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Nonlinear mechanism of plasmon damping in electron gas
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At plasmon resonance, the condition of applicability of the linear response theory, which is the smallness of
the oscillating field, evidently breaks down. We suggest a variant of the quadratic response theory which
remains valid near and at plasma frequency and demonstrate that, as could be anticipated, the nonlinearity
serves itself to restrict the amplitude of plasma oscillations, thus providing a mechanism of “nonlinear damp-
ing.” We apply this approach to calculate the damping of plasmon in two-dimensional electron gas below the
threshold wave vector, which damping has recently been observed experimentallySp shegace band of

Si(111)- 3% 3-Ag.
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The linear random phase approximati@PA) picture of  under the assumption thgtand ¢, are small. This assump-

dynamic screening in electron gas, worked out by Lindhard tion evidently breaks down fop at the resonance frequency

in three dimension¢3D) and by Sterfiin 2D, respectively, w,(a), particularly so ife is real and passes through zero at
predicts the undamped plasmon up to a critical wave vectogiq frequency: thens> becomes infinite.

determined by the condition of plasmon coupling with  \wjithin the quadratic response theory one can write either
particle-hole excitations. For inelastic electron scattering,

this means that in the vicinity of the plasmon resonance the 1 L
energy-loss function é(q,0)= m@éext(qaw)"_j € (q,0,K,01)
L(g,w)=—Im———, ) X Pox d—K, 0= 01) pex( K, w1)dkdw;  (3)
(0, w) or

wheree is the wave vectord) and frequency ¢) dependent

dielectric function, is Dirac'sd function, with zero width and

infinite height. One mechanism which restricts the plasma ‘f’ext(q’“’):e(q"")‘ﬁ(qvw)Jrf €2(0,0,K, 1)
resonance is exchange and correlation, the account of which

leads to finite damping at all wave vectors in the linear re- X p(q—K,0—w1)p(K,01)dkdw,,  (4)

sponse.theor?.However, when applied to the case of tWO.' wheree, and egl are the quadratic and the inverse quadratic
dimensional electron gas, exchange-correlation broadenin

accounts to less than 1% of the relative width of the plasmoﬁ%ezl.eCtrIC functions, respectively. Equatiof® and (4) are
45 equivalent far from plasma resonariddowever, at the reso-
peakAwp(q)/ wy(q).™

. . . nance they are not. Indeed, similar to the linear theory, Eq.
The purpose of this work is to demonstrate that alternativ 3) fails at the resonance, singe grows infinite. However
mechanism of stronger damping of plasmon peak is due t : ; ’ 9 : ’
. . : : . othing catastrophic happens with Ed) near or at the reso-
the nonlinearity of the dynamic response, even if <:onS|dere§ance and we can hope that the solutibof this equation
within the RPA. This mechanism puts a limit on the intensity ' w P utib 'S equati

of the plasmon amplitude and, consequently, introduces thg; mains Sma" as long . is smal_l, which is the condl_tlon
finite damping of plasmon even for the wave vectoeow of the applicability of the perturbative approach. We will see

the single-particle excitation threshold. below that this supposition proves to be true.

The philosophy of our approach is that the relation of the,[h Ltet usfsolvet'Egg)l. First, .'t IS gtra;gtﬂtforward t? fsee ;[.hat
linear response theory e transformatio eaves invariant the space of functions

of the form

1

¢(q,w)=m¢ext(q,w), 2

where ¢ and ¢, are the total and the externally applied
scalar potentials of the electric field, respectively, is validThen, if

$(q.0)= 2 Bndg-ndp)d(w—nwg). (5
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» by use of Eqs(9) and(10) we can write in the case of two
bed d0)= D, AS(g—ngg)d(w—nw),  (6)  total waves
n=—w

we have from Eq(4) Ime(l)
) L(q’“’)‘e(l)_ 2B P10, 2,02
A=e()Bi+ X el,N)BB ., ) €(2)
n=-—ow
2
where we have introduced the notation +4|A]? 62(2’1)| Imze(2) 7.
€(2) | 1)— 2|By|%€x(1,2)€,(2,1)
e(1) = e(1do, wo), e(1) «2)
62(' ,n): 62(|q0,|(1)0,nq0,n(1)0). (8) (13)
The infinite system of equatiortg), the unknowns being, , Equation(13) together with Eq(10) solves the problem

is the one to be solved to find the total potential, when thgp the approximation of two total waves. They evidently gen-
external one is known through, . To ensure the potentials eralize the linear theory equatidt), the latter being repro-
to be real in real space, the coefficients in E@8.and(6)  duced by omitting the second term in E4.3) and keeping
obey the relations only |€(1)|? in the denominator of the first one.
Let us now show what a difference E@.3) makes with
regard to the plasmon damping as compared with (&g.
. Let us suppose that there is no damping of plasmons in linear
B_n=Bj. theory—i.e., that Ing(1)=0 when Res(1)=0. The major
. . consequence of Eq13) for plasmon damping is that(2)
We will assume the single-wave external potentig = ¢(2q0,2w,) can have the nonzero imaginary part when
=0, n¥*=1. To make the systeni7) solvable, we must €(1) has not.
retain only a finite numbgr aB,,. If only Bﬂ. are kept, We  n Fig. 1 we plot the energy-loss function of the 2D elec-
are taken back to the linear case. The simplest nontrivia) gas in thes, surface band of Si(111)3x \/3-Ag using
solution comes from retaining., and B., only. In this RPA lineaf and quadratft dielectric functions of 2D elec-

A_,=Ak,

10
case we have, from Eq7), tron gas. The parameters of the system’args=0.3, n
A =1.9x 10" cm 2, and the background dielectric function is
B,=B*,= . 1 , (9) taken to be ési+1)/2=6.25.
2|B1|%€2(1,2)€5(2,1) The two-total-wave approximation is valid as long as
«(1)- €(2) Im e(2)+# 0 at the plasmon frequency. For parameters of our
example this holds for the wave vector larger tha@.55%; .
5562(2,1) For smallerg’s a larger number of waves must be included.
B,=B*,=— W We could obtain the solution of Eqé&7), analogs to Eq99)
and(10) in the case of three waves. Then we have the alge-
From Eq.(9) we also have the cubic equation f@;|?: braic equation of the seventh order to fif@h|?, andB..,,

B.,, andB. 5 are expressed by it. The formulas are, how-
2|By|%ea(1,2)€5(2,)| ever, lengthy and we do not write them here. The general
€(2) \ rule is obvious: the approximation aoftotal waves gives the
finite damping of plasmon as long as &fn) #0 at the plas-
The above formulas are quite general; however, in view oinon frequency determined by REL)=0. In Fig. 2 we plot
the application we make, we will refer below to the 2D case Ree(1) together with three first Ina(n) to illustrate the way
To second order in the total field we can write for the energythe plasmon frequency falls into the interval of damping of

B4|?|e(1)— —|A,%. (10

absorbed in the sheet per unit area per unit fme one of the consecutive(n). For q=0.5; the first nonzero
) Im e(n) at plasmon frequency is l&(3) [Fig. 2(@)] and,
Q=(i(r.HE(r,1) correspondingly, the two- and three-wave approximations
lwollao]. & differ drastically[Fig. 2(b)]. In contrast, forq=0.6%; the
= °_q°|mz n2|B,|2e(n), (1)  Pplasmon falls into the interval of nonzero k(2) [Fig. 2c)]
™ n=1 and, the two- and three-wave approximations differ insignifi-

cantly [Fig. 2(d)]. Whengq grows, e(n) with smallern’s ac-
quire a nonzero imaginary part at plasmon frequency, so the
Ei:)lasmon linewidth grows, which is in the qualitative agree-
ment with experiment in Ref. 7.
The important feature of Eq&l3) and(10) is that the loss
(q,0)= L (12) function depends on the amplitude of the external perturba-
|wol|dol | A1]? tion A, which evidently is not the case in the linear theory.

wherej is the current densityk is the electric field, and
(- --) stands for an average over the time period. Introducin
the energy-loss function
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FIG. 1. Energy-loss function of 2D electron gas with parameters  F|G. 2. The damping of plasmon at a givgris determined by
indicated in the text. The solid lines are the plots of ExB). The  the first ofe(n)’s which have a nonzero imaginary part at plasmon
vertical dashed line stands for tliepeak at a plasmon frequency frequency(see text In (a) and (c) the solid lines are Ina(n) for
for the loss function as predicted by linear theory. n=1,2, and 3. The dashed line is BE). In (b) and(d) the solid
tﬁjasheci lines are loss functions in the approximation of th(&eo)

As can be expected, the linewidth of plasmon decreases wi .
waves, respectively.

decreasingA;; however, in contrast with linear theory, the
former never becomes zero at the finite latter. Let us add that

if we plotted the absorbed ener@y (which is the physical the external field, which has not a direct interpretation in the
quantity) instead of the loss function, the height of the plas-EELS setup. For all these difficulties, however, it is intu-
mon peak would also decrease with decreasing wave vectdtjvely clear that the damping we have obtained in the re-

and no divergency occurs in thg—0 limit. sponse theory should manifest itself in the scattering event
Let us make a remark on the comparison of the aboveoo.
theory with electron-energy-loss spectroscqBELS) ex- In conclusion, we have constructed the response theory

periment. We treat here the problem of the response of elegased on the relation between the external and the total field
tron gas to the perturbation by an external field. The interreto second order in the latter. We have used this theory to
lation of this problem with the problem of charged particlesstudy the response near and at the plasma resonance, and
inelastic scattering has been studied in detail in Ref. 8, whergave demonstrated the existence of the plasmon damping
the formulas relating these two tasks have been derivedompletely due to the nonlinearity of the response. We have
within the theory quadratic in the incident charge-target in-jjjystrated the theory by an explicit calculation in the case of
teraction. At present there exists no theory to relate these twpp electron gas with the parameters corresponding to those
tasks in the third and higher orders of the perturbation seriegf the S, surface band of Si(111)3x \3-Ag, for which
However, the theory based on E@) [in contrast with Eq.  system the experiment shows the plasmon damping at wave
(3)] contains all orders of the external bare perturbatan  yectors below the threshold value.

Thus we find ourselves in the position when, having solved

the problem of the response to the external field, we cannot The authors are grateful to E. V. Chulkov and V. M. Silkin
take advantage of this solution to describe quantitatively théor discussions. This work was supported in part by a Grant-
inelastic scattering of charges by the same target. The closeig-Aid for Scientific Research from the Ministry of Educa-
related problem is that Eq13) depends on the amplitude of tion, Science and Culture of Japan.
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