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Abstract

The elementary formal system (EFS ) is a kind of logic programs which directly

manipulates strings, and the learnability of the subclass called hereditary EFSs

(HEFSs) has been investigated in the frameworks of the PAC-learning, query-

learning, and inductive inference models. The hierarchy of HEFS is expressed by

HEFS(m; k; t; r), where m, k, t and r denote the number of clauses, the occurrences

of variables in the head, the number of atoms in the body, and the arity of predi-

cate symbols. The present paper deals with the learnability of HEFS in the query

learning model using equivalence queries and additional queries such as membership,

predicate membership, entailment membership, and dependency queries. We show

that the class HEFS(�; k; t; r) is polynomial-time learnable with the equivalence and

predicate membership queries and the class HEFS(�; k; �; r) with termination prop-

erty is polynomial-time learnable with the equivalence, entailment membership, and

dependency queries for the unbounded parameter �. A lowerbound on the number

of queries is presented. We also show that the class HEFS(�; k; t; r) is hard to learn

with the equivalence and membership queries under the cryptographic assumptions.

Furthermore, the learnability of the class of unions of regular pattern languages,

which is a subclass of HEFSs, is investigated. The bounded unions of regular pat-

tern languages are polynomial-time predictable with membership query . However, all

unbounded unions of regular pattern languages are not polynomial-time predictable

with membership queries if neither are the DNF formulas.

1 Introduction

The elementary formal system (EFS, for short) was originally invented by

Smullyan [40] in early 1960s to develop his recursive function theory. Profes-
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sor Arikawa is a pioneer to employ such an EFS for studying formal language

theory [7] in 1970. After about 20 years later, he and his partners [8,9] char-

acterized the EFSs as logic programs over strings and introduced a new hier-

archy of various language classes, which includes the four classes of Chomsky

hierarchy, the class of pattern languages, and many others. Furthermore, he

enhanced EFSs as a unifying framework for language learning, by devising in-

ductive inference algorithms (MIEFS) for these EFS classes based on Shapiro's

model inference system [35].

Stimulated by the series of Arikawa's works, many researchers investigated

the EFSs in the various models of algorithmic/computational learning the-

ory. Shinohara [38] showed that the length-bounded EFSs belonging to the

above hierarchy is inferable in the limit from positive examples alone. This

result is a valuable extension of the previous inferability of bounded unions

of pattern languages [1,37,38,44]. Mukouchi and Arikawa [29] showed that the

class of length-bounded EFSs is also refutablly inferable. This notion is a new

criterion introduced by Mukouchi and Arikawa [29] that a learner can refute

each hypothesis space if it turns out to be insuÆcient for identi�cation. Many

other researchers such as [21,22,27,28] enjoyed various topological properties of

EFSs on inductive inference. Jain and Sharma [19] analyzed the mind change

complexity and the intrinsic complexity of EFSs.

In contrast to the learnability of EFSs on inductive inference, the polynomial-

time learnability is another interesting theme on learning EFSs. For this pur-

pose, Miyano et al. [25,26] introduced the subclass hereditary EFS , denoted

by HEFS. An HEFS consists of clauses that satisfy a substring property such

that any pattern appearing in the body also appears as a substring of some

argument of the head. This class is rich enough to include the class of pattern

languages and class of context-free languages, while the syntax is restricted

to allow eÆcient learning. Actually, this class exactly de�nes the complex-

ity class PTIME [18]. Miyano et al. consider the learnability of the hierarchy

HEFS(m; k; t; r) with the parameters such that m, k, t and r are the maxi-

mum number of clauses, the maximum number of occurrences of variables in

the head, the maximum number of atoms in the body, and the maximum arity

of predicate symbols, respectively. They showed that the HEFS(m; k; t; r) is

PAC-learnable for every �xed m; k; t; r � 0.

Other result was shown in the query learning model introduced by Angluin [4].

In this learning model, an algorithm can ask the equivalence, membership, and

other types of queries to eÆciently learn a target concept. As an interesting

relationship between the PAC and query models, it is known that if a concept

class is learnable in polynomial time with equivalence queries (and membership

queries, resp.) and the membership decision is polynomial time decidable, then

it is also PAC-learnable (with membership queries, resp.) [4]. Sakakibara [34]

studied the query learnability of the subclass of HEFSs called extended sim-
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ple EFS (ESEFS, for short). He showed that the class k-bounded ESEFS is

learnable in polynomial time using the equivalence and predicate membership

queries, an augmented version of membership queries. The class k-bounded

ESEFS is a proper subclass of HEFS�(�; k; k; 1), where HEFS�(m; k; t; r) de-

notes the HEFS(m; k; t; r) of which the facts are always ground.

In the present paper, we investigate the learnability of the HEFSs w.r.t. the

query learning model. Two classes are shown to be learnable in polynomial

time using the queries mentioned below with presenting learning algorithms.

Moreover, other classes are shown to be hard to learn in the sense of prediction

preserving reductions [5,33].

First we extend the Sakakibara's result [34] to whole class of HEFS(�; k; t; r).

The learning algorithm uses a top-down search strategy based on the controlled

generation of candidate clauses and the contradiction backtracing algorithm of

Shapiro [35]. This algorithm can be regarded as a polynomial time counterpart

of the MIEFS of Arikawa, Shinohara, and Yamamoto [9]. We show that this

algorithm learns all hypotheses H� of HEFS(�; k; t; r) in polynomial time us-

ing O(ptmn2k+2rt
k
k) equivalence queries and O(pt+1

mn
2k+2r(t+1)

k
k) predicate

membership queries for every k; t; r � 0, where p is the number of predicate

symbols, m is the cardinality of H�, and n is the size of the longest coun-

terexample seen so far. Unfortunately, the running time is exponential in the

maximum length t of the bodies.

To overcome this diÆculty, we consider a subclass of HEFS called terminat-

ing HEFS (THEFS, for short). Arikawa et al. [9] and Yamamoto [43] showed

that the standard SLD-resolution procedure can be used as the decision pro-

cedure for EFS languages. However, this procedure may not terminate in case

of goals. Thus, we consider the dependency relation of an EFS H that is a

smallest transitive relation over atoms >H such that A >H B if A and B

appear, respectively, in the head and the body of an instance of a clause in

H. An HEFS H is called terminating if there exists a well-founded relation

>, i.e., there exists no in�nite decreasing chain, on atoms that bounds >H . It

is obvious that, for a terminating HEFS H, the SLD-resolution procedure for

H j= C always terminates for every clause C. Hence, we de�ne the hierarchy

THEFS(m; k; t; r) of terminating HEFSs similary to HEFS(m; k; t; r).

We also allow a learner to use two types of additional queries for the target

EFS H�. The �rst type of queries is the entailment membership query to ask if

a given clause is entailed from a target hypothesis. The model with entailment

equivalence query and entailment membership queries is called the learning

from entailment [15,32], which is particularly suitable for learning the �rst-

order logic and logic programs [10,11,16,20,32]. The second type of queries is

the dependency query to determine if a pair of atoms are in the dependency

relation of a target program.
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We design a learning algorithm for THEFS(�; k; �; r) with equivalence, en-

tailment membership, and dependency queries. This algorithm adopts the

bottom-up search strategy by combining three generalization techniques, i.e.,

saturation, rewind and maximal common subsumer [10,11,15,16,20,32]. We

show that this algorithm exactly learns the class THEFS(�; k; �; r) in polyno-

mial time using O(pmn2r+1) equivalence queries, O(p2m2
n
4k+4r+1

k
k) entail-

ment membership queries, and O(p2m2
n
4k+4r+1

k
k) dependency queries, where

m is the number of clauses and n is the length of the longest counterexample

seen so far. The number O(pmn2r+1) of equivalence queries for this algorithm

is signi�cantly smaller than the number O(ptmn2k+2rt
k
k) for the previous top-

down algorithm for HEFS(�; k; t; r). Also we show that, by analyzing the VC-

dimension, lower bound of the queries to learn THEFS(�; k; �; r) is 
(mnr=2)

for some ordering >, which implies that the number of equivalence queries of

this algorithm is nearly optimal.

Furthermore, we present the series of representation-independent hardness re-

sults for predicting HEFSs by adopting the prediction-preserving reduction

without or with membership queries [5,33]. For classes with polynomial time

evaluation problems, it is known that the prediction hardness derives both

the hardness for PAC-learning and exact learning. We denote by RP , [mRP

and [RP the class of regular pattern languages, at most m unions of regular

pattern languages, and all �nite unions of regular pattern languages, respec-

tively [12,17,25,26,36,37,39]. Shinohara and Arimura [39] showed thatRP and

[mRP are inferable from positive data while [RP is not. Along this line of

studies, we show the hardness of learning of these classes. The class RP is

not polynomial-time predictable if neither are DNF formulas and the class

[RP is not polynomial-time predictable with membership queries if neither

are DNF formulas. Note that the class [mRP is polynomial-time predictable

with membership queries [17] but it is open whether it is learnable with the

equivalence and membership queries.

Our results on the hardness for pattern languages improves the previous non-

learnability results for RP and [RP [26] in the representation-dependent

manner. Furthermore, the third result extends the learnability of RP with

a single positive example and membership queries [24]. The RP , [mRP

and [RP are corresponding to the HEFS(1; �; 0; 1), HEFS(m; �; 0; 1) and

HEFS(�; �; 0; 1), respectively. Hence, we can conclude that the bound on k

is necessary to eÆciently learn HEFS(�; k; t; r) with equivalence and member-

ship queries. Other hardness results indicate that the HEFS�(�; k; t; r) is not

polynomial-time predictable with membership queries under the cryptographic

assumptions, even if k = t = r = 1.

Finally, concerning the learnability of k-bounded ESEFSs which is a sub-

class of HEFS�(�; k; k; 1), with the equivalence and predicate membership

queries [34], we show that the bound k is essential for the eÆcient learnability,
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Fig. 1. The summary of the learnability of a hierarchy HEFS(m; k; t; r) of HEFSs

presented in this paper. In the all tables, the �rst row indicates the types of queries

used. The types of queries assumed in this paper are the equivalence (EQ), member-

ship (MQ), predicate membership (PMQ), entailment membership (EntMQ), and

dependency (DQ) queries. Each label \poly" means that the class is polynomial-time

exact learnable with EQs and the indicated queries. The label \hard" means that

learning the class with the queries is as hard as learning the class of DNF formulas,

while the label \hard�" means the class is not polynomial-time learnable under the

cryptographic assumptions. The \pred" means that the class is polynomial-time

predictable with the indicated queries. The \PAC" and \not PAC" mean the class

is and is not polynomial-time PAC-learnable, respectively. Finally, each arrow in

the tables means that the result of the cell containing the arrow is directly derived

from the neighbor pointed by the arrow.

(a) Learnability of HEFSs

Class EQ EQ+MQ EQ+PMQ

HEFS(m; k; t; r) PAC [25,26]   

k-bounded ESEFSs ! hard� (Th49) poly [34]

HEFS(�; k; t; r) ! hard� (Th49) poly (Th31)

HEFS�(�; �; �; r) ! ! hard (Th50)

(b) Learnability of terminating HEFSs

Class EQ+MQ EQ+EntMQ EQ+EntMQ+DQ

THEFS(�; k; �; r) hard� (Th49) open poly (Th42)

(c) Learnability of regular pattern languages and their unions

Class EQ EQ+MQ

RP not PAC [25,26] = hard (Th46) poly [24]

[mRP " = " pred [17]

[RP " = " hard (Th47)

i.e., the HEFS�(�; �; �; r) is not polynomial-time predictable with the mem-

bership or predicate membership queries if neither are the DNF formulas, even

if r = 1. All results in this paper are summarized in Fig. 1.
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2 Preliminaries

In this section, we give the de�nitions and theorems on elementary formal

systems, learning models, and prediction-preserving reductions necessary for

the later discussion.

2.1 Elementary formal systems and their languages

For a set S, #S denotes the cardinality of S. Let � be a �nite alphabet of

constant symbols, X be a countable set of variables, and for every r � 0, �r

be a �nite alphabet of r-ary predicate symbols. Moreover, let � = [i�0�i. We

assume that �, X and � are mutually disjoint. We call the pair S = (�;�) a

signature.

For each predicate symbol p 2 �r, r is called an arity of p. We denote by

arity(�) the maximum arity of the predicate symbols in �. By ��, �+ and

�[n], we denote the sets of all �nite strings, all nonempty �nite strings, and

all strings of length n or less respectively, over �.

A pattern over S is an element of (�[X)+. A pattern over S is called regular

if each variable appears at most once in it. An atom over S is an expression

of the form p(�1; : : : ; �r), where r � 0, p 2 �r and each �i is a pattern over

S (1 � i � n). A de�nite clause (clause, for short) over S is an expression of

the form:

C = A A1; : : : ; Am,

where m � 0 and A;A1; : : : ; Am are atoms over S. The atom A and the set

fA1; : : : ; Amg of atoms are called the head and the body of C and denoted by

hd(C) and bd(C), respectively. In case that m = 0 (resp., m > 0), a clause is

called a fact (resp., a rule). A clause or an atom over S is ground if it contains

no variable.

De�nition 1 Let S = (�;�) be a signature. An elementary formal system

(EFS , for short) over S is a �nite set of clauses over S.

For a signature S = (�;�), AtomS and ClauseS denote the sets of all atoms

and all clauses over S, respectively. In particular, the set of all ground atoms

over S is called the Herbrand base over S and denoted by BaseS.

A substitution is a homomorphism � : (�[X)+ ! (�[X)+ such that �(a) = a

for each symbol a 2 �. For a substitution � and a pattern �, the �� denotes

the image of � by �. For an atom A = p(�1; : : : ; �n) and a clause C = A  
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A1; : : : ; Am, we de�ne A� = p(�1�; : : : ; �n�) and C� = A�  A1�; : : : ; Am�.

Then, we say that A� and C� are instances of A and C, respectively. In

particular, if A� or C� becomes ground, then � is called a ground substitution.

We end this subsection by introducing the notion of subsumption, denoted by

w which plays an important role in Section 3. For atoms A and B over S, we

de�ne A subsumes B, denoted by A w B, if there exists a substitution � such

that A� = B, that is, B is an instance of A.

For clauses C and D over S, we de�ne C subsumes D, denoted by C w D, if

there exists a substitution � such that hd(C�) = hd(D) and bd(C�) � bd(D).

We de�ne C properly subsumes D, denoted by C = D, if C w D but D 6w C.

For EFSs H and G over S, we de�ne H subsumes G, denoted by H w G, if

for every D 2 G, there exists a clause C 2 H such that C w D. Then we

say that H is a generalization of G or G is a re�nement of H. Furthermore,

a re�nement G of H is conservative if, for every D 2 G, there exists at most

one clause C 2 H such that C w D. We de�ne H = G if H w G but G 6w H.

2.2 Three semantics for EFSs

In this subsection, we �rst introduce a model theory for EFSs as follows

for uniformly dealing with three semantics. Let us identify a given signa-

ture S = (�;�) with the �rst-order signature (�; f�g;�), where \�" is a string

concatenation operator satisfying the associativity 8x8y8z[x�(y �z) = (x�y)�z].

An interpretation I over S is a triple (U; I; �), where U is a set, I is a mapping

that maps p 2 �r (r � 0), \�" and a 2 � to an r-ary relation over U , a binary

associative function over U and an element of U , respectively, and � is a

variable-assignment to U . Then, the satisfaction relation j= is de�ned in a

standard manner (cf., [14,31]). A model of an atom A or a clause C over S

is an interpretation I over S such that I j= A and I j= C, respectively. We

assume that any variable in a clause is universally quanti�ed. A model of an

EFS H over S is a model of every clause in H over S.

For an EFS H and a clause C over S, we say that H entails C, denoted by

H j= C, if every model of H is a model of C. For EFSs H and G over S, we

say that H entails G, denoted by H j= G, if every model of H is a model of

G.

Originally, the semantics of EFSs is de�ned by the provability relation ` de-

�ned in [9]. For an EFS H and a clause C over S, respectively, the relation

H ` C which means that C is provable from H is de�ned inductively as

follows:
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(1) If C 2 H, then H ` C.

(2) If H ` C, then H ` C� for a substitution �.

(3) IfH ` A A1; : : : ; Am; Am+1 andH ` Am+1, thenH ` A A1; : : : ; Am.

The following lemma gives the relationship between ` and j=.

Lemma 2 (Arikawa et al. [9]) For every atom A and EFS H, H j= A i�

H ` A .

The language semantics is a standard semantics of EFSs (cf. [8,9,25,26]). Let

H be an EFS over S = (�;�) and p0 2 � be a distinguished predicate symbol.

Then, the language de�ned by H and p0 over S is the set

LS(H; p0) = f w 2 �+ j H j= p0(w) g:

A language L � �+ is de�nable by an EFS over S or it is an EFS language

over S if there exists an EFS H over S and p0 2 � such that L = LS(H; p0).

The least Herbrand model semantics [9,43] is based on all of the ground atoms

provable from a given EFS. The least Herbrand model of an EFS H over S is

the set MS(H) = f A 2 BaseS j H j= A g [9,43].

The entailment semantics is based on all clauses entailed by a given EFS. The

entailment set of an EFS H over S, denoted by EntS(H), is the set of all

clauses over S entailed by H, i.e., EntS(H) = f C 2 ClauseS j H j= C g:

Formally, a semantics for a class H of EFSs is a pair (U; L̂(�)), where U is

a set of objects, called the domain, and a mapping L̂ : H ! 2U , called the

language mapping .

De�nition 3 Let S be a signature (�;�) and p0 2 �1 is the distinguished

predicate.

� The language semantics on S is a pair (AtomS; LS(�; p0)).

� The least Herbrand model semantics on S is a pair (BaseS ;MS(�)).

� The entailment semantics on S is a pair (ClauseS;EntS(�)).

We introduce a proof-DAG by extending the parse-DAG for k-bounded CFGs

by Angluin [3] and the ground proof-DAG for EFS by Sakakibara [34].

De�nition 4 A proof-DAG for a clause C by an EFS H is a �nite directed

acyclic graph T with the following properties. Nodes in T are atoms possibly

containing variables. The node A = hd(C) is the unique node with in-degree

zero, called the root . For each node B in T , let Succ(B) be the set of nodes

B
0 with edges from B to B0. Then for every node B in T , either B 2 bd(C)

or (B  Succ(B)) is an instance of a clause in H.
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A proof-DAG T of C by H is minimal if no proper subgraph of T is also

a proof-DAG for C by H. A minimal proof-DAG T for a clause C by H is

said to be trivial if all nodes but the root in T are contained in bd(C), and

non-trivial otherwise. Note that if T is trivial then all nodes appear in C. We

will assume that a proof-DAG is always minimal.

The Skolem substitution for C w.r.t. H is a substitution � that replaces the

variables x in C with mutually distinct fresh constants cx not appearing in H

and C.

Lemma 5 Let H be an EFS and C a clause. For the Skolem substitution �

for C w.r.t. H, H j= 8(C) i� H j= C�.

Lemma 6 Let S be a signature, H an EFS consisting of ground clauses, and

A 2 BaseS a ground atom. Then, H j= A i� there exists a minimal proof-DAG

T for A by H.

PROOF. The if direction of the lemma is easily proved by induction on the

size n � 1 of the proof-DAG for A by H. Next, we will show the only-if

direction. Suppose that H j= A. Let M =MS(H). First, since M is the small-

est among the Herbrand models of H, we can show that M is the supported

model , that is, if M j= A then there is some C 2 H such that A = hd(C)

and M j= bd(C). Then, we show the lemma by induction on the cardinality

n = #H. If n = 1 then H consists of the fact A , and thus, the lemma im-

mediately follows. Suppose that #H = n+1 and the lemma holds for any EFS

of cardinality no more than n. By the claim shown above, there is some clause

C = (A B1; : : : ; Bm) 2 H such that A = hd(C) andM j= B1^: : :^Bm. Let

H
0 = H�fCg andM 0 =MS(H

0). We will show thatM 0 j= B1^: : :^Bm. Sup-

pose to the contrary that there is some interpretation I such that I j= H�fCg

but I 6j= B1^ : : :^Bm. Since B1^ : : :^Bm is the body of C, we see that I j= C

regardless the truth value of A. Therefore, I is a model of both H � fCg and

C, and thus that I j= M but I 6j= B1 ^ : : : ^ Bm. However, this contradicts

the assumption. Hence, M 0 j= B1 ^ : : : ^ Bm. Since #H 0 � n, by induction

hypothesis, we have that for every 1 � i � m, there exists a proof-DAG Ti

for Bi by H
0. Hence, we have a proof-DAG for A by H by merging T1; : : : ; Tm

and by adding the root node A and the edges f(A;Bi) j 1 � i � mg. It is not

hard to see that the resulting graph T is acyclic. 2

The following lemma, an EFS counterpart of the subsumption theorem in

clausal logic [30], characterizes the entailment relation j= for EFS in terms

of a proof-DAG. Since the theorem is essential in our learnability results in

Chapter 3, we will give a complete proof of our version of the lemm with

proof-DAGs though [30] have given an indirect proof using the completeness

of SLD-resolutions for de�nite logic programs.
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Lemma 7 (The subsumption theorem) LetH be an EFS and C a clause.

Then, H j= C if and only if one of the following statements holds:

(i) C is a tautology.

(ii) C is subsumed by some clause in H.

(iii) There exists a non-trivial minimal proof-DAG for C by H.

PROOF. The only-if direction is straightforward. We will show the converse

direction. Let C� be the ground clause obtained from C by applying the

Skolem substitution � for C w.r.t. H. Suppose that H j= C. Then, it follows

from Lemma 5 and the deduction theorem of �rst-order logic that H j= C�

implies H 0 j= A
0, where we put A0 = hd(C�) and H

0 = H [ bd(C�). From

Lemma 6, we have a proof-DAG T
0 for A0 by H

0. By applying the inverse

mapping ��1 to T 0, we obtain a proof-DAG T for C by H Since � is a one-to-

one mapping that introduces only fresh constants C not appearing in fCg[H.

Now, we will show that if neither (i) nor (ii) holds then (iii) there exists

a non-trivial minimal proof-DAG for C by H. Assume that C is neither a

tautology nor subsumed by any clause in H. We further assume without loss

of generality that T is minimal. Suppose to contradict that T is trivial. Then,

we can show that the height of T is at most two, that is, T consists of the root

A = hd(C) and (possibly empty) leaves Succ(A) = fB1; : : : ; Bng (n � 0).

If the set Succ(A) is empty then A is both the root and the unique leaf of

T . Then, there are two cases below. If A is an instance of some fact D in H

then we have that A  is subsumed by D. Otherwise, A = hd(C) appears

in bd(C), and this means that the clause C is a tautology. In both cases,

the contradiction is derived. We assume that Succ(A) is not empty. By the

de�nition of a proof-DAG, the clause A  Succ(A) is an instance of some

clause D in H. Suppose that D� = (A Succ(A)) for some �. On the other

hand, since T is trivial, Succ(A) must be a subset of bd(C). Therefore, it

follows that hd(D�) = hd(D�) and bd(D�) � bd(C), and thus we know that

C is subsumed by D. This contradicts the assumption. Hence, we conclude

that T is non-trivial , and this completes the proof. 2

In the remainder of this paper, we will omit the subscript S if it is not necessary

to explicitly disignate it. In Section 3, a signature is explicitly given to a

learner before the learning session starts. In Section 4, a signature is implicitly

assumed to contain all predicate and constant symbols occurring in EFSs.
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2.3 Hereditary EFSs and the other subclasses

In this subsection, we introduce the several subclasses of EFSs, which are

developed by many researchers [7{9,18,25,26,34,38,43].

First, we prepare the notations necessary to de�ne the subclasses. The size

of a pattern �, denoted by j�j, is the length of the string � as a string over

� [X. The variable-occurrence of �, denoted by o(�), is the total number of

the occurrences of variables from X appearing in �. We denote by var(�) the

set of variables inX appearing in �. For example, if � = fa; bg, X = fx; y; : : :g

and � = abxbxyab, then j�j = 8 and o(�) = 3. For an expression E, we de�ne

the representation length jjEjj and the occurrences of variables x in E as

follows. For an atom A = p(�1; : : : ; �n), we de�ne jjAjj = j�1j+ � � �+ j�nj and

o(A) = o(�1) + � � � + o(�n). For a clause C = A0  A1; : : : ; Am, we de�ne

jjCjj = jjA0jj + � � �+ jjAmjj and o(C) = o(A0) + � � �+ o(Am). For an EFS H,

the size of H, written jjHjj, is
P

C2H jjCjj.

De�nition 8 We introduce the following restrictions of clauses.

(1) A clause A  A1; : : : ; Am is called variable-bounded [9] if every variable

appearing in the body A1; : : : ; Am also appears in the head A.

(2) A clause A  A1; : : : ; Am is called length-bounded [9] if jA�j � jA1�j +

: : :+ jAm�j for each substitution �.

(3) A clause p(�)  q1(x1); : : : ; qm(xm) is called extended simple [34] if

p; q1; : : : ; qm are unary predicate symbols and x1; : : : ; xm are all variables

appearing in �.

(4) A clause is called simple [9] if it is of the form p(�) q1(x1); : : : ; qm(xm),

where p; q1; : : : ; qm are unary predicate symbols and x1; : : : ; xm are mu-

tually distinct variables appearing in �.

(5) A simple clause is called regular [7] if the pattern in its head is regular.

(6) A regular clause is called left-linear (resp., right-linear) [7] if the pattern

in its head is of the form wx (resp., xw) for some string w 2 ��.

(7) A clause is hereditary [26] if it is of the form

p(�1; : : : ; �n) q1(�1; : : : ; �t1); q2(�t1+1; : : : ; �t2); : : : ; qm(�tm�1+1; : : : ; �tm),

and each pattern �j (1 � j � tm) is a substring of some �i (1 � i � n).

The extended simple clause was introduced in the context of simple formal

systems (SFSs) [34], so an extended simple clause is an extension of a simple

clause in SFSs [7]. In contrast, the above extended simple clause is not an

extension of a simple clause in EFSs. In particular, there exists no extended

simple clause that is a non-ground fact and that has variables only occurring

in the head.

De�nition 9 An EFS H is called variable-bounded (resp., length-bounded ,

extended simple, simple, regular , left-linear , right-linear , hereditary) if each
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clause in H is variable-bounded (resp., length-bounded, extended simple, sim-

ple, regular, left-linear, right-linear, hereditary).

For example, let � = fp0; qg and � = fa; b; cg. Then, the following simple EFS

H0 and hereditary EFS H1 de�ne the languages L(H0; p0) = fw 2 fa; bg
+ j

w is a string of the balanced parentheses g and L(H1; p0) = f a
n
b
n
c
n j n � 1 g,

respectively.

H0 =

8>>>>><
>>>>>:

p0(xy) p0(x); p0(y)

p0(axb) p0(x)

p0(ab) 

9>>>>>=
>>>>>;
; H1 =

8>>>>><
>>>>>:

p0(xyz) q(x; y; z)

q(ax; by; cz) q(x; y; z)

q(a; b; c) 

9>>>>>=
>>>>>;
:

We abbreviate an extended simple EFS and a hereditary EFS as an ESEFS

and an HEFS, respectively. The following hierarchy HEFS(m; k; t; r) of HEFSs

introduced by [26] gives a useful framework for polynomial-time learnability.

De�nition 10 (Miyano et al. [25,26]) HEFS(m; k; t; r) is the class of all

HEFSs consisting of at most m clauses each of which satis�es the following

conditions (a){(c). HEFS�(m; k; t; r) is the subclass of HEFS(m; k; t; r) con-

sisting of at most m clauses each of which satis�es the following conditions

(a){(d).

(a) The variable-occurrence in the head is at most k.

(b) The number of atoms in the body is at most t.

(c) The arity of each predicate symbol is at most r.

(d) All facts are ground.

In this hierarchy, the symbol `�' indicates that there is no bound on this

parameter.

The HEFSs H0 and H1 in the above example belong to HEFS�(3; 2; 2; 1) and

HEFS�(3; 3; 1; 3), respectively. We can give the correspondence of the EFS

languages to Chomsky's hierarchy and complexity classes.

Theorem 11 The following relations hold for the EFS languages above.

(1) (Arikawa [7], Arikawa et al. [9]) A language is recursively enumer-

able, (resp., context-sensitive, context-free, regular) i� it is de�nable by a

variable-bounded (resp., length-bounded, regular, left/right-linear) EFS.

(2) (Ikeda, Arimura [18]) A language is accepted by a polynomial time

deterministic Turing machine i� it is de�nable by a hereditary EFS.

(3) (Arikawa et al. [9]) Any regular pattern language, (resp., union of regu-

lar pattern languages, regular language, context-free language) is de�ned

by an EFS in HEFS(1; �; 0; 1), (resp. HEFS(�; �; 0; 1), HEFS(�; 1; 1; 1),
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HEFS(�; 2; 2; 1)).

Finally, we formulate the termination for HEFSs, which are motivated by the

acyclicity of EFSs [6,10,13].

De�nition 12 Let S be a signature andH be an EFS over S. The dependency

graph of H is a possibly in�nite directed graph GH = (AtomS ; E) such that

there exists an edge from A to B, i.e., (A;B) 2 E, i� there exist a ground

instance C of some clause in H such that A = hd(C) and B 2 bd(C).

De�nition 13 Let S be a signature andH be an EFS over S. The dependency

relation of H is a binary relation >H on AtomS such that A >H B i� there

exists a path of non-zero length from A to B in the dependency graph GH of

H.

A binary relation R on S is transitive if aRb and bRc implies aRc for every

a; b; c 2 S. Also R is well-founded if there exists no in�nite decreasing chain

from a such as aRa1; a1Ra2; a2Ra3; � � �, for every a 2 S.

De�nition 14 Let S be a signature, H be an EFS over S and > be a transi-

tive binary relation on AtomS . The dependency relation >H of H is bounded

by > if A >H B implies A > B for every atoms A;B 2 AtomS .

De�nition 15 Let S be a signature and H be an EFS over S Then, H is ter-

minating if there exists a well-founded transitive binary relation > on AtomS

that bounds the dependency relation >H of H.

Let S be a signature, H be a class of EFSs over S, and > be a transitive

binary relation on AtomS. We say that H is uniformly bounded by > if the

dependency relation>H is bounded by > for everyH 2 H. We denote byH(>)

the maximal subclass of H whose dependency relation is uniformly bounded

by >, i.e., H(>) = fH 2 H j >H is bounded by > g.

As similar as HEFS(m; k; t; r), we can introduce a class THEFS(m; k; t; r) of

terminating HEFSs with the same parameters m, k, t and r. In particular, we

denote (THEFS(m; k; t; r))(>) by THEFS(>;m; k; t; r).

2.4 Learning models

In this subsection, we introduce the learning models. Here, a class H of gram-

mars, called a hypothesis space, is always assumed. If a hypothesis space H is

a class of EFSs, then a signature is assumed to be in common.

Let (U; L̂(�)) be the semantics for H. Each element of U is called an example.
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The language L̂(H) is also called the concept de�ned by H. We say that two

hypotheses H and H� are equivalent under the semantics (U; L̂(�)) if L̂(H) =

L̂(H�).

Let H� 2 H be a target hypothesis. An example w is called positive for H�

if w 2 L̂(H�) and negative otherwise. Many researchers have been developed

several di�erent learning models to capture the eÆcient learnability from the

viewpoints of the criterion of identi�cation and the protocol of receiving exam-

ples and queries. In this paper, we employ the following two learning models.

First, we de�ne the exact learning model, where a learning algorithm makes

the following queries to collect the information on H� [4].

De�nition 16 (Angluin [4]) Let H� 2 H be a target hypothesis.

(1) An equivalence query for H� (EQ, for short) takes H 2 H as input,

denoted by EQ(H). The answer is \yes" if L̂(H) = L̂(H�) and a coun-

terexample w 2 (L̂(H�)� L̂(H))[ (L̂(H)� L̂(H�)) is returned otherwise.

A counterexample w is called positive if w 2 L̂(H�) and called negative

if w 62 L̂(H�).

(2) A membership query for H� (MQ, for short) takes w 2 �+ as input,

denoted by MQ(w). The answer is \yes" if w 2 L(H�) and \no" otherwise.

De�nition 17 (Angluin [4]) A polynomial-time exact learning algorithm A

for H is an algorithm that identi�es the target hypothesis H� 2 H making

equivalence and membership queries for H�, A must halt and output a hy-

pothesis H 2 H that is equivalent to H�, i.e., L̂(H) = L̂(H�), and, at any

stage in the learning algorithm, the running time of A must be bounded by a

polynomial in the size of H� and of the longest counterexample returned by

equivalence queries so far. H is called polynomial-time exact learnable if there

exists a polynomial-time exact learning algorithm for H.

On the other hand, we introduce the prediction model according to Pitt and

Warmuth [33] and Angluin and Kharitonov [5].

De�nition 18 (Pitt & Warmuth [33], Angluin & Kharitonov [5]) An

algorithm A is called a prediction algorithm for H that takes s (a bound on

the size of H), n (a bound on the length of examples), " (an accuracy bound),

a collection of labeled examples such that each positive (resp., negative) ex-

ample is labeled by + (resp., �), and an unlabeled example w of H� as input,

and outputs either + or � indicating its prediction for w. The A is called a

polynomial-time prediction algorithm if the running time of A is bounded by

a polynomial in s; n and 1=". For some polynomial p, for all input parameters

s; n and " and for all probability distributions on examples, if A is given at

least p(s; n; 1=") randomly generated examples of H� and randomly generated

unlabeled example w, and the probability that A incorrectly predicts the label

14



of w for H� is at most ", then we say that A successfully predicts H. More-

over, H is called polynomial-time predictable if there exists a polynomial-time

prediction algorithm for H that successfully predicts H.

The algorithm A is called a prediction with membership queries algorithm

(pwm-algorithm, for short) if it is a prediction algorithm which is allowed to

make membership queries. The polynomial-time pwm-algorithm is similarly

de�ned as above.

De�nition 19 (Valiant [42]) A polynomial time PAC learning algorithmA

forH is an algorithm that takes parameters s; n; " and a collection of randomly

generated labeled examples, chosen according to an unknown probability dis-

tributionD, as in the prediction learning model above, and outputs with hight

probability a hypothesis H 2 H that approximates the target hypothesis H�

with true error at most " w.r.t. D. The time and the number of examples that

algorithm A requires are bounded by polynomials in s; n; 1=", and A have to

work regardless of the distribution D. We can also de�ne a variant of PAC-

learning model in which a learning algorithm is allowed to make membership

queries in addition to random examples [5].

There is a close relationship among exact learning with equivalence queries,

PAC-learning and prediction models without or with membership queries.

Theorem 20 (Angluin [4], Angluin & Kharitonov [5]) If a hypothesis

space H is polynomial-time exact learnable with equivalence queries, then it

is polynomial-time PAC learnable. If H is polynomial-time PAC learnable,

then it is polynomial-time predictable. Furthermore, these statements also

hold with membership queries.

In this paper, we also introduce the following extension of membership queries

based on the non-standard semantics of EFSs.

De�nition 21 Let H� 2 H be a target hypothesis.

(1) (Angluin [3], Sakakibara [34]) A predicate membership query for H�

(PMQ, for short) takes a ground atom A = p(w1; : : : ; wn) for p 2 � and

wi 2 �+ (1 � i � n) as input, denoted by PMQ(A). The answer is \yes"

if H� j= A, i.e., A 2M(H�) and \no" otherwise.

(2) (Frazier & Pitt [15]) An entailment membership query forH� (EntMQ,

for short) takes a (possibly non-ground) clause C as input, denoted by

EntMQ(C). The answer is \yes" if H� j= C, i.e., C 2 Ent(H�) and \no"

otherwise.

The PMQs and EntMQs coincide with exactly the membership queries under

the least Herbrand model semantics (Base;M(�)) and the entailment seman-

tics (ClauseS ;Ent(�)), respectively. We can observe that an MQ is simulated
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by a PMQ and then a PMQ is by an EntMQ.

Furthermore, we can de�ne the entailment equivalence query (EntEQ, for

short) as the equivalence query under the semantics (ClauseS;Ent(�)), where

a counterexample is a clause. The learning model with EntEQ and EntMQ,

called learning from entailment [15], gives a valuable framework for the eÆ-

cient learnability of �rst-order logic or logic programs [10,11,16,20,32]. For all

subclasses of HEFSs studied in Chapter 3 and Chapter 4 except Theorem 50,

all types of queries, namely, MQ, PMQ, EntMQ, EQ, and EntEQ, introduced

above are polynomial-time computable.

Finally, we de�ne the query to ask about the termination information.

De�nition 22 A dependency query forH� (DQ, for short) takes a pair (A;B)

of atoms as input, denoted by DQ(A;B). The answer is \yes" if A >H
�

B holds

and \no" otherwise.

2.5 Prediction-preserving reduction

Pitt and Warmuth [33] have introduced the notion of reducibility between pre-

diction problems. Prediction-preserving reducibility is essentially a method of

showing that one hypothesis space is not harder to predict than another. Fur-

thermore, Angluin and Kharitonov [5] have extended the prediction-preserving

reduction to the notion of reducibility between prediction problems with mem-

bership queries.

De�nition 23 (Pitt & Warmuth [33], Angluin & Kharitonov [5]) Let

Hi be a hypothesis space over a domain Ui (i = 1; 2). For every nonnegative

integers n and s, we de�ne U
[n]

i = fw 2 Ui j jwj � ng and H
[s]

i = fH 2 Hi j

jjHjj � sg. We say that predicting H1 reduces to predicting H2, denoted by

H1 �H2, if there exists a function f : N�N� U1 ! U2 (called an instance

mapping) and a function g : N �N � H1 ! H2 (called a concept mapping)

satisfying the following conditions:

(1) for each w 2 U
[n]
1 and H 2 H

[s]
1 , w 2 L̂(H) i� f(n; s; w) 2 L̂(g(n; s;H)).

(2) the representation length of g(n; s;H) is polynomial in the representation

length of H; That is, jjg(n; s;H)jj � q(jjHjj) for some polynomial q.

(3) f(n; s; w) can be computed in polynomial time.

Furthermore, we say that predicting H1 reduces to predicting H2 with member-

ship queries (pwm-reduces, for short), denoted by H1 �pwmH2, if there exists

a function f : N �N � U1 ! U2, a function g : N �N � H1 ! H2, and a

function h : N�N�U2 ! U1 [f>;?g (called a membership query mapping)
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satisfying the above and the following conditions:

4. for each w0 2 U2 and H 2 H
[s]
1 , if h(n; s; w

0) = > then w0 2 L̂(g(n; s;H));

if h(n; s; w0) = ? then w 62 L̂(g(n; s;H)); if h(n; s; w0) = w 2 U1, then it

holds that w0 2 L̂(g(n; s;H)) i� w 2 L̂(H);

5. h(n; s; w0) can be computed in polynomial time.

Theorem 24 (Pitt & Warmuth [33], Angluin & Kharitonov [5]) Let

H1 and H2 be hypothesis spaces and suppose that H1 �H2 (H1 �pwmH2). If

H2 is polynomial-time predictable (with membership queries), then so is H1.

We deal with the following hypothesis spaces to reduce the prediction prob-

lem to several EFS subclasses: DFA and [DFA denote the class of all lan-

guages accepted by the DFAs and the �nite union of DFAs, respectively.

DNF n denotes the class of all DNF formulas over n Boolean variables, Let

DNF = [n�1DNF n.

Theorem 25 The following statements hold.

(1) (Angluin [2]) DFA is polynomial-time exactly learnable with equiva-

lence and membership queries.

(2) (Angluin & Kharitonov [5]) [DFA is not polynomial-time predictable

with membership queries under the cryptographic assumptions that in-

verting the RSA encryption function, recognizing quadratic residues and

factoring Blum integers are not solvable in polynomial time.

(3) (Angluin & Kharitonov [5]) DNF is neither polynomial-time pre-

dictable or not polynomial-time predictable with membership queries, if

there exist one-way functions that can not be inverted by polynomial-

sized circuits.

3 Learning HEFSs

We study the polynomial-time learnability of subclasses of HEFSs using var-

ious types of queries. We �rst show that the class HEFS(�; k; t; r) of HEFSs

is polynomial-time exact learnable with equivalence and predicate member-

ship queries. Next, we show that the class THEFS(�; k; �; r) of terminating

HEFSs is polynomial-time exact learnable with equivalence, entailment mem-

bership, and dependency queries, where the last type of queries askes about

the termination information.
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3.1 The learnability of a subclass of HEFSs

Sakakibara [34] showed that, for every k � 0, the class of k-bounded ESEFSs,

which is a subclass of HEFS�(�; k; k; 1), is polynomial-time exact learnable

with equivalence and predicate membership queries. In this subsection, we

extend this result to the whole class HEFS(�; k; t; r) for every k; t; r � 0.

In general, the entailment relation is undecidable for variable-bounded EFSs

[9] and deterministic exponential-time complete for HEFSs [18]. The following

lemma claims that the entailment relation in HEFS(�; k; �; r) is polynomial-

time decidable.

Lemma 26 For a clause C and an EFSH, supposeH[fCg 2 HEFS(�; k; �; r).

Then, a proof-DAG for H j= C is polynomial-time computable in jCj and jHj

if it exists.

PROOF. Let � be the ground substitution that maps each variable x in C

to a new constant cx. Then, we can see that H j= C if H [ bd(C�) j= hd(C�)

under the extended alphabet � [ f cx j x 2 var(�) g. The result immediately

follows from Miyano et al. [26]. 2

For a signature S = (�;�) and an atom A = p(�1; : : : ; �r), we de�ne the

subset AtomS(A) of AtomS as:

AtomS(A) =

8><
>:q(�1; : : : ; �s) 2 AtomS

�������
every �i(1 � i � s) is a substring

of some �j(1 � j � r)

9>=
>; :

Then, the following series of lemmas are necessary to prove the learnability of

HEFS(�; k; t; r).

Lemma 27 Let S be a signature, H an HEFS over S and C a clause over

S. Then, for every atom A in a proof-DAG for H j= C, it holds that A 2

AtomS(hd(C)).

Lemma 28 Let S be a signature (�;�) and A an atom over S. Then, it

holds that #AtomS(A) � q1(p; n) = pn
2r, where p = #�, n = jjAjj and

r = arity(�).

Lemma 29 For every integer k � 0 and atom A, there are at most jjAjj2kkk

atoms B with variable-occurrence no more than k that subsumes A, i.e.,

o(B) � k and B w A.
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Procedure LEARN HEFS BY CBA

/* A learning algorithm for HEFS(�; k; t; r) with EQs and PMQs */

/* S: a �xed signature */

1 H := ;;

2 while EQ(H) =\no" do begin /* L(H; p0) 6= L(H�; p0) */

3 E := a counterexample returned by the EQ; /* E is an atom. */

4 if H j= E then /* E is negative, i.e., H j= E and H� 6j= E*/

5 T := a proof-DAG for H j= E;

6 A := root(T );

7 while PMQ(B) =\no" for some B 2 Succ(A) of A do

8 A := B;

9 fB1; : : : ; Bt0g := Succ(A) (t0 � 0);

10 C := a clause in H that subsumes A B1; : : : ; Bt0 ; 11H := H � fCg;

12 else /* E is positive, i.e., H 6j= E and H� j= E */

13 H := H [ Cand(E; k; t; r);

14 end /* while */

15 return H;

Fig. 2. A polynomial-time learning algorithm for HEFS(�; k; t; r) with EQs and

PMQs, based on the contradiction backtracing algorithm [35,34] (Lines 5 to 10).

Let S be a signature. For integers k; t; r � 0 and an atom A over S, by

Cand(E; k; t; r), we denote the set of all hereditary clauses in HEFS(�; k; t; r)

over S of the form B  B1; : : : ; Bt0 such that B w hd(E), o(B) � k and

Bi 2 AtomS(B), where 0 � i � t
0 and 0 � t

0 � t. Then, we can see that

if H� j= E then any clause used to construct a proof-DAG for E by H� is

a member of Cand(E; k; t; r). The following lemma immediately follows from

Lemma 28 and Lemma 29.

Lemma 30 #Cand(E; k; t; r) is bounded by q2(p; n) = O(ptn2k+2rt
k
k), where

p = #� and n = jjEjj. (kk re
ects that the same variable may occur more

than once.)

Theorem 31 Let S = (�;�) be a signature. The class HEFS(�; k; t; r) is

polynomial-time exact learnable with O(ptmn
2k+2rt

k
k) equivalence queries

and O(pt+1
mn

2k+2r(t+1)
k
k) predicate membership queries, where p = #�,

m is the cardinality of a target HEFS, and n is the size of the longest coun-

terexample received so far.

PROOF. Fig. 2 shows our learning algorithm LEARN BY CBA for the class

HEFS(�; k; t; r), which is an extension of the algorithm given by Sakakibara [34].

We will only state the di�erence between Sakakibara's algorithm and ours in

the proof.

Starting with H = ;, the algorithm executes the while loop at line 2 until
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EQ(H) returns \yes." If a negative counterexample E is returned at line 3,

then hypothesis H is too strong, i.e., H j= E. In this case, the algorithm tries

to detect an incorrect clause C 2 H such that H� 6j= C by searching the proof-

DAG T for E by H from lines 5 to line 10 with a contradiction backtracing

algorithm (CBA) [35]. Initially, the root is false in the modelM(H�). Starting

from the root, the algorithm goes downward by following any false child of

the current node. Eventually, the algorithm reaches a false node A none of

whose children is false inM(H�). Then, we know that there exists some clause

C 2 H that subsumes (A B1; : : : ; Bt0) which is false in M(H�) and should

be removed fromH. By the similar discussion as [34] and by Lemma 27, we can

show that the CBA still correctly works for any subclass of variable-bounded

EFSs and runs in polynomial time in p and n making at most q1(p; n) PMQs.

On the other hand, if a positive counterexample E is returned, then hypoth-

esis H is too weak, i.e., H 6j= E. In this case, the algorithm tries to �nd all

candidate clauses used to construct a proof-DAG for E by H�. By Lemma 7,

there exists some hereditary clause C such that hd(C)� = hd(E) for some

substitution �. Therefore, by an execution of the step of line 12, we can add

at least one clause in H�. This step may add some false clauses to H, but they

will be eventually removed by the CBA steps. By Lemma 30, the cardinal-

ity of the candidate set Cand(E; k; t; r) is bounded by q2(p; n), and the time

complexity to construct Cand(E; k; t; r) is also at most q2(p; n). Finally, we

can show that the execution from lines 5 to line 10 and at line 12 are iterated

at most O(m +mq2(p; n)) and m times, respectively. Hence, the number of

EQs and PMQs is bounded by O(m + mq2(p; n)) = O(mptn2k+2rt
k
k), and

O(mq1(p; n) q2(p; n)) = O(mpt+1
n
2k+2r(t+1)

k
k) respectively. 2

3.2 The learnability of a subclass of terminating HEFSs

In this subsection, we present the learning algorithm LEARN BY GEN for

THEFS(�; k; �; r) with EntEQs, EntMQs and DQs as Fig. 3.

In the following, we denote by H� the target hypothesis and we assume that

a �xed signature S is given to the learner before a learning session. The algo-

rithm starts with the most speci�c hypothesis H = ; and searches hypothesis

space THEFS(�; k; �; r) from speci�c to general with respect to the subsump-

tion lattice based on w. For each positive counterexample E returned by En-

tEQ, the algorithm constructs another positive example D that is subsumed

by some clause in H�. Then, the algorithm generalizes hypothesis H by care-

fully merging the obtained example D with some clause in H so that only

positive counterexamples are provided.
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Procedure: LEARN BY GEN

/* A learning algorithm for THEFS(�; k; �; r) with EntEQs, EntMQs,

and DQs. S: a �xed signature */

1 H := ;;

2 while EntEQ(H) =\no" do begin /* Ent(H) 6= Ent(H�) */

3 E := the counterexample returned by the EntEQ;

4 D := Saturate(E;H;S); /* Compute the saturant by H */

5 D := Rewind(D;S); /* Compute the prime counterexample */

6 for each C 2 H do begin

7 if EntMQ(F )=\yes" for some F 2 MCS (C;D;S; k) then

8 H := (H � fCg) [ fFg and goto FOUND;

9 end /* for */

10 H := H [ fDg;

11 FOUND:

12 end /* main loop */

13 return H;

Fig. 3. A polynomial-time learning algorithm for THEFS(�; k; �; r) with EntEQs,

EntMQs and DQs, based on saturation, rewind and minimal common subsumer.

3.2.1 The Saturation and the Rewind procedures

The �rst task of the algorithm is, given a positive example E, to constructs

another positive example D that is subsumed by some clause in H�. From the

subsumption theorem (Lemma 7), we know that there are three cases for the

clause E, (i) E is a tautology, (ii) E is directly subsumed by some clause in

H�, and (iii) there is a non-trivial proof-DAG for E by H�. The �rst case (i)

is impossible since E is a counterexample for H. If the second case (ii) holds

then the task is already done. Therefore, we will deal with the third case (iii)

by using the saturation and the rewind procedures, which invert the proof

steps by which positive examples are derived from clauses in H�.

For a clause C, the saturation is an operation to add to the body of C all

atoms derivable from the body of C and H. More formally, for a clause C

and an EFS H, ClosureS;H(bd(C)) is the set of all atoms B 2 AtomS(hd(C))

such that H j= 8(B  bd(C)). Then, the saturant of C by H, denoted by

Saturant(C;H;S), is the clause hd(C) ClosureS;H(bd(C)).

Lemma 32 For every �xed k; r � 0, the saturant of any clause C by any

HEFS H 2 HEFS(�; k; �; r) is unique up to renaming, of polynomial size in

jjCjj, and polynomial-time computable in jjCjj and jjHjj.

Lemma 33 If a clause C is a positive counterexample of H w.r.t. H�, then

the saturant of C by H is also a positive counterexample of H w.r.t. H�.
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PROOF. By de�nition, C subsumes its saturant D = Saturant(C;H;S).

Therefore, H� j= C implies H� j= D. Conversely, the saturant D is obtained

from C by adding to the body of C only the atoms entailed by H. We have

H j= 8(bd(C)! bd(D)), and it follows that H j= D implies H j= C. 2

A positive example C 2 Ent(H�) for H� is called prime w.r.t. H� if all proof-

DAGs for C by H� are trivial, and called composite otherwise.

Lemma 34 If a positive counterexample C is prime then C is subsumed by

some clause in H�.

PROOF. C is neither a tautology nor a clause with some non-trivial proof-

DAG by H�. Thus, the result immediately follows from Lemma 7. 2

The converse of the above lemma does not hold in general.

Lemma 35 Let H� and H be EFSs in THEFS(�; k; �; r). Given any saturated

positive counterexample C for H� w.r.t. H, the algorithm Rewind in Fig. 4

�nds a prime positive counterexample for H� w.r.t. H in polynomial time by

using O(pn2r) EntMQ and O(pn2r) DQ, where n = jjhd(C)jj, p = #� and

r = arity(�).

PROOF. Let C = (A  Body) be any saturated positive counterexample

for H� w.r.t. H. Let A0 = A;A1; : : : ; Ai; : : : (i � 0) be the sequence of the

values of the atom A at line 2 of the algorithm Rewind in Fig. 4, where Ai is

the value at the i-th execution of the for-loop (the i-th stage). For every i � 0,

let Ci be the clause (Ai  bd(C)). By assumption, C0 = C is a saturated

positive counterexample for H� w.r.t. H. Then, we show the following claim

for every i � 0.

(Claim 1) If Ci is a saturated positive counterexample forH� w.r.t. H, and fur-

thermore Ci is not prime, then there exists some atomB = Ai+1 2 AtomS(A)�

bd(Ci) such that DQ(Ai+1; B) =\yes" and EntMQ(B  bd(Ci)) =\yes".

(Proof for the claim) If Ci is not prime then there is a non-trivial proof-DAG T

for Ci by H�. Such a non-trivial proof-DAG T contains some node B that does

not appear in Ci. By de�nition, B is neither the root nor an atom in bd(Ci).

Since Ci is saturated by H, we have B 2 bd(Ci) i� H j= 8(B  bd(Ci)).

Therefore, if B 62 bd(Ci) then we have that H 6j= 8(B  bd(Ci)). On the other

hand, for any node B in a proof-DAG T for Ci by H�, H� j= 8(B  bd(Ci))

holds. Thus, we have that EntMQ(B  bd(Ci)) =\yes". By construction,

B is a descendant of the root Ai+1. Thus, we also have DQ(Ai+1; B) =\yes".
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Procedure Saturate(D;H;S)

1 Body := ;; Head := hd(D);

2 for each B 2 AtomS(Head) do

3 Let � be the Skolem substitution for (B  bd(D)) w.r.t. H;

4 if (H [ bd(D�) j= B�) then

5 Body := Body [ fBg;

6 return (Head Body);

Procedure Rewind(C;S)

1 A := hd(C); Body := bd(C); S := AtomS(A)� Body;

2 while (DQ(A;B) and EntMQ(B  Body) return \yes" for 9B 2 S) do

3 A := B;

4 return (A Body); /* prime w.r.t. H� */

Fig. 4. The procedure Saturate to compute a saturated positive counterexample and

the procedure Rewind to compute a prime positive counterexample.

Furthermore, we know that Ci+1 = (B  bd(Ci)) is a positive counterexample

for H� w.r.t. H. (End of the proof for the claim)

By the above claim, we know that if the while-loop at line 2 terminates then the

clause Ci must be prime w.r.t. H�. Also, Ci is a positive counterexample. On

the other hand, the sequence of generated atoms form the decreasing sequence

A0 = A >H
�

A1 >H
�

� � � >H
�

Ai >H
�

� � � w.r.t. the dependency relation >H
�

for H�. If H� is an HEFS, all Ai are members of AtomS(A) and since H� is

terminating then all A0; A1; � � � must be mutually distinct. Thus, it follows

from Lemma 28 that the length of the decreasing sequence is bounded above

by #AtomS(A) = O(pn2r), where n = jjAjj. Hence, the time and the query

complexities immediately follow. 2

From Lemma 33, Lemma 34 and Lemma 35, we know that the procedures

Saturate and Rewind �nds a prime positive counterexample D from a given

positive counterexaple E at line 3 to line 5 of the algorithm LEARN BY GEN

in Fig. 3.

3.2.2 Maximal common subsumers

Once a prime positive counterexample D is found, the remaining task in

LEARN BY GEN is to generalize the current hypothesis H by merging D

with H. This is possibly done by taking the least upper bound of D and

some clause C 2 H w.r.t. the subsumption relation w [10,15,20,32]. Unfor-

tunately, no unique upper bound w.r.t. w exists for patterns or hereditary
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Procedure MCS (D1; D2;S; k)

1 S := f (A; �1; �2) jA 2 AtomS ; o(A) � k; A�1 = hd(D1); A�1 = hd(D2) g;

2 CS := ;;

3 for each (A; �1; �2) 2 S do

4 Body :=

8><
>:B 2 AtomS(A)

�������
DQ(A;B) returns \yes,"

B�1 2 bd(D1) and B�2 2 bd(D2)

9>=
>;;

5 CS := CS [ f(A Body)g;

6 return CS ;

Fig. 5. The procedure to compute minimal common subsumer.

clauses. Hence, we introduce the maximal common subsumers.

De�nition 36 Let S be a signature, C a subclass of ClauseS, and Di a clause

over S (i = 1; 2). A common subsumer of D1 and D2 within C is a clause

C 2 C such that C w D1 and C w D2. A common subsumer C of D1 and D2

within C is maximal if there is no common subsumer D of D1 and D2 in C

such that bd(C) � bd(D).

Let S be a signature (�;�). Then, we denote by MCS(D1; D2;S; k) the set

of all maximal common subsumers of D1 and D2 in hereditary clauses over

S of which variable-occurrence is at most k. There are more than exponen-

tially many common subsumers for given C and D. However, there are only

polynomially many maximal ones.

Lemma 37 Let S be a signature (�;�), Di a clause over S (i = 1; 2) and

k � 0 an integer. Then, the set MCS(D1; D2;S; k) is of cardinality q3(n) =

n
4k
k
k, of polynomial size, and polynomial-time computable in p = #� and

n = jjD1jj+ jjD2jj.

PROOF. Consider the procedure in Fig. 5 that computes MCS(D1; D2;S; k)

using DQ. It is not hard to see that this procedure works correctly. Further-

more, we can show that #S � n
4k
k
k and #Body � pn

2r by Lemma 28 and

Lemma 29. 2

3.2.3 The correctness and the time complexity

Now, we prove the correctness of the learning algorithm LEARN BY GEN in

Fig. 3. In the following, let H0; H1; : : : ; Hn; : : : and E0; E1; : : : ; En; : : : (n � 0)

be the sequence of hypotheses and counterexamples, respectively, where H0 is

the initial hypothesis ;, and at each stage i � 1, LEARN BY GEN makes the

entailment equivalence query EntEQ(Hi�1), receives a counterexample Ei to
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the query, and produces a new hypothesis Hi from Ei and Hi�1. A clause is

missing if it is subsumed by some clause in H� but not entailed by the present

hypothesis H.

Lemma 38 Suppose that a positive example C subsumes another positive

example D, i.e., C w D. If D is prime w.r.t. H�, then so is C.

PROOF. Since C w D, there exists a substitution � such that C� � D. If C

is composite w.r.t. H�, then we can transform a proof-DAG TC for H� j= C

to a proof-DAG for H� j= D, by applying � to all atoms in TC . Since D is not

composite, this is a contradiction. 2

Lemma 39 For every n � 0, H� w Hn and En is a positive counterexample.

Furthermore, Hn is a conservative re�nement of H�.

PROOF. We show by induction on n � 0 that H� w Hn and that Hn

consists of just prime clauses w.r.t H�. If n = 0, then H0 = ; and the claim

trivially holds. Next, suppose n > 0. By induction hypothesis, H� w Hn�1

and thus the next counterexample E = En at line 4 is positive. Let D be

the clause obtained after executing lines 4 to line 8. Combining Lemma 33,

Lemma 32 and Lemma 35, we can show thatD is still saturated and>-minimal

w.r.t. H� by H and D 2 Ent(H�) � Ent(Hn�1). By Lemma 35 D is prime.

Thus, by Lemma 34, D is subsumed by some missing clause in H�. Suppose

�rst that there exists some C 2 Hn�1 and some F 2 MCS(C;D;S; k) such

that EntMQ(F ) returns \yes." Then, Hn = (Hn�1�fCg)[fFg. By induction

hypothesis, C as well asD is prime. By Lemma 38, F is also prime, so it follows

from Lemma 34 that F is subsumed by some clause in H�. Since H� w Hn�1,

this implies that H� w Hn. Next suppose that there is no such C 2 Hn�1,

and then Hn = Hn�1 [ fDg. Since D is prime, it follows from Lemma 34

that H� w Hn. A new clause F is added to Hn at line 12 only if there exists

no maximal common subsumer of D and C subsumed by H� for all clauses

C 2 Hn. Hence, the re�nement Hn of H� is always conservative. 2

Corollary 40 H� = � � � = Hn = � � � = H1 = H0 (n � 0).

Lemma 41 For HEFS(�; k; �; r), there exists no increasing sequence � � � =

C1 = C0. Furthermore, its length is always bounded by O(pn2r+1), where

p = #� and n = jhd(C0)j.

PROOF. By using the discussion in [9], we can show that the length of the

sequence � � � = A1 = A0 of atoms is bounded by jjA0jj = O(n) independent

from k. For a given head A, the maximum size of the body is bounded by
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#AtomS(A) = O(pn2r). Hence, we have the upper bound of the length of the

sequence as O(pn2r+1). 2

Theorem 42 Let S = (�;�) be a signature. For every k; r � 0, the class

THEFS(>; �; k; �; r) is polynomial-time exact learnable with O(pmn2r+1) En-

tEQ, O(p2m2
n
4k+4r+1

k
k) EntMQ, and O(p2mn4k+4r+1

k
k) DQ, where m is the

cardinality of a target THEFS, p = #� and n is the size of the longest coun-

terexample received so far.

PROOF. Since the algorithm LEARN BY GEN terminates only if the EQ

returns \yes," it is suÆcient to show the termination in polynomial time. By

Corollary 40, the sequence of hypotheses is of the form H� = � � � = Hn = � � � =

H1 = H0 (n � 0) (1). By Lemma 39, each Hn is a conservative re�nement of

H�, so #Hn � #H� = m.

Fix an enumeration H� = (C�

1 ; : : : ; C
�

m). For every n � 0, we can order Hn as

the m-tuple (Cn
1
; : : : ; C

n
m) 2 Clause

m
S
such that, for each i, Cn

i is the unique

member of Hn satisfying C
�

i w C
n
i if it exists and Cn

i = ? otherwise, where ?

is a special symbol denoting that C w ? for every C 2 ClauseS .

It follows from Lemma 41 that, for every 1 � i � m, the length of the

longest subsequence such that � � � w C
2

i = C
1

i is bounded by O(pn2r+1). Thus,

both the lengths of the sequence (1) and the number of EntEQs are bounded

by q4(p;m; n) = O(pmn2r+1). By Lemma 32, Lemma 35 and Lemma 37,

the number of EntMQs is bounded by q5 = O(pmn4k+2r
k
k) and the run-

ning time in each iteration of the while-loop is bounded by a polynomial in

p, m and n. Hence, the total number of EntMQs is q4(p;m; n)q5(p;m; n) =

O(p2m2
n
4k+4r+1

k
k) and the running time is polynomial in p, m and n. 2

Since any counterexample in the language semantics (AtomS ; LS(�; p0)) is also

a counterexample in the entailment semantics (ClauseS;EntS(�)), we can re-

place each EntEQ in Theorem 42 with EQ.

Corollary 43 For every k; r � 0, the class THEFS(�; k; �; r) is polynomial-

time exact learnable with EQ, EntMQ, and DQ.

Suppose that we have an eÆciently decidable, well-founded transitive relation

> over AtomS . In this case, we can eliminate DQ to learn a subclass THEFS(>

; �; k; �; r) consisting of the programs uniformly bounded by >. The class of

reducing programs [43] is an example of such uniformly terminating EFS.

Corollary 44 Let > be any well-founded transitive relation over AtomS that

is polynomial time decidable. For every k; r � 0, the class THEFS(>; �; k; �; r)

is polynomial-time exact learnable with EQ and EntMQ.
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3.2.4 A lowerbound result

By Theorem 31 and Theorem 42, note that the number O(pmn2r+1) of EQ

made by LEARN BY GEN is signi�cantly smaller than O(ptmn
2k+2rt

k
k) EQ

by LEARN BY CBA for large k; t � 1. In this subsection, we analyze the

query complexity of the class THEFS(m; k; �; r), and obtain the lower bound

result, which indicates that the query complexity is almost optimal in terms

of m and n for EQ.

Theorem 45 Let S be any signature with at least two letters. For every in-

tegers k; r � 0 such that k � 4r, any algorithm that exactly identi�es all hy-

potheses in THEFS(m; k; �; r) with EntEQ and EntMQ must make 
(mnr=2)

queries in the worst case, where m is the cardinality of a target THEFS and

n is the size of the longest counterexample received so far.

PROOF. We say that a concept class C shatters a set U � �� if fU \ c j c 2

C g = 2U holds. The VC-dimension of C, denoted by V C(C), is the cardinality

of the largest set U � �� that is shattered by C. From arguments in Maass and

Tur�an [23], it is suÆcient to show that V C(THEFS(m; k; �; r)) = 
(mnr=2).

Let p; q; r; len; bit 2 � be predicate symbols of arity r + 1; 2r; r; 2; 1, respec-

tively. Let xi; yi; zi; vi 2 X be variables for 1 � i � r. For an integer n � 0,

[n] denotes the set f1; : : : ; ng. Then, we encode an integer i 2 [n] by the bit

vector  (i) = 0i�110n�i 2 f0; 1gn and an r-vector (i1; : : : ; ir) 2 [n]r by an

atom p( (i1); : : : ;  (ir); 0
n) 2 BaseS : Let Sr;n be the set

f p( (i1); : : : ;  (ir); 0
n) j (i1; : : : ; ir) 2 [n]r g

of ground atoms of length (r + 1)n corresponding to all nk r-vectors in [n]k.

For any subset T � Sr;n, we de�ne

Sr;n(T ) = f p( (i1); : : : ;  (ir); 0
n) j (i1; : : : ; ir) 2 T g:

Then, we de�ne the EFS HT that represents the set Sr;n(T ) as follows, where

T = [n]k � T .

p(x1; : : : ; xr; 0
n) 

V
(i1;:::;ir)2T

�
q(x1; : : : ; xr; 0

i1; : : : ; 0ir)

�
:

q(x1y1z1; : : : ; xryrzr; v1; : : : ; vr) V
1�j�r

�
len(xjyj; vj) ^ bit(yj)

�
^ r(y1; : : : ; yr):

r(x1; : : : ; xi�1; 0; xi+1; : : : ; xr) , for all 1 � i � r.

len(ax; 0y) len(x; y),

len(a; 0) ,

bit(a) , for all a 2 f0; 1g.
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Note that HT is terminating and hereditary.

Let w 2 f0; 1gr be a bit vector of length r. Then, it holds that, for every

� 2 f0; 1g� and i 2 [n], HT j= len(�; 0i) i� j�j = i. Also, for every i 2 [n] and

every string w = ��
 (�; �; 
 2 f0; 1g�), if HT j= len(��; 0i) ^ bit(�), then

� is the i-th bit of w. Furthermore, it holds that, for every b1 � � � br 2 f0; 1g
r,

HT j= r(b1; : : : ; br) i� b1 � � � br 6= 1r, and HT j= q( (i1); : : : ;  (ir); 0
j1; : : : ; 0jr)

i� (i1; : : : ; ir) 6= (j1; : : : ; jr). Hence, it is not hard to see that, for every

(i1; : : : ; ir) 2 [n]r, HT j= p( (i1); : : : ;  (ir); 0
n) i� (i1; : : : ; ir) 62 T . Since each

HT belongs to HEFS(r + 8; 4r; �; 2r), the class HEFS(r + 8; 4r; �; 2r) shatters

the set Sr;n of the cardinality nr.

Similarly, we can show that the class HEFS(m + r + 7; 4r; �; 2r) shatters the

direct sum Sm;r;n = S
(1)

r;n [ � � � [ S
(m)

r;n of cardinality mnr obtained by mak-

ing the m copies of the predicate P . Hence, it immediately follows that

V C(HEFS(m; k; �; r)) = 
((m � r � 7)n̂r=2=2rr) = 
(mn̂r=2) in m and n

when k � 4r, where the maximum length of the examples is n̂ = (r+1)n. 2

4 Hardness Results for Learning HEFSs

In this section, we present several representation-independent hardness results

of predicting the subclasses of HEFSs, which claim the necessity of both the

types of queries and the bounds on the parameters are necessary for their

eÆcient learning mentioned in the previous section.

We �x f , g and h to an instance mapping, a concept mapping, and a mem-

bership query mapping. Also the parameters n and s denote the bounds of

examples and representations, respectively. For simplicity, we assume that the

length of examples of Boolean concepts is always �xed to the upper bound

n. Furthermore, a signature is always �xed and a semantics is the language

semantics.

4.1 Regular pattern languages revisited

We denote by RP , [mRP and [RP regular pattern languages, at most m

unions of regular pattern languages, and unbounded unions of regular pattern

languages, respectively (cf. [12,25,26,36,37,39]). Since each regular pattern lan-

guage L(�) is de�nable by the HEFS fp(�)  g, we can easily observe that

RP , [mRP and [RP are corresponding to HEFS(1; �; 0; 1), HEFS(m; �; 0; 1)

and HEFS(�; �; 0; 1), respectively. It is known that RP and [mRP are not

polynomial-time PAC-learnable unless NP = RP [25,26], where these are
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representation-dependent hardness results.

Theorem 46 The class RP is not polynomial-time predictable, if the class

DNF is not polynomial-time predictable.

PROOF. It is suÆcient to show that DNF n � RP for all n � 0. Let d =

t1 _ � � � _ tm be a DNF formula over the set fx1; : : : ; xng of Boolean variables.

For each vector e = e1 � � � en 2 f0; 1g
n, let ~e = 1e11e21 � � � 1en1 and let � =

(01)3(2n+1). Then, construct f and g as follows:

f(n; s; e) = e
0 = (A~eA�)m�1 � A~eA;

g(n; s; d) = P = AP1AP2A � � �APmA; where A is a new symbol.

Here, Pj = �p
j
1 � p

j
2 � � � � � p

j
n�, where all � are mutually distinct variables in

X and p
j
i = 1 if tj contains xi, p

j
i = 0 if tj contains xi, and x

j
i otherwise.

We show that, if e satis�es d, then e0 2 L(P ). The following statements hold:

(a) e satis�es d i� there exists an index j (1 � j � m) such that ~e 2 L(Pj),

because j~ej = jPjj = 2n + 1. (b) For each Pj (1 � j � m), � is of the

form �1�2�3 such that j�1j; j�2j; j�3j > 0 and �2 2 L(Pj). (c) For each Pj

(1 � j � m), it holds that both ~eA�; �A~e 2 L(Pj) because of (b). From the (a)

and (c), it holds that e0 2 AL(P1)A � � �AL(Pi)A � � �AL(Pm)A. Hence, e
0 2 L(P ).

Conversely, suppose that e does not satisfy d. From the (a), it holds that

(d) ~e 62 L(Pj) for every j (1 � j � m). Furthermore, (e) ~e 62 L(P 0) for any

substring P 0 of P containing an A, because e contains no A. From the conditions

(d) and (e), if e0 2 L(P ), then at least one of the two A's for each occurrence

A~eA in e0 must be substituted to a variable of a Pj in P . Since the number of

A's in e0 is 2m, the remained A's in e0 to match with all A in P are at most m.

However, P contains only m+1 A's, so it is impossible that e0 2 L(P ). Hence,

e
0 62 L(P ) and we can conclude that DNF n �RP . 2

The RP is learnable in polynomial-time with membership and equivalence

queires [24], however, the learnability of [RP with the queries is not known.

We show that, in case of binary alphabet, learning [RP is no easier than

learning DNF .

Theorem 47 The class [RP over two-letter alphabet is not polynomial-

time predictable with membership queries, if DNF is not polynomial-time

predictable with membership queries.
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PROOF. It is suÆcient to show that DNF n �pwm [RP for all n � 0. For a

DNF formula d = t1 _ � � � _ tm, let �i (1 � i � m) and � be regular patterns

p
j
1 � � � p

j
n and x1 � � �xnxn+1, respectively. Here, p

j
i (1 � i � n; 1 � j � m) is

de�ned as similar as the proof of Theorem 46. Then, construct f , g and h as

follows:

f(n; s; e) = e;

g(n; s; d) = f�1; : : : ; �m; �g;

h(n; s; e0) =

8>>>>><
>>>>>:

e
0 if je0j = n;

? if je0j < n;

> if je0j > n:

For each e
0 2 f0; 1g�, we can check the properties of h in De�nition 23 as

follows. Since L(�) = fw 2 f0; 1g� j jwj � n + 1g, if h(n; s; e0) = >, then

e
0 2 L(g(n; s; d))(= L(�1) [ � � � [ L(�m) [ L(�)). On the other hand, since

j�jj = n (1 � j � m) and j�j = n + 1, L(g(n; s; d)) contains no strings of

length < n. So, if h(n; s; e0) = ?, then e
0 62 L(g(n; s; d)). If h(n; s; e0) = e

0,

then e0 62 L(�) because je0j = n. Thus, e0 2 L(�1)[� � �[L(�m) and there exists

an index i (1 � i � m) such that e0 2 L(�i) i� e
0 is obtained by replacing

the variables in �i with 0 or 1, which is corresponding to a truth assignment

satisfying ti. Hence, e
0 2 L(g(n; s; d)) i� e0 satis�es d.

Furthermore, for each e 2 f0; 1gn, e satis�es d i� f(n; s; e) 2 L(g(n; s; d)).

Hence, it holds that DNF n �pwm [RP . 2

On the other hand, by using the corresponding DFA to a regular pattern, we

can obtain the following theorem:

Theorem 48 (Hirata & Sakamoto [17]) For eachm � 0, the class [mRP

is polynomial-time predictable with membership queries.

4.2 Other hardness results

By Theorem 47 in Section 4.1, we can conclude that HEFS(�; �; t; r) (t �

0, r � 1) is not polynomial-time predictable with membership queries, if

neither are DNF formulas. In this subsection, we discuss the subclasses of

HEFS�(�; k; t; r), which are restricted that all facts contain no variable.

From the learnability of k-bounded ESEFSs by Sakakibara [34] and the learn-

ability of HEFS(�; k; t; r) by Theorem 31, it arises a natural question whether
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we can replace the predicate membership queries with the ordinal member-

ship queries. The next theorem claims that it is impossible preserving eÆcient

learnability.

Theorem 49 For every k; t; r � 1, HEFS�(�; k; t; r) is not polynomial-time

predictable with membership queries under the cryptographic assumptions.

PROOF. It is suÆcient to show that [DFA�pwmHEFS�(�; 1; 1; 1) by The-

orem 24 and 25. Let M1; : : : ;Mr be DFAs over the same alphabet �. Sup-

pose that c 62 �. For each Mi = (Qi;�; Æi; q
i
0
; Fi) (1 � i � r), construct

H1(n; s;Mi) 2 HEFS�(�; 1; 1; 1) as follows:

(1) q(ax) r(x) 2 H1(n; s;Mi) if Æi(q; a) = r for each q; r 2 Qi and a 2 �;

(2) q(c) 2 H1(n; s;Mi) for each �nal state q 2 Fi.

(3) p(x) q
i
0(x) 2 H1(n; s;Mi) for each q

i
0 2 Qi, where p 62 Q1 [ � � � [Qr.

Then, construct f , g and h as follows:

f(n; s; w) = wc;

g(n; s; fM1; : : : ;Mrg) = H1(n; s;M1) [ � � � [H1(n; s;Mr);

h(n; s; w0) =

8><
>:
w if w0 = wc;

? otherwise:

The size of g(n; s; fM1; : : : ;Mrg) is bounded by a polynomial in the size of

all Mi's (1 � i � r). Furthermore, it holds that (1) w 2 L(M1) [ � � � [

L(Mr) i� f(n; s; w) 2 L(g(n; s; d); p) for each w 2 �[n], (2) if h(n; s; w0) = ?,

then w0 62 L(g(n; s; d); p), and (3) if h(n; s; w0) = w, then it holds that w0 2

L(g(n; s; d); p) i� w 2 L(M1)[ � � � [L(Mr). Hence, it holds that [DFA�pwm

HEFS�(�; 1; 1; 1). 2

Recall that every k-bounded ESEFSs are contained in HEFS�(�; k; k; 1). The

following theorem claims that, if neither the variable-occurrence nor the num-

ber of atoms in the body are bounded, then HEFSs are not polynomial-time

predictable even with predicate membership queries.

Theorem 50 For every r � 1, HEFS�(�; �; �; r) is not polynomial-time pre-

dictable with predicate membership queries, if DNF is not polynomial-time

predictable with membership queries.

PROOF. First, we show that DNF n �pwm HEFS�(�; �; �; 1) for all n � 0.

Let d = t1 _ � � � _ tm be a DNF formula. Then, construct the following EFS
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H2(n; s; d):

H2(n; s; d) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

q(0) 

q(1) 

p(p1
1
� � � p1n) q(p1

1
); : : : ; q(p1n)

� � �

p(pm
1
: : : p

m
n ) q(p1m); : : : ; q(p

m
n )

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

where p
j
i (1 � i � n; 1 � j � m) is de�ned as similar as the proof of Theo-

rem 46. Furthermore, letH 0

2
(n; s; d) be an HEFS obtained by deleting all atoms

q(0) and q(1) from the body of each clause in H2(n; s; d). Then, construct f ,

g and h as follows:

f(n; s; e) = e;

g(n; s; d) = H
0

2
(n; s; d);

h(n; s; e0) =

8><
>:
e
0 if e0 2 f0; 1gn;

? otherwise:

Since L(g(n; s; d); p) � f0; 1gn, it is easy to see that (1) e satis�es d i�

f(n; s; e) 2 L(g(n; s; d); p) for each e 2 f0; 1gn, and (2) e0 2 L(g(n; s; d); p)

i� h(n; s; e0) satis�es d for each e0 2 f0; 1gn. Hence, it holds that DNF n�pwm

HEFS�(�; �; �; 1).

Finally, we consider whether the same result holds even if the membership

queries are replaced with the predicate membership queries. Although we

can extend pwm-reducibility to prediction-preserving reducibility with pred-

icate membership queries according to De�nition 23, we only discuss the

case HEFS�(�; �; �; 1). Concerned with the above pwm-reduction DNF n�pwm

HEFS�(�; �; �; 1), the di�erence between MQs and PMQs is just to ask whether

H
0

2
(n; s; d) j= q(w)  for w 2 f0; 1g�. Note that the predicate symbol q in

H
0

2
(n; s; d) denotes the value substituted to a Boolean variable xi in d, so

can generate just 0 and 1. Then, we can extend a membership query map-

ping h to a predicate membership query mapping h0 as h0(n; s; p(w)) = h(w);

h
0(n; s; q(w)) = > if jwj = 1; h0(n; s; q(w)) = ? if jwj > 1. Hence, the state-

ment holds. 2
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5 Conclusion

We investigated the eÆcient learnability of a hierarchy HEFS(m; k; t; r) of

the HEFSs with the equivalence and other queries, where m is the maximum

number of clauses, k is the maximum variable-occurrences in the head, t is

the maximum number of atoms in the body, and r is the maximum arity of

predicate symbols.

We showed three positive results for the learnability of HEFS(m; k; t; r). First,

the class HEFS(�; k; t; r) is polynomial-time learnable with equivalence and

predicate membership queries. This is an extension of Sakakibara's result [34]

for the class ESEFSs. Second, the more general class is e�ectively learnable if

more powerful queries are allowed and the termination relation over the pred-

icate symbols is assumed, that is the class THEFS(�; k; �; r) of terminating

HEFSs with additional information on the termination is learnable in poly-

nomial time with equivalence and entailment membership queries. Third, we

showed that the number of queries used in the presented learning algorithm

for THEFS(�; k; �; r) is nearly optimal.

The negative results for the learnability of subclasses of EFSs were proved

by the prediction-preserving reduction (with membership queries). The class

HEFS(�; k; t; r) was shown to be learnable using the above types of queries

but the predicate membership query can not be replaced by the membership

query under the cryptographic assumptions.

Moreover, the class RP is not polynomial-time predictable if the class of

DNF formulas is not polynomial-time predictable, and the class [RP is not

polynomial-time predictable with membership queries, if the class of DNF

formulas is not polynomial-time predictable with membership queries. On the

other hand, the class [mRP of bounded union of regular pattern languages

is polynomial-time predictable with membership queries [17]. It is a strong

evidence for the eÆcient learnability of the class.

Fig. 1 summarizes the results obtained in this paper. It is a future problem

to study the learnability of the class THEFS(�; k; �; r) with equivalence and

predicate or entailment membership queries but without dependency queries.

Khardon [20] has recently shown that function-free k-variable Horn sentences

of arity r are polynomial-time learnable in various active learning models

without using termination information. Thus, it would be interesting to apply

his method to the classes of HEFSs.
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