptation. Each stimulus type (1-15) 

was presented three times with an interval of at least 3 s (1-8 and 13-15) or 1 min (9-12) 

between trials.  

To make tuning curves, in four neurons the response was also examined to the 

collision stimulus and the deviation stimulus in which the final position of the square 

was displaced 10cm or 5 cm from the central axis (represented by x-10, x+10, y-10, y+10, 
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x-5, x+5, y-5, y+5, respectively). The 10 cm and 5 cm deviations represent 1.0°and 

0.5°shifts from the direct collision path, respectively. Again, these stimuli were 

presented randomly with an interval of 2 min. Each stimulus contained 3 successive 

trials with an interval of at least 3 s. Consequently, the response to an object 

approaching at a velocity of 2m/s on a direct collision course was examined up to five 

times in a series of experiments.  

Recordings 

Neuronal activity was recorded at depths of 200 - 600 μm using glass-coated 

tungsten electrodes with active tips 30μm in length and an impedance of 5 MΩ.    

Neuronal responses were amplified by a preamplifier (DPA102E DIA MEDICAL) and an 

extracellular amplifier (DPA-100 DIA MEDICAL), and were fed to an oscilloscope 

(CS-4125 KENWOOD). The extracellular signals were led to a four channel digital tape 

recorder (PC204Ax SONY) together with changes in image size monitored as a voltage 

produced by a software-controlled DA converter (PCI 3336 Interface).  

Analysis  

The data were analyzed by using the ‘LaBDAQ2000’ program (Corporation of 

Matsuyama Advan). Data kept in DAT tapes were fed into a computer by an A/D board 

(ADM-682PCI, Corporation of Matsuyama Advan), where the data were sampled at 10 
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kHz and saved as text files. To extract single unit activity based on amplitude and to 

construct post stimulus time histograms (PSTH), a local laboratory VC++ program was 

used. The threshold level of the window to discriminate single unit activity was set to 

detect only the unit showing sustained response during the final stage of image 

expansion in all three successive presentations. Therefore, in Fig1A,  both the large 

unit that did not respond to all successive looming stimuli (■ in Fig1A) and the small 

unit showing a spontaneous response before image expansion (□ in Fig1A) were 

eliminated. Moreover, we confirmed that both the profile and peak of the PSTH were 

not changed even though the window discriminator was set to detect fewer spikes. 

Therefore, we concluded that the extracted spikes were most likely from a single unit or 

possibly multiple units showing the same response profile but subtle amplitude 

differences. 

The PSTH was used to test whether the response of the collision-sensitive neuron could 

be fitted by a function that simply multiplies the size dependence of its response, e-αθ(t) , 

by the image’s instantaneous angular velocity, θ’(t), where θ(t) is image size and α 

is positive constant. As that was the case, the angular threshold size (θ threshold) 

characterizing the peak response of the collision-sensitive neuron was computed with 

the equation of Gabbiani et al. (1999): 
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θthreshold=2∙tan-1(1/α) (1) 

This duplicates the analysis reported for the LGMD and the DCMD in the locust. 

The parameter α also can be obtained by an alternate analysis. PSTHs were 

constructed from single unit response to an object approaching at four different 

velocities. The time-to-collision (time difference between the peak of the neuronal 

activity and the predicted collision) was estimated according to the peak firing time for 

each velocity. The linear relationship between the time-to-collision and visual 

parameter l/v (l: object half size, v: approaching velocity) was examined. The slope of the 

regression line should be α. Again, the angular threshold producing the peak response 

of the collision-sensitive neuron was calculated from equation (1) (Gabbiani et al. 1999). 

Statistical analysis and linear regression analysis were performed in Excel 2003 

(Microsoft). Averages reported here are given as the mean (standard deviation). 

Student’s t test for paired data sets was used to compare the means of spike numbers 

between the collision stimulus and other stimuli. Model fits were performed with 

Deltagraph (Japan Poladigital). Tuning curves were fitted to Gaussian functions with 

Origin (OriginLab). 

Histology 

To locate an electrode recording site, a lesion was made by passing a 10 μA negative 
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current through the electrode for 4 to 10s. At the end of a recording session, the animal 

was deeply anesthetized and prepared for histological examination. The brain was 

removed from the skull and fixed in 2.5% glutaraldehyde and 1% paraformaldehyde in a 

refrigerator overnight. The trimmed optic tectum was embedded in 25% gelatin and 

stored in 10% buffered formalin for 2-4 hours. The gelatin block was placed in 30% 

sucrose overnight at the refrigerator. Frozen sections were cut out at 40 μm and 

stained with cresyl violet. 
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Results 

Directional sensitivity of collision-sensitive neurons 

   Single unit visual responses of eleven collision-sensitive neurons were recorded in 

the optic tectum of eleven different frogs. The typical responses of a collision-sensitive 

neuron to various visual stimuli are shown in Fig.1. This neuron showed a selective 

response to an object approaching on a direct collision course compared to that receding 

on the same trajectory or approaching on near miss trajectories (Fig.1A, C). The 

response to the direct collision stimulus was greater than that to translating movement 

with a velocity of 30 cm/s (Fig.1A, B). The translating stimuli would have been in the 

receptive field for a shorter period of time, which could explain why the translating 

stimuli produce fewer spikes than the looming stimuli. To test this possibility we also 

examined the responses to translating stimuli with slower velocities (Fig.1 D). The 

collision-sensitive neuron showed much smaller responses to the translating stimuli at 

velocities of 9cm/s and 1.5cm/s than of 30cm/s. Therefore, this hypothesis can not 

account for the difference seen between responses to looming and translating stimuli. 

Moreover, this neuron showed almost no response to both a bright object approaching 

against a dark background and brightness change without image expansion (Fig.1C). 

Figure 2 shows the distribution of the foci of expansion (FOE) of looming stimuli on the 
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computer display for the eleven neurons. These collision-sensitive neurons showed a 

similar response pattern to each presented stimulus, regardless of the location of the 

stimulus FOE.  

The responses of the eleven neurons were further analyzed quantitatively. The 

excitatory receptive field (ERF) sizes were mapped with a 2 cm translating black square. 

The mean horizontal and vertical extents of the ERF were 11.0° (SD 5.0) (n=4) and 12.8° 

(SD 3.5) (n=4), respectively. Figure 3 illustrates the average number of spikes (mean, 

SD) obtained from the eleven collision-sensitive neurons to 11 kinds of visual stimuli 

(collision, x-20, x+20, y+20, y-20, trans2, trans10, trans20, reversed contrast, brightness 

change, and recession; see Materials and Methods). The average spike numbers were 

compared between the collision stimulus and other stimuli with a paired t-test. A 

significant difference occurred between the neuronal response to the direct collision 

stimulus and those to other stimuli (P<0.01). The neurons did not show any response to 

brightness change, demonstrating that they did not respond to a decrement of 

brightness accompanied with expansion of the retinal image (Figs. 1, 3). The objects, 

especially the large one, produced little response when moved on a front-parallel plane 

(translational movement, Figs. 1, 3). The average spike number in response to a 20cm 

translating object was significantly smaller than that to a 10cm translating object 
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(P<0.05). However, in both looming and translating stimuli, adaptation occurred when 

the neurons were stimulated repeatedly (Fig. 4).   

In four preparations, horizontal and vertical deviation of 0.5°and 1.0°from a 

direct collision path were simulated in different approaching trajectories to examine the 

tuning properties in detail. Typical responses to such stimuli are shown in Fig. 5. The 

most vigorous response was given to an object on a direct collision course. Total spike 

numbers for each trajectory were plotted against displacement from a collision 

trajectory (Fig. 6A and 6B for horizontal and vertical deviation, respectively). The 

results showed that the response declined as object trajectories moved away from a 

direct collision course. Fitting a Gaussian function to the results for the neuron of Fig.6  

showed that the peak in the sensitivity profile deviated 0.5°horizontally and 0.3°

vertically from a direct collision course (half width values at half peak were 1.1°and 

1.0°,respectively). The sensitivity profiles obtained from the four neurons to the above 

stimuli deviated on average 0.4° (SD 0.3) horizontally and 0.4° (SD 0.2) vertically from a 

direct collision course (half width values at half peak were 0.8° (SD 0.2), 0.9° (SD 0.2), 

respectively). The directions of horizontal and vertical deviations of the peaks of the 

tuning curves obtained from the four neurons are shown in Fig.2. 

The location of the collision-sensitive neurons in the tectal layer  
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   The responses of the collision sensitive neurons were recorded at a mean depth of 

402.7 μm (SD 53.5). During penetration of microelectrodes into the tectum, the 

responses usually were recorded just below those of R3 and R4 retinal ganglion cells. 

This suggests that collision-sensitive neurons are located within layer 7, the main 

efferent layer of the tectum. To test the hypothesis, lesion experiments were performed 

to locate the electrode recording sites (N=6).  All six penetrations showed that the 

lesion occurred in layer 7, as seen in a typical result (Fig.7). The waveshape of an action 

potential of a collision-sensitive neuron was biphasic (Fig.1 inset). This shows that the 

electrode was positioned adjacent to the site of action potential initiation and 

subsequent propagation (Winkowski and Gruberg 2005).  Combined with the 

observation that the neurons showed retinotopy, it is very likely that the action 

potentials were recorded at or near the initial segments of the axons in layer 7. 

The response of the collision-sensitive neurons can be fitted with a function that 

multiplies the image’s instantaneous angular velocity and an exponential function of 

the size of the object’s image on the retina. 

   The time-rate response profiles of the collision-sensitive neurons to a looming 

object were quite characteristic. The typical response profile to a black square of 35 x 35 

cm approaching at a velocity of 2m/s through a path of 6 m is shown in Fig. 8, where the 



 22 

number of spikes in 50 ms bin widths is plotted against time-to-collision (N=15 trials).  

The neuron started firing early during the approaching phase and the firing rate 

gradually increased as the object became larger, as if the cell were “tracking” the object 

during the approach. The firing rate peaked before the predicted collision time and then 

rapidly decreased. It should be noted that this neuron gave its maximum response to 

approaching objects with sizes ranging from 25°to 28°, which, if moving laterally, 

elicited few, or no, responses (Figs.1, 3 and 4). The response profile is very similar to 

those of the LGMD in the locust and η neurons in the pigeon (Hatsopoulos et al. 1995; 

Sun and Frost 1998). As in those well characterized collision-sensitive neurons, the 

response of the frog collision-sensitive neurons also can be fitted with a function that 

multiplies the size dependence of its response (e-αθ(t)) by the image’s instantaneous 

angular velocity ( θ’(t)). In this particular case, the response can be described with the 

following equation (Fig. 9):  

f(t)=61.6∙θ’(t)∙e-4.1θ(t)  (2) 

From equation (1), we obtain θthreshold = 27.5o. This shows that the peak firing rate 

occurred after the approaching object had reached a visual angle of 27.5°on the frog’s 

retina. Figure 10 shows response profiles to the same black square approaching at 

velocities of 1m/s, 3m/s and 4m/s through a path of 6 m. These responses also can be 
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fitted with a function that multiplies the size dependence of its response by the image’s 

instantaneous angular velocity.  At a velocity of 1m/s, the response can be described 

with the following equation (Fig. 11A): 

f(t)=12.2∙θ’(t)∙e-4.7θ(t) (3) 

At a velocity of 3m/s and 4m/s, the responses can be fitted with the following 

equations, respectively (Fig. 11B, C): 

f(t)=27.9∙θ’(t)∙e-4.4θ(t)  (4) 

f(t)=34.5 ∙θ’(t)∙e-5.0θ(t)  (5) 

From equation (1), at a velocity of 1, 3, and 4m/s,  θ threshold= 23.8°, 25.6°,22.8°, 

respectively. Thus, despite different approaching velocities, the peak firing rate always 

occurred after the approaching object had reached a constant visual angle of 24.9° (SD, 

2.1) (n=4). This strongly suggests that the collision-sensitive neurons of the frog, like 

LGMD and η  neurons, play the role of an angular threshold detector. Table 1 

summarizes calculated angular thresholds at different approaching velocities obtained 

from the eight collision-sensitive neurons. The mean angular threshold obtained from 

the eight neurons was 24.6° (SD, 2.5, n= 8), thus further supporting the above threshold 

detector role. 

Linear relationship between time-to-collision and visual parameter l/v 
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Here, we perform an alternative analysis to reveal the angular threshold detected by 

the frog collision-sensitive neurons. The relationship between two essential visual 

parameters related to collision avoidance, l/v and time-to-collision, was examined. L/v 

defines the time course of expansion of the retinal image during object approach. L 

denotes the object’s half-size, and v denotes its approach velocity. Theoretical 

consideration showed that if time-to-collision and l/v are linearly related, the peak firing 

rate always occurs at a fixed delay after the object has reached a constant angular size 

on the animal’s retina (Gabbiani et al. 1999).  

This possibility was tested by changing the velocity of an approaching object (1, 2, 3, 

4m/s), and examining the relationship between time-to-collision and l/v for the same 

collision sensitive neuron in which response profiles for each approach velocity were 

fitted with equations (2) to (5). The result showed that the two parameters were linearly 

related (R2=0.98) (Fig.12).  The value of fitted slope yielded α in equation (1). Thus, 

in this case, the peak firing rate always occurred after the approaching object had 

reached a visual angle of 26.5°on the frog’s retina.  This value shows a good 

agreement with that obtained from the alternate analysis in the previous section 

(24.9°). Similar results were observed in all eleven neurons in which linear regression 

analysis was performed using the mean values for time-to-collision (Fig. 13). The results 
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again showed that the relationship between l/v and time-to-collision was close to linear 

(R2= 0.99).  The result also clearly showed that the peak firing rate always occurred 

after the object had reached a constant angular size ( 21.1°) on the retina. The value of 

θthreshold showed a good agreement with those obtained from both the curve fitting 

analysis and earlier behavioral experiments (Yamamoto et al. 2003).  

   The two types of regression analysis described above revealed intercepts of 62.3 ms 

and 47.9 ms, respectively. This means theoretically that the threshold angle occurs after 

the peak response of collision-sensitive neurons rather than before it. Fotowat and 

Gabbiani (2007) also reported that the fit of the lines to the timing of the DCMD peak 

revealed a positive intercept in response to stimuli with large l/v values (40-120 ms) but 

not to those with small l/v values (5-50 ms). They concluded that intercepts of linear fits 

computed over the larger range are less reliable than those computed over the small 

range because of the larger extent of extrapolation and larger variability in the peak 

firing time for the former range. Our looming stimuli have l/v values of 43.8, 58.3, 87.5 

and 175 ms corresponding to the former range. Therefore, we do not discuss the 

response latency further in this report. 
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Discussion 

Collision-sensitive neurons of the frog 

To successfully survive, animals should distinguish between approaching dangers 

and harmless objects in the natural environment. Therefore, the neuronal correlates 

would be expected to show response characteristics appropriate for this task. 

Hypothetically, the tectal neurons characterized in the present study are 

collision-sensitive neurons which are analogous to pigeon τ neurons and locust LGMD, 

DCMD neurons. To confirm this, the response properties of the putative 

collision-sensitive neurons of the frog were compared with those of well-characterized 

collision-sensitive neurons in other animals in terms of a) preference for objects 

approaching on collision trajectories, b) preference to movement in a frontal parallel 

plane, and c) response to recession and brightness change. 

a) Preference for objects approaching on collision trajectories 

All collision-sensitive neurons show a preferred response to approaching objects on a  

direct collision course rather than to objects approaching on near-miss trajectories. 

Thus, in the nucleus rotundus of the pigeon, the collision-sensitive τneurons exhibited 

extremely tight tuning, centered precisely on 0°azimuth with mean half-width at half 

height values of 3.3°and mean above baseline widths of 16°(Wang and Frost 1992). 
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Similarly, the response tuning of the locust DCMD has a half-width at half height value 

of 2.4-3.0°for a deviation in the horizontal direction and 3.0°for a deviation in the 

vertical direction (Judge and Rind 1997). The frog tectal neurons examined in this study 

also showed extremely tight tuning with a half width at half peak value of 1.1°and 1.0° 

for a deviation in the horizontal and the vertical direction, respectively (Fig.6). This 

strongly suggests that they are collision-sensitive neurons.  

However, there are several differences between the putative frog collision-sensitive 

neurons and those of other animals, which should be discussed here. First, the 

collision-sensitive neurons in the frog seem to have tighter tuning than those in other 

species. However, taking the apparent stimulus path length into consideration (1.9 m in 

Judge and Rind 1997; 5.8 m in this study, respectively), the half width at half height 

values in the locust and the frog both corresponded to about 10 cm displacement of the 

mid point of the stimulus away from the central axis. Second, in the frog, the peak of the 

tuning curve was shifted ≦0.5°from a collision trajectory, while the collision-sensitive 

neurons in the pigeon and the locust showed tuning curve peaks centered precisely on a 

direct collision path . Two possible explanations could account for this observation. First, 

objects approaching on near miss trajectories with displacements of 0.5° would still 

contact the animal. However, the tuning curve peak does not necessarily move toward 
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the animal (Fig.2). Second, a more likely explanation is that the location of the FOE was 

displaced from the center of the receptive field of the examined neuron. The retinotopy 

of tectal collision-sensitive neurons will be discussed later.  

b) Preference to movement in a frontal parallel plane 

   While it is useful to make interspecies comparisons of collision-sensitive neuron 

responses to translational stimuli, there is some risk in referencing such responses to 

those for collision stimuli. Specifically, because the retinal image of an approaching 

object expands but that of an object moving in a tangent screen plane is constant, the 

response preference could change depending on the size of the translating object. 

Furthermore, the translating stimuli would have been in the RF for a shorter period of 

time than the looming stimuli. In the following discussion, we attempt to shed light on 

the complexities in stimulus preferences among collision-sensitive neurons in different 

species. 

   In the pigeon, collision-sensitive neurons show very little or no increase in the firing 

rate and no indication of directional preference to object motion in a tangent screen 

plane (Wang and Frost 1992).  

In the locust, the LGMD and DCMD neurons were originally claimed to respond 

optimally to rapid translating movements of small objects in the visual field (Oshea and 
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Rowell 1975; Palka, 1967; Rowell et al. 1971a,b, 1977). However this view was 

overturned by a subsequent quantitative study of the DCMD responses to translational 

stimuli (Rind and Simmons 1992). 

Rind and Simmons used a real object (a black disk of radius 25mm) controlled 

with an x-y plotter and compared the response to the disk translating across the eye at a 

uniform velocity (0.5m/s) with the response to the disk approaching or receding from the 

eye at the same velocity. The size of the translating disk was the same as the initial size 

of the approaching or receding disk. Approach of the disk toward the eye elicited 37± 

1.1 spikes (mean ± SE) in the DCMD, while translation in the posterior and anterior 

directions elicited 14.7 ±0.9 and 11.3 ±0.7 spikes, respectively. Hatsopoulous et al 

(1995) also analyzed DCMD responses to constant velocity translational stimuli by 

using computer graphics to move squares of various sizes to the left or to the right. They 

confirmed the previous finding that as the stimulus size increased, the response 

declined (Rowell et al. 1977). They also showed that the DCMD firing rate was well 

fitted by an exponential function of the size of the object (e-αθ, where θ is the size of 

stimulus, α is a positive constant).  

Recently, in the lobula of the crab, two movement detector neurons, M1 and M2 

were found to respond to an expanding image in a robust and reliable way (Oliva et al. 
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2007). Both neurons produced a considerable, often sustained, response to lateral 

displacement of a 6 cm black square (velocity: 18cm/s), but, again, the strongest 

response was found to a black looming stimulus. In general, the above results show that, 

although collision-sensitive neurons found in different animals produce a considerable 

response to a translating small object, the response is still smaller than that to an 

approaching object regardless of the size of the translating object.  

The eleven putative frog collision-sensitive neurons also showed a much stronger 

response to objects approaching at a velocity of 2m/s (47 spikes (SD, 22)) than to 

translating objects with visual angles of 5.8°, 28°and 53.1°moving at a velocity of   

30 cm/s (6 spikes (SD, 5), 7 spikes (SD, 6) and 2 spikes (SD, 3), respectively)(Fig.3). The 

mean horizontal and vertical extents of the ERF were both less than 13°. This size is 

much smaller than the threshold angle detected by these neurons in response to a 

looming stimulus. Therefore, it is unlikely that the response to approaching objects of 

the collision-sensitive neurons is generated artificially by the stimulus expanding into 

the inhibitory surround of a large off center and on surround receptive field. The 

inhibitory receptive field of tectal and entopallial collision-sensitive neurons in the 

pigeon also did not suppress their looming responses (Wu et al. 2005; Xiao et al. 2006). 

Thus, looming responses in both species are not determined by the receptive field 



 31 

organization mapped on the front-parallel plane. 

   Furthermore, the collision-sensitive neurons showed a much weaker response to 

translating objects with velocities of 9 cm/s and 1.5 cm/s than that with a velocity of 30 

cm/s (Fig.1D). This showed that the period of time during which the stimulus moved 

through the RF can not account for fewer spikes being elicited by the translating 

stimulus compared to the looming stimulus. These observations again support their 

identification as collision-sensitive neurons. 

   Differential adaptation may underlie the contrast in selective responses to a looming 

stimulus compared to a translating stimulus. Thus, in the locust DCMD responses to 

10°objects moving tangentially on a monitor screen resulted in vigorous phasic activity 

which adapted drastically over successive trials. In contrast, responses to approaching 

objects were extremely vigorous and were much less susceptible to the effects of 

stimulus repetition (Schlotterer 1977).  Recent pharmacological experiments 

demonstrated that the strong spike frequency adaptation to a translating stimulus, 

which is mediated by a Ca2+ -dependent potassium conductance, contributes to looming 

stimulus selectivity in the LGMD (Peron and Gabbiani 2009).  Unlike the LGMD, 

however, the responses of the frog neuron to looming and translating objects were 

equally adapted (Fig.4). This different susceptibility to adaptation could be due to the 
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fact that receptive field sizes of frog collision-sensitive neurons are much smaller than 

that of the LGMD.  A translating object crossing the wide receptive field of the LGMD 

continues to activate a constant number of photoreceptors per unit time over a long 

period, making the neuron susceptible to adaptation (Peron and Gabbianai 2009). On 

the other hand, a translating object only phasically activates frog collision-sensitive 

neurons because of their small receptive fields, making the neurons less susceptible to 

adaptation.  

c) Responses to receding objects and brightness change 

   As in the pigeon and locust, the putative frog collision-sensitive neurons showed 

almost no response to a receding object, nor to any brightness change accompanied by 

expansion of the retinal image (Fig.3). Pigeon τ neurons show no response to both 

receding objects and changes in illumination (Wang and Frost, 1992). Locust DCMD 

neurons show much smaller responses to receding objects compared to translating ones 

(Rind and Simmons, 1992). Changes in overall luminance with no change in the size of 

the rectangular stimulus elicit much smaller and briefer responses from the DCMD 

than do approaching visual targets (Simmons and Rind, 1992). 

    However, the frog collision-sensitive neurons differed from others in terms of the 

effects of image contrast on responses to approaching objects. The response selectivity of
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τ neuron for a looming stimulus was unaffected by contrast reversal (Wang and Frost, 

1992). The DCMD could distinguish approach from recession not only of objects that 

were darker than the background but also of objects that were lighter than the 

background (Rind and Simmons 1992). On the other hand, the frog collision-sensitive 

neurons showed almost no response to a bright object approaching on a dark 

background (Fig.3). Our physiological observations are in agreement with the finding 

that no jumping occurred in response to magnification of the reversed-contrast 

silhouette (Schiff 1965).   

Thus, although there is a subtle difference in response characteristics, it is 

concluded that the collision-sensitive neurons in the frog optic tectum are analogous to 

pigeon neurons and locust LGMD, DCMD neurons. 

Frog collision avoidance behavior and underlying neuronal correlates 

Effective visual stimuli and threshold parameters have been demonstrated for frog 

collision avoidance behavior. Schiff (1965) showed that collision avoidance behavior can 

be elicited with a two dimensional rapid magnification of a continuous silhouette by 

using a shadow-casting device. Ingle and Hoff (1990) adopted a black 8 to 10 cm square 

moving toward the frog as the visual stimulus and found that it produced avoidance 

behavior when the retinal image expanded beyond a visual angle of 30°(although the 



 34 

data were not shown). In the frog, previous experiments using computer graphics 

confirmed Schiff ’s observation and also showed that the frog displays avoidance 

behavior to an approaching object when the retinal image size, not time-to-collision, 

reaches a critical angle of about 20° (Yamamoto et al. 2003).  

The neuronal mechanisms underlying frog collision avoidance behavior have been 

examined by many authors. Hemisection of either the posterior or anterior portion of 

the optic chiasm produces a selective loss of behavioral responses to a large looming 

stimulus, but not to a prey stimulus, anywhere in the visual field. This suggests that 

visual information concerning prey and threatening objects is mediated by separate 

optic nerve fiber systems (Waldeck and Gruberg 1995). Furthermore, unilateral 

injection of tetrodotoxin or cadmium chloride into the frog optic nerve selectively 

abolishes avoidance behavior to looming objects, but not prey orienting behavior. This 

selective loss of behavior was correlated with a loss of activity of R4 retinal ganglion 

cells, the dimming detectors (King et al. 1999). A recent study combining behavioral 

experiments and multielectrode recordings from isolated retinas showed a very strong 

correlation between synchronized oscillatory activity among retinal dimming detectors 

and collision avoidance behavior of the frog (Ishikane et al. 2005). Thus, it is very likely 

that the dimming detectors have an important role in eliciting of collision avoidance 
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behavior. However, the dimming detectors lack the major characteristic of 

collision-sensitive neurons: a directional selectivity to an approaching object on a 

collision course (Hartline 1938; Lettvin et al. 1959). Combined with these results, the 

finding that removal of the optic tectum abolishes any response to approaching objects 

(Ingle 1973, 1977) strongly suggests that collision-sensitive neurons with angular 

thresholds of about 20°should be in the frog optic tectum.       

Indeed, putative collision-sensitive T3 neurons in the frog optic tectum have been 

reported to respond vigorously to an approaching object, in contrast to their low 

sensitivity to a receding object or an object moving around the animal. The excitatory 

receptive fields were located predominantly in the nasal part of the visual field and 

extended over 20 – 30 ° (Grüsser and Grüsser-Cornhels 1976). Thus, the 

collision-sensitive neurons examined in the present study could be T3 neurons. However, 

the tightness of tuning to a collision trajectory was not examined quantitatively by 

Grüsser and Grüsser-Cornhels (1976), nor was any sensitivity to particular optical 

parameters of an approaching object determined for these neurons. On the other hand, 

we have shown in this study that the tuning of tectal collision-sensitive neurons 

declines dramatically if the object’s trajectory deviates from a direct collision course by 

about 1°. Moreover, we showed that the peak firing rate of the collision-sensitive 
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neurons always occurred at a fixed delay after the object had reached a threshold 

angular size of 20 - 25 ° on the retina.  

The threshold angular size for collision avoidance behavior of about 20°(Yamamoto 

et al. 2003) is smaller than that for the collision-sensitive neurons reported here. 

However, in the behavioral experiments the height of the eye from the experimental 

stage varied 2.5 to 5 cm depending on the attitude of the animal. Since the threshold 

value was computed based upon the distance between the computer monitor and the 

experimental stage, variation in the position of the eye would yield angular size 

threshold values of 25.2° to 29.2°. Thus, the behavioral and neuronal threshold 

angular sizes from our studies showed good agreement. We conclude that frog 

collision-sensitive neurons found in this study should be good candidates for elucidating 

the neuronal correlates of collision avoidance behavior of the frog. 

Finally, we should consider why collision-sensitive neurons signaling time-to- 

collision of approaching objects, like τneurons of the pigeon, were not found in the frog 

optic tectum. It is useful to consider what kind of behavior is controlled by 

time-to-collision and retinal threshold size, respectively. Time-to- collision is used for 

approach behaviors, such as control of the plunge dive of the gannet (Lee and Reddish 

1981), pre-landing deceleration of the fly (Wagner 1982) and pre-landing foot extension 



 37 

of the pigeon (Lee et al. 1993). These behaviors require accurate control of the timing of 

interception with the object. Therefore, complicated computation involving acceleration, 

deceleration and trajectory is required for successful performance. Because the animal 

is executing its own global motor planning, the neuronal control of these approach 

behaviors is likely to include sufficient timing for such complicated computations.  

On the other hand, retinal threshold size is used frequently to trigger avoidance 

behavior to approaching objects, particularly, predators or rivals (Robertson and 

Johnson 1993a, b; Schiff 1965; Yamamoto et al. 2003). Neuronal control of successful 

avoidance must be based upon rapid responses to cues from an approaching animal. 

Especially in predator-prey situations, the fastest sensory and motor pathways would 

be favored, rather than more complex integration pathways which compute abstract 

variables such as predicted time-to-collision. The angular size of a looming retinal 

image may well be the fastest way to gain immediate cues to elicit simple and quick 

avoidance.  

For the bullfrog, which is generally sedentary, the latter behavior may be 

predominant. This could be the reason why the detectors for retinal threshold but not 

for time-to-collision were found in the bullfrog’s optic tectum. Confirmation of this idea 

could come from searching for τneurons in the brain of the tree frog, which jumps from 
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branch to branch with very high accuracy. 

A model of tectal and thalamic collision-sensitive neurons in vertebrates   

So far, collision-sensitive neurons in vertebrates have been found both in the optic 

tectum and the thalamus. In the pigeon, putative collision-sensitive neurons were found 

first in the nucleus rotundus thalami. Of 220 tested neurons 15% showed a preference 

for movement directed toward or away from the animal (Revzin 1970). Although not 

found earlier (Wang and Frost 1992), collision-sensitive neurons were recently 

demonstrated to be present also in the optic tectum of the pigeon (Wu et al. 2005). About 

30 % of examined neurons in both the thalamus and the optic tectum were 

collision-sensitive and were classified as τ, ρ and η neurons (Sun and Frost 1998; 

Wu et al. 2005). In the toad, although the response properties were not closely examined, 

the putative collision-sensitive neurons, TH6 and T3 were found in the caudal thalamus 

and the optic tectum, respectively (Ewert 1971; Grüsser and Grüsser-Cornehls 1976). 

Like the T3 neurons described above, the TH6 response increased to an object moving 

towards the eye but not to a translating object.  

Here, the relation between the tectal and the thalamic collision-sensitive neurons 

will be discussed based on their common and different properties. The collision-sensitive 

neurons in the optic tectum and the thalamus show much stronger responses to an 
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approaching object than to a translating object (Ewert 1971; Grüsser and 

Grüsser-Cornehls 1976; Wang et al. 1993; Wang and Frost 1992). Another common 

feature is the extremely tight tuning to collision trajectories found in the pigeon nucleus 

rotundusτ neurons (Wang and Frost 1992) and in the collision-sensitive tectal neurons 

from the present study.  

On the other hand, a striking difference has been observed in the sizes of receptive 

fields of collision-sensitive neurons in the thalamus and the tectum. The 

collision-sensitive neurons in the pigeon nucleus rotundus have very large receptive 

fields of approximately 110°of arc (Wang et al. 1993; Wang and Frost 1992), and those 

of the frog TH6 neurons include the entire visual field (Ewert 1971). In contrast to the 

thalamic neurons, the tectal collision-sensitive neurons have smaller receptive fields of 

approximately 30°in the pigeon (Wu et al. 2005) and approximately 10°in the frog. 

Moreover, in the pigeon, the percentage of each neuron type differs between the two 

parts of the brain: τ neurons predominate in the thalamus ( Sun and Frost 1998; Wu 

et al. 2005), while η  neurons are three-times more frequent than other 

collision-sensitive neurons in the optic tectum (Wu et al. 2005).   

The neuronal projection from the optic tectum to the thalamus is well known. 

Because the receptive field of the tectal neuron is smaller than that of the thalamic 
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neuron, it is very likely that the receptive field of thalamic collision-sensitive neurons is 

composed of a two dimensional array of receptive fields of tectal neurons. Because 

animals should detect an imminent collision with an approaching object on a collision 

course from anywhere in the visual field, the collision-sensitive neurons should have 

large receptive fields and show the same strong response over the entire receptive field.      

Frost and Sun (2004) developed a neuronal model to explain how such adaptive 

properties of collision-sensitive neurons in the pigeon nucleus rotundus are generated. 

In that model, the receptive field of a rotundal collision-sensitive neuron is composed of 

a radial arrangement of concentric arrays of receptive fields of tectal neurons. The tectal 

neurons respond to movements that are oriented radially from the center of the 

concentric array, and they converge onto the rotundal neurons. Thus, the rotundal 

neurons would selectively respond to a collision stimulus with the center of expansion 

overlapping the center of receptive field radial layout. This arrangement is shown 

schematically in Fig. 14A.  

Based on our experimental results, we propose an alternative neuronal model to 

explain the physiological response properties of thalamic collision-sensitive neurons. In 

our study, we demonstrated that some tectal neurons of the frog showed a vigorous 

response only to a collision stimulus, and not to a straight frontoparallel movement in a 
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particular direction. In our model, the receptive field of a thalamic collision-sensitive 

neuron is composed of a radial arrangement of concentric arrays of receptive fields of 

tectal collision-sensitive neurons. The tectal neurons respond to looming stimuli that 

expand from the center of their receptive field, and they converge onto the thalamic 

neurons. Thus, the thalamic collision-sensitive neurons could detect objects 

approaching on a collision course regardless of object approach angle. This arrangement 

is shown schematically in Fig. 14B.  

Frost’s model and ours correspond to a direction mosaic hypothesis and a vector field 

hypothesis for optic flow selectivity, respectively (Duffy and Wurtz 1991a,b; Saito et al. 

1986; Tanaka et al. 1989; Tohyama and Fukushima 2005).Because tectal 

collision-sensitive neurons were also found in the pigeon (Wu et al. 2005), we conclude 

that the receptive field organization of a collision-sensitive neuron in the thalamus is 

more consistent with the vector field hypothesis. 

Spatial integration in the thalamus could reduce the number of efferent fibers to 

motor pattern generators in the spinal cord and could simplify the efferent pathways to 

motor output. Recently, the response of telencephalic collision-sensitive neurons of the 

pigeon was shown to be modulated by optic flow stimulation (Xiao and Frost 2009). 

Processing of optic flow generated by self-motion of the animal is performed in the 
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nucleus of the basal optic root and the nucleus lentiformis mesencephali but not in the 

optic tectum (Fite et al. 1989; Frost et al. 1990; Li et al. 1996; Wylie and Frost 1999). 

Therefore, the ascending projection from the optic tectum to the thalamus is very 

important to integrate information about local object motion and optic flow generated by 

self-motion of the animal, and to facilitate detection of approaching objects in the 

animal moving in the natural environment, although the indirect pathway delays onset 

of escape behavior.  

 



 43 

Acknowledgements 

   We are grateful to L.H.Field for reviewing early drafts of the manuscript.  

Present address of K. Hongjian :Department of Neurosurgery, The First Hospital of 

ZiBo City, ZiBo City, Shangdong Province, China 

Grants 

   This work was partially supported by the 21st Century COE Program at the Kyushu 

Institute of Technology, entitled “World of brain computing interwoven out of animals 

and robots”. 

 



 44 

References 

Ball W, Tronick E. Infant responses to impending collision: Optical and real. Science 

171: 818-820, 1971. 

Bower TGR, Broughton JM, Moore MK.  Infant responses to approaching objects: an 

indicator of response to distal variables. Percept Psychophys 9: 193-196, 1970. 

Burrows M, Rowell CHF. Connections between descending visual interneurons and 

metathoracic motoneurons in the locust. J Comp Physiol A 85: 221-234, 1973. 

Duffy CJ, Wurtz RH. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of 

response selectivity to large-field stimuli. J Neurophysiol 65(6): 1329-1345, 1991a. 

Duffy CJ, Wurtz RH. Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of 

response selectivity revealed by small-field stimuli. J Neurophysiol 65(6): 1346-1359, 

1991b. 

Ewert JP. Single unit response of the toad’s (Bufo americanus) caudal thalamus to 

visual objects. Z Vgl Physiol 74: 81-102, 1971. 

Fite KV, Kwei-Levy C, Bengston L. Neurophysiological investigation of the pretectal 

nucleus lentiformis mesencephali in Rana pipiens. Brain Behav Evol 34: 164-170, 1989. 

Fotowat H, Gabbiani F. Relationship between the phases of sensory and motor activity 

during a looming-evoked multistage escape behavior. J Neurosci 27(37): 10047-10059, 



 45 

2007.  

Frost BJ, Wylie DR, Wang YC. The processing of object and self-motion in the tectofugal 

and accessory optic pathways of birds. Vision Res 30(11): 1677-1688, 1990. 

Frost BJ, Sun H. The biological bases of time-to-collision computation. In: 

Time-to-Contact, Advances in Psychology Series, edited by Hecht H, Savelsbergh GJP.  

Amsterdam: Elsevier, 2004, p. 13-37. 

Gabbiani F, Krapp HG, Laurent G.  Computation of object approach by a wide-field, 

motion-sensitive neuron. J Neurosci 19: 1122-1141, 1999. 

Gabbiani F, Mo C, Laurent G.  Invariance of angular threshold computation in a 

wide-field looming-sensitive neuron. J Neurosci 21: 314-329, 2001 

Gabbiani F, Krapp HG, Koch C, Laurent G.  Multiplicative computation in a visual 

neuron sensitive to looming. Nature 420: 320-324, 2002. 

Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G.  Multiplication 

and stimulus invariance in a looming-sensitive neuron. J Physiol Paris 98: 19-34, 2004. 

Gaze RM.  The representation of the retina on the optic lobe of the frog. Q J Exp 

Physiol 43: 209-214, 1958. 

Gray JR, Lee JK, Robertson RM.  Activity of descending contralateral movement 

detector neurons and collision avoidance behaviour in response to head-on visual 



 46 

stimuli in locusts. J Comp Physiol A 187: 115-129, 2001. 

Grüsser OJ, Grüsser-Cornehls U.  Neurophysiology of the anuran visual system. In: 

Frog neurobiology , edited by Llinás R, Precht W. Berlin, Heidelberg, New York: 

Springer Verlag, 1976, p. 297-385. 

Hartline HK. The response of single optic nerve fibers of the vertebrate eye to 

illumination of the retina. Am J Phyiol 121: 400-415, 1938. 

Hatsopoulos N, Gabbiani F, Laurent G.  Elementary computation of object approach by 

a wide-field visual neuron. Science 270: 1000-1003, 1995. 

Hayes WN, Saiff EI.  Visual alarm reactions in turtles. Anim Behav 15: 102-106, 1967. 

Holmqvist MH, Srinivasan MV.  A visually evoked escape response of the housefly. J 

Comp Physiol A 169: 451-459, 1991. 

Ingle D.  Two visual systems in the frog. Science 181: 1053-1055, 1973. 

Ingle D.  Detection of stationary objects by frogs following optic tectum ablation. J 

Comp Physiol Psychol 91: 1359-1364, 1977. 

Ingle DJ, Hoff K vS. Visually elicited evasive behavior in frogs. Bioscience 40: 284-291, 

1990. 

Ishikane H, Gangi M, Honda S, Tachibana M. Synchronized retinal oscillations encode 

essential information for escape behavior in frogs. Nat Neurosci 8(8): 1087-1095, 2005. 



 47 

Judge SJ, Rind FC.  The locust DCMD, a movement-detecting neurone tightly tuned to 

collision trajectories. J Exp Biol 200: 2209-2216, 1997. 

King JG, Lettvin JY, Gruberg ER.  Selective, unilateral, reversible loss of behavioral 

responses to looming stimuli after injection of tetrodotoxin or cadmium chloride into the 

frog optic nerve. Brain Res 841: 20-26, 1999. 

Lee DN. A theory of visual control of braking based on information about 

time-to-collision. Perception 5: 437-459, 1976. 

Lee DN, Reddish PE.  Plummeting gannets: A paradigm of ecological optics. Nature 

293: 293-294, 1981. 

Lee DN, Young DS.  Visual timing of interceptive action. In: Brain mechanisms and 

spatial vision , edited by Ingle DJ, Jeannerod M, Lee DN. Dordrecht: Martinus Nijhoff, 

1985, p. 1-30. 

Lee DN, Davies MNO, Green PR, Weel FRVD. Visual control of velocity of approach by 

pigeons when landing. J Exp Biol 180: 85-104, 1993. 

Lettvin JY, Maturana HR, McCulloch WS, Pitts WH. What the frog’s eye tells the frog’s 

brain. Proc I R E 47: 1940-1951, 1959. 

Li Z, Fite KV, Montgomery NM, Wang SR. Single-unit responses to whole-field visual 

stimulation in the pretectum of Rana pipiens. Neurosci Lett 218: 193-197, 1996. 



 48 

Matheson T, Rogers SM, Krapp HG. Plasticity in the visual system is correlated with a 

change in lifestyle of solitarious and gregarious locusts. J Neurophysiol 91(1): 1-12, 

2004. 

Oliva D, Medan V, Tomsic D Escape behavior and neuronal responses to looming stimuli 

in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol 210: 865-880, 

2007. 

O’Shea M, Rowell CHF.  Protection from habituation by lateral inhibition. Nature 254: 

53-55, 1975. 

O’Shea M, Rowell CHF, Williams JLD. The anatomy of a locust visual interneurone: the 

descending contralateral movement detector. J Exp Biol 60: 1-12, 1974. 

Palka J. An inhibitory process influencing visual responses in a fibre of the ventral 

nerve cord of locusts. J Insect Physiol 13: 235-248, 1967. 

Peron S, Gabbiani F. Spike frequency adaptation mediates looming stimulus selectivity 

in a collision-detecting neuron. Nat Neurosci 12: 318-326, 2009. 

Potter HD.  Structural characteristics of cell and fiber populations in the optic tectum 

of the frog (Rana catesbeiana). J Comp Neurol 136: 203-232, 1969. 

Regan D, Cynader M. Neurons in area 18 of cat visual cortex selectively sensitive to 

changing size: Nonlinear interactions between responses to two edges. Vision Res 19: 



 49 

699-711, 1979. 

Regan D, Hamstra SJ.  Dissociation of discrimination thresholds for time to contact 

and for rate of angular expansion. Vision Res 4: 447-462, 1993. 

Revzin AM. Some characteristics of wide-field units in the brain of the pigeon. Brain 

Behav. Evol. 3:195-204, 1970. 

Rind FC, Simmons PJ.  Orthopteran DCMD neuron: A reevaluation of responses to 

moving objects. I. Selective responses to approaching objects. J Neurophysiol 68: 

1654-1666, 1992. 

Rind FC, Simmons PJ.  Signaling of object approach by the DCMD neuron of the locust. 

J Neurophysiol 77: 1029-1033, 1997. 

Rind FC, Simmons PJ.  Seeing what is coming: building collision-sensitive neurones. 

Trends Neurosci 22 (5): 215-220, 1999. 

Robertson RM, Johnson AG.  Retinal image size triggers obstacle avoidance in flying 

locusts. Naturwissenschaften 80: 176-178, 1993a. 

Robertson RM, Johnson AG.  Collision avoidance of flying locusts: steering torques and 

behaviour. J Exp Biol 183: 35-60, 1993b. 

Rowell CHF. The orthopteran descending movement detector (DMD) neurons: a 

characterization and review. Z Vgl Physiol 73: 167-194, 1971a 



 50 

Rowell CHF. Variable responsiveness of a visual interneurone in the free-moving locust 

and its relation to behavior and arousal. J Exp Biol 55: 727-748, 1971b 

Rowell CHF, O’shea M, Williams JLD.  The neuronal basis of a sensory analyzer, the 

acridic movement detector system. J Exp Biol 68: 157-185, 1977. 

Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E.  Integration of direction 

signals of image motion in the superior temporal sulcus of the macaque monkey. J 

Neurosci 6(1): 145-157, 1986. 

Santer RD, Simmons PJ, Rind FC.  Gliding behaviour elicited by lateral looming 

stimuli in flying locusts. J Comp Physiol A 191: 61-73, 2005. 

Schiff W.  Perception of impending collision: A study of visually directed avoidant 

behavior. Psychol Monogr 79: 1-26, 1965. 

Schiff W, Caviness JA, Gibson JJ.  Persistent fear responses in rhesus monkeys to the 

optical stimulus of “looming”. Science 136: 982-983, 1962. 

Schlotterer GR.  Response of the locust descending movement detector neuron to 

rapidly approaching and withdrawing visual stimuli. Can J Zool 55: 1372-1376, 1977. 

Simmons PJ. Connexions between a movement-detecting visual interneurone and flight 

motoneurones of a locust. J Exp Biol 86: 87-97, 1980. 

Simmons PJ, Rind FC.  Orthopteran DCMD neuron: A reevaluation of responses to 



 51 

moving objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68: 

1667-1682, 1992. 

Sun H, Frost BJ.  Computation of different optical variables of looming objects in 

pigeon nucleus rotundus neurons. Nat Neurosci 1: 296-303, 1998. 

Székely G, Lázár G.  Cellular and synaptic architecture of the optic tectum. In: Frog 

neurobiology, edited by Llinás R, Precht W. Berlin, Heidelberg, New York: Springer 

Verlag, 1976, p. 407-434. 

Tanaka K, Fukada Y, Saito H.  Underlying mechanisms of the response specificity of 

expansion/contraction and rotation cells in the dorsal part of the medial superior 

temporal area of the macaque monkey. J Neurphysiol 62: 642-656, 1989. 

Tohyama K, Fukushima K.  Neural network model for extracting optic flow. Neural 

Netw 18: 549-556, 2005.  

Wagner H.  Flow-field variables trigger landing in flies. Nature 297: 147-148, 1982. 

Waldeck RF, Gruberg ER.  Studies on the optic chiasm of the leopard frog. I. Selective 

loss of visually elicited avoidance behavior after optic chiasm hemisection. Brain Behav 

Evol 46: 84-94, 1995. 

Wang Y, Frost BJ.  Time to collision is signaled by neurons in the nucleus rotundus of 

pigeons. Nature 356: 236-238, 1992. 



 52 

Wang Y, Jiang S, Frost BJ.  Visual processing in pigeon nucleus rotundus: Luminance, 

color, motion, and looming subdivisions. Vis Neurosci 10: 21-30, 1993. 

Wicklein M, Strausfeld NJ.  Organization and significance of neurons that detect 

change of visual depth in the hawk moth Manduca sexta. J Comp Neurol 424: 356-376, 

2000. 

Winkowski DE, Gruberg ER. Superimposed maps of the monocular visual fields in the 

caudolateral optic tectum in the frog, Rana pipiens. Vis Neurosci 22: 101-109, 2005. 

Wu LQ, Niu YQ, Yang J, Wang SR.  Tectal neurons signal impending collision of 

looming objects in the pigeon. Eur J Neurosci 22(9): 2325-2331, 2005. 

Wunderlich G, Marshall JC, Amunts K, Weiss PH, Mohlberg H, Zafiris O, Zilles K, Fink 

GR.  The importance of seeing it coming: a functional magnetic resonance imaging 

study of motion-in-depth towards the human observer. Neuroscience 112(3): 535-540, 

2002. 

Wylie DRW, Frost BJ. Responses of neurons in the nucleus of the basal optic root to 

translational and rotational flowfields. J Neurophysiol 81: 267-276, 1999. 

Xiao Q, Li DP, Wang SR. Looming-sensitive responses and receptive field organization 

of telencephalic neurons in the pigeon. Brain Res Bull 68: 322-328, 2006. 

Xiao Q, Frost BJ. Looming responses of telencephalic neurons in the pigeon are 



 53 

modulated by optic flow. Brain Res 1305: 40-46, 2009. 

Yamamoto K, Nakata M, Nakagawa H.  Input and output characteristics of collision 

avoidance behavior in the frog Rana catesbeiana. Brain Behav Evol 62: 201-211, 2003. 

Zeki SM.  Cells responding to changing image size and disparity in the cortex of the 

rhesus monkey. J Physiol 242: 827-841, 1974. 



 54 

Figure legends 

Fig.1. A) Responses of a typical collision-sensitive neuron to an object approaching on a 

direct collision course (center) and on near-miss trajectories (x-20: forward deviation, 

x+20: backward deviation, y+20: upward deviation, y-20: downward deviation). Upper 

traces show voltage changes monitoring size of the approaching objects. Lower traces 

show neuronal activities to the approaching objects. Black and white squares show the 

units eliminated for quantitative analysis. The inset shows the shape of spikes of the 

collision-sensitive neuron. 

B) Responses to translating objects with different sizes (trans2: 2x2 cm square, trans10: 

10x10 cm square, trans20: 20x20 cm square). Upper traces show voltage changes 

monitoring position of the translating objects. The first upward and downward 

deflections represent backward and forward movements of the square, respectively. The 

second upward and downward deflections represent upward and downward movements 

of the square, respectively. Lower traces show neuronal activities to the translating 

objects. C) Responses to three other control stimuli (see Materials and Methods). In the 

top and bottom panels (“reversed contrast” and “recession” stimuli, respectively), the 

upper traces show voltage changes monitoring size of an approaching and a receding 

object, respectively. In the middle panel (“brightness change” stimulus), the upper trace 
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shows voltage changes monitoring brightness of a stationary square. In all three panels, 

lower traces show neuronal activities to each control stimulus. D) Responses to an object 

approaching on a direct collision course and responses to a translating 10 x 10 cm 

square with a velocity of 30 cm/s, 9 cm/s and 1.5 cm/s. In the upper left panel, upper and 

lower traces show the size of the approaching object and neuronal activity to the 

stimulus as shown in A. In the remaining panels, upper and lower traces show the 

position of the translating object and neuronal activity to the stimuli as shown in B. 

This neuron responds selectively to a collision stimulus. D was obtained from different 

preparation than A to C. 

Fig.2. Distribution of the foci of expansion of looming stimuli which were presented to 

11 collision-sensitive neurons. Seventeen pixels correspond to 1 cm on the display. The 

eye of the animal was aligned with y-axis but located 8 cm below the origin. The arrows 

show the directions of horizontal and vertical deviation of the peaks of the tuning curves 

obtained from four neurons. Two data plots were completely superimposed.  

Fig.3. Average number of spikes (mean, SD) per response obtained from 11 

collision-sensitive neurons responding to 11 kinds of visual stimuli shown in Fig.1. 

There is a significant difference between mean number of spikes for the collision 

stimulus and those for other stimuli (p<0.01).  
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Fig.4. The effects of stimulus repetition on the responses of collision-sensitive neurons 

to an approaching object and translating objects.  A) Average number of spikes (mean, 

SD) to 3 successive presentations of collision or translating objects obtained from 10 

collision-sensitive neurons is shown. B) The mean number of spikes to the first trial is 

normalized to one. The responses to looming and translating objects were equally 

susceptible to the effects of stimulus repetition.  

Fig.5. A) Responses of the same neuron as in Fig. 1A to C to an object approaching on a 

direct collision course and near-miss trajectories with deviations from a direct collision 

path of 1° (x-10: forward deviation, x+10: backward deviation, y+10: upward deviation, 

y-10: downward deviation). B) Responses of the same collision-sensitive neuron as in A) 

to an object approaching on a direct collision course and near-miss trajectories with 

deviations from a direct collision path of 0.5°  (x-5: forward deviation, x+5: backward 

deviation, y+5: upward deviation, y-5: downward deviation). Upper traces show voltage 

changes monitoring size of the approaching objects. Lower traces show neuronal 

activities to the approaching objects. Scale bars: 1s 

Fig.6. The response profiles of the same collision-sensitive neuron as in Fig. 5 to an 

object approaching on different trajectories and the corresponding tuning curves fitted 

by Gaussian function. A) Total spike numbers are plotted against horizontal 
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displacement from a direct collision path. Positive and negative displacement 

represents backward and forward deviation, respectively. B) Total spike numbers are 

plotted against vertical displacement from a direct collision path. Positive and negative 

displacement represents upward and downward deviation, respectively. 

Fig.7. A cross section of the frog optic tectum in which a lesion of recording site was 

made by current injection. The lesion is observed in the tectal layer 7, the main efferent 

layer of the tectum (arrow). The pial surface is at the top, and the ventricular surface is 

at the bottom. Scale bar: 200μm.  

Fig.8. A typical response profile of a collision- sensitive neuron in response to a black 

square of 35 x 35 cm approaching at a velocity of 2m/s through a direct collision path of 

6m. The number of spikes within a bin width of 50 ms was obtained from 5 blocks in 

which 3 successive stimuli were presented. Collision would be at 0 ms. The activity 

started increasing about 1 s before predictive collision. The activity peaked about 400ms 

before predictive collision, when the retinal image of the stimulus ranged from 25°to 

28°, and then declined. 

Fig.9. Response of the collision-sensitive neuron shown in Fig.8 (thin line) and model 

prediction which is superimposed on the data (thick line). In this particular case, the 

response can be fitted with the equation: f(t)=61.6∙θ’(t)∙e-4.1θ(t) . Collision would be at 0 
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ms. 

Fig.10. Response profiles of the same collision- sensitive neuron as in Fig.8 in response 

to a black square of 35 x 35 cm approaching at a velocity of 1m/s, 3m/s and 4m/s  

through a direct collision path of 6m are shown in A, B and C, respectively. The number 

of spikes within a bin width of 50 ms was calculated from 3 successive sweeps with an 

interval of 1 min. Collision would be at 0 ms. 

Fig.11. A) Response of the collision-sensitive neuron shown in Fig.10A (thin line) and 

model prediction which is superimposed on the data (thick line). The response can be 

fitted with the equation: f(t)=12.2∙θ’(t)∙e-4.7θ(t). B) Response of the collision-sensitive 

neuron shown in Fig.10B (thin line) and model prediction which is superimposed on the 

data (thick line). The response can be fitted with the equation: f(t)=27.9∙θ’(t)∙e-4.4θ(t). 

C) Response of the collision-sensitive neuron shown in Fig.10C (thin line) and model 

prediction which is superimposed on the data (thick line). The response can be fitted 

with the equation: f(t)=34.5 ∙θ’(t)∙e-5.0θ(t). Collision would be at 0 ms. 

Fig.12. Plot of the peak time relative to the predicted collision as a function of visual 

parameter l/v (l: object’s half size, v: approaching velocity) obtained from the same 

collision-sensitive neuron shown in Fig8. A strong linear relationship is found between 

the two parameters (R2=0.98).  
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Fig.13. Plot of the mean peak time relative to the predicted collision as a function of 

visual parameter l/v (l: object’s half size, v: approaching velocity) obtained from 11 

collision-sensitive neurons. Error bars indicate SD. A strong linear relationship is found 

between the two parameters (R2=0.99). 

Fig.14. Two neuronal models to explain how tectal inputs integrate and build up the 

wide receptive field of thalamic collision-sensitive neurons. An outer large circle 

represents the receptive field of a thalamic collision-sensitive neuron. A series of 

concentric circles represents receptive fields of tectal neurons. A. The model proposed by 

Frost and Sun (2004). The tectal neurons give selective responses to movements that 

are oriented radially from the center of the concentric array.  B. Our model based on 

the results obtained from the present experiments. The tectal neurons respond 

selectively to looming stimuli that are expanded from the center of their receptive fields 

irrespective of the locations.   
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Table 1. Angular thresholds calculated from model fit of responses of 8 

collision-sensitive neurons to an object approaching at four different velocities. 

neuron                  approaching velocity                        mean±SD                               

1m/s         2m/s          3m/s        4m/s 

CS13            22.7°       25.2°         26.2°        19.9°   23.5°±2.8° 

CS18            23.8°       27.5°         25.6°        22.8°   24.9°±2.1° 

CS19            26.6°       26.7°         19.3°        25.1°   24.4°±3.5° 

CS22            23.8°       34.0°         29.5°        37.6°   31.2°±6.0° 

CST2            19.8°       31.1°         24.3°        29.1°   26.1°±5.1° 

CST5            13.3°         18.1°         12.4°          11.9°    13.9° ±2.8° 

CST7            16.6°         27.7°         30.2°          24.1°    24.7° ±5.9° 

CST8            19.9°         27.0°         23.9°          27.5°    24.6° ±3.5° 

mean±SD 27.5°± 4.4°21.5°± 4.5°24.3°± 5.5°25.1°± 7.0°   24.6°±2.5° 

 

 

 
 


