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Nonlinear mechanism of plasmon damping in electron gas
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At plasmon resonance, the condition of applicability of the linear response theory, which is the smallness of
the oscillating field, evidently breaks down. We suggest a variant of the quadratic response theory which
remains valid near and at plasma frequency and demonstrate that, as could be anticipated, the nonlinearity
serves itself to restrict the amplitude of plasma oscillations, thus providing a mechanism of ‘‘nonlinear damp-
ing.’’ We apply this approach to calculate the damping of plasmon in two-dimensional electron gas below the
threshold wave vector, which damping has recently been observed experimentally in theS1 surface band of
Si(111)2A33A3-Ag.
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The linear random phase approximation~RPA! picture of
dynamic screening in electron gas, worked out by Lindha1

in three dimensions~3D! and by Stern2 in 2D, respectively,
predicts the undamped plasmon up to a critical wave vec
determined by the condition of plasmon coupling w
particle-hole excitations. For inelastic electron scatteri
this means that in the vicinity of the plasmon resonance
energy-loss function

L~q,v!52Im
1

e~q,v!
, ~1!

wheree is the wave vector (q) and frequency (v) dependent
dielectric function, is Dirac’sd function, with zero width and
infinite height. One mechanism which restricts the plas
resonance is exchange and correlation, the account of w
leads to finite damping at all wave vectors in the linear
sponse theory.3 However, when applied to the case of tw
dimensional electron gas, exchange-correlation broade
accounts to less than 1% of the relative width of the plasm
peakDvp(q)/vp(q).4,5

The purpose of this work is to demonstrate that alterna
mechanism of stronger damping of plasmon peak is du
the nonlinearity of the dynamic response, even if conside
within the RPA. This mechanism puts a limit on the intens
of the plasmon amplitude and, consequently, introduces
finite damping of plasmon even for the wave vectorsbelow
the single-particle excitation threshold.

The philosophy of our approach is that the relation of
linear response theory

f~q,v!5
1

e~q,v!
fext~q,v!, ~2!

where f and fext are the total and the externally applie
scalar potentials of the electric field, respectively, is va
0163-1829/2002/66~9!/092301~4!/$20.00 66 0923
r,

,
e

a
ch
-

ng
n

e
to
d

e

e

under the assumption thatf andfext are small. This assump
tion evidently breaks down forf at the resonance frequenc
vp(q), particularly so ife is real and passes through zero
this frequency; then,f becomes infinite.

Within the quadratic response theory one can write eit

f~q,v!5
1

e~q,v!
fext~q,v!1E e2

21~q,v,k,v1!

3fext~q2k,v2v1!fext~k,v1!dkdv1 ~3!

or

fext~q,v!5e~q,v!f~q,v!1E e2~q,v,k,v1!

3f~q2k,v2v1!f~k,v1!dkdv1, ~4!

wheree2 ande2
21 are the quadratic and the inverse quadra

dielectric functions, respectively. Equations~3! and ~4! are
equivalent far from plasma resonance.9 However, at the reso-
nance they are not. Indeed, similar to the linear theory,
~3! fails at the resonance, sincef grows infinite. However,
nothing catastrophic happens with Eq.~4! near or at the reso
nance, and we can hope that the solutionf of this equation
remains small as long asfext is small, which is the condition
of the applicability of the perturbative approach. We will s
below that this supposition proves to be true.

Let us solve Eq.~4!. First, it is straightforward to see tha
the transformation~4! leaves invariant the space of function
of the form

f~q,v!5 (
n52`

`

Bnd~q2nq0!d~v2nv0!. ~5!

Then, if
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fext~q,v!5 (
n52`

`

And~q2nq0!d~v2nv0!, ~6!

we have from Eq.~4!

Al5e~ l !Bl1 (
n52`

`

e2~ l ,n!BnBl 2n , ~7!

where we have introduced the notation

e~ l !5e~ lq0 ,lv0!,

e2~ l ,n!5e2~ lq0 ,lv0 ,nq0 ,nv0!. ~8!

The infinite system of equations~7!, the unknowns beingBl ,
is the one to be solved to find the total potential, when
external one is known throughAl . To ensure the potential
to be real in real space, the coefficients in Eqs.~5! and ~6!
obey the relations

A2n5An* ,

B2n5Bn* .

We will assume the single-wave external potentialAn
50, nÞ61. To make the system~7! solvable, we must
retain only a finite number ofBn . If only B61 are kept, we
are taken back to the linear case. The simplest nontri
solution comes from retainingB61 and B62 only. In this
case we have, from Eq.~7!,10

B15B21* 5
A1

e~1!2
2uB1u2e2~1,2!e2~2,1!

e~2!

, ~9!

B25B22* 52
B1

2e2~2,1!

e~2!
.

From Eq.~9! we also have the cubic equation foruB1u2:

uB1u2Ue~1!2
2uB1u2e2~1,2!e2~2,1!

e~2!
U2

5uA1u2. ~10!

The above formulas are quite general; however, in view
the application we make, we will refer below to the 2D ca
To second order in the total field we can write for the ene
absorbed in the sheet per unit area per unit time11

Q5^ j ~r ,t !E~r ,t !&

5
uv0uuq0u

p
Im(

n51

`

n2uBnu2e~n!, ~11!

where j is the current density,E is the electric field, and
^•••& stands for an average over the time period. Introduc
the energy-loss function

L~q,v!5
pQ

uv0uuq0uuA1u2
, ~12!
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by use of Eqs.~9! and ~10! we can write in the case of two
total waves

L~q,v!5
Im e~1!

Ue~1!2
2uB1u2e2~1,2!e2~2,1!

e~2!
U2

14uA1u2Ue2~2,1!

e~2!
U2 Im e~2!

Ue~1!2
2uB1u2e2~1,2!e2~2,1!

e~2!
U4 .

~13!

Equation~13! together with Eq.~10! solves the problem
in the approximation of two total waves. They evidently ge
eralize the linear theory equation~1!, the latter being repro-
duced by omitting the second term in Eq.~13! and keeping
only ue(1)u2 in the denominator of the first one.

Let us now show what a difference Eq.~13! makes with
regard to the plasmon damping as compared with Eq.~1!.
Let us suppose that there is no damping of plasmons in lin
theory—i.e., that Ime(1)50 when Ree(1)50. The major
consequence of Eq.~13! for plasmon damping is thate(2)
[e(2q0 ,2v0) can have the nonzero imaginary part wh
e(1) has not.

In Fig. 1 we plot the energy-loss function of the 2D ele
tron gas in theS1 surface band of Si(111)-A33A3-Ag using
RPA linear2 and quadratic6 dielectric functions of 2D elec-
tron gas. The parameters of the system are7 meff50.3, n
51.931013 cm22, and the background dielectric function
taken to be (eSi11)/256.25.

The two-total-wave approximation is valid as long
Im e(2)Þ0 at the plasmon frequency. For parameters of
example this holds for the wave vector larger than;0.55kf .
For smallerq’s a larger number of waves must be include
We could obtain the solution of Eqs.~7!, analogs to Eqs.~9!
and~10! in the case of three waves. Then we have the al
braic equation of the seventh order to finduB1u2, andB61 ,
B62, andB63 are expressed by it. The formulas are, ho
ever, lengthy and we do not write them here. The gene
rule is obvious: the approximation ofn total waves gives the
finite damping of plasmon as long as Ime(n)Þ0 at the plas-
mon frequency determined by Ree(1)50. In Fig. 2 we plot
Ree(1) together with three first Ime(n) to illustrate the way
the plasmon frequency falls into the interval of damping
one of the consecutivee(n). For q50.5kf the first nonzero
Im e(n) at plasmon frequency is Ime(3) @Fig. 2~a!# and,
correspondingly, the two- and three-wave approximatio
differ drastically @Fig. 2~b!#. In contrast, forq50.63kf the
plasmon falls into the interval of nonzero Ime(2) @Fig. 2~c!#
and, the two- and three-wave approximations differ insign
cantly @Fig. 2~d!#. Whenq grows,e(n) with smallern’s ac-
quire a nonzero imaginary part at plasmon frequency, so
plasmon linewidth grows, which is in the qualitative agre
ment with experiment in Ref. 7.

The important feature of Eqs.~13! and~10! is that the loss
function depends on the amplitude of the external pertur
tion A1, which evidently is not the case in the linear theo
1-2
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As can be expected, the linewidth of plasmon decreases
decreasingA1; however, in contrast with linear theory, th
former never becomes zero at the finite latter. Let us add
if we plotted the absorbed energyQ ~which is the physical
quantity! instead of the loss function, the height of the pla
mon peak would also decrease with decreasing wave ve
and no divergency occurs in theA1→0 limit.

Let us make a remark on the comparison of the ab
theory with electron-energy-loss spectroscopy~EELS! ex-
periment. We treat here the problem of the response of e
tron gas to the perturbation by an external field. The inte
lation of this problem with the problem of charged particl
inelastic scattering has been studied in detail in Ref. 8, wh
the formulas relating these two tasks have been der
within the theory quadratic in the incident charge-target
teraction. At present there exists no theory to relate these
tasks in the third and higher orders of the perturbation ser
However, the theory based on Eq.~4! @in contrast with Eq.
~3!# contains all orders of the external bare perturbationA1.
Thus we find ourselves in the position when, having solv
the problem of the response to the external field, we can
take advantage of this solution to describe quantitatively
inelastic scattering of charges by the same target. The clo
related problem is that Eq.~13! depends on the amplitude o

FIG. 1. Energy-loss function of 2D electron gas with paramet
indicated in the text. The solid lines are the plots of Eq.~13!. The
vertical dashed line stands for thed peak at a plasmon frequenc
for the loss function as predicted by linear theory.
09230
ith

at

-
or,

e

c-
-

re
d

-
o
s.

d
ot
e
ly

the external field, which has not a direct interpretation in
EELS setup. For all these difficulties, however, it is int
itively clear that the damping we have obtained in the
sponse theory should manifest itself in the scattering ev
too.

In conclusion, we have constructed the response the
based on the relation between the external and the total
to second order in the latter. We have used this theory
study the response near and at the plasma resonance
have demonstrated the existence of the plasmon dam
completely due to the nonlinearity of the response. We h
illustrated the theory by an explicit calculation in the case
2D electron gas with the parameters corresponding to th
of the S1 surface band of Si(111)-A33A3-Ag, for which
system the experiment shows the plasmon damping at w
vectors below the threshold value.

The authors are grateful to E. V. Chulkov and V. M. Silk
for discussions. This work was supported in part by a Gra
in-Aid for Scientific Research from the Ministry of Educa
tion, Science and Culture of Japan.

s FIG. 2. The damping of plasmon at a givenq is determined by
the first ofe(n)’s which have a nonzero imaginary part at plasm
frequency~see text!. In ~a! and ~c! the solid lines are Ime(n) for
n51,2, and 3. The dashed line is Ree(1). In ~b! and ~d! the solid
~dashed! lines are loss functions in the approximation of three~two!
waves, respectively.
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21~q,k,v,v1!
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