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. INTRODUCTION 1

Chapter 1

Introduction

  In the past, dc machines have been used to stand for the high performance of variable 

speed drives and is still used for the same purpose, since their flux and torque could be 

controlled easily by the field and armature currents. In recent years ac machines, however, 

got to be popular on the variable speed drives by the development of power electronics, 

frequency transformation technology in virtue of semiconductor technology emerged. The 

advantages of ac machines against dc ones are as follows: 

     -- no brush and commutator , and then maintenance free, 

   and especially squirrel-cage induction motor is well-known as 

    -- small size , solidity, comparatively cheap, reliability 

   and these feature causes good circumstances for the motor installation. 

  Furthermore VVVF control (variable—voltage variable—frequency control) made it pos-

sible to control speed for the wide range of the induction motor with the good performances 

of response and also realized four-quadrant operation as well as dc motor drive systems. 

  The ac motor drives with VVVF control showed good features; however, the torque 

response at the transient has been inferior to that of dc motor drives because it could not 

control the instantaneous torque. This obstacle came into next focus. 

  The separately excited dc machine has a very simple control structure based on orthogonal 

axes, where the magnetic flux and torque are decoupled so that it is easy to design controlled
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drives with high dynamic performance, field weakening, torque limit and so on. When many 

researchers attempted to transplant this simple control feature to ac machines, they met 

unexpected difficulties because their dynamic interactions are far more complex than those 

of  dc motors. 

  Many control schemes have been proposed based on steady state models of the ac ma-

chines but it has taken a lot of time to realize the dynamic performance of the ac machines 

as well as the dc machines. About 25 years ago, Hasse and Blaschke showed how to decouple 

the current vector of the ac machines by vectorial control, that is, the new control methods 

based on the moving frames of reference determined by angular position of flux waves, hence 

this vectorial control is called "the field oriented control". Field oriented control techniques 

incorporating fast microprocessors have made possible the application of induction motor 

and synchronous motor drives to high performance drives instead of the dc drives. In the 

past, such control techniques would have not been possible because of the complexity of 

hardware and software required to solve the complexity control problem. The torque control 

in ac machines as well as dc ones is achieved by controlling the motor currents. In contrast 

to the dc machines, however, in the ac machines not only the phase angle but also the mag-

nitude of the current has to be controlled, hence the field oriented control is also called "the 

vector control". With the field oriented control of the ac machines the torque— and flux— 

producing current components are decoupled, and the transient response characteristics are 

similar to those of the separately excited dc machines. The system would adapt to any load 

disturbances and reference value variations as fast as the dc machines. As next development, 

the field oriented control of various types of ac machines with rapid developments in the field 

of microelectronics can be applied to servo-drives. 

  For the ac drives there are much greater varieties than for dc ones, according to the 

different types of inverters (voltage source, current source, cycloconverter, and so on) which 

can be combined with various types of the ac machines. 

  In recent years, voltage source inverters (VSI) are more popular than current source in-

verters (CSI) for ac drives, perhaps because the VSI has faster current response to supply 

and can be applied to a PWM system in the high frequency region more easily. This is why 

the field oriented control (vector control) is often applied to control VSI-fed ac motor drive
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systems [1]. The CSI, however, still has better features, such as capability of four-quadrant 

operation without any extra power circuit for regeneration, ruggedness and reliability, no 

shoot-through fault, and high precision of current control with the CSI is possible. Thus, 

the CSI seem to be appropriate for large capacity drive systems such as steel mills, elevator 

motors, and so on. However, the CSI-fed ac motor has problems in the low frequency region, 

where torque pulsation and harmonic heating occur because of a rectangular current wave 

with  120° conduction. In order to cope with these problems, a vector approximation method 

was proposed [2], which would not only decrease torque ripple but also control the instanta-

neous torque of an induction motor driven by the CSI even in transient state. Although the 

PWM—type CSI drive induction motor system has been proposed in [3][4] and the design 

of the PWM signal was considered to decrease the higher harmonic components of current 

waveforms, our method is different from the PWM methods. In this dissertation, a modified 

vector approximation method with dc link current control is shown. The vector approxima-

tion method approximates the desirable stator current vector by two of six realizable current 

vectors which are adjacent to the desirable one. The magnitude of the desirable current is 

adjusted by the control of the dc link current for each instant. Thus, the modified vector 

approximation method can produce any current vector so that a sinusoidal phase current is 

realizable, if necessary. On the other hand, the phase angle of the desirable stator current 

is determined by utilizing the rotor flux angle, which is computed by the on-line simulation. 

If the rotor flux angle is estimated correctly, the so-called magnetizing current and torque 

producing current can be decoupled precisely and so controlled independently by the field 

oriented control [5]. However, the field oriented control is influenced by the rotor parame-

ter variation, that is, the rotor resistance varies with temperature and the inductance is a 

function of main flux saturation. To solve this problem, many identification or adaptation 

schemes have already been proposed [6]—[13]. An off-line automated identification scheme 

[6] and an adaptation scheme with using the reactive power transferred to the rotor [7] have 
been evaluated as effective methods. With different approaches, model reference adaptive 

systems (MRAS) [8], [9] have been presented. The adaptive system estimates the error 

between the motor outputs and that of reference model, and tunes the adaptive gains or pa-

rameters to decrease the error to zero. As a result, the degradation of torque control by the 

rotor resistance variation is observed in [8] and [9]. On the other hand, the selection of flux 

level with regard to magnetic saturation effects was discussed in [10]. Saturated dynamic
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models of the induction motor with the vector control have been proposed in  [11]—[13]. 

  The purpose of this dissertation is to realize the ideal vector approximation system for 

the CSI drive induction motor; therefore, both resistance and inductance variation problems 

also have to be solved. 

  The remainder of this dissertation is organized as follows:

• In Chapter 2, the dynamic model of the induction machine using space vectors are 

 reviewed and the mathematical model of the induction machine is shown. The foun-

 dation of every control design is explained by the mathematical model of the plant. 

• Chapter 3 shows the principle of the field oriented control. The field oriented control 

 requires the information of the magnitude values and the phase angle of the rotor 

 flux space vector, and then the rotor flux estimation is needed because the direct 

 measurement of the rotor flux is undesirable due to the high cost and the complex 

 hardware setting. Four kinds of the flux estimation models are shown in this chapter, 

  and the comparison of these models are discussed in the last section. 

• Chapter 4 shows the vector approximation method. The principle and the algorithm of 

  the vector approximation are described. The system configuration for the implement 

 is shown. The performance of the vector approximation is verified by the simulation 

  and the experiments. 

• Chapter 5 shows the parameter adaptation and the torque control technique. In order 

 to adapt both resistance and inductance variation, the vector approximation system 

 newly includes a magnetic saturation model which is obtained by a novel off-line iden-

 tification method. Thus, on-line compensation of magnetizing inductance variation 

 becomes possible. This system also includes MRAS using the model reference error 

 of torque to compensate rotor resistance variation. Consequently, this method makes 

 it possible to asymptotically track the actual torque and estimate the accurate rotor 

 resistance without the influence of inductance variation, which occurs at the field weak-

 ening or the optimal efficiency control. The effectiveness of the parameter adaptation 

 system is verified by the simulation and the experiments.
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• Chapter 6 shows the applications of robust control. Conventional linear control meth-

 ods such as  PI control have been widely used in industry electrical drives; however, 

 dynamic performance of the control system is often limited due to the conflict between 

 overshoot and long setting time of the system response. The conventional linear control 

 methods have inadequate rejections against external disturbance as well as the sensi-

  tivity in performance to the system parameter variation and nonlinearity. Thus, robust 

 stable drive systems are required for any applications. This chapter concerns with the 

  applications of robust control, an Hoo control and a simplified adaptive control. In 

 order to design the robust speed control system, first, the nonlinear dynamical model 

  of the rotor angular velocity and the dc link current is linearized by exact linearization. 

 Then the linearized system is applied to design the H03 controller and the simplified 

  adaptive controller, respectively. The robustness of these systems compared with PI 

  control system based on the conventional control theory are verified by the simulation 

  and the experiments.

e Finally, Chapter 7 provides conclusions.



CHAPTER 2. DYNAMIC MACHINE MODEL USING SPACE VECTORS 6

Chapter

Dynamic

2

machine  model using space

vectors

2.1 Introduction 

  The foundation of every control design is explained by the mathematical model of the 

plant. In order to understand and design field oriented controlled drives, it is necessary to 

know the dynamic machine model to be controlled. The control designs are approximated 

roughly, since every schemes cannot help containing the machine parameters which change 

due to the changes in the temperature, supply, non-linearity and so on. The error may be 

considered as acceptable within even a ten percent. In order to design the control system, 

however, an adequate model of the electrical machine must preferably incorporate all the 

important dynamic effects during steady state and transient operation, and also should be 

useful for any instantaneous variation of voltage and current generated by converter which 

supplies the machine. 

  Space vector theory can realize such a model and it is related to the two-axis theory of 

electrical machines. 

  This chapter, introduces the dynamic model of smooth air gap induction machines which 

are delivered at several references described in the references section of this dissertation. 

Here space vector quantities (voltages, currents, MMFs, flux densities, flux linkages, etc.) 

will be introduced on the mathematical and physical considerations.
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2.2 Space vector of the 

currents

stator MMFs and

7

stator

  Assume a smooth air gap symmetrical ac machine with two-pole, three phase windings. 

Fig. 2.1 shows the cross section of a symmetrical three phase ac machine. Here it is assumed 

that the effects of slotting have been neglected, the permeability of the iron parts is infinite 

and the flux density is radial in the air-gap, and the effects of iron losses and end- effects are 

also neglected. In Fig. 2.1 the stator and rotor windings are shown as single, multiple-turn 

full pitch coils situated on the two sides of the air-gap; these, however, represent distributed 

windings, which at every instant produce sinusoidal MMF waves centered on the magnetic 

axes of the respective phases. The phase windings are displaced by 120 electrical degrees 

from each other. In Fig. 2.1 Or is the rotor angle, the angle between the magnetic axes of 

stator winding sU and rotor winding ru. In general, the electrical instantaneous angular 

velocity of the rotor is CO, = dO /dt, and its positive direction is also shown in Fig. 2.1. 

  Assume that the stator windings have an equal number of effective turns N,C(= N,kw,), 

where N, and kw, are the number of turns and the winding factor respectively of a stator 

winding. 

                            Im

stiv

Fig. 2.1. Cross section

 v  u. 

rw

sU'

ry

 rw 

 ru

tiI ('..

Re
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The resultant MMF distribution produced by stator is described as follows: 

       s,(0, t)  = N„ [i,u(t) cos B + i,v(t) cosy) — 27r/3) + i,w(t) cos(8 — 4ir/3)] (2.1) 

where 0 is the angle around the periphery with reference to the axis of stator windings sU, 

which coincides with real axis of the stator denoted as Re, and i,u, i,v, and i,w are three 

phase currents. The complex notation of (2.1) shows as follows: 

           s~(B~ t) = 2N,eRe {--3[2,u(t)+ai5v(t)+a2i.,w(t),Cie}(2.2) 
By using complex expressions, a time dependent complex current vector in the stationary 

reference frame fixed to the stator is defined as 

i,(t) = 3[i,u(t)+ai,v(t) + a2i,w(t)I =li,le'a'(2.3) 
where a = e'27i3, ii,l is the magnitude of the stator current space vector and a, is the phase 

angle with respect to the real axis of the stationary reference frame fixed to the stator. Thus 

the space vector of the stator MMFs is defined as follows: 

s,(t) = N„i,(t) = £ 3u(t) + s,v(t) + s,w(t)(2.4) 

where s5u(t), s,v(t), and s,vv(t) are the space vectors of the individual phase MMFs. 

  Next the space vectors by utilizing two-axis theory is introduced here and this method 

was followed by Park. The space vector of the stator currents can be defined that it has 

two vector components of which are the instantaneous value of the direct-axis stator current 

(i,a) and the quadrature- axis stator current (i,p). Thus, the stator current space vector in 
the stationary reference frame fixed to the stator can be expressed as 

is(t) = isa(t) + jisp(t).(2.5) 

In symmetrical three phase machines, the direct- and quadrature- axis stator currents (i,a, 

i,p) are fictitious and quadrature-two-phase current components. The relationships between 

these components and actual three-phase stator currents are shown as follows:

i,a _1 —1/2 —1/2 
i,p=c 0 //2 —//2

 ZsU 

isV 

isW

(2.6)
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where c is a constant, 2/3 or  /2/3. The non-power invariant form of the phase transfor-
mation from three- to two- (quadrature) phase components utilizes c = 2/3 while the power 

invariant form utilizes c = /2/3. It depends on the definition of the space vector of the 
stator current. 

   If the non-power invariant form is utilized, the real- and imaginary- component yields as 

follows:

r Re(i,) = Re130.,v+ai3v+a2i.,w)]3 (iu —2z,v——223W) = isa (2.7) 
Im(i,) = Im [3(i,u+ai3v+a2i,w)] = (i,v —1.3w) /id = i,p(2.8) 

If the non-power-invariant form of the transformations is used, it may be a useful consequence 

that if there are no zero-sequence components, the projections of a space vector quantity 

on the corresponding phase axes directly yield the instantaneous values phase variables of 

the same quantity. This is shown in Fig. 2.2 for the case of the space vector of the stator 

currents. 

  From the mathematical point of view, this means that, by utilizing 

i~u + i3v + i, v = 0 ,(2.9) 

Im,~

sV

Fig. 2.2.

 t,w

 -- - ->R e,a 
s U 

sW 

Projections of the stator current space vector.
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and by using the non-power invariant forms of the zero-sequence current component and the 

space vector of the stator currents, the following equations are obtained: 

 Re(i,)  = 3 (isu — 223v — 2isw) = i3u(2.10) 

Re(a2i,) = Re [-3(a2isu + i,v + aisw)] = i,v(2.11) 
Re(ai,) = Re [-23(aisu+a2isv + isw)] = i,w(2.12) 

2.3 Rotor flux-linkage space vector in the rotating 

     reference frame fixed to the rotor

  The space vector of the rotor flux linkages expressed in its own reference frame, that is, 

in the reference frame fixed to the rotor, and rotating at the angular velocity co,., is defined 

as follows: 

= 
3[(1),„(t)+~r„(t)+~rw(t)](2.13) 

where (I)ru(t), cic.r„(t), and 'rw(t) are instantaneous values of the rotor flux linkages in the 

rotor phases ru, rv, and rw respectively. In terms of the instantaneous values of the stator 

and rotor currents they can be expressed as follows: 

4)ru = LrZru + Mr2ry + MrZrw 

} M,r cos 6risu + M,r cos(Or -i-- 4ir/3)i,v + M,r cos(6r + 2ir/3)i,w (2.14) 

(1)ry = L r'ry + MrZru + MrZrw 

+ M,r cos(Br + 2ir/3)i,u + Msr cos eri,v + M,r cos(0, 4ir/3)i,w(2.15) 

(Drw = Lrirw + Mriru + Mriry 

+ M,r cos(BT + 47r/3)i,u + M,r cos(Or -y- 2ir/3)i,v + M,r cos 9ri,w (2.16) 

where Lr is the self-inductance of a rotor winding, Mr is the mutual inductance between two 

rotor phases. It can be seen that all three rotor flux-linkage components contain three flux-

linkage components produced by the rotor currents and three mutual flux-linkage components 

produced by the stator currents. For simplification, (2.14), (2.15), and (2.16) are substituted
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into (2.13) and thus the space vector of rotor flux linkages in the rotor reference frame is 

obtained as 

                =  Lrir + Lmi;(2.17) 

where LT(= LT. - Mr) is the total three-phase rotor inductance and i; is the space vector of 

the stator currents expressed in the reference frame fixed to the rotor. In (2.17), (Lrir) is 

the rotor self-flux linkage space vector expressed in the rotor reference frame and is occurred 

due to the rotor currents and (L„,i;) is a mutual flux- linkage space vector, produced by the 

stator currents and expressed in the same reference frame. 

   Here it is also possible to define the rotor flux-linkage space vector in terms of its two-axis 

components as follows: 

'Or = 4ra + jrp(2.18) 

From (2.17), the direct- and the quadrature-axis rotor flux- linkage components can be 

defined respectively as follows: 

4)ra = Lrira + LmZjd(2.19) 

rp = Lrirp + Lmisq(2.20) 

In (2.19) and (2.20), ira, irp, i,d and in are direct- and quadrature-axis rotor and stator cur-

rent components respectively, and all the current components are expressed in the reference 

frame fixed to the rotor. The relationship of the stator current components (i,d, i,q) and 

stator current components (i,a, i,p) will be shown in the next section.

2.4 Rotor flux-linkage space vector in the stationary 

reference frame

  The rotor flux-linkage components in the reference frame fixed to the rotor (4)ra, 4>rp) 

are related to the rotor flux-linkage components expressed in the stationary reference frame 

('rd) (Drq) by the transformation (e&er). Thus the following equation holds: 

°r = 4)rd + Arq = °rej9" = (4.ra + Arp) e2B'(2.21) 

and this can be reformed as follows: 

[43rd]  cos Br — sin Or (Dra(2.22) 4)rqsin Or cos Or (Drp



Dynamic machine model using space vectors12 

By the substitution of (2.17) into (2.21), the space vector of the rotor flux linkages in the 

stationary reference frame can be expressed as 

 5157.1 = (Lr + Lmi,eie') = Lri' + Lmi,.(2.23) 

This contains two flux-linkage components, a self flux linkage produced by the rotor currents 

but expressed in the stationary reference frame (Lrir') and a mutual flux-linkage component 

produced by the stator currents and also expressed in the stationary reference frame (Lmi, = 
Lmi;e'°'). Thus the stator currents in the stationary reference frame are related to the stator 

current components in the rotating reference frame fixed to the rotor by the following complex 

transformation 

               i, = i;eJe'(2.24) 

where i, and i; are expressed in terms of their two-axis components as follows: 

Z, = Z,a + 7 Z,p 

= i,d + jisq (2.25) 

It follows from (2.24) that the transformed stator current space vector in the rotating refer-

ence frame fixed to the rotor can be obtained from the space vector of the stator currents, 

expressed in the stationary reference frame, as 

=i,e'B'(2 .26) 

The corresponding two-axis form can be obtained by the substitution of (2.25) into (2.26), 

i,d I cos Or sin Or 1 i,a                                                      (2.27) i,9 — sin Or cos Or Liso 

and these are the stator currents used in (2.19) and (2.20). The transformation described 

by (2.26) can also be obtained by considering Fig. 2.3.
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S1

sq

rsac 

Fig. 2.3. Transformation of the stator current space vector. 

2.5 Space vectors of the stator and rotor voltages 

   The space vector of the stator voltage can be defined in the stationary reference frame 

as follows: 

u, = 3[u,u(t) -F au,v(t) + a2u,w(t)] = u,a-}-ju,p(2.28) 
and the space vector of the rotor voltage in the reference frame fixed to the moving rotor is 

                ur —2 [uru(t) + aur„(t) + a2urw(t)1 = ura + jurp.(2.29) 

3 In (2.28) and (2.29), u,U(t), u,v(t), u,w(t), ur„(t), ur„(t), and urw(t) are the instantaneous 

values of the stator and rotor phase voltages respectively and u,a, u,p, ura, urp are the 

corresponding direct- and quadrature-axis components. The relationship between the three-

phase and quadrature-phase voltages are 

              u,a = Re {3[u,u(t)+au,v(t)+a2u,w(t)] 
                       2(11,u-11,v1 1 

             3 -2~v -211,w(2.30)
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 u,p = Im {-2[usu(t)-}-au,v(t)-4-a2u,w(t)1} 
            = (u,v - usw)J 

Similarly, the rotor voltage components are 

                                - 

                    2~~1-1   u1                        ra=3ruZury2urw 

urp = (ury - urw) 

Eqs. (2.30) and (2.31) are expressed by a matrix form as follows:

          [u,p]3[0 //2 -\/2)[,; 
A similar transformation can apply for the rotor voltages. 

vector of voltages on the corresponding axes yield the phase • 

u,U = Re(us) 

u,v = Re(a2us) 

u,w = Re(au,). 

The stator voltage space vector expressed in the stationary 

transformed into the stator space vector expressed in the ref( 

(u',), 
                                                       -ier                                     =uee= u3d + 311.,q. 

If this is resolved into real- and imaginary-axis components, tl 

will appear as in (2.27). 

  The rotor voltage space vector expressed in the reference 

can be expressed in the reference frame fixed to the stator (v 

                                                         er U
r — Ur~= Urd +31irq 

and this is equivalent to the matrix: 

[Urd cos Or — sin 87.1 ura urqsin Or cos Or urp

 usu 

usv 

Usw

 ,or voltages. The pro 

ld the phase voltages,

.ctor expressed in the stationary reference 

space vector expressed in the reference frame 

    it's= u,e-39' = u3d + JUsq. 

nd imaginary-axis components, the same transformation 

vector expressed in the reference frame fixed 

7ence frame fixed to the stator (u),

1

           14 

         (2.31) 

         (2.32) 

         (2.33) 

         (2.34) 

jections of the space 

         (2.35) 

         (2.36) 

         (2.37) 

e frame (us) can be 

me fixed to the rotor 

ransformation matrix 

Ked to the rotor (ur) 

         (2.39) 

         (2.40)
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If the relationship between  u,U, u,v, u,w and u5d, Usq is required, it follows from (2.38) and 

(2.28) that 

u,d jusq = 3{u,u(t)-+au,v(t)a2u,w(t)] (cos Or — j sin Br).(2.41) 

This is equivalent to the matrix:

           u,d _2cos Or cos(Br.— 27r/3) cos(B,. — 47r/3)           u,q,3[— sin 8,. — sin(B,. — 27r/3) — sin(B — 47r/3) 
which define the so-called Park transformation.

 u5U 

usv 

1.,w

(2.42)

2.6 Space vector voltage equations in the stationary 

reference frame

   In the present section, the space vector forms of the voltage equations is presented. The 

equations is expressed in the stationary reference frames. The relationship between the space 

vector and matrix forms will be shown. The stator and rotor voltage equations of the space 

vector form are expressed as follows: 

 u, = R,i5 +(2.43) 
dt 

                         d

d-----r`              (2.44) 

where 4, is the space vector of the stator flux linkages in the stationary reference frame fixed 

to the stator. In (2.43) and (2.44), the first term on the right-hand side of these equations is 

the space vector form of the ohmic losses, the second term is a transformer EMF, which is 

the first derivative of the flux-linkage space vector of the stator and rotor respectively. The 

term (—jw,4;.) represents a rotational EMF, which is due to the rotation of the rotor and 

contributes to electromechanical energy conversion. 

  Now the definition of all the space vector quantities are repeated below using the defi-

nitions of the space vectors of the three-phase quantities. The space vectors of the stator 

voltages, currents and flux linkages in the stationary reference frame fixed to the stator are
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expressed as follows: 

 u, = 3[u5u(t)+au,v(t)+a2u,w(t)]=u,,,+juso(2.45) 
i, =3 [isu(t) + ai5v(t) + a2isw(t)] = isa + ji,p(2.46) 

           =3 [4'su(t) + a 5v(t) + a2(1)sw(t)I = 4)ea + = L,a, + Lmzr (2.47) 
and similarly the space vectors of the rotor voltages, current, and flux linkages in the reference 

frame fixed to the rotor are expressed as follows:

ur = 3urut + au„(t)+ + ¢urw(t=/4. + 3urA 

it = —3 + airy a2irw(t)1 = ira + jir1 

               =3[Dru(t) + d4)rv(t) + a2.rw(t)] = Lrir + Lmi; 
                      = Lrir + Lmise'B' = (Dra + j4)r1 

The rotor quantities defined above are, in the reference frame fixed to the stator, 

Ur = Ure;e= urd+Firq                                                     Or 

          1er Zr = ire = ird + jirq 

                         = ~re'6' = Lri;. + Lmis 

= Lrirejer + Lmi, = (1)rd + rq , 

and also the space vectors of the stator voltages, currents 

rotating reference frame fixed to the rotor as 

                           uJ= use-"'= u,d + 

                                                           -7er 
i,=i,e= i,d +iisq 

                                  = 5e— = (1),d - 

Eqs. (2.43) and (2.44) with the flux linkage equations, 

under saturated conditions. 

  If the flux-linkage space vectors defined by (2.47) and (2.53) are substituted 

and (2.44), then the space vector voltage equations become 

dL,i, dL„~i;. 
u, = R,i, +------dt + dt 

                         dLri.dLmi, 
ur = Rrzr+d

t+dt

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53)



Dynamic machine model using space vectors17 

  These equations can also be rewritten by the matrix form: 

   lud  u'1.0 ~J[id               zr+dt [Lin Lr~zr]—3 r [Lm LT] [id                                      zT](2.59) 
If these space vectors are resolve into their real- and imaginary- axis component in accordance 

with (2.45), (2.46), (2.51) and (2.52), then (2.59) becomes as follows:

 U3c 

u$e 

urd 

'rq

 R,  pL, 0 pLr„ 0 

  0 R, + pL, 0 pLm 

pLm WrLm Rr + pLr WrLT 

. —Li-1r Lm pLm —wr L,. Rr + pLr . 

quadrature-phase commutator model. The al 

various reference frames, without using mat] 

[ication of space vectors over the applicatic 

 of electrical machines. 

.51) and (2.52), u,. = urie-'8 and it = 

ed in the reference frame fixed to rotor and 

R, 0 1 i,[ [ L, Lmej8- 0Rr[ it J+dt L Lme-'BT Lr J 
quantities are expressed in terms of their rei 

(2.46), (2.48) and (2.49), (2.61) yields 

pL, 0 pLm cos Or pLm sin Or 

R, + pL, pLm sin Or pLm . cos 0, 

os Or pLm sin Br R, + pLr 0 

sin Or pLm cos Or 0 Rr + pLr 

quadrature-phase slip-ring model. For slip-ri: 

windings, or induction machines with squir. 

Lgnetic torque in the ref 

le rotor flux-linkage space 

the expression of electromagnetic torque i 

kage space vector, which is important if the

 Znn 

2,A 

Zrd 

Zr9

(2.60)

This form is so-called the quadrature-phase commutator model. The ability to obtain various 

models of a machine, in various reference frames, without using matrix transformations, is 

an advantage of the application of space vectors over the application of the conventional 

generalized matrix theory of electrical machines. 

   Furthermore, from (2.51) and (2.52), u,. =  uT  and i,. = e-'B'', and the rotor 

quantities can be expressed in the reference frame fixed to rotor and (2.59) becomes 

u, =[R, 0 a, d L,L„~eaei,()            u,0 Rr[iTJ+dt[L,,e -' B'L,.] [i,]•2.61 
  If all the space vector quantities are expressed in terms of their real- and imaginary-axis 

components, from (2.45), (2.46), (2.48) and (2.49), (2.61) yields

 u,a 

11,313 

ura 

Ur3

This form is  so-called  the  ,  __  _rature 

with short-circuited rotor windings, 

2.7 Electromagnetic 

    fixed to the rotc 

  This section discusses the expre 

fixed to the rotor flux-linkage space

R,+pL5 

   0 

pL„, cos ET 
— pL „. sin O 

 the  auad

25a 

 Z,p 

2ra 

2r'

(2.62)

-phase slip-ring model . For slip-ring induction machines 

or induction machines with squirrel cage rotor,  u,. = 0. 

torque in the reference frame 

r flux-linkage space vector 

sion of electromagnetic torque in the reference frame 

vector, which is important if the rotor flux estimation
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for the field oriented control is used. The expression of the electromagnetic torque is similar 

to the expression for the electromagnetic torque produced by a separately excited  dc machine. 

The analogy serves as a basis for various forms of the field oriented control, where the torque 

control of the ac machine is similar to the torque control of the separately excited dc machine. 

  If the rotating reference frame is used, where the quadrature-axis component of the 

rotor flux-linkage space vector is zero, the electromagnetic torque will be produced by the 

interaction of the rotor flux-linkage in the direct and the quadrature-axis component of the 

stator currents in the reference frame. 

  The rotor flux-linkage space vector in the stationary reference frame (a-,8) can be ex-

pressed as 

                  = Ce'B' = + Aro = ~~r ~ e"(2 .63) 

where IsPrj and aµ are the magnitude and phase angle of the rotor flux-linkage space vector 

in the stationary reference frame. Fig. 2.4 shows the relationship between the stator current 

components in the stationary reference frame and the reference frame fixed to C.

sQ

sq

 1st)

(Dr

Wmr 

sd

sa

1sa

Fig. 

in the

2.4. Stator current and rotor flux-linkage space vectors in the stationary reference frame and 

reference frame fixed to the rotor flux-linkage space vector.
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The d-q reference frame shown in Fig. 2.4 rotates at the angular velocity of the rotor 

flux-linkage space vector, 

                1a1,,,r
dtis(2.64) 

The stator current space vector in the reference frame fixed to  4ir is 

Zn$r = 2se—Jaµ = 2ed +iZeq(2.65) 

where i is the space vector of the stator currents in the stationary reference frame. 

   The rotor flux-linkage space vector in the reference frame fixed to 4r has only a direct-axis 

component, 

r$r = Ce-7(aP'—e') re3ere-7aµ 

_ = eiaµe-.7a" 

        = 4rd ,(2.66) 

and (Drq = 0 . 

   The electromagnetic torque is expressed as follows: 

3 L(2
.67)              Te =-P-71 

r~r~r x i~~r 

where x denotes an outer product. Thus, by substituting (2.65) and (2.66) into (2.67), 

                         Te=2PTm(4rdiq—(1)rgted) 
                                     Lr 

              = 2PL4)rdi,q(2.68) 
where P is the number of pole-pairs, 4°rd = ICI) and in is the quadrature-axis stator current 

in the reference frame. 

  The relationship between the stator current components (i,a, i,A) in the stationary ref-

erence frame and the stator current components (i,d, i,q) in the reference frame fixed to ~r 

can be obtained by considering (2.65) as 

,d =cos ap sin aµi,a i,q- sinaucos ap i,p] (2.69)
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The rotor  flux-linkage space vector is also expressed with the terms of the stator and rotor 

currents: 

C$r = 4)rd = = Lrir$r + Lmis(Dr (2.70) 

where the rotor current space vector in the reference frame fixed to is obtained, 

Zr$r = ird + .jirq 

                                             ire—.i(aP.-9r)=ie'Bre-3CZ 

                                                                                 r 

                       = 
                                                   •I

'a—jce4 

                                                           r (Zra iZr(p)e-,a' (2.71) 

where i; is the rotor current space vector in the stationary reference frame and it is the 

rotor current space vector in the rotating reference frame fixed to the rotor. 

  From (2.70), the so-called rotor magnetizing current in the reference frame is defined in 

terms of the stator and rotor current space vectors given by (2.65) and (2.71) as follows: 

                                            ~r ~r  i
n/7' = L

m 

                                   Lr                                 = LirFr+ie$r 

                               m 

                     = Zs r + (1 + Qr)Zr.tr (2.72) 

where ar = Lri/Lm is the rotor leakage factor (Lr1 and Lr are the rotor leakage inductance 

and self-inductance respectively). In Fig. 2.4 the rotor magnetizing current space vector 

is also indicated. The space vector imr has a component only along the real-axis of the 

reference frame as follows: 

Zmr = Zmrd + 3Zmrq 

imrd = I Zmr 

Lm 

                      = i,cPr + (1 + (7r)ir$r (2.73) 

Thus, if 4'rd = , and Qr = Lrt/Lm , substitution of (2.73) into (2.68) yields : 

                                  a 

                  Te=~1,"`Iimrl2~q=3pLm 2 1 +I imrlisq(2.74)  ~r
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This is a very important feature because the electromagnetic torque can be controlled by 

 Iimr1 and i,q independently. When the machine parameters are constant, the expression for 
the torque is similar to that of the separately excited dc machine. It will be shown that i,d is 

equal to lin„.1 under the steady state condition. Thus when i,d is kept constant, the torque 

is proportional to i,q. 

  Torque control schemes of induction machines based on (2.74) have found the most 

widespread applications so far. This type of control is often referred to as field oriented 

control.
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Chapter 3

Principle of field oriented control

3.1 Introduction

  In this chapter, the principle of the field oriented control are described for induction 

machines. The preceding section showed the electromagnetic torque in the reference frames 

fixed to the rotor flux-linkage space vector  (sk); the expression for the electromagnetic 

torque of the induction machine is similar to the expression for the torque of the separately 

excited dc machine. Thus the torque control of the induction machine can be performed by 

the decoupled control of (i,d) and (i,q) of the stator currents, which is similar to controlling 

the field and armature currents in the separately excited dc machine. However, it should 

be noted that in the squirrel-cage induction machine it is not possible to monitor the rotor 

currents directly. The field oriented control requires the information of the magnitude and 

phase angle of f,., and then i,d and i3q are obtained. 

  In the field oriented control there are two methods to obtain the magnitude and phase 

angle of s,., which are direct and indirect methods. In the direct method, these quantities 

are directly measured (by Hall-effect sensors, search coils, or tapped stator windings of the 

machine) or they are calculated from a so-called flux estimation model. In the indirect 

method, the magnitude and phase angle of 4 ,. are obtained by utilizing the measured stator 

currents and the rotor angular velocity. The phase angle of f is obtained as the sum of the 

measured rotor phase angle and the computed reference value of the slip angle which are 

calculated from the reference values of i,d and i,q.
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  Field oriented control can be applied to an induction machine supplied by a voltage source 

inverter, by a current source inverter, or by a cycloconverter, although this dissertation 

discusses a current source inverter. The field oriented controlled induction machine can 

achieve four-quadrant operation with high dynamic response. 

  In the following sections, the principle of the field oriented control of induction machines 

is discussed, where the flux estimation models are shown. 

3.2 Stator voltage equation in the field oriented ref-

     erence frame 

   In this section the stator voltage equations are derived in the reference frame fixed to  ~r 

based on Fig. 2.4, and the reference frame is called "the field oriented reference frame" in 

the following. 

   The stator voltage equation in the stator windings is 

~s = R,i, + d.(3.1) 
From Chapter 2, 

Z9$r = isd + jisq = se—~«~ 

                         us$r = usd + ju,y = ue -~«~ (3.2) 
                                                   -?« 

                       ~s$r=~se= Lsis$r + Lmir$r 

By substitution of (3.2) into (3.1), and considering that the differential equation of the stator 

flux linkage space vector is expressed as 

                    dC = e;«pd~s$r+e;«,~(•Wmr)C$r 
         dt dt 

we have 

dOs$r  
us$r = Rszs$r +

dt+3Wmr~s$r 

               =Rsis$r+L, d
dtr+ Lynr+JWmrLsis$r+,~WmrLm2r$r(3.3)
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where it is assumed that Lm is constant and the leakage inductances are also constant. 

  Since from (2.72), 
 limrI  —  Zs  r 

ZrcIr =1
+ 

                                                                             r substitution of (3.4) into (3.3) yields the following differential equation: 

aT,dzs~r+is<Dr=us$r—jWmro-Tsis~r—(T,—QT,)(3Wmr l imr l+dZmr) 
dt R,dt 

where aT, is the stator transient time constant of the machine, 

a is the total factoreactor(i.e.,a= 1—-----------1                  g((1+ a,)(1+v,) ), 

QL, is the stator transient inductance (i.e., aL, = L,— Lm/L7), 

  and T, is the stator time constant (i.e., T, = L,/ Rs). 

  By resolving (3.5) into its real(d) and imaginary(q) components, the following two-axis 

differential equations are obtained for stator currents: 

                 QT,                     disci                            =u'd+w0Ti-(1-Q)Tdl Zmr l  
         dtR,mr''q'dt 

di,u,q 
QT, d

t+i,q=R—WmraT,isd — (1 — u)T,Wmr IZmr l(3.6) 
                                                           s or 

             QLdi,d +R= uWaLi— (1 —Q)Ldlzmrl            sdtsisdsd+mrssqs dt 

            d 
              QL,-----i,q d

t+Rsisq= u„—WmraL,isd — (1 —Q)Lswmr limr l(3.7) 

  Eq. (3.6) is a first order lag system whose gain is equal to the inverse of the stator 

resistance. For the purpose of the field oriented control, the direct-axis stator current (i,d) 

and the quadrature-axis stator current (i,q) must be independently controlled. 

  However, since the voltage equations in (3.6) are coupled, by the terms (ewmrcrT,isq) and 

(comroTsisd). The stator currents (i,d, isq) can be independently controlled if the decoupled 
control is implemented. This decoupled control is only possible to implement in the voltage 

controlled type inverter drive system, but still has difficulty due to machine parameter (QL,) 

variations. 

  In the current controlled type inverter drive system like the current source inverter drive 

system, the complete decoupled control cannot be considered.
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3.3 Rotor voltage equation 

    tion model in the field

for the 

oriented

rotor flux 

reference

      25 

estima-

frame

   The rotor voltage equations expressed in the field oriented reference frame can be used 

to obtain the magnitude and phase angle of the rotor flux space vector or they can be used 

to obtain the magnitude of the rotor magnetizing current imr and its angular velocity WmT. 

This flux model is derived in this section. 

   The rotor voltage equation is expressed as follows: 

d~r 
                      Ur = Rrir+d

t(3.8) 

where ur = 0 . 

   The rotor current, voltage, and flux-linkage space vector equations in the field oriented 

reference frame are expressed as follows: 

                            Zr$r = Zrd jirq = ire                                                                -j(.p-Br) 

ur$r = urd +jurq = use -j(c'g-Br) (3.9) 

4.r$rr                                =e-7("K—Br) 

  By substitution of (3.9) into (3.8), since the differential equation of sPr is expressed as 
dC. =  d~r$r + ej("„er)j(u)mr— Wr)CPs$r~ dt dt 

the rotor voltage equation in the field oriented reference frame are expressed as follows: 

                ur$r = Rrir$r+ddt$r+3(Wmr —Wr)45r$r = 0 (3.10) 
In (3.11) Cr$r is the rotor flux-linkage space vector in the field oriented reference frame 

where imr = limrl. Thus, from (2.72), 

5Pr$r = Lm l imr l (3.11) 

which gives a linear relationship if the magnetizing inductance Lm is assumed to be constant . 

Substitution of (3.12) into (3.11) yields the following rotor voltage differential equation: 

                 0 = Rrir$r + Lmdldtrl+j(wmr—wr)LmlZmrl(3.12)
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  By substitution of (3.4) into (3.12) and dividing by  Rr, (3.12) becomes 

O —I2mrI —25rLmdl lmrIL                    1
+arRr dt.~(Wmr—Wr)l2mrI. 

Since Lm = Lr/(1 -b Qr), the above equation is rearranged as follows: 

                  Trdl dtrl+ I2mrl= 2s.tr —1(Wmr —Wr)TrlZr„rl(3.13) 

where Tr is the rotor time constant (i.e., Tr = Lr/R,). By resolving into the real- and 

imaginary-axis components, the following extremely simple equations are obtained: 

Trdl d
trl+ I2mr1 = 2sd(3.14) 

             ZSq(3
.15)                                         corn, = wr+ 

Tr l imr l 
where isq/(Tr I i,„r l) shows the slip angular velocity, wsj. 

  The angular velocity of the rotor flux is equal to the sum of the rotor angular velocity 

and the slip angular velocity of the rotor flux. If limrl is constant, it follows from (3.14) that 

IZmrl = isd. The magnitude of the rotor flux-linkage space vector can be kept at a desired 
level by controlling the direct-axis stator current (i,d), and then the electromagnetic torque 

is determined by the quadrature-axis stator current (i,q). 

  Fig. 3.1 shows the flux models of the induction machine in the field oriented reference 

frame, based on (3.14) and (3.15). The implementation shown in Fig. 3.1(a) utilizes the 

measured values of the stator currents (i,U, isv, isw), the measured value of the rotor velocity 

(wr) and the rotor time constant (Tr). The three stator currents are transformed into their 
two-axis components by the application of the three-phase to two-phase transformation. In 

the absence of zero-sequence currents, it is sufficient to monitor only two stator currents. The 

direct- and quadrature-axis stator currents (is„, i,A), which are formulated in the stationary 

reference frame fixed to the stator, are then transformed into the two-axis stator current 

components in the field oriented reference frame (i,d, isq), utilizing the following relation: 

isd ~ieq = i5e-7aµ = (2aa +72,A)e-7a" 

The current component (i,d) serves as an input to a first order lag system with gain 1 and 

time constant (Tr), the output of which is the magnitude of i,„r.
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Fig. 3.1. Flux models in the field oriented reference frame. (a). Flux model 
and ca . (b). Flux model with inputs 2,u, i,v, t,w, and Or.

%vitli inputs r,u, 'w ,
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One of the output of the system,  f,., is obtained by multiplying ~i7iT. ~ by Lm. The quadrature-

axis stator current (i,q) is divided by (Tr l imr 1), thus yielding the slip angular velocity of the 

rotor flux, and when the rotor angular velocity is added to this, is obtained. The 

integration of tom,yields the angle (au), which defines the phase angle of 1r with respect to 

the real axis of the stationary reference frame. This angle is fed back to the transformation 

block e-jag. 

  However, it is possible to have another flux model where the measured values of the rotor 

angle (6r) are utilized instead of using the measured values of the rotor angular velocity 

(w,.). This is shown in Fig. 3.1(b). It can be seen that the outputs of this flux-model are 
again IinT,l, at, and ~~r~ but the term of wr disappears. Accuracy of these flux models have 

a strong dependency on Tr. If T, is inaccurate, then it could lead to an unwanted coupling 

between the d and q axes, and therefore to a deteriorated dynamic performance of the drive 

with unwanted instabilities. This problem may be avoided by the application of on-line 

parameter adaptation which will be discussed in the latter chapter.

3.4 Rotor voltage equation for the rotor flux estima-

tion models in the stationary reference frame

  There are several methods to estimate the magnitude and phase angle of the rotor flux 

space vector by utilizing certain machine parameters and various measured quantities, such 

as the actual stator currents, the rotor angular velocity and the stator voltages. Here three 

methods are discussed and the equations are formulated in the stationary reference frame 

fixed to the stator.

3.4.1 Flux model utilizing the measured rotor speed and stator 

current

  In the case of using the stationary reference frame, i, do not have to be transformed 

into i8 ,. in the field oriented reference frame as Fig. 3.1. For the purpose, the rotor voltage 

space-vector equation is used, but in order to have an equation which directly contains the
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stator currents expressed in the stationary reference frame fixed to the stator, the rotor 

voltage equation formulated in the stationary reference frame must be used. It should be 

noted that the effects of magnetic saturation are neglected_ 

  The rotor voltage equation (3.8) is 

O=Rrir+ dtr 

   The rotor current, voltage, flux-linkage space vector equations in the stationary reference 

frame are expressed as follows: 

• Zr—Z, Jiro = ire7er 

Ur = Ura+jurf3 =ure'Br=0(3.16) 

_ ~rejer 

  By substitution of (3.17) into (3.9), since the differential equation of Or is expressed as 

                     dOr                           -ord~r----                           = e+e-;erj (_Wr) r 

                                                                           , 

     dtdt 

the rotor voltage equation in the stationary reference frame are expressed as follows: 

                                     d, 
               O=RriT+dr—jWrVr(3.17) 

  Similarly to the definition used in (2.72), imr is obtained by dividing the rotor flux-linkage 

space vector expressed in the stationary reference frame by Lm: 

                  Zmr =r=LrZr+is = is + (1 + u)i.(3.18) 
Lm Lm 

where Zmr = Zmra + Zmri3 • 

  From (3.18), 

./ Zmr  Z, 
              2r=• 

                                        1+o-r 

  By eliminating i;. and VT from (3.17) with this equation and (3.18), the following equation 

is obtained: 

                   0 _Zmr — isd +Lmimr— jWrLmZmr(3.19) 
1 + Qrdt
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  Since  Lm = Lr/(1 -^- o-r) and Tr = Lr/Rr, 

following equation is obtained: 

                          di, 

                                  r  

                          Tr d
t = i, —

30

by dividing (3.19) by Rr and 1/(1 + Ur), the

imr + jWrTrimr (3.20)

  Therefore the resolution of (3.20) into the real- and imaginary-axis component gives the 

following two differential equations: 

                  di                        mra
=                        Trd

tisa—Zmra—7rTrtmrp 
                         d2mrp _                 Tr dtz,p— imrp+jWrTrimr« (3.21)

  An implementation of (3.21) is shown in Fig. 3.2, where the three-phase stator currents 

are transformed into (i,«, i,p) by the application of the three-phase to two-phase transforma-

tion. In accordance with (3.21), the signals (isa—timra-7WrTrimrp) and (isp—imrp+jw,Trimra) 

are obtained. They are divided by the rotor time constant (Tr) and are integrated to yield 

the direct- and quadrature-axis rotor magnetizing current components (xmr«, zmrp)- A rect-

angular to polar converter is used to obtain the magnitude (l imrl) and the phase angle (a,1) 

of 5Pr. If required, lir„rl can be multiplied by the magnetizing inductance (Lm) to yield the 

magnitude of the rotor flux- linkage space vector. This scheme is also dependent on the 

rotor time constant of the machine and can be used over the entire speed range, including 

standstill. When this model is used, the phase angle (a,) at the output of the model has to 

be differentiated to obtain Wmr• 

  When compared with the flux model of Fig. 3.1, the flux model of Fig. 3.2 yields less 

accurate values of the magnitude and phase angle of This reason is described as follows: 

By considering (3.21), in the steady state where p = d/dt = jw,, the rotor magnetizing 

current can be expressed in terms of the stator current vector as 

I' 
            I mr =(3.22)                              1 

+j(W—Wr )Tr- 

where Ir„r and I, denote the complex phasors for sinusoidal variables of the rotor magnetizing 

and the stator current respectively. At high speed condition and small slip (i.e., the difference 

of (wi —Wr) = swi (.s is slip) becomes small), a small error in the measured value of the rotor 

speed will results in its large error in the rotor magnetizing current and this is especially
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pronounced in its phase angle. The other source of errors is T,. which is also temperature 

dependent, although it follows from (3.22) that the rotor magnetizing current (or rotor flux) 

only at no load (3 = 0) is not influenced by Tr. This is a physically expected result, since 

at no load condition there are no currents in the rotor. In the next section, it is shown that 

the flux model by a linear combination of the stator and rotor voltage equations are not so 

sensitive to the rotor speed. Thus an implementation based on these equations requires less 

accurate rotor speed monitoring.

Z:U 

ZsV 

Ze6V

Wr

 t,a

t3P

1/T, 1/p
 3mra

1 /Tr 1/p
1mr~

I1mrI 

R—. PI J~
I1)rl

Fig. 3.2. Flux models in the stationary reference frame with Inputs isU , aV, l,W, a11ct wr.



Principle of field oriented control 

3.4.2 Flux model utilizing the measured rotor speed, stator 

       age and current 

  The stator voltage and flux linkage equations in the stationary reference frame 

pressed as follows: 

 u, = R, i, + dd
t 
                              =  L,i, + Lmiir 
di di' 

u, = R,i,+L, d
t +Lm dt 

where the effects of magnetic saturation are neglected. 

  From (3.18) and (3.23), 

Zrnr — Z, 
Z r 1+Q

r 

Lm —d itL,mr— 25) _ (1 — Q)L,d (Zmr— is) dt(1 
+ Q,)(1 + Qr)dtdt 

where u is the resultant leakage constant and is defined as 

                                 1 
                        = 1 — (

1 + a5)(1 + r) 
                                  LZ = 1 L,Lr. 

Thus the following space-vector voltage equation is obtained: 

u, = R,i, +vL,dt+ (1 — Q)LJdim,.  
 dt 

   Furthermore (3.24) becomes 

                                    di 

                   (1 — cr)T,ddtr=R,— is — QT, dt 
where T, is the stator time constant, QT, is the stator transient time constant. 

   If (3.25) is added to (3.20), the following equation is obtained: 

            dd
tr[Tr +T,(1—a)]=R,+(jw,Tr — 1)Zmr— aT,  dt 

   It is possible to use (3.26) directly to obtain ir„r, if u, and i, are measured.

  32 

volt-

are ex-

(3.23)

(3.24) 

(3.25) 

(3.26)
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  From (3.26), its real- and imaginary-axis forms are expressed as follows: 

       dz
dt-----[Tr+T,(1 —  o)] +imra=——WrTrimrp— QT,di,,, 

           dinp[Tr+T,(1 —Q)]+imrp=Rp+wrTrZmrcz—aT,da(3.27) 

  An implementation of (3.28) is shown in Fig. 3.3 where the input quantities are the 

measured values of the rotor speed (wr), and the three-phase stator voltages and currents. 

These are then transformed into the two-axis components of the stator currents (i,a,i,p) and 

stator voltages (u,a, u,p) by the application of the three-phase to two-phase transformation. 

The rotor magnetizing current (imra, Zmrp) are converted into the magnitude and phase angle 

by a rectangular-to-polar converter.

,v

wr

u,u 

11,1( 

uWW

 i8

1/R. 

aT,

1/P

1/p 1/[T,+T(1 —a)]

Fig. 3.3 

arid t.../r.

. Flux models in the stationary reference frame wit h in]~u(s 15U, uw, W, ZsU, isV, 1.sW
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  The used machine parameters are  R„ Q, T„ and Tr. If the off-line parameter identification 

is used, these values can be obtained by the application of conventional tests . By considering 

(3.26) in the steady state where p = d/dt = jw;, the rotor magnetizing current can be 
expressed in terms of the stator current vector as follows: 

Imr =t`'/R,—jwiQT,I,(3 .28)                        1+j[( Wi -Wr)Tr +wiT,(1 — a)) 

At high speed region and small slip, (wi - w) becomes small, a small error in the measured 
value of the rotor speed will not influence I„ „,. as much as in (3.22). Because, at high 
values of the rotor speed, the term (wiT,(1 — a)) will dominate in the imaginary part of 

the denominator of (3.28) and is independent of the measured rotor speed. At low speed 
region, however, the influence of the parameter changes due to the stator temperature must 

be considered. This reason is described as follows: Both the numerator and denominator of 

(3.28) are multiplied by R,/L„ thus (3.28) becomes 

Imr R
,/L, + j [(wi — wr)R,Tr/L, + wi(1 — a)] 

When wi = ()Jr (no-load), the denominator becomes (R,/ L, -}- jwi(1 — a)) where the only 

parameter influenced by the stator temperature change is R,. A large error occurs in Imr 

at low speed region or at stand still, since R, dominates in the denominator.

3.4.3 Flux model utilizing the measured stator voltage and cur-

       rent 

  It is possible to construct a flux model which does not use the measured rotor speed, but 

only the measured values of the stator voltages and stator currents for the determination of 

the magnitude and phase angle of imr. For this purpose (3.25) can be used. 

  In the stationary reference frame, the resolution of (3.25) into its real- and imaginary-axis 

components yields the following equations: 

                 (1 — a )T,didt«=una—i,,—a T,ddta 
                                                           1L 

            (1 — a)T,da,3.30 
                     ddrp

t=Rp—                                              is/3—QT, 
dtQ                                                     (3.30)
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  An implementation of (3.30) is shown in Fig. 3.4 where the input quantities are the 

measured values of the three-phase stator voltages and currents respectively (u,U, u3v, u,w, 

      and i,w) and the required parameters are R„ Q and L,. It follows that by integrating 

(3.30), in„.„ and i,,,rp are obtained. 

  By considering (3.25) in the steady state, where a = d/dt = jw, , the rotor magnetizing 

current can be expressed in terms of the stator current vector as follows: 

u,/R,—(1+jcrT3w;)I3  

                                    (1 — o) j u.),T, 
u, — (R5 + jaL'w`)I3(3

.31) (
1 —

1,U 

_,w

u,u 

u,v 

u,iv

 2

 2

l/p

1/p

1/[L,(1 —a)]

1/]L,(1 — a)]

1,n.

Fig. 3.4. Flux models in the stationary reference frame \vit Ii inputs as u, , 11.9 V , jay and



Principle of  fi eld oriented control 36

At low stator frequencies, the stator ohmic drops would dominate and accurate ohmic volt-

age drop compensation has to be performed prior to the integration. Due to the temperature 

dependency of the stator resistance, this is difficult to perform, and with such an implemen-

tation a lower frequency limit for useful operation is approximately 3Hz with a 50Hz supply. 

It should be noted that at low frequencies it is not possible to perform drift-free analogue 

integration.

3.5 Comparison of flux estimation models

  The several flux estimation models for the field oriented control are shown in the preceding 

chapter. Here some issues about these models with a practical point are discussed briefly. 

  As compared with all of the flux estimation models, at high speed region such as field-

weakening, i.e. above a rated speed, the models of Fig. 3.1 and Fig. 3.2 are inferior to those 

of Fig. 3.3 and Fig. 3.4. The main flux saturation would influence the model of Fig. 3.1 and 

Fig. 3.2 more than those of Fig. 3.3 and Fig. 3.4 and the error of slip frequency calculation 

must be significant during this region and also rapid acceleration. 

  On the other hand, at low speed region or stand still, the models of Fig. 3.3 and Fig. 3.4 

are inferior to those of Fig. 3.1 and Fig. 3.2. Because they are including the stator resistance 

 (R,), the existence of R, would be significant and the drift of the open loop integration would 
occur. 

  The model of Fig. 3.3 requires input values more than the others, so it seems to be 

reliable, while this flux model is complicated and needs accurate machine parameters more 

than the others, and furthermore accurate voltage measurements on a PWM inverter are 

difficult because the voltages are highly distorted requiring a high sampling frequency. 

  Consequently, the model of Fig. 3.1 (Flux models in the field oriented reference frame) is 

useful. Although T,. and L, should be accurate at that time, it is not fatal problem. Thus, 

the flux model of Fig. 3.1 can be used over the entire speed range. 

  Those machine parameters identification and compensation will be discussed in the latter 

chapter.
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 Chapter 4

Vector approximation method

4.1 Introduction

  The principle of field oriented control are shown in the preceding chapter. By the field 

oriented control, the magnetizing and torque component of the stator current are decoupled 

and the transient response characteristics are similar to those of a separately excited dc 

machine and the system will adapt to any load disturbances and reference value variations 

as fast as a dc machine. The field oriented control of various types of ac machines with 

rapid developments in the power electronics can be available as servo-drives to reliability 

and energy saving. For ac drives there is much greater variety than for dc ones, due to the 

different types of inverters which can be combined with various types of ac machines. 

  In recent years, voltage source inverters (VSI) are more popular than current source 

inverters (CSI) for ac drives, perhaps because the VSI has faster current response and can be 

applied to a PWM system in the high frequency region more easily due to the low impedance. 

This is why field oriented control is often applied to control VSI drive ac motor drive systems 

[1]. The CSI, however, still has better features, such as capability of four-quadrant operation 
without any extra power circuit for regeneration, ruggedness and reliability, and no shoot-

through fault. Moreover, high precision of current control with the CSI is possible. Thus, 

the CSI seems to be appropriate for large capacity drive systems such as steel mills, elevator 

motors, and so on. However, the CSI drive ac motor has problems in the low frequency 

region, where torque pulsation and harmonic heating occur because of a rectangular current
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wave with  120° conduction . In order to cope with these problems , the PWM—type CSI 

drive induction motor system has been proposed as well as VSI drive in [3][4] and the design 

of the PWM signal is considered to decrease the higher harmonic components of current 

waveforms. The pattern of the PWM signal is memorized in a memory ROM in advance 

and is read out by the designed timing. 

  On the other hand, the vector approximation method was proposed [2] with the different 

concept. This method would not only decrease torque ripple but also control the instanta-

neous torque of an induction motor driven by the CSI, that is, not only in steady state but 
also in transient state, the desirable current is computed as follows. The magnitude of the 

desirable current is adjusted by the control of the dc link current for each instant , while, the 

phase angle of the desirable stator current is determined by utilizing the rotor flux angle, 

which is computed by the rotor flux estimation shown in the preceding chapter . Since the 

inverter is a current source type, the desirable stator current cannot realized exactly but can 

be approximated by two of six realizable current vectors, which are adjacent to the desirable 

one, where the current vectors composed based on sense of time average. This approxima-

tion is done for every sampling period of a control loop; thus, the torque is to be controlled 

almost instantaneously. 

  The following sections are concerned with the vector approximation method of CSI drive 

induction motor, where the method are verified with the simulation and the experiments.

4.2 Basic theory 

  In this section, the basic theory for the vector approximation is reviewed. 

vector voltage equations of a symmetrical induction machine from (2.57) and 

given as follows: 

        ueDa+LapLmpi,          0l[~7Lm(p — jw,) Rr+Lr(p — jor)it 

                J 

  From (3.18), the rotor magnetizing current space vector is expressed as 

                                           Lr i
mr = is + —L

m                                               it 

The space 

(2.58) are

(4.1)

(4.2)
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where  u„ i„ iT., and i. are the complex numbers of stator voltage, current, rotor current 

and rotor magnetizing current respectively in the stationary reference frame fixed to the 

stator, that is, a-J9 axes in Fig. 4.1. The equivalent circuit is shown in Fig. 4.2. R, and R,. 

are the stator and rotor resistance, L, and Lr are the stator and rotor self inductance, L,,, 

is the magnetizing inductance, c.l,. is the rotor angular velocity, cw,nr is the angular velocity 

of i,,,,., and p is the differential operator.

q

 1  sq
a

. 0 

tS

a~ 

Fig. 4.1. Relation of current vectors.
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Fig. 4.2. Equivalent circuit in the  stationary reference frame.
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  By eliminating  i' from (4.1) and (4.2), the same equation as (3.20) is obtained. 

pZmr = (—'y + jWr)im.r + yi,(4.3) 

where y is the inverse of thr rotor time constant , 

'y = Rr/Lr = 1/Tr .(4.4) 

Since it is difficult to detect imr, a magnetizing current estimation is used. 

pimr = (—y + jWr)zmr + yis(4.5) 

Subtracting (4.3) from (4.5), we have 

Pe = (—y +jwr)e (4.6) 

where 

                e = imr — imr • (4.7) 

This indicates that the error e asymptotically decreases by e-7t. The instantaneous torque 

in (2.74) is expressed again by 

                 Te = kts(iei r) = ktlis sin(4.8) 

where 

kt=~z             P~"`.(4.9) 
P is the number of the pole-pairs of the induction motor, r means an imaginary part of a 

complex number, (*) means the conjugate of a complex number, and ca is the angle between 

i, and imr. 

4.3 Principle of the vector approximation 

  The vector approximation method approximates the desirable . stator current vector 

in the sense of time average by the realizable six current vectors. The phase angle of i; 

is determined with regard to the phase angle of the rotor magnetizing current imr and the
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magnitude of the required torque as follows: where At is the calculating time in one cycle 

of a microprocessor program. The space vector of the rotor magnetizing current is 

 Zmr = Zmre3°µ(4 .10) 

where the symbol imr is used instead of imp because of (4.7), imr is the magnitude and au 

is the phase angle of imr with respect to the a-axis in the stationary reference frame. The 

transformation from the stationary reference frame (a-,8) to the rotational reference frame 

(d-q) for (4.3) gives the following equations: 

                                        d. 

                   dtZmr =Y(isd—imr)(4.11) 

Wmr = Wr + Ws/(4.12) 

where 
                                                         294 

                      co,t=7,(4.13)4.13) 
Zmr 

w51 is slip angular velocity, i,d and i,q are the direct- and the quadrature-axis component of 

the stator current in the rotational reference frame respectively. It is noted that (4.11) and 

(4.12) show the same result of (3.14) and (3.15) which are the flux estimation model in the 
rotor flux oriented reference frame [see Fig. 3.1]. For a digital control system, (4.11) and 

(4.12) are expressed as follows, assuming that co, does not change during a sampling period 
At: 

imr(k + 1) = imr(k)e-7°t + i,d(k)(1 — e-7°t)(4.14) 

Wmr(k) = Wr(k) + w,c(k)(4.15) 

where k means kAt. Then the phase angle of i.mr is obtained as follows: 

am(k + 1) = aµ(k) + Wmr(k)At(4.16) 

Consider, as the controlled variables, both the torque and the magnitude of in„.. That is, 

Ii, 1 sin a denoted by in is determined by the required torque, and ii, l cos a denoted by i,d is 
determined with regard to intr. In Fig. 4.1, i,d and i,9 are shown as the decomposed vectors 

of i;. Thus, the desired stator current vector i; is given as follows: 

                  _ ,1Z2d i~q(4.17)
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                a = tan-1—i4(4.18) 
Zsd 

  On the other hand, Fig. 4.3 shows imr., is, and six stator current vectors which can be 

realized by the CSI drives, so that in this case i° is approximated by ii and i,2 which are 

applied during the interval Ati and At2 respectively. 

  Fig. 4.4 shows the sector I in Fig. 4.3. Thus, i; is expressed by the view point of the 

composition of vectors as follows: 

              Ati i51At2 i52(4) 
                           At lisi 

                                                              .19 ----------- 
At li~2lz, 

where i° can be assumed to be constant during one switching cycle At because of sufficiently 

high switching frequency. The content of the parentheses of (4.19) gives the angle al and i, 

is the magnitude of i°, and Ati and At2 are geometrically calculated as follows [2]: 

               Ati—ai)At(4.20)                              i 
sin(ir/3 -F- ai) 

               At2 = At — Ati(4.21) 

For the other sectors the same rules are applied. The phase angle ap in Fig. 4.3 is obtained 

as ap= a+ a. If the sector 0 is determined as the first switching state of inverter, by 

checking the values of ap + 7r/6, the next switching state and al can be obtained. 
- axis

Fig. 4.3
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Then the switching intervals  At1 and At2 are calculated with al from (4.20) and (4.21). 

Since it is impossible to apply i51 and i32 at the same moment, the composition of vectors 

is done by time average sense. 

  The dc link current kept constant as 

'DC =2 i, ,(4.22) 
however, is not sufficient to make the composition of the vectors isi and is2 agree with i;. 

Fig. 4.4 indicates the composed vector on the line between the tips of vectors i51 and i,2 

does not reach i;. 

. I 

1S2 

1s2/ \ .

At2 • 
At 1S2

 a2

At i • 
At /s' 

Fig. 4.4. Principle of the vector a.pproximation.
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4 

   Thus, the  dc link current should be controlled so as t
o 

IDC = i cos(ir/6 — ai) .(4 .23) 

In this case, the tip of the composed vector is on the line between the ti
ps of the vectors i;l 

and i;2 in Fig. 4.4. Consequently, is is realizable with the dc link current control. 

   Then the average torque during At is given as follows: 

              T=-ts{                           'Ai' i31z` dt+ofi52  i. dt}(4.24)      em
mr                     AtIZellOtiI1 n21 

where 

k; = kt i, .(4 .25) 

Since At is assumed to be sufficiently short, the rotor magnetizing current vector is also 

considered to be constant for At. Thus, (4.24) becomes 

                         Atl,lAt2i,2  
Pe =Of(+—)z; nr} =kt.s{i°im}. (4.26)                     At~i ,llAt li,21 

From (4.26), the required torque is realized in the sense of the time average. As mentioned 
above, the main purpose of vector approximation is to control the instantaneous torque 

arbitrarily. This can be achieved by controlling the stator current arbitrarily . If required, 

the tip of the current vector can be controlled to have the locus of a circle . In this case, the 

phase currents are sinusoidal. This fact is confirmed by the simulations and the experiments 

in Section 4.5. 

4.4 System configuration 

  The experimental system is shown in Fig. 4.5. The capacitors parallel with the induction 

motor act as smoothing filter of pulsating phase current. The dc generator is coupled with 

the induction motor as a load which does not appear in Fig. 4.5. The nominal ratings of 

the main pieces of equipment in the experimental system are listed in Table 4.1. The photos 

of the experimental system are shown in Figs. 4.6, 4.7, and 4.8 which are the induction 

motor coupled with the dc generator, the CSI system, and the PC (NEC-PC9801DA) with 

AD and DA converter, and DSP (NEC-iPD77230). The PC is used for the change of the 

speed reference value and the control gains. The control algorithm as shown in Fig. 4.9 is 

executed by using DSP. The computational time is about 0.55 ms for one cycle.
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           Table 4.1 

 NOMINAL RATINGS OF EQUIPMENTS
 Induction motor do generator

Output 

No. of poles 

Voltage 

Current 

Speed 

Lr 

Rr 

Lm

7.5 kw 

4 

200 V ac 

27.2 A ac 

1740 rpm 

0.04647 11 

0.335 Si 

0.04557 II

7.5 kw 

6 

220 V (lc 

34.1 A do 

1200 rpm

do Reactor

Ld 0.1432 II Rd 0.0495 St

Capacitor

80 ,cF

Fig.

MICROCOMPUTER 

    WITH 

  INTERFACES 

CPU =DSP(p PD77230)

wr andIDc
 A/D 

CONVERTE

4.5. Configuration of the experimental system.
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Fig. 4.7. CSI system.
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Fig. 4.8.  PC (NEC-PC9801DA) with AD and DA converter, and DSP (NEC-/LPD77230).
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Fig. 4.9. Control algorithm of the vector approximation.



Vector approximation method48 

   In Fig. 4.9,  2,dRef and i ,gRef are the reference values of i,d and i,q. The value of i,dRef 

is obtained as the output of the magnetizing current controller (i .e., the flux controller) 

the input of which is the error signal between the reference value of the rotor magnetizing 

current (2mrRef) and the estimated value (im,), and the value of i,gRef is obtained as the 

output of the speed controller, the input of which is the error signal between the reference 

speed (WrRef) and the measured speed (Wr). Then isdRef and i,gRef are converted into the 

polar coordinates by a rectangular-to-polar converter (R—*P), and thus the outputs of the 

(R-41D) are the magnitude of the reference stator current (i,Re f) together with the phase 
angle aRef as shown in (4.17) and (4.18), moreover, isdRef and 2,gRef are inputs to the flux 

estimation shown in (4.14), (4.15), and (4.16). The outputs of the flux estimation are the 

rotor magnetizing current imr and the phase angle a, . The reference dc link current (IDCRef) 

is determined by the dc link current controller shown in (4.23) with isRef and al which is 

found in the vector approximation unit. Fig. 4.10 shows the flowchart diagram of the vector 

approximation. 

  In the converter, the maintain the required dc link current specified by IDCRef, there is 

a current control loop where IDCRef is compared with the measured dc link current 'DC and 

the obtained error signal between IDcRe f and IDC serves as input to the current controller. 

The output of the current controller is used to control the firing angle of the converter. For 

the controllers of the rotor magnetizing current, the speed, and the current controller, the 

PI or PID control law is used as follows: 

  The magnetizing current control law: 

isdRef — Kmp(imrRef — imr(k)) + I1miAt>(2mrRef — 2mr(k)) (4.27)

The speed control law: 

isgRef = Kwp(WrRef — Wr(k)) + KwiAt E(WrRef — Wr(k))

The current control law: 

        Ed = Kip(IDCRef — IDC(k)) + Ki,At DIDcRef — IDC(k)) 
         Edmar 

(IDC(k — 1) — IDC(k))  
             +Kid At

(4.28)

(4.29)
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Initial Setting

 Set  i„Lr=b,ao=0 and  set  is1 as  the

current vector `phase-UV' shown in Fig. 4.3.
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Fig. 4.10. Flowchart diagram of the vector  approximation.
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where  Kmp, Kmi, Kwp, Kwi , K1 , K1 , and Kid are the control gains , and Ed denotes the 
output voltage of the converter and Ed max denotes the maximum value of the output voltage 

of the converter. The firing angle of the converter (ac) is obtained as follows: 

                                E ac = cos-1 d  
                                                    (4.30) Edmax 

Because the average quantitiy Ed are calculated over the firing pe
riod of a phase voltage as 

follows: 

                                3  +a.                    E
d =VErms sin 0fd0f                7iVr                                  ;; +ac 

               32,r,a c                                         E'rme [— cos eJ s +ac 

                                        3-\/-E
rmeCOS ac 

x Edmax cos ac (4.31) 

where Erm, and Of is the root mean square value and the phase angle of the line -to-line 

voltage respectively. 

• 4.5 Verification of the vector approximation 

4.5.1 Simulation results 

  Fig. 4.11(a) and (b) shows computer simulation results of the steady state locus of 

the tip of the stator current vector ((a)) and the corresponding phase current ((b)) by the 

vector approximation method with the dc link current kept constant (the left) and with 

the instantaneous control of the dc link current (the right). It should be noted that the 

smoothing filter is assumed for both cases. The dark parts in Fig. 4.11(a) mean the limiting 

area of the vector approximation method to avoid such conditions that Atl or At2 is less 

than the turn-off time of the GTO's (see (4.20)(4.21)). The minimum of Atl or At2 is set to 

the greater value than the turn-off time of the GTO's, which is 50 iisec in the experiments. 

This effect appears as the jumps of the waveform in Fig. 4.11(b).
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In the experiment, this vector approximation is executed in about 1.8  kHz, whereas dc link 

current control by the converter is done in 360 Hz . This shows that dc link current control 

can be controlled once in every five execution of the vector approximation and th
en for 

effective approximation of the desirable stator current vector the operating frequency seems 

to be lower than 10 Hz. Therefore , the vector approximation method seems to be suitable 

for medium and large-size drives with low speed where dc link current control becomes much 

effective.

4.5.2 Experimental results 

  Fig. 4.12 and Fig. 4.13 show the experimental results of the phase current by the vector 

approximation method with the dc link current kept constant and with the instantaneous 

control of the dc link current respectively. The capacitor as a smoothing filter is determined 

experimentally to be 80 iF, since the increase of the size of capacitors does not affect the 

current waveform. As mentioned above, the experiments are done at low speed condition. 

The results in Fig. 4.12 and Fig. 4.13 almost coincide with the simulation results, which 

show the validity of our assumptions with respect to vector approximation. Moreover, the 

phase current waveform is improved by the vector approximation with the instantaneous 

control of the dc link current. 

  In the extended PWM method [20] using the auxiliary two GTO's in the inverter, the 

zero vector is used for shaping of sinusoidal current waveform in addition to six realizable 

stator vectors in Fig. 4.2. The constant dc link current control with the zero vector method 

is sufficient to do shaping in steady state, while the purpose of the vector approximation 

is to control i; not only in steady state but also in transient state as mentioned before. 

Thus the vector approximation method is independent on the PWM method with the zero 

vector method. In the established PWM method, the modulation index m is defined as the 

rate of the amplitued of modulating wave against the amplitude of carrier wave, and can 

be determined in the range between 0 and 1. In this case, the rms output current I, of the 

inverter is given by 
m /DC         `"(4 .32)
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This leads to the maximum modulation index in the case of vector approximation method 

theoretically: 
                              2 
          m  = -(4.33) 

This means that the vector approximation method can produce the output current of inverter 

about 15 % more than the established PWM method. This is also one of advantages of the 

vector approximation method. 

  Figs. 4.14, 4.15, and 4.16 show the responses of the starting, the acceleration, and the 

deceleration, where the speed reference is changed from 0 to 120 rpm, from 120 to 240 rpm, 

and from 240 to 120 rpm in each test of the responses. The values of the control gains are 

as follows: 

  (at the transient state) 

Kmp=9.0, Kmi=3.0.10-2 

i,Ref is limited to 30 A. 

Kip=1.75.10-2,Kii=1.5.10-', Kid =1.2.10-2 

  (at the steady state) 

Kmp=7.0, Kmi=2.2.10-2 

K,=3.5, Kwi=1.3.10' 

Kip=2.5.10-2, Kii=1.2.10-', Kid =1.8.10-5 

These values are determined empirically. The results indicate that the speed control of the 

CSI drive induction motor by the vector approximation is possible, and the instantaneous 

torque control by controlling the current is also achieved even at the transient state.
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4.6 Conclusion

  In the CSI drive induction motor system, the control theory and the vector approximation 

method of the stator current have been shown, and the application of this theory and the 

method for the speed control have been examined experimentally. Theoretically, the direct 

torque control is possible by this method. The torque ripple could be decreased, which has 

been proved by the sinusoidal phase current waveform. For the precise control of torque, 

however, it is important to know the precise value of rotor parameters in  -y of (4.4) since the 

value of ry affects not only the magnetizing current estimation error but also the estimation 

of the torque magnitude directly. In the next chapter, these problems are discussed.
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Chapter 5

Parameter adaptation and torque 

control

5.1 Introduction

  As mentioned in the preceding section, for the precise torque control by the vector ap-

proximation, it is important to know the precise values of the rotor parameters since the 

value of the rotor parameters affect not only the magnetizing current estimation error but 

also the estimation of the torque magnitude directly. 

  In the vector approximation, the phase angle of the desirable stator current is determined 

by utilizing the rotor flux angle, which is computed by the on-line simulation (i.e., (4.14) 

and (4.15) ) of the mathematical equation of the induction motor. If the rotor flux angle 

is estimated correctly, the magnetizing and torque component of the stator current can 

be decoupled precisely and so controlled independently by the field oriented control [5]. 

However, the field oriented control is influenced by the rotor parameter variation, that is, 

the rotor resistance varies with temperature and the inductance is a function of main flux 

saturation. To solve these problems, many identification or adaptation schemes have already 

been proposed  [6]—[13]. An off-line automated identification scheme [6] and an adaptation 

scheme with using the reactive power transferred to the rotor [7] have been evaluated as 

effective methods. With different approaches, model reference adaptive systems (MRAS) 

[8], [9] have been presented. The adaptive system estimates the error between the outputs of
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the motor and the reference model , and tunes the adaptive gains or parameters to decrease 

the error to zero. As a result, the degradation of torque control by the rotor resistance 

variation is observed in [8] and [9]. On the other hand, the selection of flux level with regard 
to magnetic saturation effects was discussed in [10]. Saturated dynamic models of induction 

motors with the field oriented control have been proposed in  [11],,,[13]. 

  This chapter shows a parameter adaptation system containing a magnetic saturation 

model and a MRAS, which is a method to solve both resistance and inductance variation 

problems as follows: The vector approximation system shown in the preceding chapter newly 

includes a magnetic saturation model which is obtained by a novel off-line identification 

method, and on-line compensation of magnetizing inductance becomes possible. This system 

also includes MRAS using the model reference error of torque to compensate rotor resistance 

variation. Consequently, this method makes it possible to asymptotically track the actual 

torque and estimate accurate rotor resistance without the influence of inductance variation, 

which occurs at the field weakening or the optimal efficiency control. The effectiveness of 

the parameter adaptation system is verified by the simulation and the experiments.

5.2 Rotor parameter identification

  This section shows an identification method for the values of kt and -y off-line. The 

value of kt is the torque coefficient and the value of 7 is the inverse rotor time constant. The 

changes of kt and -y cause errors in the torque and in the phase angle of is. In order to control 

the torque precisely, it is necessary to know the characteristics of the parameter variation. 

The identification algorithm and the experimental results are shown in this section.

5.2.1 Definition of the torque coefficient and the rotor time con-

stant

  Assume a sinusoidal phase current at the steady 

(4.11) at the steady state, (4.17) is replaced with 

                                            z 2, =2mr+2sz9

state condition. Since imr = i,d from

(5.1)
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and the electrical magnetic torque Te is from (4.8) 

Te = ktzm,.z •(5.2) 

Parameter kt and -y are expressed as 

           3Lm3  LmRr  RT           k
t_2PL

T2Plr+Lm' ^y=—=(5.3) LT lT + Lm 

where I,. is the rotor leakage inductance. 

5.2.2 Identification of the inertia and the viscous friction 

  The identification of kt and ry requires the value of the torque, and then the torque 

measurement is required. The torque can be measured by measuring the motor speed; in 

this case, the inertia and the viscous friction must be known in advance. Therefore the 

identification of the inertia and the viscous friction should be done by the experimental test 

which is called the run-down test. The run-down test is described in the following. The 

rotor angular velocity is related to the torque as 

J dw,.ft,(5 .4) 
P dt+W,.= Te — TL. 

where J is the moment of inertia, f„ is the viscous friction, P is the number of the pole-

pairs, and TL is the load torque. When the dc generator is used as a load, the load torque 

is expressed as 

TL = k„w + To(5.5) 

where
Ka         m(5 .6)                             kvR

a+RL' 

To is Coulomb torque, Km comes from the dc generator load, Ra is the armature resistance, 

and RL is the resistance connected with the output of the dc generator. By substitution of 

(5.5) into (5.4), (5.4) becomes 

                  J—T+ (f„+ Pk„)W,.= P(Te — To) .(5.7) 

Considering the power system switched off where Te = 0, (5.7) becomes 

                                                T 

                 J--+ (f„+ Pk„)w,.= —PT0.(5.8)
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By solving (5.8), the rotor angular velocity is obtained as follows: 

                 cwr(t)=car.(0)er _ PT0 (1 —e-T)(5 .9)                                 f
, + Pk„ 

where 

                           _ 

            Tf
V+Pkv.(5.10) 

  For the run-down test, the drive is accelerated to some initial speed wr(0), where the drive 

power is switched off so that the plant is decelerating due to the load torque with the speed 

measured as a function of time, w (t). In the response of the deceleration, T is determined 

by the time where the speed is 36% of the initial speed Wr(0). The two kinds of the load 

should be prepared by changing the value of RL. Assume the measured time constant ri and 

T2 which are determined in the test when RL is set to RL1 and RL2 respectively. From the 

obtained data, (5.6), and (5.10), the inertia and the viscous friction are obtained as follows: 

                  _PKm(Ti(Ra+RL2) -T2(Ra + RL1))(5 .11) fv
(Ra + RL1)(Ra + RL2)(T2 — Tl) 

J - PKKTlT2(RL2—RLl)(5.12) (R
a+RL1)(Ra+RL2)(T2- 

where Km is determined by the induced voltage Va (i.e., EMF) and the rotor angular velocity 

wr as follows: 
                                     PVa 

Km= -----(5.13) 
                                                         tor 

In the test, Va should also be measured.

5.2.3 Identification of the torque coefficient and the rotor time 

       constant 

  The proposed identification method uses the experimental system shown in Fig. 5.1, 

which is the vector approximation system for identification. Let i, and ceRef be the reference 

input to the system shown in Fig. 5.1. Then the reference value of imr is written as 

imrRef = 2, COS aRe f .(5.14)
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Fig. 5.1. Control system of the identification. 

The real a does not coincide with aRef, if the value of y is not correctly set. Then imr does 

not coincide with the reference value. In the magnetic unsaturation region, however, if for 

constant i, the maximum torque Te(max) is obtained for some a, then from (5.1) and (5.2), 

2mr is equal to i,q, so that the actual a should be 45° against aRe f. Thus, torque coefficient 

kt is identified as follows: 
2 

kt =e(max)(5.15)  Z 

In order to measure the torque, the following relation is used at no-load and low speed 

condition: 

            Te=Jdr+To (5.16) 
where J is the moment of inertia obtained in the preceding section, and To is Coulomb 

torque. The Coulomb torque can be computed by experimental measurements with the two 

kinds of constant stator current i, and i; when J----dtand J----dtare measured. In fact, iflc, 

is constant, To is given from (5.15) and (5.16) as 

                                  i2 Jr—'ZJ----r 

To =dt~ —z2dtt (5.17) 
                        as
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Thus,  kt can be identified. The identification of 7 is done by the following theory . Assume 

aRef gives maximum torque under the condition of constant i„ such aR ef would be confirmed 

experimentally by changing aRef and measuring the torque. As mentioned above , the actual 

a should be 45° so that imr = isq. Thus, 7 is identified with the nominal value , 70 and aRef 

as follows: 

_ wstZmr=(702, sin aRef                                       J`Zmr_ yo tan aRef(5.18) 
2,q is cos aRef25q 

Thus, the term (tan aRef) in (5.18) represents the deviation rate of actual 7 from the nominal 

value. 

  In the magnetic saturation region, however, a at the maximum torque may become larger 

than 45°. In order to identify kt in the magnetic saturation region, the following algorithm 

is needed. 

  i) For each i„ Te(max) is obtained experimentally. 

 ii) Assume initially that a = 45° for Te(max), and so imr = i, cos 45°. Then the relation 

kt = f(imr)(5.19) 

    is obtained using 

22 

Te = kt imri,q = kt2sin 2a(5.20) 

    but since a is not necessarily 45°, we can make a relation between Te and a using 

    (5.19) and (5.20), for example Fig. 5.2. 

 iii) From Fig. 5.2, for each i, we have a which gives Te(mar) and Te when a = 45°, and 

     again kt's when a = 45° are obtained with the torque deviation ratio from Te(max)• 

    Then we have another relation of such a type as (5.19). 

 iv) Repeat ii), iii) until the graph of kt = f (imr) does not change. 

   Fig. 5.3 shows the result by using the above algorithm, that is, starting from the initial 

graph (the upper dots), the algorithm converges to the final graph (the solid curve) by 5 
times iteration. If the rotor leakage inductance lr is assumed to be constant, the magnetizing 

inductance Lr„ is obtained by (5.3). This relation is shown in Fig. 5.4.
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Fig. 5.4.
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From Fig. 5.4, an inverse magnetizing curve is obtained as shown in Fig. 5.5. The relation 

shown in Fig. 5.5 is used to identify the rotor resistance. In the experimental system, a 

look-up table is used to produce the relation of Fig. 5.5.

5.3 Rotor parameter adaptation 

  This section shows a novel method of the rotor parameter adaptation containing a mag-

netic saturation model and a MRAS. The rotor parameter -y changes by temperature and 

magnetic saturation. For precise torque control by the parameter adaptation, both variation 

effects have to be considered. Therefore, the MRAS is designed so as to make the error of 

the torque magnitude zero and estimate the precise rotor resistance at the constant flux. 

The saturation model obtained in the preceding section compensates inductance variation 

for flux change. As a result, the proposed parameter adaptation works at any constant flux 

level.

5.3.1 Design of the adaptation law 

  Compensation of the rotor resistance variation which depends on the temperature is 

considered here. In order to do an on-line adaptation, the MRAS approach utilizing the 

model reference error of torque is applied, which assures stability. Now, notice equations 

(4.3) and (4.5) which are the actual and the mathematical models respectively. Since (4.3) 
and (4.5) are nonlinear, they are linearized by Taylor expansion around an operating point 

after each variable is expressed by the d-q  components in the rotational reference frame. 

[L\mrd] _[-1'0 W310[mrd]+O1aq P°pRr (5.21) LX2mrq—C4)510 —'Y0 Airnrq1 

0imrd 1-=[HIO  W.s10 [trnrd]2j—°Rr(5.22)                             —L,-).to+[1 LT 
where (0) denotes the operating points, (^ ) denotes estimated values, and LT is assumed 

not to change, since it is not necessary to consider the saturation effect in the small range 

around the operating point. Subtracting (5.22) from (5.21), the state error equation can be
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obtained as follows  [15]: 

            p 

              [Amrd  —1\2mrdl—ryoW310Aimrd—mrdAZmrqJ—Weto^0Ai                       7l((mr                                                              JL                                  4 J 

                                                          21go                +0 1 [1](_A) (5.23) 
where estimated rotor parameter is assumed to converge to the actual value at the operating 

points, that is, 5'o = -yo. 

   In the same way, the linearized torque equation around an operating point are expressed 
from (4.8) as follows: 

OTe = kt [(isgo + / isgo)(imrdo + A mrd) 

(isdO + Aisdo)(imrgo + Aimrq)](5.24) 
the = kt(isgo + Disgo)(Zmrdo + A mrd)(5.25) 

Subtracting (5.25) from (5.24), the torque error between the actual and the mathematical 

models are 

OTe — L1Te = kt {i qo(L imrd —AZmrd)—ZsdOAtmrq](5.26) 

where imrgo = 0, OZ1g1Zmrd, OZsq/Zmrd and A sd0imrq are omitted due to negligible small 

values. From (5.23) and (5.26), the transfer function from the rotor resistance estimation 

error (AR,. — ART) to the output (AT, — Ail) is obtained as follows: 

G(s) —LTe — Ate 
LIRr—ARr 

                               Kt
sz                                   isdOisq0                      +70{{1 +((isql/i,d))}}(5.27) 

where 

Kt= —kt/Lr .(5.28) 

Thus, the adaptation law for Al?.,. must be determined so that (AZ —At) ATe) converges to zero. 

This means AR,. converges to AR,.. In many cases, the adaptation law is chosen according 

to Popov's hyperstability theorem [16][17]; however, in our case the adaptation law can be 

linear as follows: 

ART = (Kp + Krl s)(ATT — ATe)Vsign(5.29)
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AR,
 G  (s) Vsign

O Te

Kp+KI/s

       AR,.s3as2bsfic 

where 

           a=2-3,0+KtVsignisdOisgOKP

r              b=K tVsignZsd02sgOKl+KtVsign2sdoisgoio{l—(2sg0I2sd0)2}KP 

+5'02{1 + (2sg0IZsd0)2} 

              C=KtVsignisd02sg0`0{1 — (2sg0/Zsdo)2}KI . 

Fig. 5.6 shows the block diagram of the adaptation. 

  For the stability of the system, a, b, and c should be positive and ab — c 

Routh-Hurwitz condition. V,ign, K and K are thus determined. That is, Vsign 

function as follows:

  1A ~Rr

Fig. 5.6. Rotor resistance adaptation block diagram. 

where K and Kr are the adaptive gains. From (5.27) and (5.29), the transfer function from 

ART to ART is 

AR,. =KtVsignisd02,go[s+Yo{1 —(Zsgo/isdo)2}1 (sKP+KI) (5.30)

In the case

Vsign = 

i) and iii) o 

0 <

i) 
ii) 

iv

of  (5.3 

Kp<--

  if i,qo > 0 and l2,go l > i,do then 
  if i,qo > 0 and li,gol < i,do then 

) if i,qo < 0 and li,gol > i,do then 
) if i,qo < 0 and ~i,qo ~ < 2,do then 

   Kp and KI are determined as 

2'yo 

2,dOlxtisgol

1 

-1 

-1 

 1

(5.31)

> 0 by the 

is the sign

(5.32)
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 0  < K~ <
2'YO — isdOI Ktisgol KP

       

f-----------------------------------------------------------------------------(5.33)                        25'o — isdOI KttsgOI KP —~Yo{1 —(Z,qO/i3do)2} 
while in the case ii) and iv) of (5.32), Kp and K1 can be determined as 

KP>0,KI>0.(5.34) 

5.3.2 Adaptation with the saturation model 

  In the adaptation mentioned above, the inductance variation has not been considered 

yet. The inductance variation depends on i,,,,., and imrdepends on i,d. Assume i,d changes 
stepwise, then i,,,,.can be considered to be the piecewise constant compared with the re- 

sistance variation which depends on temperature. From (4.3), the d-axis equation can be 

rewritten as
(—Zmr)p+2mr — Zsd(5.35) 

where Lr and RT.denote actual values. Let L,O and Rro denote the nominal value of LT and 

R,.respectively, then we have from (5.35), 

                 —p( LrimrJ= -----(Zad-2,nr)(5.36)                           'Yo1/ 7.0/RrO 

In order to take the saturation into consideration, (5.36) is used instead of (4.11) as follows. 

The rotor leakage inductance I,.is so small compared with L,.and Lm that the following 

relation can be assumed: 
                               L„, L,. 

(5.37) 
Lmo Lro 

where Lmo denotes the nominal value of Lm. Thus, the modified rotor flux angle estimation 

for al, can be obtained with the adaptation and the saturation model by (4.15), (4.16), (5.29) 

and (5.36). These are shown in Fig. 5.7, where the estimated rotor resistance is used. 

  This method has a drawback only in the following case. When the flux level changes, 

and the inductance changes, the adaptation may not work correctly because the inductance 

value is assumed to be the constant in (5.29) and (5.36). However, once the flux level is 

steady at any operating point, the correct inductance value is informed to the adaptation 

system indirectly from the saturation model.

isdOIKtisgO 
`o21 + (iSOo/2edo)2} —Yni.anl Kfi.,.nl KPS 1 — (i...,,/i..,n)21
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    of Fig. 5.5
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X

Wr 

Lm
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Fig. 5.7. Flux angle estimation with the adaptation and the saturation model. 

This adaptation system can estimate rotor resistance correctly at each constant level of flux. 

In (5.29), the torque of the mathematical model is calculated with i`rr,r(= m0irnr) as shown 
in Fig. 5.7. 

                 Te = ktoimr2.ss(5.38) 

where kw is the nominal value of the torque coefficient. It can be seen that i;rr compensates 

the inductance variation. On the other hand, the actual torque can be obtained by the 

measurement by a torque detector [15] or the estimation with dc link power [18]. For the 

torque estimation at the steady state, the feature of CSI may be useful. That is assuming 

no power loss in the inverter, the power into and out of the inverter is identical [19]. In this 

case, torque is expressed as follows: 

TC = 3[(2/3)VDCIDc — R,Ii512]/wi(5.39) 

where VDC is the inverter input voltage, R, is the stator resistance and wi is the stator 

synchronous angular velocity. The measuring dc link power seems to be much simpler than 

measuring the inverter output. and wi can be obtained with each reference value. How-

ever, since some power losses which are regarded due to the switching losses and smoothing 

filters are certain to exist, the power efficiency of the inverter should be measured beforehand.
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5.4 System configuration 

  The control algorithm of the proposed system in the preceding section is shown in Fig. 

5.8. The difference from Fig. 4.9 is the flux angle estimation block which includes the 

magnetic saturation model shown in Fig. 5.5 and the MRAS using the model reference 

error of torque to compensate rotor resistance variation. The proposed method is verified 

by the simulation and the experiments in the next section. The experimental system is 

shown in Section 4.4. The control algorithm as shown in Fig. 5.8 is executed by using DSP 

 (NEC-1PD77230). The computational time is about 0.55 ms for one cycle.

a Ref

Inc controller 

 (4.23)

AdaptiveFlux 
angle estimation 

  of  Fig. 5.7

IDC Ref

controller

Vector 
 approximation 

the switching period

/DC

I~I 
CSI

ejt 

O Encoder

Ld

Fig. 5.8. Control alg orithm of the vector approximation
Iv-i t.Ii the parameter adaptation.
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5.5 Verification of the parameter adaptation

5.5.1 Simulation results

73

  Fig. 5.9 evaluates the rotor parameter variation effects on the vector approximation 

system by the computer simulation, where the rotor speed is 120 rpm at the steady state, 

the reference magnetizing current  i,n,. is 10 A, the load torque is 6.0 Nm (about 20 % of the 

rated torque) and the machine nominal parameters are set to the ratings of the experimental 

system as shown in Table 4.1. If the rotor resistance of the machine model is increased with 

step-change 50% more than the nominal value, while the rotor resistance set in the control 

part is still the nominal value, then the stator current in Fig. 5.9(a) changes from the 
solid line to the dashed line. The solid line shows the stator current in the case that the 

machine model's rotor resistance does not change from the nominal value. It can be seen 

how the phase and amplitude deviate from the ideal behavior. Fig. 5.9(b) shows the error 

of a between the actual and the reference. Since a is the angle between is. and i,,,r., torque 

must be also influenced. It can be understood apparently from (4.8). Fig. 5.9(c) shows the 

reference torque by the dashed line and the actual one by the solid line. 

  Next the parameter adaptation proposed in Section 5.3 is tested under the introduced 

condition in Fig. 5.9. Fig. 5.10(a) shows the estimated rotor resistance by MRAS and the 

actual rotor resistance in the machine model, where both of them are indicated with the 

dashed and solid line respectively. The estimated rotor resistance converges to the actual 

one within 0.8 seconds. This convergence time is seems to be sufficiently fast because the 

real rotor resistance varys slowly due to the slow variation of temperature. In Fig. 5.10(b), 

the stator current is shown by the dashed line, where it should be noticed that the amplitude 

is compensated for the same time as the rotor resistance convergence. Fig. 5.10(c) shows the 

error of a between the actual and the reference, and Fig. 5.10(d) shows the reference torque 

and the actual one as well as Figs. 5.9(b) and (c). The error of a and the deviation of the 

reference torque from the actual one are also corrected with the rotor resistance convergence. 

  These simulation results evaluate the parameter variation effects to the system and the 

necessity of the parameter compensation, and then the rotor resistance adaptation also shows 

the capability of precise torque control.
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Fig. 5.10. Evaluation of the parameter adaptation. (a) Estimated rotor resistance by MItAS. 

(b) Stator current waveform. (c) Error of a between the actual and reference. (d) Reference and 

actual torque.
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5.5.2 Experimental results

76

  The parameter adaptation proposed in Section 5.3 is tested on condition that the rotor 

speed is 120 rpm at the steady state, the reference magnetizing current  im7 is 10 A, and 

the load torque is 6.0 Nm (about 20% of the rated torque) which was measured by a torque 

detector. This load condition is suitable to test the switching algorithm (5.32). The nominal 

ratings of machine parameters in Table 4.1 are used. Fig. 5.11 shows the estimated torque 

responses and the estimated rotor resistance. The estimated torque converges to the actual 

value 6.0 Nm, and then the estimated rotor resistance converges to 69% of the initial value 

0.335 S1, which would mean that the initial rotor resistance has been set to 1.45 times more 

than the actual value. According to (5.27), when the estimated torque coincided with the 

actual value, because the estimated rotor resistance also would coincide with the actual 

value. 

   In order to confirm our theory more certainly, another condition is tested, where the 

reference magnetizing current is 10 A initially, and after the operation reaches the steady 

state the reference magnetizing current is changed from 10 A to 6 A stepwise. The initial 

condition of the rotor resistance is the same as in Fig. 5.11, and the change of the rotor 

resistance can be negligible since the experiment is done for the short term so that the tem-

perature of the machine cannot change. Since the control system has a magnetic saturation 

model to compensate inductance variation due to the change of flux level, the rotor resis-

tance is expected to estimate the same value as shown in Fig. 5.11. Fig. 5.12 shows the 

expected result, that is, the estimated rotor resistance converges to the same value of Fig. 

5.11, and the estimated torque also coincides with 6.0 Nm. This result shows the capability 

of the proposed system for the rotor resistance estimation at the different flux levels. In the 

experiment, the adaptive gains are selected asKp = 0.16 • 10-4, K1 = 0.771•10-4which are 

relatively small to avoid oscillations in the estimated rotor resistance. 

   Finally, the speed and dc link current responses in the case where the updated rotor 

resistance value is used in the control system are compared with those in the case where an 

incorrect rotor resistance value is used in the control system. Fig. 5.13 shows the responses 

in the latter case, and Fig. 5.14 shows the responses in the former case.
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  From these results, it can be noticed clearly that the acceleration property is improved 

in the former case. This reason is understood as follows: Even though the estimated torque 

is set to the rated value during the transient state, the actual torque in the case of Fig. 5.13 

cannot reach the rated value, but the actual torque in the case of Fig. 5.14 can coincide 

with the estimated torque.

5.6 Conclusion

  This chapter has shown the vector approximation method with the parameter adaptation 

for  CSI-fed induction motors. The parameter adaptation with the saturation model can 

estimate the rotor resistance correctly at each different flux level, and the estimated torque 

coincides with the actual value which shows the capability of precise torque control. As 

mentioned in Section 3.2, where the stator voltage equation in the field oriented reference 

frame is shown, the complete decoupled control of i,d and isq of the stator currents like the 

separately excited dc machine is said to be difficult by the field oriented control in the CSI 

drive system; because the voltage equations of the induction machine are coupled as shown 

in (3.6) and (3.7). 

  The direct torque control with the proposed method, however, can force to realize the 

precise torque control, which is effective as well as the decoupled control. The proposed 

method in this chapter is not so complicated to implement, and is adequate for the precise 

torque control of medium and large-size drives with low speed.
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Chapter 6

Applications of robust control

6.1 Introduction

  In Chapter 4 and Chapter 5, the vector approximation, the parameter adaptation , and 

the torque control are discussed. The remainder topic to be discussed is the robust control 

for the CSI drive induction motor. 

  Conventional linear control methods such as PI control have been widely used in indus-

try electrical drives and also used in the preceding chapter [see (4.27), (4.28), and (4.29)], 

however, dynamic performance of the control system is often limited due to the conflict 

between overshoot and long setting time of the system response. There are inadequate re-

jections against external disturbance as well as the sensitivity in performance to the system 

parameter variation and nonlinearity. Thus, robust stable drive systems are required for any 

applications. 

  This chapter concerns with the applications of robust control, an H„„ control and a 

simplified adaptive control. In order to design the robust speed control system, first, the 

nonlinear dynamical model of the rotor angular velocity and the dc link current is linearized 

by exact linearization. Then the linearized system is applied to design the Ho„ and the 

simplified adaptive controller, respectively. The robustness of these systems compared with 

the PI control system based on the conventional control theory are verified by the simulation 

and the experiments.
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6.2 Modelling of the CSI drive induction motor 

  This section shows a modelling method of the CSI drive induction motor. The basic 

equation of a symmetrical induction motors shown in (4.1) and (4.2) are reviewed: 

         [us] _ Rs+LspLmpZs             oLm(p — jWr) Rr+Lr(p—jwr)i;(6.1) 

LT 
imr = is +r(6.2) 

where u„ i„ i; , and imr are the complex numbers of stator voltage, current, rotor current 

and rotor magnetizing current, respectively, in the stationary reference frame fixed to the 

stator, that is, a-1@ axes in Fig. 4.1. R, and Rr are the stator and the rotor resistance, L, 

and L,. are the stator and the rotor self-inductance, Lm is the magnetizing inductance, co,. is 

the rotor angular velocity, and p is the differential operator. The rotor magnetizing current 

in the reference frame is defined as imr = imra + jimrs. 

  From (6.1) and (6.2), the following equations are obtained: 

                                          L2 us,„ = (R, + crL,p)isa+Lpimra(6.3) 

                                                                                    T 

                                                           pZmr =(—LR_r~-3Wr)imr+RTZs(6.4) 
where o = 1 — Lm/(L,Lr). From (6.4), the phase angle of imr with respect to the a axis is 

                 pa,„= for +LZ mg(6.5) 

and the magnetizing current equation in the field oriented reference frame, that is, in the 

d-q axes is
R+ 

pZmr = L(Zsd—imr)(6.6) 

where imr is the magnitude of imr, i,d and i~q are the d-axis and the q-axis component of 

in Section 4.3, respectively. 

  As shown in Chapter 4, the inverter switching is done by the vector approximation 

method which is a switching topology considering the vector approximation for the CSI 

drive induction motor. In a sixth of the period of i;, which is one of sectors shown in Fig.
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4.3, assume  imr,  i, and a are constant, and then (6.3) becomes 

u,a = R,i, cos a p — wicrL,i, sin ap 

                           L2                             — wi2 mrsin(aP— a) + aL, cos appi, 
                               L, 

                         L2 
COS(a, — a')Pimr 

L, 

where i, is the magnitude of i n a is the phase angle of i, with respect 

ap = a1, + a, and wi = pa p is the stator angular velocity. Phase voltages are 

following phase transformation matrix:

 usa 

U5V 

11sW

1 
 1 
 2 
 1  _2

0 

 2 _~ 

  2

 u,A

82

      (6.7) 

to the d-axis, 

given using the

where u,U = u,a, and the other phase voltages have phase differences 3~rfrom u,U and can 
be calculated as well as (6.7). 

UsU =(6 .8) 

u,V = R,i, cos (ap — 27r/3) — c. aL,i, sin (ap — 27r/3) 
L2                  — wi i in.. sin (ap — a — 27r/3) + aL, cos (ap — 27r/3)pi, 

                  L2 

L'"cos (ap — a — 2ir/3)pi,,,r(6.9) 
u,W = R,i, cos (ap — 47r/3) — wluL,i, sin (ap — 47r/3) 

L2                 —Lsin (ap — a — 47r/3) + oL,cos(ap — 47r/3)pi,                                 L,. 

L2 
+ cosL"` (ap — a — 41r/3)pi,,,r(6.10) 

  In vector approximation method, the required current vector i; is realized approximately 

by two realizable current vectors i51 and i52 which are applied by switching for Otl and tt2 

during one switching cycle At. From (4.19), i; is expressed as follows: 

                     is = {otl i,l+At2 i,2                  is(6.11) A
t 1i,11 At 1i,21 

Assume i,l and i52 are applied on the phase UV and UW (i.e., the sector 0 in Fig. 4.3), 

respectively, for example. Then the average inverter input voltage VDc is calculated: 

       VDC~{fxAtu,V)dap+ fott(u,U  u,w)dap} (6.12) 
66
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Fig. 6.1. CSI drive induction motor system. 

  Each firing time is expressed approximately as follows: 

                   Ati sin(3 —ap—6)1 3 
At sin(3+ap+s)2itp 

               At2Atl 1 3 

At=1 —At2+7ap 
Substitute above equations and (6.7) into (6.12), and then (6.12) is calculated as 

                   90 .9 LZ                  VDC = ~2Z,R,+7r22~L(imrWr+R-r                                       L_i,q) sin . (6.13)                L,.r 

Assuming continuous current in the dc link reactor shown in Fig. 6.1, and then dc link 

current 'DC can be considered to be determined by the averaged quantities VDC and Ed. 

The differential equation of dc link circuit are expressed as 

                  Aida'd7'+ RdIDC = Ed—VDC(6.14) 

where Ed is output voltage of the converter. The relation of currents are 

i,d 2 
is =-----_-----=IDC.(6.15) 

                      sina cos av3 

From (6.13), (6.14) and (6.15), the differential equation of the dc link current are expressed 

as follows: 

                                                      a 

            ddD°_— (Rd  +R3+182sin2 ar 
                90-Lm 2r,„Wr sin +Ed(6.16) 

               7r2LrLd Ld 

The instantaneous torque is 

3 L2 
                   Te=ktir„ri, sina,ki =2PL

r(6.17)
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and the rotor angular velocity is related to the torque as 

 P dtr+P„1117-= Te — TL(6.18) 

where  air is rotor angular velocity, P is the number of the pole-pairs, f„ is the viscous friction, 

and J is the moment of inertia. From (6.15), (6.17) and (6.18), the differential equation of 

the rotor angular velocity is expressed as follows: 

dwr _                          3
L,.mr'DC sin a —J„wr —PTL dtJLr 

             3 P2Lm .4 7,2PTLPTL(6 .19)                 =2mrIDC
3—I—D„wr—J 2 JLrDC 

where V„ = f„/J.

6.3 Exact linearization 

  The nonlinear system with (6.16) and (6.19) are expressed by 

                       = f(x)+g(x)u 

where (•) denotes the differential operator, x = (Wr IDC )T , u =

f(x) =

Ed, and

(6.20)

 DcIDc 

Ac T'- -

13 
B~

i2 _-    I

/D'7C     (._[Ur

- P ub),

_ 

Bc = 

cc = 

Dc _

'DC 

0 )g(x) _ ( 1/Ld 

—(Rd+18 R~ + 
7r 

 27 Lr2nRrimr

4 iLr  
      2 3 IDC

18Lr2nRr 

7r2Lz 

r

1 

Ld

(6.21)

27r2 LTLd 
  27 Lr2nimr  

 2ir2 LT Ld 
3 P2L,Zmjmr 
2 JLr

(6.22)
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Since the above system is so nonlinear, the controllable range may be limited with the conven-

tional linearization method, the first order approximation of Taylor expansion, for example. 

Exact linearization [21][22] is a method to linearize the system without any approximation, 

and the controllable range is extended greatly. The system for exact linearization, however, 

must satisfy with the following theorem. 

Theorem [21]. Consider the general case where  (6.20) is a n-dimensional system. Then 

the necessary and sufficient conditions for the possibility of exact linearization are given as 

follows: 

  (a) {adfg(0), • • • , acfrig(0)} is independent lineally. 

  (b) {ad fg(x), • • • , adf-2g(x)} is involutive. 

where Lie bracket is defined as 

[f,g](x)= Z()—aT g(x) ,(6.23) 
and ad fg(x) calculates Lie bracket iteratively, 

ad°fg(x) = g(0) , adfg(x) = [f, ad`f 1 g](x) • (6.24) 

                                              El 

  If the above theorem is satisfied, then the function 0(x) exists with the following condi-

tion: 

                    =0, i=0,1,2,•• ,n-2(6.25)     ac:f90(x) 

where Lie derivative is 'defined as follows: 

ao L
f0(x) = 8 f(x) , Lfo(x) = Lf{Lf 10(x)} 

   It is known that (6.20) can be transformed to the linear state equation, if the following 

state transformation and the input transformation are done:

 4.1 
~a 

Sn

 0(x) 
 Lf0(x) 

L7-1 0(x)

(6.26)
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 u= 

_ 

  In this case, the above tI 

follows: 

_ Since

from (6.27), the in 

where

 Lfl0(x)  
LgL7-10(x) + 

0 1 0 ... 0 

0 0 1 

• 0 

0 0 0 ... 1 

0 0 0 ... 0 

rrem is satisfied, 

z) = (DCIDC, j 

          V 

    =e;f(x) 
   = DcIDC 
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 1 
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           ao 
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      T2              = Dc1DG —2mr 
                  3 IDc 
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              = 1311 — Dv f2 

    1BLf~Ld     LgLf=(x)axg(x)_13 

put transformation is given as follows: 

               Ld 
U=—f

3(J3J1—Dvf2)4-f3 

                       4 

    fi = AcIDC +Dc+ Cc`.`'r3 

                           2 12 = DcIDC4—z2----r—DvWr 3 IDC 
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   (6.27) 

   (6.28) 

is found as 

   (6.29) 

   (6.30) 

   (6.31) 

   (6.32) 

   (6.33) 

   (6.34)
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Fig. 6.2. Exact linearized system. 

  Then the exact linearized system are obtained as follows: 

0 1\ 0 

0 0))+(1)v 
                      y=(10)I 

The exact linearized system is shown in Fig. 6.2.

1 

J

(6.35) 

(6.36)

6.4 H00 control

  This chapter treats the H. control system with exact linearization for the CSI drive 

induction motor. The characteristic of the system considerAly changes with the disturbances 

and the changes of parameters. The modelling and the exact linearization of the CSI drive 

induction motor are shown in the preceding sections. Then the Ho° controller is designed for 

the obtained model, which is approximated lineally around an equilibrium point to be the 

current feedback system and the nonlinear compensator between the nonlinear model and 

the approximated model is constructed by the input transformation. Several experimental 

results show that the H. control system with exact linearization is quite robust against 

disturbances and parameter changes as compared with both the PI control system and the 

H00 control system without exact linearization.
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  In this section, the H„.:, controller design of single input single output systems is shown; a 

control system is considered in Fig. 6.3, which is so-called the two block mixed sensitivity H oc, 

design problem, where G(s) is the control object, W,(s) and We(s) are weighting functions 

for the sensitivity function S (i.e., S = (I + GK)-1) and the complementary sensitivity 

function T (i.e., T = GK S) respectively. Denote that w(s) is the disturbance vector; u(s) 

is the control input vector; z(s) is the controlled output vector; y(s) is the measured output 

vector. 

  The Hco control problem is to choose a controller, K(s), that makes the closed-loop 

system internally stable and minimizes the Ho,-norm of the transfer function from w(s) to 

z(3). In fact, the problem of the finding stabilizing K(s) (u = K(s)y) such that 

II LFT(Pe, K)II.° < ryc 'Yc E R+(6.37) 

where Pe is the transfer function of the generalized plant[23], 

            yz=Pe[u](6.38) 
                     P=P11 P12 

e 

                                  P21 P22

 W,

0

-W ,G -

W1G

I -G
(6.39)

G(s)

K(s)

 W  s  (s)

—W e (s)
z

Fig. 6.3. Mixed sensitivity Hoo problem.
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and LFT is linear fractional transformation, then 

LFT(Pe, K) =I 0J l +W G1GK(I + GK)-1I        LJ                  W' S 1 
       W,T(6.40) 

It should be noted that —P22(s) is the control object. So the internal stable problem is to 

choose a controller, K(s), that makes the G(s) internally stable. Since 

S+T=1,(6.41) 

it cannot be satisfied simultaneously to make gains (IIS(jw)II and I IT(jw) 1) as low as possible 

together. Therefore, the suitable weighting functions W,(s) and Wt(s) should be chosen 

separately to obtain the low sensitivity on the low frequency band and the robust stability 

on the high frequency band. If such a K(s) exists, it is considered that the Ho. problem is 

solvable. The state-space realizations of G(s), W,(s) and Wt(s)G(s) are denoted as 

G(s) = L AP----------BP](6.42) 
                                                       P [W,(s)A'-----------B'(6.43)  C, D, 

               Wt(s)G(s)=[ APBPJ(6.44) 
                                      Ct Dt 

where AP E RlPxnP and A, E R"'""', then the state-space representation [23] of the gener-

alized plant Pe(s) in (6.39) is

Pe(s) _

^

 Ap Bp

-Cr 0
^

A, B,

C, D,

Ap Bp

Ct D1

A B1 B2

 Cl

 C2

A,

0

D11 D12

D21 C

B, CP

Ap

B. 0

—B p

C, D,CP

0 — Ce

_ 0 CP

D, 0

0 Dt

I 0

(6.45)

where A E  R(n'-Fnp)X(n,+np). 

  The following assumptions are made to ensure the existence of a controller [24].
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Al. (A, B2, B3) is stabilizable and detectable. 

A2. D12 has full column rank and D21 has full row rank . 

A3. D12 and D21 are transformed into  D12 = I j 1 and D21 = [ 0 I ] by scaling of u and 
y, together with a unitary transformation w and z. D11 is partitioned compatible with D12 

and D21 intoD1111 D1112 
             D1121 D1122 

A4. For all V w E R,IA1w1Di2has full column rank. 

                 L 

                 A — jw./Bl1 A5
. For all V w E R, has full row rank. 

C2 D21 

  Recently, a theory of optimal He. control design has been widely developed. Among 

all tools available for such design, the method of Glover and Doyle [24] is widely accepted, 

which is called the standard Hcx, control design. In this section, "MATLAB", which is a tool 

for the design of control systems, is used. 

  Now the design of the Hoo controller for the CSI drive induction motor is shown in the 

following. The nonlinear dynamical model of the rotor angular velocity and the dc link 

current were linearized by exact linearization in the preceding section. With the exactly 

linearized system, the control block diagram is considered as shown in Fig. 6.4, where 

the current feedback loop is still kept because the H,, controller to be designed is a speed 

controller and the current controller should be kept due to the current controlled type inverter 

drive. The control object is expressed by eliminating v from (6.34) and (6.35) as follows: 

       (E20() 

                 f 

                   ( )J+[9P2(~)Ed6.46                                        LP2 

                  I-10, controllerExact Linearized System 
            0.1 rRef---------- KIDCRefK

lrs)Ed Nonlinear Ed Nonlinear —(s)_—"L~Compensator System -----I

Inverse Transform 
  of (6.30)

 w  r

Fig. 6.4. Control block diagram.
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where 

 Jp2W = —Dvf2 + .f3f1 

9p2W = •f3/Ld 

The nonlinear model is approximated lineally by Taylor expansion around an equilibrium 

point ( _ Eo + , Ed = Edo + Ed), then the approximated model is 

                   r0 11r0l =Lala2]C+Ib2]Ed(6.47) 
whereL 

                 afp2(~)
+agp2()Edo (i = 1, 2) 

             b2 = g2(0) • 

Thus, the nonlinear compensator between (6.46) and (6.47) is constructed as follows: 

             1
{((t48(6 .                   Ed

9p2(~)(ai~i + a2~z + b2Ed—^p21~))() 

This compensation keeps the nonlinearity of the system in order to extend the controllable 

range, while the conventional linearized method has no such compensation. 

  An H , controller is designed for the system shown above. The operating point of the 

system is set as follows: IDC = 10A, co, = 120 rpm, Edo = 22.37 V. Then the coefficients 

a1, a2, and b2 are calculated as follows: al = —13.47, a2 = —13.88, and b2 = 14.44, where 

the nominal parameters shown in Fig. 4.1 are used, and the moment of inertia J = 0.82 

kgm2. The current controller Ki(s) shown in Fig. 6.4 is treated as a part of the system, the 

transfer function of the system Ge(s) including the current controller is given as follows: [34] 

                               61.53s + 473.32 
                  Ge(s)

S3 + 50.23s2 + 317.56s + 187.99(6.49) 

 _ where Ki(s) is set as 

Ki(s) =0.03(s + 7.1994)(6.50) 

Moreover, in order to include an integral controller, consider the extended system Gext: 

Gert(s)s------+Ge(s)(6.51)
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,....

 ll

Gext (S)

Kext (s)

W s (s)

—W t (s)
z

W rRef

Fig. 6.5. Mixed sensitivity Hoc, problem in CSI drive induction motor system. 

  Fig. 6.5 indicates the mixed sensitivity H00 problem for this case, where the sensitivity 

function and the complementary sensitivity function are selected as follows: 

          W,(s) = -------P(6.52) 
s+77 

               Wt(s) _(sZ~t)a(6.53) 
                                a?Pi 

where p, 77, at, 13t, and are parameters to be designed. In this augmented system, (6.37) is 

used as the performance index in the standard Hcc, control design. From (6.37) and (6.40), 

then (6.37) becomes 
W,S 

                                                    (6.54)                          WtT<7~ 

where S(s) and T(s) are expressed as follows: 
                              1(6

.55)                      S(s)
1+Gext(s)K==t(s) 

                  _ Gext(s)Kert(3)(6 .56)                      T(s)
1 + Gert(s)Kext(s) 

As a result of the design, if p = 2, 7 = 1.2697, at = 420, Of = 15, and = 10.91, then the 

obtained Hoc, controller is 
5.8989 • 104(s + 78.668)(s + 7.2285)                                                      (6

.57) K`xt(3)3(3 + 439.3 + j 128.55)(s.+439.3 — j 128.55)(s + 10.91)
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Fig. 6.6. Characteristics of S(s) and T(s). 

Fig. 6.6 shows the characteristics of S(s) and T(s). In (6.51), the integral controller is 

considered, but the real system cannot include it; therefore, the controller should be included 

the integral controller. Finally, the designed H. controller is shown as follows: 

K(3) = Kexl(s)s-------s 
                      5.8989 • 104(s + 78.668)(.s + 7.2285) (6.58) 

s(3 + 439.3 + j128.55)(s + 439.3 — j128.55) 

6.4.2 Verification of the Hoo control 

  Fig. 6.7 shows the experimental system, where the nonlinear compensator is shown 

but it is taken out when the PI controller or the conventional H. controller is used for 

the comparison. In order to verify the designed controller in the preceding section, the 

experimental tests are done with the PI controller, the H. controller, and the Hoz, controller 

with exact linearization. In the experiments, the value of the speed reference is set to 120 

rpm, where the load torque is changed suddenly with the increase of 200 % and 300 %, and 

the value of the rotor resistance set in the controller is increased more 16% than the nominal 

value at the steady state. 

  The sudden-load increase causes the drop of the speed and the increase of the current, 

that is, the operating point deviates from the initial equilibrium point, in order to confirm 

effectiveness of exact linearization.
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Fig. 6.7. Experimental system. 

The artificial parameter change in the controller is done for checking the robustness of the 

H. controller. 

  Fig. 6.8 shows the experimental results of the PI controller. At the sudden-load change 

of 200 %, the drop of speed against the reference is 2.53 %; at the sudden-load change of 300 

%, the drop of speed against the reference is 5.06 %. Moreover, in the sudden-load change 

of 200 % and 300 % with the parameter increase of 16 % simultaneously, the drop of speed 

against the reference is 5.06 % and 6.32 % respectively. In Fig. 6.8, the recovering time of 

the speed controlled by the PI controller seems to be so long but for reducing the overshoot 

at the transient state the PI control gains are considered to be adequate. 

  Fig. 6.9 shows the experimental results of the H. controller without exact linearization. 

From Fig. 6.9(a), the speed drop at the sudden-load change of 200 % was improved compared 

with the case of the PI controller; however, the speed drop at the sudden-load change of 300 

% is 2.53 % against the reference,
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and the speed drop at the sudden-load change of 300 % with the paramet
er increase of 16 

% simultaneously is 5.06 %. This fact is understood that since the operating point of the 

system deviated far from the initial equilibrium point
, even the Hoc, control could not cope 

with the sudden-load change. 

  On the other hand, Fig. 6.10 shows the experimental results of the H , controller with 

exact linearization, where the good performance are shown; it could be seen that the designed 

controller can control the speed precisely in all of the test .

6.5 Simplified adaptive control

  A simplified adaptive control (SAC) [25] has relatively simpler adaptive structure com-

pared with that of model reference adaptive control, but also has the robust characteristics 

concerning disturbance and the effects of unmodeled dynamics. The SAC, however, can be 

originally applied to the linear system which should be limited to almost strictly positive real 

(ASPR) system. Since ac motor drives are so nonlinear system as shown in (6.16) and (6.19) 
that the SAC with the proof of the stability for ac motor drives have not been achieved. 

This chapter proposes the SAC for the nonlinear system by combining with exact lineariza-

tion. The nonlinear dynamical model consisting of the rotor speed and the dc link current is 

exactly linearized in Section 6.3. The SAC system can be designed to the augmented system 

with parallel feedforward compensation which makes the exact linearized system ASPR. The 

proposed system can improve the fast tracking of the reference change without overshoot 

and the recovering time of speed at the sudden-load variations more than the conventional 

PI controller. From the practical point of view, the system has good features that the con-

troller can be systematically designed. The effectiveness of the proposed method has been 

confirmed by the simulation and the experiment. 

6.5.1 Design of the SAC

  When the system to be controlled satisfies some condition, the adaptive control law can 

be simplified. Suppose that the system to be controlled and the chosen reference model are
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given as follows: 

 0''p = A, + bpup , yp = CT xp (6.59) 

im = Am.im + bmrm ,ym = CmT.m (6.60) 

If the following conditions, 

  (a) the control input u to realize the complete model matching y = yr„ exists, 

  (b) The closed loop transfer function by the output feedback with the gain Ke, 
w(s) = CT (sI — Ap — bpKeCp)-1 bp, must be strictly positive real (SPR), 

are satisfied, then by the adaptive control input, 

up = KTz ,(6.61) 

                          zT = (e,xmT , rm) , e = yp — yrn , 

                      KT — (Ice, ka , kr) 

and the adaptive law, 

          K = Kp + K1 ,(6.62) 

Kp = —Fpze,(6.63) 

Kr = —Frze (Fp, Fr > 0) ,(6.64) 

limt, e = 0 is achieved [26]. 

  The algorithm of the SAC shows that the number of integration in the controller is 

determined by only the input, output, and the order of the reference model, which is not 

concerned with the real system. Thus the controller is simplified with the low order reference 

model, and the proof of model matching is shown as "the command generator tracker theory" 

in [27]. 

  In our case, the system to be controlled is (6.35) and (6.36), however, the transfer func-

tion is G(s) = 1/s2 which is not satisfied with SPR condition. In such case, the parallel 

feedforward compensator F(s) as shown in Fig. 6.11 is used, and the transfer function of 

the augmented system is 

Ga(s) = G(s) + F(s)(6.65)
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Ga(S)

v(S)  '(s) 
1  ya

G(s)
+

F(s)

 ya(S)

Fig. 6.11. Augmented system with parallel feedfoward compensator. 

where F(s) =,Qf/(s + af), and in Fig. 6.11, the output of the augmented system is defined 

as ya. F(s) must be determined to make the augmented system ASPR, that is, to satisfy 

the condition (b) for the SAC [27]. If the coefficient Qf is chosen to be sufficient small value, 

it can be considered as Ga(s) ^ G(s), and ya y. From (6.35) and (6.36), 

       

• (0 1 4771 0 0)m+ ()°)vm , ym=(1 0)Em. (6.66) 
and put 

                    vm = )t1(Tm —SC[m1) - A2Gm2 (6.67) 

then 

             771 - 0 —A2) m+ () Tm(6.68)      ( 
ym=(10)4m•(6.69) 

The transfer function from rm to ym is expressed as 

                                             z 

_ ---------------------~'(6.70) 
rm s2+2CWns+w, 

where ' is the damping factor and con is the natural angular frequency, and Al and )12 is 

determined as follows: 
                          I_z                                        =W

n 

A2 = 2(wn 

If C > 1, then ym has no overshoot, and con controls the response of ym.



 zT = (ey,`m,rm) 

KT (kej kE , kr) 

The adaptive gain K is determined as follows: 

               K = Kp+Kr 

Kp = —1'pzey 

KI = —Fize — QKI 

                      = oiey2/(1 ey) + o2 

The block diagram of the SAC is shown in Fig. 6.12.
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  Define the output error between the system and the reference model as e
y = ya — ym, and 

the input of the reference model as I m = WrRef, , then the controller of the SAC is designed 

as follows: 

(kd < 0)

(°1 Q2 > 0)

6.72 () 

(6.73)

(6.74) 

(6.75) 

(6.76) 

(6.77)

rm(t)

&(t)

Reference 

 Model

 ym(t)

kr (t)

k(t) 

ey(t)

Ice (t)

v (t)
Augmented 

   Plant

ya(t)

Fig. 6.12. Block diagram of the SAC.
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Fig. 6.13. Experimental system. 

6.5.2 Verification of the SAC 

  Fig. 6.13 shows the experimental system. The speed controller consists of the SAC 

and the nonlinear compensator that is the state feedback (6.34). The firing angle for the 

converter is controlled by the reference input voltage calculated by the SAC. The inverter is 

controlled by the vector approximation method in Chapter 4. 

  This section shows the simulation and the experimental results to confirm the effectiveness 

of the proposed system. Fig. 6.14 shows the step tracking characteristics, where three 

conditions are tested, that is, con are i): 10.0 (rad/sec), ii): 3.0 (rad/sec), and iii): 2.0 

(rad/sec), respectively, at = 1.0. The output of reference model Sm1 is indicated by the 
dashed line, and the actual rotor angular velocity WT is indicated by the solid line. The 

actual rotor angular velocity wT converges to rr1. Next, the modelling error is assumed in 

(6.34), that is, uRef is defined as uRef = aeu. The coefficient (as) indicates the modelling 
error. Fig. 6.15 and 6.16 show the step tracking,characteristics when ae = 1.2 and 0.8 in the
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same condition with Fig. 6.14 i). These results show the robustness against the modelling 

error. 

  The step load regulation characteristics are shown in Fig. 6.17. The load torque has 

increased from 5.0 to 15.0 Nm. Fig. 6.17(a) and (b) show the responses of the rotor angular 

velocity using the  PI speed controller and the SAC system respectively. The recovering time 

of the velocity in Fig. 6.17(b) was about 0.08 sec, while the velocity in Fig. 6.17(a) has not 

been recovered yet within 0.3 sec. Because the integral gain of the PI controller has been 

selected to relatively small value, the recovering time is so long. However, if the integral gain 

were increased in order to keep the fast recovering time, the overshoot at the step response 

would be large. These are confirmed in Figs. 6.18 and 6.19, where the speed controlled by 

the SAC is indicated by the dashed line and the speed controlled by the PI controller is 

indicated by the solid line. 

  Fig. 6.18 shows the simulation results when the integral gain of the PI controller is 

increased, the recovering time of speed controlled by the PI controller is reduced. In Fig. 

6.19, however, as the step tracking characteristics is shown when the speed increases from 

120 to 130 rpm, the overshoot of speed controlled by the PI controller becomes so large, even 

the overshoot is somewhat limited due to the current limiter. On the other hand, there is 

no overshoot when the SAC is applied. The usual PI controller could not be contented to 

realize no overshoot and the fast recovering time.
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  Figs. 6.20 and 6.21 show the experimental results , where the step tracking is 

the simulation. In the experiment, the control parameters are set as follows: 

 rp = diag(0.2,0.01,0.01,0.01), 

ri = diag(2.88 x 106, 577, 577, 577), 

                        = 0.001, 0-2 = 1 .0 x 10-7, 

elf = 25, ,Of = 0.9 x 10-4, kd = —500
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  With the real system, the  dc link current must be limited during the transient condition 

for keeping the feature of the CSI as the protecting tendency for power semiconductor devices. 

In order to limit the dc link current, we set umax = KIl,,,(IDCI;,n - IDC) with K<<,,, > 0 and 

u is limited such that if u > umax, then u = umax, where Kum is determined empirically.

6.6 Conclusion

  For the robust control of speed, two different approaches, that is, the applications of the 

Hoo control and the SAC with exact linearization have been shown in this chapter. When the 

operating point of the system deviates from the initial equilibrium point, the effectiveness 

of exact linearization could be confirmed obviously. The robustness nature of the system 

with the Ho, controller and the SAC have been confirmed in the comparison with the PI 

controller by the simulation and the experimental results. The structure of the designed Hoo 

controller is simpler than that of the designed SAC, but the SAC has wider allowable ranges 

of parameter changes than the Hoo control.
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Conclusions

  In this dissertation, the microcomputer—controlled CSI drive induction motor by vector 

approximation has been discussed in order to solve the problems in the field oriented control 

of ac machines. Such problems are unreliable assumptions of the ideal stator current, the 

constant parameters in the linear equivalent circuit, and so on. 

  Due to the semiconductor switching inverter, the torque pulsations occur because the 

stator current vector is not rotating smoothly, while the rotor magnetizing current is rotating 

smoothly. The vector approximation has been proposed in order to solve this problem. 

  On the other hand, in order to solve the parameter variation problems, the parameter 

adaptation has been proposed. Moreover, the robust speed control against the sudden-

load change, the nonlinearity and modelling error of the system, has been proposed in this 

dissertation. 

  This dissertation is summarized as follows: 

  • In Chapter 2, the dynamic model of the induction machine using space vectors have 

    been reviewed, and the mathematical model of the induction machine has been shown. 

    The foundation of every control design is explained by the mathematical model of the 

     plant. 

   • Chapter 3 has shown the principle of the field oriented control. In order to estimate 

    the rotor flux, four kinds of flux estimation models have been reviewed, and after the
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    comparison of these models the best model has been selected . 

  • Chapter 4 has shown the vector approximation method . The principle and algorithm 

    of the vector approximation have been described. The system configuration for the 

    implement has been shown. The performance of vector approximation has been verified 

    by the simulation and the experiments. It has been shown theoretically that the 

    direct torque control would be possible by this method, and the torque ripple could be 

     decreased. 

  • Chapter 5 has shown the parameter adaptation and torque control technique for CSI 

    drive induction motor with the vector approximation. The parameter adaptation with 

    the saturation model has been shown to estimate the rotor resistance and the torque 

    correctly at each different flux level, by the simulations and the experiments. As 

    mentioned in Section 3.2, the complete decoupled control of  i,d and in of the stator 

    currents like the separately excited dc machine is said to be difficult by the field oriented 

    control in the CSI drive system. However, the direct torque control with the proposed 

    method could force to realize the precise torque control, which would be effective as 

    well as the decoupled control. 

  • Chapter 6 has shown the applications of robust control. Conventional linear control 

    methods such as PI control have been widely used in industry electrical drives; how-

    ever, dynamic performance of the control system is often limited due to the conflict 

    between overshoot and long setting time of the system response. The conventional 

    linear control methods have inadequate rejections against external disturbance as well 

    as the sensitivity in performance to the system parameter variation and nonlinearity. 

    Thus, robust stable drive systems are required for any applications. For the robust 

    control of speed, the different approaches, that is, the H,, control and SAC with ex-

    act linearization have been shown in this chapter. The robustness of these systems 

    compared with the PI control system have been verified by the simulation and the 

    experiments. The structure of the designed Hoc, controller is simpler than that of the 

    designed SAC, but the SAC has wider allowable ranges of parameter changes than the 

Ho. control. 

  The proposed method in this dissertation are not so complicated to implement and are
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adequate for the precise torque and speed 

speed.

control for medium and

            110 

large-size drives with low
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