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Z3-order theory of quantum inelastic scattering of charges by solids
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Although the nonlinear response of solids in such phenomena as ion slowing and second harmonic genera-
tion has been studied since long ago, to our knowledge there has not existed a quantum theory of the inelastic
scattering of charges by solids beyond the first Born approximation. In this paper we relate the inelastic cross
section in the second Born approximation to the orderZ3 to the quadratic retarded density-response function in
the same~but far less trivial! fashion it has been known for the first Born approximation, deriving by this a
formula applicable to describe the electron and positron energy-loss spectroscopy. The complete account of
recoil is preserved. Our general formalism neither relies on a specific approximation to the dielectric response
~such as the random phase approximation! nor is it restricted to scattering by a homogeneous electron gas: it
is ‘‘exact’’ in the sense of inclusion of exchange and correlation and is applicable to targets of arbitrary
symmetry. Based on this formalism, we perform explicit calculations of theZ3 contribution to plasmon
excitation by electrons and positrons in a simple hydrodynamic model of electron gas and discuss the results,
which prove to be instructive in the general case too.
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I. INTRODUCTION

Although the theory of the response of matter to dynam
external perturbations and the theory of scattering of cha
by matter are the closely related subjects, they are not id
tical. Indeed, in the former a target~usually considered
a quantum system! is excited by a classical external field
e.g., by the Coulomb field of an ion moving along a we
defined trajectory or by light governed by Maxwell equ
tions. In contrast, in the scattering of electrons or positr
by matter the projectiles themselves are quantum parti
and cannot be substituted by an external field. This po
becomes particularly clear if one considers an electron m
ing in a continuous homogenious isotropic medium. If w
regard this electron as a classical particle traveling alon
definite trajectory, then by virtue of symmetry it cannot d
viate from its initial straight path, the only influence of th
medium being the continuous slowing of its motion. It
well known, though, that such an electron has a probab
to deviate in any direction with the corresponding mome
tum transfer to the medium, which is entirely the quantu
effect.

However, it is well known, too, that the many-body in
elastic cross section of electron scattering in the first B
approximation can be expressed in terms of the lin
density-response function, the same function which descr
the target response to a classical external field. The g
practical benefit from such a relationship is that it is t
response function to an external field which can be c
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culated in more or less accurate approximations@e.g., hydro-
dynamic, random phase~RPA!, or time-dependent loca
density ~TDLDA ! approximations#; then, the inelastic
cross section can be obtained by use of it. To the bes
our knowledge this scheme, trivial as it is in the linear ca
has been restricted so far to the first Born approximati
As long as a correspondence between the higher-o
inelastic cross sections and the nonlinear response func
is found, one can take advantage of the latter, known fr
the literature in conjunction with other phenomena,
solve the problem of electron and positron energy los
in solids. Examples of systems for which the quadra
response functions are known analytically or can be ca
lated numerically are the three-1 and two-2 dimensional~3D
and 2D! electron gas, hydrodynamic,3 and jellium4 model
surfaces.

The purpose of this paper is to extend the abo
mentioned scheme to the second Born approximat
The effects beyond the first Born approximation are i
portant in many ways, the most obvious being maybe t
in the linear theory there is no difference between the s
tering of charges of opposite sign. We will also show th
the quadratic contribution to the plasmon excitation b
comes comparable with the linear one near the plasm
excitation threshold. The main result of this paper is a f
mula for the inelastic differential cross section to ord
Z3, where Ze is the charge of an incident distinguishab
particle:
©2002 The American Physical Society03-1
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ds~p2k←p!

dk
5

232e4Z2p2

vk2
Q~v!H 1

ek2
Imx1~k,k,v!1

Z

2p3
ReE dq

q2uk2qu2

3E
0

`Q~v2v1!n~k,k2q,q,v,v1!1Q~v12v!n~2q,k2q,2k,v1 ,v!

vq2
q2

2m
2v11 ih

dv1J . ~1!
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Here p is the incident momentum of the charge,m is its
mass,v5p/m is the incident velocity,k and v5(p22up
2ku2)/2m are the momentum and the energy loss, resp
tively, Q is the Heaviside’s step function, andh is the posi-
tive infinitesimal. The functionn is defined by the relations

l~q,k,f,v,v1!

5x2~q,k,f,v,v1!2x2~Àk,Àq,f,v12v,v1!,

~2!

n~q,k,f,v,v1!5
1

2
@l~q,k,f,v,v1!1l~q,k,f,2v,2v1!#,

~3!

and the linear and quadratic density-response functions
defined in the theory of response to an external field by

dn~q,v!5E x1~q,k,v!fext~k,v!dk

1E x2~q,k,f,v,v1!fext~k,v2v1!

3fext~ f,v1!dkdfdv1 , ~4!

wherefext is the scalar potential of an external electric fie
perturbing the system, anddn is the induced particle density
All quantities are written in the reciprocal wave-vecto
frequency representation. Equations~1!–~3! relate the ‘‘ex-
act’’ many-body cross section to orderZ3 to the ‘‘exact’’
many-body quadratic response function in the sense that
are not restricted to any specific approximation of the la
~i.e., RPA, etc.!. In particular, formula~1! is valid ~to order
Z3) for scattering near the plasmon excitation thresho
when the momentum of the projectile before and after
scattering differs substantially. Furthermore, no restriction
the nature of the target is being imposed, so Eq.~1! is valid,
for example, for spatially confined targets as well as for h
mogenious 3D or 2D electron gas.

For heavy particles such as ions, which can be conside
moving along classical trajectories, when the recoil can
neglected, the problem of relating the cross sections to
response function, we are mainly concerned with here, d
not arise, and the detailed nonlinear theory had been de
oped in Refs. 5 and 6. However, even in this case our
proach puts the decay rate and the stopping power into
form when they can be calculated as the total probability
09430
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the expectation value of the energy loss, respectively, w
the same probability density, which has presented a prob
before now.7

This paper has the following structure. In Sec. II we wr
down the inelastic cross section to orderZ3 in terms of the
complete set of many-body eigenstates of the target. In S
III we reproduce the derivation of the quadratic densi
response function to a classical external field. In Sec. IV
derive the relation between the inelastic cross section
density-response functions to orderZ3 @Eq. ~1!#. In Sec. V
we consider the simplifications arising when the recoil c
be neglected. Section VI treats homogeneous isotropic
gets. Section VII makes the connection of our theory to
decay rate and stopping power calculations known from
literature. In Sec. VIII we give an example of an explic
calculation in a simple hydrodynamic model of a boundle
electron gas. In Sec. IX the results are summarized.
Appendixes contain some useful properties of the respo
functions and some lengthy derivations.

II. MANY-BODY DIFFERENTIAL CROSS SECTION

Let us consider the inelastic scattering of a charge b
solid. The transition matrix element to second order in
Born series is8,9

^p8,nuTup,0&

5^p8,nuVcs1Vcs

1

p2/2m1E02Ĥc2Ĥs1 ih
Vcsup,0&,

~5!

whereup,n& is the state with projectile of momentump and
the solid at stateun&, E0 is the ground-state energy of th
target,Ĥc andĤs are the Hamiltonians of the charge and t
solid, respectively, without interaction between them, a
Vcs is the incident charge-solid interaction,10

Vcs5(
j

Ze2

ur2r j u
,

wherer andr j are the coordinates of the incident charge a
the charges of the solid, respectively and,e is the charge of
carriers in the system, negative if electrons. After Four
transforming
3-2
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Vcs5
Ze2

2p2E ei r "k

k2
nkdk,

where

nk5(
j

e2 ik"r j

is the particle-density operator, and substituting into Eq.~5!,
we have

^p2k,nuTup,0&

5
Ze2

2p2k2
n2k

n0 1
Z2e4

4p4 E dq

q2uk1qu2

3
nq

nmn2k2q
m0

@p22~p2k2q!2#/2m2vm01 ih
,

wherevnm5En2Em and nq
nm5^nunqum&. Summation over

the repeated indexm is implied. Without loss of generality
we assumeun& to be real. Then retaining terms to orderVext

3 ,
we have for the differential cross section8,9

ds~p2k←p!

dk

5
~2p!4m

p (
n

u^p2k,nuTup,0&u2d~v2vn0!

5
4Z2e4m

pk2 (
n

F 1

k2
unk

n0u21
Ze2

p2 (
m

ReE dq

q2uk1qu2

3
nk

0nnq
nmn2k2q

m0

@p22~p2k2q!2#/2m2vm01 ih
Gd~v2vn0!. ~6!

III. MANY-BODY DENSITY-RESPONSE FUNCTION

Let us consider a solid under a time-dependent exte
potentialfext(r ,t). Then we can write the equation of mo
tion for the density matrix,11

i
]r

]t
5@H01efext ,r#, ~7!

whereH0 is the unperturbed Hamiltonian. Expandingr in
the external potential,

r5r01r11r2 ,

and substituting into Eq.~7!, we have

i
]r1

]t
5@H0 ,r1#1e@fext ,r0#,

i
]r2

]t
5@H0 ,r2#1e@fext ,r1#. ~8!
09430
al

Taking the matrix elements of Eqs.~8! between unperturbed
states and Fourier transforming with respect to time, we h

^nur1~v!um&5e
d0m2d0n

v2vnm1 ih
^nufext~v!um&

~no summation!, ~9!

^nur2~v!um&5e
^nu@fext ,r1#~v!um&

v2vnm1 ih

5eE ^nu@fext~v2v1!,r1~v1!#um&
v2vnm1 ih

dv1 ,

~10!

wherednm is Kronecker’s symbol.fext can be Fourier ex-
panded with respect to space coordinates,

fext~v!5(
j

fext~r j ,v!5E fext~q,v!nÀqdq. ~11!

The particle-density fluctuations are given by

dn~q,v!5
1

~2p!3
Sp$nq@r1~v!1r2~v!#%. ~12!

Substituting Eq.~9! into Eq.~10!, then both of them into Eq
~12!, and using Eq.~11! and the definition of the density
response functions~4!, we obtain

x1~q,k,v!5
e

~2p!3 (
n

nq
0nn2k

n0 F 1

v2vn01 ih

2
1

v1vn01 ihG , ~13!

x̃2~q,k,f,v,v1!

5
e2

~2p!3 (
n,m

nq
0nn2k

nmn2f
m0

~v2vn01 ih!~v12vm01 ih!

2
nq

mnn2k
n0 n2f

0m

~v2vnm1 ih!~v12v0m1 ih!

2
nq

nmn2k
0n n2f

m0

~v2vmn1 ih!~v12vm01 ih!

1
nq

0nn2k
nmn2f

m0

~v2v0n1 ih!~v12v0m1 ih!
. ~14!

Let us note that in Eq.~4! the charge-density fluctuationsdn
are invariant under the transformation

x̃2~q,k,f,v,v1!→x̃2~q,k,f,v,v1!1F~q,k,f,v,v1!,

with an arbitrary functionF satisfying the relation

F~q,f,k,v,v2v1!52F~q,k,f,v,v1!.
3-3
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To impose a unique definition of the quadratic response fu
tion by Eq.~4!, we choose the symmetric form of the latter12:

x2~q,k,f,v,v1!5
1

2
@ x̃2~q,k,f,v,v1!

1x̃2~q,f,k,v,v2v1!#. ~15!

After substitution of Eq.~14! into Eq. ~15!, the second term
can be combined with the seventh, and the third with
sixth,13 yielding

x2~q,k,f,v,v1!

5
e2

2~2p!3 (
n,m

nq
0nn2k

nmn2f
m0

~v2vn01 ih!~v12vm01 ih!

2
nq

mnn2k
n0 n2f

0m

~v12v0m1 ih!~v2v12vn01 ih!

1
nq

0nn2k
nmn2f

m0

~v2v0n1 ih!~v12v0m1 ih!

1~k↔f,v1→v2v1!. ~16!

Equation ~16! is the retarded quadratic density-respon
function. Its time-ordered counterpart, which we will al
need below, is13

x2
TO~q,k,f,v,v1!

5
e2

2~2p!3 (
n,m

nq
0nn2k

nmn2f
m0

~v2vn01 ih!~v12vm01 ih!

2
nq

mnn2k
n0 n2f

0m

~v12v0m2 ih!~v2v12vn01 ih!

1
nq

0nn2k
nmn2f

m0

~v2v0n2 ih!~v12v0m2 ih!

1~k↔f,v1→v2v1!. ~17!

IV. RELATING THE CROSS SECTION
TO THE RESPONSE FUNCTION

We want to express the cross section~6! in terms of the
response functions~13! and ~16!. This is straightforward to
do with the linear term. By Eq.~13! we have

(
m

unk
m0u2d~v2vm0!52

8p2

e
Q~v!Imx1~k,k,v!.

~18!

In what follows we are concerned with the quadratic ter
Using the definition~3! of the functionn and Eqs.~14! and
~15!, one can verify directly that14
09430
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n~q,k,f,v,v1!

52
e2

4p (
m,n

nq
m0nÀf

n0nÀk
nm@d~v2vm0!d~v12vn0!

1d~v1vm0!d~v11vn0!#

2nÀk
m0nÀf

n0nq
nm@d~v12vn0!d~v2vnm!

1d~v11vn0!d~v1vnm!#. ~19!

If v1.0, then Eq.~19! yields

n~q,k,f,v,v1.0!

52
e2

4p (
m,n

@nq
m0nÀf

n0nÀk
nmd~v2vm0!

2nÀk
m0nÀf

n0nq
nmd~v2vnm!#d~v12vn0! ~20!

or, using the properties of Dirac’sd function,

n~q,k,f,v,v1.0!

52
e2

4p (
m,n

@nq
m0nÀf

n0nÀk
nmd~v2vm0!

2nÀk
m0nÀf

n0nq
nmd~v2v11vm0!#d~v12vn0!. ~21!

This gives

n~q,k,f,v.v1 ,v1.0!

52
e2

4p (
m,n

nq
m0nÀf

n0nÀk
nmd~v2vm0!d~v12vn0!.

~22!

Performing permutationsq↔2f,v↔v1, we have from
Eq. ~20!

n~2f,k,2q,v1 ,v.0!

52
e2

4p (
m,n

@n2f
m0 nq

n0nÀk
nmd~v12vm0!

2nÀk
m0nq

n0n2f
nmd~v12v1vm0!#d~v2vn0! ~23!

and then

n~2f,k,2q,v1.v,v.0!

52
e2

4p (
m,n

n2f
m0nq

n0nÀk
nmd~v12vm0!d~v2vn0!. ~24!

Interchanging the dummy summation indicesm andn in
Eq. ~24! and combining it with Eq.~22! we have

(
m,n

nq
m0nÀf

n0nÀk
nmd~v2vm0!d~v12vn0!

52
4p

e2
Q~v!Q~v1!@Q~v2v1!n~q,k,f,v,v1!

1Q~v12v!n~2f,k,2q,v1 ,v!#. ~25!

Now we can also write
3-4
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(
m,n

nq
m0nÀf

n0nÀk
nm

v2vm01 ih
d~v12vn0!5E

2`

`

(
m,n

nq
m0nÀf

n0nÀk
nm

v2v21 ih
d~v22vm0!d~v12vn0!dv2

52
4p

e2
Q~v1!E

0

`Q~v12v2!n~2f,k,2q,v1 ,v2!1Q~v22v1!n~q,k,f,v2 ,v1!

v2v21 ih
dv2 .

~26!

Finally, using Eqs.~6!, ~18!, and~26!, and performing the integration variable substitutionq→q2k, we see that the main
equation~1! is proved.

V. NEGLECT OF RECOIL

For high incident velocities or heavy projectiles the recoil can be neglected, in which case formula~1!can be simplified. We
will restrict our consideration to systems with an inversion center. Thenih in Eq. ~1! can be dropped, sincen is real, and the
principal value of the integral can be implied instead. In this case we can neglectq2/2m in the denominator, and putv5vk.
Then the integrals in theZ3 term of Eq.~1! can be written as

E dq

q2uk2qu2 F E
0

vkn~k,k2q,q,vk,v1!

vq2v1
dv11E

vk

`n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1G . ~27!

Using the property~A2!, then making the integration variables substitutionsq→k2q, v1→vk2v1, we can write for the
second integral

E dq

q2uk2qu2
E

vk

`n~2q,k2q,2k,v1 ,vk!

vq2v1
dv15E dq

q2uk2qu2E2`

0 n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1 ,

and then expression~27! can be written as

E dq

q2uk2qu2
F E

0

vk
n~k,k2q,q,vk,v1!2

1

2
n~2q,k2q,2k,v1 ,vk!

vq2v1
dv11

1

2E2`

` n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1

G . ~28!

We can also write

E dq

q2uk2qu2
E

0

vk
n~k,k2q,q,vk,v1!2

1

2
n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1 ~29!

5E dq

q2uk2qu2
E

0

vk
n~k,q,k2q,vk,vk2v1!1

1

2
n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1 ~30!

5E dq

q2uk2qu2
E

0

vk
2n~k,k2q,q,vk,v1!1

1

2
n~2q,k2q,2k,v1 ,vk!

vq2v1
dv1 , ~31!
where we have first used the property~A1!, then have again
performed the substitutionq→k2q, v1→vk2v1 in the
first term of Eq.~30!. Comparing Eqs.~29! and ~31! we see
09430
that the first integral in the square brackets of Eq.~28! is
zero. Now using Eq.~B2! of Appendix B, we can write Eq.
~27! as
3-5
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pImE dq

q2uk2qu2
@x2~2q,k2q,2k,vq,vk!

1x2~q2k,q,2k,v~k2q!,vk!#. ~32!

Making again the substitutionq→k2q in the second term o
this expression, we see that the two terms are equal, an
finally obtain, neglecting recoil,

ds~p2k←p!

dk

5
232e4Z2p2

vk2
Q~vk!F 1

ek2
Imx1~k,k,vk!

1
Z

p2E dq

q2uk2qu2
Imx2~2q,k2q,2k,vq,vk!G .

~33!
ve

tu
e

oi

pin
e

s

09430
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VI. CASE OF HOMOGENEOUS MEDIUM

If the target is spatially homogeneous, then

dn~q,v!5x1~q,v!fext~q,v!

1E x2~q,f,v,v1!fext~qÀf,v2v1!

3fext~ f,v1!dfdv1 . ~34!

The corresponding reduced response functions are colle
in Eqs. ~A4!–~A11! of Appendix A. Using the definition of
the functionn, it is easy to show that the latter is the re
function for systems with an inversion center. Then Eq.~1!
together with Eqs.~A4! and ~A10! gives for the differential
cross section
ds~p2k←p!

dk
5

24Ve4Z2

pvk2
Q~v!H 1

ek2
Imx1~k,v!1

Z

2p3E dq

q2uk2qu2

3E
0

`Q~v2v1!n~k,q,v,v1!1Q~v12v!n~2q,2k,v1 ,v!

vq2
q2

2m
2v1

dv1J , ~35!
where the principal value of the integral is implied. We ha
substituted the volume of the targetV/(2p)3 for the d(q
50). Without the coefficientV this quantity gives the in-
verse mean free path with respect to the given momen
transfer. Similarly to Eq.~33!, in the homogeneous case w
have an approximation for the case of neglect of the rec

ds~p2k←p!

dk
5

24Ve4Z2

pvk2
Q~vk!F 1

ek2
Imx1~k,vk!

1
Z

p2E dq

q2uk2qu2
Imx2~q,k,vq,vk!G .

~36!

VII. DECAY RATE AND STOPPING POWER

Let us make a connection to the decay rate and stop
power calculations known from the literature for an homog
nious electron gas. We can easily write these quantitie
terms of the cross section with neglect of the recoil:

t215
v
VE ds~p2k←p!

dk
dk, ~37!
m

l:

g
-
in

2
dEkin

dx
5

1

VE vk
ds~p2k←p!

dk
dk. ~38!

Substituting Eq.~36! into Eqs.~37! and ~38!, we have

t215
24e4Z2

p E dk
Q~vk!

k2 F 1

ek2
Imx1~k,vk!

1
Z

p2E dq

q2uk2qu2
Imx2~q,k,vq,vk!G , ~39!

2
dEkin

dx
5

24e4Z2

pv E dk
vkQ~vk!

k2 F 1

ek2
Imx1~k,vk!

1
Z

p2E dq

q2uk2qu2
Imx2~q,k,vq,vk!G . ~40!

The purpose of this section is to demonstrate that Eqs.~39!
and~40! are equivalent to Eqs.~6! and~15! of Ref. 7, respec-
tively, which in our notation are15
3-6
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t215
24e4Z2

p E dq
Q~vq!

k2 F 1

eq2
Imx1~q,vq!

1
Z

3p2E dk

k2uk2qu2
Imx2

TO~q,k,vq,vk!G , ~41!

2
dEkin

dx
5

24e4Z2

pv E dq
vqQ~vq!

q2 F 1

eq2
Imx1~q,vq!

1
Z

2p2E dk

k2uk2qu2
Imx2~q,k,vq,vk!G , ~42!

wherex2
TO is the time-ordered response function~17!. The

proof is given in Appendix C.
Equations~37! and ~38! @or Eqs.~39! and ~40!# are from

the very beginning put into the form when the stoppi
power can be obtained from the decay rate by introduc
the energy transfer into the integrand. This is not the c
with the same quantities in the form of Eqs.~41! and ~42!,
which fact has presented a problem before now.7

VIII. EXAMPLE AND DISCUSSION

As the simplest possible but instructive example, let
consider the hydrodynamic model of homogeneous elec
gas in the spirit of Ref. 16 but without the pressure term.
the linear response, this model yields a Drude dielectric fu
tion without the spatial dispersion. The equations govern
the motion are

dv

dt
5

]v

]t
1~v¹!v52

e

m
¹f, ~43!

]n

]t
1¹~nv!50, ~44!

D~f2fext!524pen, ~45!

which are Newton’s law, the continuity equation, and Po
son’s equation, respectively. Herev, n, f, andfext are the
velocity and density of the electron gas, the total, and
external scalar potentials, respectively. Expanding equat
~43!–~45! in powers offext , we have to first order
09430
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]v1

]t
52

e

m
¹f1 ,

]n1

]t
1n0¹v150,

D~f12fext!524pen1 , ~46!

and to second order

]v2

]t
1~¹v1!v152

e

m
¹f2 ,

]n2

]t
1n0¹v21¹~n1v1!50,

Df2524pen2 . ~47!

After the Fourier transform, we find from Eqs.~46!

n1~q,v!5
q2

4pe F 1

e~v!
21Gfext~q,v!,

v1~q,v!5
eq

vme~v!
fext~q,v!, ~48!

and hence

x1~q,v!5
q2

4pe F 1

e~v!
21G ,

Imx1~q,v!52
q2vp

8e
d~v2vp!,

wheree(v) is the Drude dielectric function:

e~v!512
vp

2

~v1 ih!2
,vp5A4pe2n0

m
.

Substituting the solutions of the linear problem~48! into
Eqs.~47!, we obtain for the quadratic response
x̃2~q,f,v,v1!5
vp

2~v2v1!@~ fq!2v11 f 2q2v2 f 2fq~v1v1!#

4pm@~v1 ih!22vp
2#@~v2v11 ih!22vp

2#@~v11 ih!22vp
2#

,
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and then, by use of the definitions~A7!, ~A9!, and~A11!, it is
straightforward to show that

n~q,f,v,v1!5
p

48 m
d~v12vp!@3~ fq2 f 2!q2d~v!

3@24~ fq!213fqq21 f 2q2#d~v22vp!

13fq~22fq1 f 21q2!d~v2vp!#.

For the cross section we then have by virtue of Eq.~35!

ds~p2k←p!

dk

5
Z2e2V

2pvk2 H vpd~v2vp!1
Ze2

12p2m
$@A~2vp!1B~vp!#

3d~v2vp!1C~vp!d~v22vp!%J , ~49!

where

S A

B

C
D 5E dq

q2uq2ku2S vq2
q2

2m
2v D

3S q2k213qkq224~qk!2

23qkuq2ku2

q2k213~qk!k224~qk!2
D . ~50!

Equation ~49! contains the single-plasmon excitation
both Z2 andZ3 orders, as well as the double-plasmon ex
tation. Because of the hydrodynamic model, it does not c
tain the single-particle excitations.

Let us note that the double-plasmon excitation contri
tion to orderZ2 has been recently reported.17,18 This effect,
which is the consequence of the singularity atv52vp in the
high-frequency tail of the imaginary part of the linear diele
tric function,19 is due to the exchange and correlation and
of cause, beyond our simple hydrodynamic example. W
out this term, theZ expansion of the double-plasmon excit
tion probability starts from theZ3 term. It is evident that if
this term is positive for electrons then it is negative for po
itrons and vice versa. This situation just demonstrates
logical breakdown of the hydrodynamical model atv
52vp . The more elaborate RPA approximation is not like
to pass this test for consistency either, since it yields noZ2

contribution to the double-plasmon excitation probabil
too.

On the contrary, theZ3 contribution for the single plas
mon is not contradictory and it can give substantial corr
tions to theZ2 term. The same can be supposed to be true
single particle-hole excitations, when the latter are allow
by the model of the response function, which evidently is
the case in this simple example. In Figs. 1 and 2 we plot
plasmon excitation intensities versus the incident particle
ergy obtained by Eqs.~49! and~50! for electron (Z51) and
09430
-
-

-

-
,
-

-
e

-
r

d
t
e
n-

positron (Z521) scattering. Appendix D contains an an
lytical evaluation of integrals~50! in the case of scattering
forward. The inset in Fig. 1 shows the strength of theZ3

contribution to the double plasmon excitation in this mod
Although it happens to be negative for electrons in the c
sen range of incident velocities, the comparatively sm
magnitude of this term shows that the simple hydrodynam
model of this example is not strongly contradictory in th
respect.

IX. CONCLUSIONS

In the framework of many-body scattering theory, w
have expressed the inelastic differential cross section o
charge scattered by an ensemble of charges toZ3 order in the
second Born approximation in terms of the quadratic
tarded density-response function of the target. The latter
sponse function is known from the literature for a number
systems of physical significance, such as 2D and 3D elec
gas and jellium model surfaces. The formalism we have
veloped allows direct application of the knowledge of the
response functions to produce the inelastic cross section
charges interacting with solids. We have supplemented
formal theory with an explicit example of scattering by ele

FIG. 1. The plasmon excitation intensity vs the incident ene
for the forward scattering. A plasmon energy of 15 eV is chos
The dotted and dashed lines are theZ2 andZ3 contributions, respec-
tively. Two solid lines mainly below~above! theZ2 contribution are
the sum~difference! of theZ2 andZ3 terms, corresponding to elec
tron ~positron! scattering. The inset shows the double-plasmon
tensity, which is the measure of the~in!accuracy of the simple hy-
drodynamic model of this example~see the text!.
3-8
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tron gas within hydrodynamic model, which demonstra
the importance of nonlinear corrections near the plasmon
citation threshold. The calculations of electron and posit
scattering by 3D and 2D electron gas by use of the ab
theory in the RPA is now in progress.

Note added in proof.In a recent paper20 various ap-
proaches to the decay rate and the stopping power of
homogeneous 3D electron gas have been developed. A
from our treating the targets not necessarily homogene
we see the main difference with Ref. 20 in that our differe
tial cross sections~or transition probabilities! are ‘‘exact’’ to
order Z3, while Ref. 20, although includes exchange a
correlation, still uses approximate ones. Also we would l
to point out in conjunction with discussion in Ref. 20 th
our Eqs.~39! and ~40! provide the explicit form to expres
the decay rate and stopping power, respectively, to ordeZ3

in terms of the retarded response functions, where the la
can be obtained from the former by insertion of the ene
transfer inside the integrand.
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APPENDIX A:
SOME PROPERTIES OF THE RESPONSE FUNCTIONS

The following properties of then function are the direct
consequences of the definitions~2!, ~3!, and~15!:

FIG. 2. The same as Fig. 1 but with an angle of scattering
15°.
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n~q,k,f,v,v1!5n~2f,k,2q,v1 ,v!1n~q,f,k,v,v2v1!,
~A1!

n~q,k,f,v,v1!52n~Àk,2q,f,v12v,v1!, ~A2!

n~q,k,f,2v,2v1!5n~q,k,f,v,v1!. ~A3!

Using the definitions~15!, ~2!, and ~3! we can write in the
case of an homogeneous medium

x1~q,k,v!5d~q2k!x1~q,v!, ~A4!

x̃2~q,k,f,v,v1!5d~k1f2q!x̃2~q,f,v,v1!, ~A5!

x2~q,k,f,v,v1!5d~k1f2q!x2~q,f,v,v1!, ~A6!

x2~q,f,v,v1!5
1

2
@ x̃2~q,f,v,v1!1x̃2~q,q2f,v,v2v1!#,

~A7!

l~q,k,f,v,v1!5d~k1f2q!l~q,f,v,v1!, ~A8!

l~q,f,v,v1!5x2~q,f,v,v1!2x2~ f2q,f,v12v,v1!,
~A9!

n~q,k,f,v,v1!5d~k1f2q!n~q,f,v,v1!, ~A10!

n~q,f,v,v1!5
1

2
@l~q,f,v,v1!1l~q,f,2v,2v1!#.

~A11!

The properties

x2~q,q2f,v,v2v1!5x2~q,f,v,v1!, ~A12!

x2
TO~q,q2f,v,v2v1!5x2

TO~q,f,v,v1! ~A13!

are the direct consequence of the symmetrization~15!. Using
Eqs.~16! and~17! it is straightforward to show that for sys
tems with an inversion center

x2~q,k,f,v,v1!5x2~2q,2k,2f,v,v1!, ~A14!

x2
TO~q,k,f,v,v1!5x2

TO~2q,2k,2f,v,v1!, ~A15!

and the following properties are valid in the general case

Imx2~q,k,f,v,v1!52Imx2~q,k,f,2v,2v1!,
~A16!

Imx2
TO~q,k,f,v,v1!51Imx2

TO~q,k,f,2v,2v1!.
~A17!

The following properties hold in the general and homog
nious cases, respectively, forx2

TO but not forx2:

x2
TO~q,k,f,v,v1!5x2

TO~2k,2q,f,v12v,v1!,
~A18!

x2
TO~q,f,v,v1!5x2

TO~ f2q,f,v12v,v1!. ~A19!

f
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APPENDIX B: DERIVATION OF FORMULA „32…

Let us write down the explicit form ofn according to
definitions~2! and ~3!:

n~q,k,f,v,v1!5
1

2
@x2~q,k,f,v,v1!1x2~q,k,f,2v,2v1!

2x2~2k,2q,f,v2v1 ,2v1!

2x2~2k,2q,f,v12v,v1!#. ~B1!

It can be seen from Eqs.~14! and ~15! that in Eq.~B1! the
first and third terms are analytical functions inv in the upper
complex half-plane, while the other two terms are analyti
in the lower complex half-plane. Closing the integration co
tour in appropriate half-planes and using the property~A16!,
we then have

E
2`

` n~q,k,f,v,v1!

v22v
dv52pIm@x2~q,k,f,v2 ,v1!

1x2~2k,2q,f,v12v2 ,v1!#.

~B2!

APPENDIX C: PROOF OF EQUIVALENCE OF Eqs. „39…,
„40… AND „41…, „42…, RESPECTIVELY

To establish the equivalence of Eqs.~40! and~42!, we first
note that theQ function can be dropped from either wit
simultaneous introduction of the factor 1/2 because of
integral overq (k) being an even function ofk (q), respec-
tively. Then we can write

E dkdq
vk

k2q2uk2qu2
Imx2~q,k,vq,vk!

5
1

2E dkdq
vq

k2q2uk2qu2
Imx2~q,k,vq,vk!,

the last equation being readily verified by the variable s
stitution k→q2k on the left-hand side. This concludes th
proof of equivalence of the Eqs.~40! and ~42!.

Comparing Eqs.~16! and ~17! we see thatx25x2
TO for

v.v1.0. Then we can write

E dkdq

k2q2

Q~vk!Q@v~q2k!#

uk2qu2
Imx2~q,k,vq,vk!

5E dkdq

k2q2

Q~vk!Q@v~q2k!#

uk2qu2
Imx2

TO~q,k,vq,vk!. ~C1!

In the left-hand side of Eq.~C1! we write

Q~vk!Q@v~q2k!#5@12Q~2vk!#$12Q@2v~q2k!#%.

Expanding the right-hand side of the latter equation and
ing advantage of Eqs.~A12! and ~A16!, we have
09430
l
-

e

-

k-

E dkdq

k2q2

Q~vk!Q@v~q2k!#

uk2qu2
Imx2~q,k,vq,vk!

5E dkdq

k2q2

Q~vk!

uk2qu2
Imx2~q,k,vq,vk!. ~C2!

For the right-hand side of Eq.~C1! we can write the se-
quence of equalities

E dkdq

k2q2

Q~vk!Q@v~q2k!#

uk2qu2
Imx2

TO~q,k,vq,vk!

5E dkdq

k2q2

Q~vk!Q~2vq!

uk2qu2
Imx2

TO~q,k,vq,vk!

5E dkdq

k2q2

Q~vq!Q@v~k2q!#

uk2qu2
Imx2

TO~q,k,vq,vk!, ~C3!

the first of which is obtained by the variable substitutionq
→k2q, then use of the property~A19!. The second is then
obtained by the substitution ofk→q2k and using the prop-
erties~A13! and ~A17!. By virtue of the identity

Q~vk!Q@v~q2k!#1Q~vq!Q@v~k2q!#1Q~vk!Q~2vq!

5Q~vk!,

Eq. ~C3! yields

E dkdq

k2q2

Q~vk!Q@v~q2k!#

uk2qu2
Imx2

TO~q,k,vq,vk!

5
1

3E dkdq

k2q2

Q~vk!

uk2qu2
Imx2

TO~q,k,vq,vk!. ~C4!

The last step is to show that

E dkdq

k2q2

Q~vk!

uk2qu2
Imx2

TO~q,k,vq,vk!

5E dqdq

k2q2

Q~vq!

uk2qu2
Imx2

TO~q,k,vq,vk!, ~C5!

which is done by three consecutive variable substitutionk
→q2k, q→k2q, and (k→2k, q→2q) with application
of the properties~A13!, ~A19!, ~A15!, and~A17!.

Combining Eqs.~C1!,~C2!, ~C4!, and~C5! we see that

E dkdq

k2q2

Q~vk!

uk2qu2
Imx2~q,k,vq,vk!

5
1

3E dkdq

k2q2

Q~vq!

uk2qu2
Imx2

TO~q,k,vq,vk!,

which proves the equivalence of Eqs.~39! and ~41!.
3-10
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APPENDIX D: SOME INTEGRALS

In the case of forward scattering integrals~50! can be
evaluated analytically. First we stretch thez axis along the
common direction of vectorsv andk and integrate over the
polar angle ofq. The results are the even functions ofq and
each integral can be evaluated by the residue theorem
closing the integration path in the appropriate complex h
plane. In the case of the integralA the singularities occur
either at or off the real axis ofq, depending on whether th
incident energy is below or above 2vp , dramatically effect-
ing the behavior of the quadratic contribution, as can be s
from Figs. 1 and 2. The results are

B~vp!5
6kp3vp

v2
,

C~vp!5
kp3~kv24vp!

v2
.

If mv2/2.2vp , then

A~2vp!5
kp3

v2~k2vm!2~kv24vp!
@16vp

2~2k224kvm

13v2m2!2k2v2~4k229kvm14v2m2!

24kv2m~k1vm!vp#,
Eu

ar
in

ed

09430
by
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otherwise

A~2vp!5
2k3p3

4vp2kv
1

kp2

v2~kv24vp!p82

3$v2@p2Arg~q12q0!2Arg~q11q0!#

3@k~k22p!14mvp#@k~p22k!14mvp#

264Arg~q1!vp
2p8212~2k23p!vp8

3Am~kv24vp!A4vp2v2m132pvp
2p82%,

where

q05
Akm~4vp2kv !

Avm2k
,

q15vm1 iAmA4vp2v2m,

and ‘‘Arg’’ is the argument of a complex number.
For an arbitrary angle of scattering we could not evalu

the integrals in a closed form, so the results in Fig. 2
obtained by analytical integration overq, then by double
numerical integration over the polar and azimuth angles. T
results of the analytical and the numerical integrations h
been checked to be identical for the forward scattering.
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