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Although the nonlinear response of solids in such phenomena as ion slowing and second harmonic genera-
tion has been studied since long ago, to our knowledge there has not existed a quantum theory of the inelastic
scattering of charges by solids beyond the first Born approximation. In this paper we relate the inelastic cross
section in the second Born approximation to the ofeto the quadratic retarded density-response function in
the samgbut far less trivial fashion it has been known for the first Born approximation, deriving by this a
formula applicable to describe the electron and positron energy-loss spectroscopy. The complete account of
recolil is preserved. Our general formalism neither relies on a specific approximation to the dielectric response
(such as the random phase approximatioor is it restricted to scattering by a homogeneous electron gas: it
is “exact” in the sense of inclusion of exchange and correlation and is applicable to targets of arbitrary
symmetry. Based on this formalism, we perform explicit calculations of Zhecontribution to plasmon
excitation by electrons and positrons in a simple hydrodynamic model of electron gas and discuss the results,
which prove to be instructive in the general case too.
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[. INTRODUCTION culated in more or less accurate approximati@ng., hydro-
dynamic, random phaséRPA), or time-dependent local
Although the theory of the response of matter to dynamiadensity (TDLDA) approximation§ then, the inelastic
external perturbations and the theory of scattering of chargesross section can be obtained by use of it. To the best of
by matter are the closely related subjects, they are not iderbur knowledge this scheme, trivial as it is in the linear case,
tical. Indeed, in the former a targdusually considered has been restricted so far to the first Born approximation.
a quantum systejmis excited by a classical external field, As |ong as a correspondence between the higher-order
e.g., by the Coulomb field of an ion moving along a well- jne|astic cross sections and the nonlinear response functions
defined trajectory or by light governed by Maxwell equa-is found, one can take advantage of the latter, known from

tions. In contrast, in the scattering of electrons or positron$ye Jiterature in conjunction with other phenomena, to

by matter the projectiles themselves are quantum partic_le§olve the problem of electron and positron energy losses

and cannot b_e substituted_ by an ext_ernal field. This POINE, Solids. Examples of systems for which the quadratic
becomes particularly clear if one considers an electron mov-:

ing in a continuous homogenious isotropic medium. If we'esponse functions are known analytically or can be calcu-
. . _2 . .

regard this electron as a classical particle traveling along galtzdzrgjm?nc;ally are thﬁ fjhre;eandn%wo éilmﬁ_n?fcl)nal(iDl

definite trajectory, then by virtue of symmetry it cannot de-a" electron gas, hydrodynamicand Jefiunt mode

viate from its initial straight path, the only influence of the surfaces. ) i
medium being the continuous slowing of its motion. It is 1N€ Purpose of this paper is to extend the above-
well known, though, that such an electron has a probabilig/nentioned scheme to the second Born approximation.
to deviate in any direction with the corresponding momen-The effects beyond the first Born approximation are im-
tum transfer to the medium, which is entirely the quantumPortant in many ways, the most obvious being maybe that
effect. in the linear theory there is no difference between the scat-
However, it is well known, too, that the many-body in- tering of charges of opposite sign. We will also show that
elastic cross section of electron scattering in the first Borrihe quadratic contribution to the plasmon excitation be-
approximation can be expressed in terms of the lineacomes comparable with the linear one near the plasmon
density-response function, the same function which describesxcitation threshold. The main result of this paper is a for-
the target response to a classical external field. The greanula for the inelastic differential cross section to order
practical benefit from such a relationship is that it is thez®, where Ze is the charge of an incident distinguishable
response function to an external field which can be calparticle:
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dqg
glk—q|?

do(p—k<—p)_—32€422772® 1 | ‘K z R f
K R (@) @m){l( : ,w)+; e

Xff”@(w_wl)V(kak_qaqM'wl);‘z(wl_w)v(_q,k_q,_kvwlyw)dwl . B

0 .
Vq—ﬂ—wl'H?]

Here p is the incident momentum of the charge,is its  the expectation value of the energy loss, respectively, with

mass,v=p/u is the incident velocityk and w=(p?—|p  the same probability density, which has presented a problem

—k|?)/2 are the momentum and the energy loss, respedsefore now.

tively, © is the Heaviside’s step function, anglis the posi- This paper has the following structure. In Sec. Il we write

tive infinitesimal. The functiorv is defined by the relations down the inelastic cross section to ordet in terms of the
complete set of many-body eigenstates of the target. In Sec.

N(g,K,f,w,mq) Il we reproduce the derivation of the quadratic density-
response function to a classical external field. In Sec. IV we
=Xx2(a,k.f,0,01) = xao(—k,=q,f, 01~ @, 01), derive the relation between the inelastic cross section and

2) density-response functions to ordét [Eq. (1)]. In Sec. V
we consider the simplifications arising when the recoil can
1 be neglected. Section VI treats homogeneous isotropic tar-
v(q,k,f,w,wl)=§[)\(q,k,f,w,w1)+)\(q,k,f,—w,—wl)], gets. Section VIl makes the connection of our theory to the
3) decay rate and stopping power calculations known from the
literature. In Sec. VIII we give an example of an explicit
and the linear and quadratic density-response functions aglculation in a simple hydrodynamic model of a boundless
defined in the theory of response to an external field by electron gas. In Sec. IX the results are summarized. The
Appendixes contain some useful properties of the response

functions and some lengthy derivations.
5n(q,w)=J X1(0,K, @) pex( K, w)dk

1. MANY-BODY DIFFERENTIAL CROSS SECTION
+f XZ(Q!klfywawl)d)ext(k,w_(Ul)

X o f,w1)dkdfdw 4

Let us consider the inelastic scattering of a charge by a
solid. The transition matrix element to second order in the
Born series i&°

where ¢ is the scalar potential of an external electric field
perturbing the system, angh is the induced particle density.  (p’,n|T|p,0)
All gquantities are written in the reciprocal wave-vector-
frequency representation. Equatiofis—(3) relate the “ex- , 1
act” many-body cross section to ord@® to the “exact” =(p 'n|Vcs+V°Sp2/2 TE—O Qi

. o M 0 c sTI7
many-body quadratic response function in the sense that they
are not restricted to any specific approximation of the latter 6)
(i.e., RPA, etg. In particular, formulél) is valid (to order
Z3) for scattering near the plasmon excitation thresholdwhere|p,n) is the state with projectile of momentumand
when the momentum of the projectile before and after théhe solid at stat¢n), E is the ground-state energy of the
scattering differs substantially. Furthermore, no restriction orntarget,H. andH, are the Hamiltonians of the charge and the
the nature of the target is being imposed, so @yis valid,  solid, respectively, without interaction between them, and
for example, for spatially confined targets as well as for ho-/, is the incident charge-solid interactioh,
mogenious 3D or 2D electron gas.

For heavy particles such as ions, which can be considered 7e?

moving along classical trajectories, when the recoil can be VCSZE —_
neglected, the problem of relating the cross sections to the ] |r—rJ-|
response function, we are mainly concerned with here, does
not arise, and the detailed nonlinear theory had been develvherer andr; are the coordinates of the incident charge and
oped in Refs. 5 and 6. However, even in this case our apthe charges of the solid, respectively ards the charge of
proach puts the decay rate and the stopping power into thearriers in the system, negative if electrons. After Fourier
form when they can be calculated as the total probability andransforming

Vcd P,0),
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7e? [ ek Taking the matrix elements of Eq&8) between unperturbed
VCSZF 2 nydk, states and Fourier transforming with respect to time, we have
v
Som— 6
where —g_om— %on
<n|p1(w)|m> ew—wnm+i 77<n|¢ext(“’)|m>
nkZZ e ik (no summatiop, 9
]
is the particle-density operator, and substituting into &g. (nlp (w)|m>:e<n|[¢ext,p1](w)|m)
2 — i
we have O—oynTi7n
n w—wq), w m
(p—k,anlp,O) —e ( L dexd - 1) P.l( ]l >dw1,
w— oty
2.4
- Z('jzznrlok*"z e4f 2 a 2 (10
27k 4 k+ . .
4 7 qlktal where &,,, is Kronecker’s symbol.,; can be Fourier ex-
ngmnTﬁ_q panded with respect to space coordinates,

X 2 2 .
[P —(pP—k—a)*]2u—wmet+in

where o,n=E,—E, andng™=(n|ng|m). Summation over
the repeated indern is implied. Without loss of generality,
we assumén) to be real. Then retaining terms to ordéf,,,
we have for the differential cross sectioh

¢>ex[<w>=§ bexdr],0)= f bexi( A, @)N_gdq.  (12)

The particle-density fluctuations are given by

on(gq,w)= Spln w)+po(w)]}. 12
do(p—kep) (@)= ——5SHndpa(@) T pa(w)].
dk Substituting Eq(9) into Eq.(10), then both of them into Eq.
(2m)%u (12), and using Eq(11) and the definition of the density-
B > [(p—k,n|T|p,0)|28(w— wno) response function®), we obtain
n
42264,u 1 ) zZée dqg x1(0,K, @)= € 2 nOnnnok[;'
= pk2 ; Enk| +?§ Refm (2m)% “n q w—wntI7n
1
On,.nm_mO
ne'ng ™ -, (13
X— K q2 - — | S(w—wng). (6) o+t wptly
[p*=(p—k—)]2u—wmetin
XZ(q!kvfiw!wl)
I1l. MANY-BODY DENSITY-RESPONSE FUNCTION 0 0
e’ ng"nEnTe
Let us consider a solid under a time-dependent external = 23 2 (0— gt i7) (01— oo Ti7)
potential o (r,t). Then we can write the equation of mo- (2m)” nm no 1 mo
tion for the density matrix! AMN0 0m
. q '—k''-f
dp (0= wymtin) (01— womtin)
IE:[HO+e¢eXt!p]! (7) ngmngnknch)
whereH,, is the unperturbed Hamiltonian. Expandipgin (0= omptin) (1= wntin)
the external potential, nONpRM MO
q "=k —f
+ . —, (14
p=pot+pitpa, (0= o t+in) (w1~ wontin)
and substituting into Eq(7), we have Let us note that in Eq4) the charge-density fluctuatiordn
are invariant under the transformation
. Ip1 - -
't ~Hopalt el dext.pol. X2(QKF0,01) = Xa(AK F,0,00) +F(ak f,o,0),
P with an arbitrary functiorF satisfying the relation
.0pP2
—= + .
o~ Hopaltel dexpl ® (A k, 0 0)= ~ F(a.kfo,0).
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To impose a unique definition of the quadratic response func-

tion by Eq.(4), we choose the symmetric form of the latter

1.
XZ(q’k’f’w’wl):E[Xz(qlk!flwiwl)

+x2(0,F,k 0, 0—w)]. (15)

After substitution of Eq(14) into Eq. (15), the second term

PHYSICAL REVIEW B 65 094303
v(q,k.f,w,01)
eZ 0,,n0
== 7 2 N 80— @mo) A1~ wno)

+ 0(w+ wpp) (w1t wno) ]

N0 8( w1~ wno) S @ — wnm)

can be combined with the seventh, and the third with thdf »,>0, then Eq.(19) yields

sixth 13 yielding

x2(a.K,f,0,0,)

2 on,.nm_mo0
e nq n_ n_;

" 2(2m)8 K (0= 0ot i) (01— wmotin)

mn.n0 0m
nq n_,NZzs

(01— 0o tTin)(w—w;—wptin)

on,nm_.mo
nq n_,n_-s

+ - .
(0—wontin)(w;—womtin)

+(kef,0—o0—wq). (16

+ 5(w1+wn0)5(w+wnm)]- (19)
v(q,k,f,0,0w1>0)
eZ
=~ 77 2 [NgnZn5(0— )
—n"Nn2N0"5( 0 — wam 18(w1— o) (20)

or, using the properties of Dirac# function,

v(q,k,f,0,w,>0)
e2 0,,n0
= — E % |:ng1 nrlfnrlrfgﬁ(w—wmo)

— nTEn“_?ngmﬁ(w— w1+ wm)]0(w1—wn). (21

This gives

Equation (16) is the retarded quadratic density-response

function. Its time-ordered counterpart, which we will also

need below, i

X2 (akf0,01)

on,nm,mo

“2(2m)8 fm (0= 0ot i ) (01— 0ot in)

e? n

mn.n0 0m
nq n_ Nz

(01— wom—in)(0—w;—wnptin)

on,nm_mO
nq n_kn_f

(0—won—i7) (w1~ wom—i7)

7

+(kef,o;—o0— o).

IV. RELATING THE CROSS SECTION
TO THE RESPONSE FUNCTION

We want to express the cross secti@ in terms of the
response function&l3) and (16). This is straightforward to
do with the linear term. By Eq.13) we have

872
2 02800 = wno)= = == O(@)Imy(k k).

(18)

In what follows we are concerned with the quadratic term.

Using the definition(3) of the functionv and Eqgs.(14) and
(15), one can verify directly that

v(q,k,f,o>wq,w,>0)

2
e
_ 0,,n0
== mEn n;n NSNS0 — wmp) S(w1— wng)-

(22

Performing permutationgj« —f,w< w;, we have from
Eq. (20)

v(—f,k,—q,w,0>0)

2
€
_ 0 ,,n0
iy % [n™ ng NS w1 — wmo)

n0

—nTneon"T8(w1— 0+ wmo) (@ —wne) (29
and then
v(—f,k,—q,01>w,0>0)
eZ
=~ 2 nT?ngonn_Tﬁ(wl— ®Wmo) S(w—wpg). (24)

Interchanging the dummy summation indicgesandn in
Eqg. (24) and combining it with Eq(22) we have

0,,n0
m}‘,n Ngon2n208(w — wmo) 8( w1~ wno)

41
=~ 2 0(@0(w)[O(0-w)¥(akfw.w)

+0(w;—w)v(—f,k,—q,0,0)]. (25)

Now we can also write
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mO0,.n0,.nm mO0,.n0,.nm

n, Nn-n © n, Nn-n
g N—N— q N=fN_y
—————— (w1~ w )=J > A S(wy— W) S 01— wpg)dw
Ehwo—wmtin (01~ @no —womn W— Wy t+in (02~ ©0mo) 8wy~ wno) dwy

wy.

4qr *@(w1—wy)v(—fK,—q,01,05) +O(wr,— wq)v(q,K,f,w,, 1)
=——2®(wl)f - d
e w—wrt+In

(26)
Finally, using Eqgs(6), (18), and(26), and performing the integration variable substitutipr q—k, we see that the main
equation(1) is proved.
V. NEGLECT OF RECOIL

For high incident velocities or heavy projectiles the recoil can be neglected, in which case f@tjnatabe simplified. We
will restrict our consideration to systems with an inversion center. Theim Eq. (1) can be dropped, sinceis real, and the
principal value of the integral can be implied instead. In this case we can nedlégt in the denominator, and pui= VK.
Then the integrals in th&3 term of Eq.(1) can be written as

d vkp(k,k—q,q, VK, ep(—g,k—0,—K,wq,vk
f q “ v( a.9 wl)dw1+J v(—g,k—q,— Kk, )dwl_ @7

a?k—q|?[ Jo Va— g vk Vg~

Using the property(A2), then making the integration variables substitutionsk—q, w;—Vvk— w4, we can write for the
second integral

f dqg fwv(—q,k—q,—k,wl,vk) j dq fo v(—q,k—q,—Kk,wq,VKk)
wq=

q%k—q|* /v V4~ oy q’k—ql?/-= V4~ oy o
and then expressiof27) can be written as
k,k k L k k k
dg | puOKTaaVe)TEHTRKTG TR0 e - g k- g - ken W)
J > > J — dwl+§f — dwl . (28)
g’lk—q| 0 vVg— o, —oo V- o,
We can also write
1
dq Vkv(k,k—q,q,vk,a)l)—Ev(—q,k—q,—k,wl,vk)d
fq2|k—q|2fo Vq— o o1 9
1
dq Vkv(k,q,k—q,vk,vk—wl)Jr Ev(—q,k—q,—k,wl,vk)
_jq2|k—q|2fo Va— o dos 30
1
dq Vk—v(k,k—q,q,vk,w1)+ Ev(—q,k—q,—k,wl,vk)
:fq2|k—q|2fo vOo— 0, doy, (31)

|
where we have first used the propet®yl), then have again that the first integral in the square brackets of E2B) is
performed the substitutiom—k—q, w;—Vvk—w; in the  zero. Now using Eq(B2) of Appendix B, we can write Eq.
first term of Eq.(30). Comparing Eqs(29) and(31) we see (27) as
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VI. CASE OF HOMOGENEOUS MEDIUM
wlmf 2[)(2( a,k—a,—k,vqg,vk)
—q If the target is spatially homogeneous, then
+x2(a—k,q, —k,v(k—0q),vk)]. (32
Making again the substitutioq— k — g in the second term of (G, @)= x1(0, ) Pexdq, »)

this expression, we see that the two terms are equal, and we

finally obtain, neglecting recoil,
’ ’ ’ +f XZ(q'f!w’wl)¢ext(q_fyw_wl)

do(p—k<p)
dk X pexi(f,w1)dfdew; . (34)
—32e%Z%72 1 _ _
=——— € O (vk)| —Imy(k,k,vk) The corresponding reduced response functions are collected
vk ek’ in Egs. (A4)—(Al11) of Appendix A. Using the definition of
the functionv, it is easy to show that the latter is the real
_f my,(—q,k—q,—k,vq,vk) |. function for systems with an inversion center. Then Eqg.
2|k together with Eqs(A4) and (A10) gives for the differential

(33 Cross section

do(p—k—p) —4Qe*Z?

= G ! k, z
0| mke)+ = [

dqg
q?lk—q|?

Xfm(w_wl)v(k,q,w,wlwr(wl—w)v(—Q.—k,wlyw)dwl , (35
0

o

substituted the volume of the targ@/(2)3 for the §(q
=0). Without the coefficient) this quantity gives the in-
verse mean free path with respect to the given momentum

transfer. Similarly to Eq(33), in the homogeneous case we Substituting Eq(36) into Egs.(37) and(38), we have
have an approximation for the case of neglect of the recaoil:

where the principal value of the integral is implied. We have dEkm f p k<—p)
=0 (38)

do(p—kep) —40ez?

1 —4e422f i O (vk)

1
= — T —Im)(l(k vk)
ak = O (vk) k2Im)(l(k ,VK) = 2 | el
Z dq Z f dg
+— | ——— k,va,vk)|. +— | o —EMxa(ad.kva,vk) [, (39
7T2f q2|k_q|2 sz(q, VQ,V ) 71_2 q2|k_q|2
(36)
dE, —4e'Z? vk® (vk)
VII. DECAY RATE AND STOPPING POWER T dx | ww f dk— 2 e_kz'le(k VK)
Let us make a connection to the decay rate and stopping 7 d
power calculations known from the literature for an homoge- _j q Imy»(q,k,va,vk) |.  (40)
nious electron gas. We can easily write these quantities in 2lk—q|

terms of the cross section with neglect of the recoil:

The purpose of this section is to demonstrate that E2@.
ij do(p—k<p) dk 37) and(40) are equivalent to Eq$6) and(15) of Ref. 7, respec-
Q ’ tively, which in our notation aré
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—4e%72 O(vg)| 1 vy e
“1_ i v,
Z dk (9”
+ — | ————Imy %aq,k,vq,vk) |, (41 .1 =
372 Kk—q? X2 (a.k,va,vk) |, (41) - tnoVva=0,
A(¢1_¢ext):_4wenla (46)
dEy, —4e'Z? vaO(vg)| 1 and to second order
- dX - U qu q2 eqzlle(anQ)

4

N e
i E“‘(VVl)Vl:_EV(f)z,
272

. (42)

j Imyx,(q,k,vq,vk)
—m , ,V ,V
k?lk—q|? xe

where x,° is the time-ordered response functi¢i). The an,
proof is given in Appendix C. —i TMoVVa+V(ngvy) =0,
Equations(37) and (38) [or Egs.(39) and (40)] are from
the very beginning put into the form when the stopping
power can be obtained from the decay rate by introducing Ap,= —4men,. (47)
the energy transfer into the integrand. This is not the case
with the same quantities in the form of Edd.l) and (42), After the Fourier transform, we find from Eqgl6)
which fact has presented a problem before fiow.

2

VIIl. EXAMPLE AND DISCUSSION ni(Q,0)= 72 e(w)

1
N 1}¢ext(qvw)r

As the simplest possible but instructive example, let us
consider the hydrodynamic model of homogeneous electron eq
gas in the spirit of Ref. 16 but without the pressure term. For V1(Q,0) =——— Py, 0), (48
the linear response, this model yields a Drude dielectric func- wmMe(w)
tion without the spatial dispersion. The equations governing;nq hence
the motion are

201
dv v e x1(9,0)=— —1},
o - _ 47e| e(w)
TR +(VvV)v qub, (43
qup
on Imy1(g,w)=— Se 5(w_wp)’
E+V(nv)=0, (44)
wheree(w) is the Drude dielectric function:
A(P— dpexy) = —4men, (45)
) - . . w? 47e’n
which are Newton’s law, the continuity equation, and Pois- e(w)=1— —"— w,= o
son’s equation, respectively. Heve n, ¢, and ¢.,; are the (w+in)? P m

velocity and density of the electron gas, the total, and the
external scalar potentials, respectively. Expanding equations Substituting the solutions of the linear probléa8) into
(43)—(45) in powers ofpqy;, We have to first order Eqgs.(47), we obtain for the quadratic response

wi(o—w)[(fg)?w;+ 20?0 — F2q(o+ )]
amml(w-+i7)2- o] (0— o1+ i) = 02][(0+i7)? - 0d]

}2(q!flwvw1):
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and then, by use of the definitiof&7), (A9), and(Al1l), itis
straightforward to show that
V(0 0,01) = 72— 81— 0, [3(1g— F2)628(w) osf
DL A m L T
X[ —4(fq)?+3fqg®+ f?q?] (0 — 2w),)
+3fq(—2fq + 2+ 42) 80— wp)]. 3.0
< ©
For the cross section we then have by virtue of &%) -
:%'
do(p—k«p) S
dk £ ool
&
Z%e%0) ze? £
Zm wp5(w—wp)+12ﬂ_—2m{[A(2wp)+B(wp)] §
0.0
X 8(w—wp)+C(wp) d(0—2wp)} [, (49
where
02|
A d 1 1 " 1 " 1 N 1 "
B|= q 5 ©,20 20, 40 60 80 100
C a?lg—k|?| vq— 2q_,u_w) Incident enegy (eV)

FIG. 1. The plasmon excitation intensity vs the incident energy
21,2 2_ 2
q°k"+3akq”—4(qk) for the forward scattering. A plasmon energy of 15 eV is chosen.
x| —3qgk|g—k|? ) (50)  The dotted and dashed lines are #feandZ® contributions, respec-
2.2 2 2 tively. Two solid lines mainly belowaboveé the Z? contribution are
9°k"+3(qk)k"—4(ak) the sum(differencé of the Z2 andZ® terms, corresponding to elec-
. . . o . tron (positron scattering. The inset shows the double-plasmon in-
b E}quzatlog(ﬂg) c(:jontalns the”SInglr?-p(ljasrglon leXCItatlon " tensity, which is the measure of tiim)accuracy of the simple hy-
OF Z° andZ” orders, as well as t_e ouble-plasmon exCI'drodynamic model of this examplsee the tejt
tation. Because of the hydrodynamic model, it does not con-

tain the single-particle excitations. o _positron Z=—1) scattering. Appendix D contains an ana-
_ Letus note2 that the double-plasmon excitation contribuyytical evaluation of integralg50) in the case of scattering
tion to orderZ* has been recently reportétt:® This effect,  tonyard. The inset in Fig. 1 shows the strength of
which is the consequence of the singularityat 2o, inthe  contribution to the double plasmon excitation in this model.
high-frequency tail of the imaginary part of the linear dielec- pthough it happens to be negative for electrons in the cho-
tric function®is due to the exchange and correlation and iSsen range of incident velocities, the comparatively small
of cause, beyond our simple hydrodynamic example. Withy,agnitude of this term shows that the simple hydrodynamic

out this term, theZ expansion ofsthe double-plasmon excita- yodel of this example is not strongly contradictory in this
tion probability starts from th&® term. It is evident that if respect.

this term is positive for electrons then it is negative for pos-
itrons and vice versa. This situation just demonstrates the
logical breakdown of the hydrodynamical model at
=2w,. The more elaborate RPA approximation is not likely  In the framework of many-body scattering theory, we
to pass this test for consistency either, since it yieldZfho have expressed the inelastic differential cross section of a
contribution to the double-plasmon excitation probability charge scattered by an ensemble of charg@s wrder in the
too. second Born approximation in terms of the quadratic re-
On the contrary, th&® contribution for the single plas- tarded density-response function of the target. The latter re-
mon is not contradictory and it can give substantial correcsponse function is known from the literature for a number of
tions to thez? term. The same can be supposed to be true fosystems of physical significance, such as 2D and 3D electron
single particle-hole excitations, when the latter are allowedyas and jellium model surfaces. The formalism we have de-
by the model of the response function, which evidently is notveloped allows direct application of the knowledge of these
the case in this simple example. In Figs. 1 and 2 we plot theéesponse functions to produce the inelastic cross sections of
plasmon excitation intensities versus the incident particle encharges interacting with solids. We have supplemented the
ergy obtained by Eqg49) and(50) for electron g=1) and  formal theory with an explicit example of scattering by elec-

IX. CONCLUSIONS
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v(g,k,f,0,0)=v(—fk,—0,01,0)+v(q,fK,0,0— wq),
(A1)
0.3 |
v(q,k,f,w,w)=—v(—k,—q,f,0;—w,w), (A2)
v(q,k,f,—w,—w)=v(q,K,f,o,0q). (A3)
— 02 Using the definitiong15), (2), and(3) we can write in the
z case of an homogeneous medium
= x1(0.K,0)=5(q—k) x1(q,0), (A4)
% 01|
€ x2(a.k.fo,01)=8(k+f-a)xa(af,0,01),  (AS)
c
£ X2(@kf0,01) = 8(k+ - xa(a,f0,01),  (A6)
@
o 00 1. ~
XZ(qvfiwvwl):E[XZ(qifvwvwl)+X2(q7q_f1w1w_wl)]v
(A7)
o4 b Nk, f,w,0)=8(k+Tf—q)N\(q,f,w,wq), (A8)
» , , | Maf,0,00) = x2(0,0,01) ~ XA f 01— 0,04),
: : : : (A9)
®,20 2a, 40 60 80 100
Incident enegy (eV) v(g,k,f,w,w)=8k+f-q)v(q,f,w,m;), (AL10)
FIG. 2. The same as Fig. 1 but with an angle of scattering of 1
15°. V(qafiwlwl):E[)\(qvf!w!wl)—‘r)\(qrf!_w!_wl)]'
tron gas within hydrodynamic model, which demonstrates (A11)
the importance of nonlinear corrections near the plasmon ex- )
citation threshold. The calculations of electron and positronl "€ Properties
scattering by 3D and 2D electron gas by use of the above _
theory in the RPA is now in progress. x2(0,0—f,0,0—01)=x2(0.f,0,01),  (Al2)
Note added in proofln a recent papé? various ap- o o
proaches to the decay rate and the stopping power of the X2 (0,9—f,0,0-w)=x;(0,f,0,0;)  (AL3)

homogeneous 3D electron gas have been developed. Apart

from our treating the targets not necessarily homogeneoudre the direct consequence of the symmetrizafi&. Using
we see the main difference with Ref. 20 in that our differen-EdS-(16) and(17) it is straightforward to show that for sys-

tial cross sectiongor transition probabilitiesare “exact” to ~ tems with an inversion center
order Z3, while Ref. 20, although includes exchange and

correlation, still uses approximate ones. Also we would like x2(9.k.f,w,01)=x2(—0, =k, —f,0,01), (Al4)
to point out in conjunction with discussion in Ref. 20 that
our Egs.(39) and (40) provide the explicit form to express x32(a.k f,w,01)=x22(—aq,—k,—f,0,0;), (A15)

the decay rate and stopping power, respectively, to aZder ] ] o

in terms of the retarded response functions, where the lattéind the following properties are valid in the general case:
can be obtained from the former by insertion of the energy

transfer inside the integrand. Imx2(a.k.f0,01)=—Imx,(q.k.f,— 0, = 01), 16
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APPENDIX A: 10(q,k,f,0,01) = x2°(—k,—0,f, 0, — 0,0
SOME PROPERTIES OF THE RESPONSE FUNCTIONS Yz (Gkheo) =Gk mahoime.0.), (A18)

The following properties of thes function are the direct 10 10
consequences of the definitiof®, (3), and(15): X2 (Qf0,0)=x (-0 fw;~w,0). (Al9)
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APPENDIX B: DERIVATION OF FORMULA (32

f dkdq ®(Vk)®[v(q_k)]'mx (a,k,va,vk)
| AR ERAY 1

Let us write down the explicit form ob according to k2g2 |k —q|?
definitions(2) and (3):
dkdq ©(vk)
1 f > 5iMx2(9,k,va, vk). (C2
v(Qkfw,0) =5 Dxa(k oo+ xa(dk -0, — o) k% |k=dl

K —Of e — For the right-hand side of EqC1) we can write the se-
xo(—k. =gl o=, ~w) quence of equalities
_XZ(_kv_q!fvwl_wywl)]‘ (Bl)

It can be seen from Eq$14) and(15) that in Eq.(B1) the f
first and third terms are analytical functionsanin the upper
complex half-plane, while the other two terms are analytical
in the lower complex half-plane. Closing the integration con- :f
tour in appropriate half-planes and using the propéii6),

we then have

dkdg @ (vk)O[v(q—k)]
k?q? [k—ql?

19(q,k,va,vk)

dkdq O(vk)©(—va)
kg*>  [k—qf?

mx+2(9,k,va,vk)

f dkdg O (vq)O[v(k— q)]

e k=g’ 32(a,k,va,vk), (C3)

= v(q,k,fo,
f de=2wlm[)(2(q’k’f'w2'wl)

—o0 wo—
? the first of which is obtained by the variable substitutipn
+x2(—kK,—q,f,w;— wy,w7)]. —k—q, then use of the propertA19). The second is then
(B2) obtained by the substitution &f—q—k and using the prop-
erties(A13) and (A17). By virtue of the identity

APPENDIX C: PROOF OF EQUIVALENCE OF Egs. (39), O(vk)O[v(g—k)]+O(vg)O[v(k—q)]+ O (vk)®(—vQq)
(40) AND (41), (42), RESPECTIVELY 0
=0(vk),

To establish the equivalence of E¢40) and(42), we first
note that the® function can be dropped from either with Eg. (C3) yields
simultaneous introduction of the factor 1/2 because of the

integral overq (k) being an even function df (q), respec- dkdg ©(vk)O[v(g—K)]
tively. Then we can write f a2 PEPE
q —-q

vk
S 1 ( dkdg ©(vk)
dkdqg Imy,(q,k,vq,vk) =_J bbb TO
f k2q?|k—q|? 3) e ||(_q|2|m)(2 (9,k,vq,vk). (CY

Imy 2 °(qg,k,vq,vk)

1 vq The last step is to show that
== | dkdgq————=Im ,k,vq,vk),
2f o EC ALY

f dkdq ©(vk)

e g |2|m x3°(a,k,vg,vk)

the last equation being readily verified by the variable sub-
stitution k—q—k on the left-hand side. This concludes the
proof of equivalence of the Eq§40) and (42).

Comparing Eqs(16) and (17) we see thaty,= x;° for = f dadq S(va) Imy3°(q,k,vq,vk), (C5)

w>w;>0. Then we can write ? |k—ql?
which is done by three consecutive variable substitutions
f dkdg O(vk)®[v(q- k)]-mX2(q k,vd, vk) —q—k, g—k—q, and k— —k, g— —q) with application
k?q? lk—q]? of the propertiegA13), (A19), (A15), and(A17).

Combining Egs(C1),(C2), (C4), and(C5) we see that

=f dkdg @(vk)®[V(q—k)],m T0(q,k,vg,vk). (C1)

kq>  [k—ql?

dkdq @(vk)
f ———1Imx»(q,k,va,vk)
In the left-hand side of Eq.C1) we write ? [kl

O (VK)O[V(q—K)]=[1-O(~vk) {1~ B[ ~v(g—k)]}. =£f dkdq O(va) | To(q.k.va,vk).
k?q? [k—q|?
Expanding the right-hand side of the latter equation and tak-
ing advantage of Eq$A12) and(A16), we have which proves the equivalence of E489) and (41).
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APPENDIX D: SOME INTEGRALS

In the case of forward scattering integrd0) can be
evaluated analytically. First we stretch theaxis along the
common direction of vectorg andk and integrate over the
polar angle ofg. The results are the even functionsgpénd

each integral can be evaluated by the residue theorem by

PHYSICAL REVIEW B 65 094303

otherwise

k?

vz(kv—4wp)p'2

2k3 78

Al2wp) :4wp— kv

x{v?[ 7m—Arg(q;—do) —Arg(d; +do) ]

closing the integration path in the appropriate complex half-

plane. In the case of the integral the singularities occur
either at or off the real axis af, depending on whether the
incident energy is below or abovevg, dramatically effect-

ing the behavior of the quadratic contribution, as can be seen

from Figs. 1 and 2. The results are

3
6k wp

Bwg)=——,

k3 (kv —4w,)
Clwp) = ———F—.
v

If ,sz/2>2wp, then

ks
201 _ 2(1er —
vi(k—vup) (kv —4wp)
+302u?) — k2 2(4k?>— kv u + 4v?pu?)

A(2w,) = [ 16w5(2k?—4kv

—4kv?u(k+ vu)wpl,

X[k(k=2p)+4pwp][k(p—2K)+4unw,]
—64Arg(dy) w5p' 2+ 2(2k—3p)up’

X\ (kv — 4wp) VAw,— vt 327Tw,2)p'2},

where

Vku(4op,—kv)
Vou—k ’

ql=vu+i\/;\/4wp—vz,u,,

and “Arg” is the argument of a complex number.

For an arbitrary angle of scattering we could not evaluate
the integrals in a closed form, so the results in Fig. 2 are
obtained by analytical integration ovey then by double
numerical integration over the polar and azimuth angles. The
results of the analytical and the numerical integrations have
been checked to be identical for the forward scattering.
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