
Prediction-Hardness

of Acyclic Conjunctive Queries 1

Kouichi Hirata 2

Department of Artificial Intelligence, Kyushu Institute of Technology, Kawazu
680-4, Iizuka 820-8502, Japan

Abstract

A conjunctive query problem is a problem to determine whether or not a tuple be-
longs to the answer of a conjunctive query over a database. In this paper, a tuple,
a conjunctive query and a database in relational database theory are regarded as a
ground atom, a nonrecursive function-free definite clause and a finite set of ground
atoms, respectively, in inductive logic programming terminology. An acyclic con-
junctive query problem is a conjunctive query problem with acyclicity . Concerned
with the acyclic conjunctive query problem, in this paper, we present the hardness
results of predicting acyclic conjunctive queries from an instance with a j-database
of which predicate symbol is at most j-ary. Also we deal with two kinds of in-
stances, a simple instance as a set of ground atoms and an extended instance as a
set of pairs of a ground atom and a description. We mainly show that, from both a
simple and an extended instances, acyclic conjunctive queries are not polynomial-
time predictable with j-databases (j ≥ 3) under the cryptographic assumptions,
and predicting acyclic conjunctive queries with 2-databases is as hard as predicting
DNF formulas. Hence, the acyclic conjunctive queries become a natural example
that the equivalence between subsumption-efficiency and efficient pac-learnability
from both a simple and an extended instances collapses.

Key words: acyclic conjunctive query, inductive logic programming, prediction,
prediction-preserving reduction, subsumption

1 A preliminary version of the paper appeared in the Proceedings of the 11th Inter-
national Conference on Algorithmic Learning Theory , LNAI 1968 (Springer, 2000)
238–251.
2 Partially supported by Grand-in-Aid for Scientific Research 15700137 and
16016275 from the Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan, and 13558036 from the Japan Society for the Promotion of Science.

Preprint submitted to Elsevier Science 9 August 2004

1 Introduction

From the viewpoints of both learning theory and inductive logic programming,
Džeroski et al. [11] have first shown the learnability of (first-order) definite pro-
grams called ij-determinate. Furthermore, the series of the researches by Co-
hen [5–7,9], Džeroski [10,12,23], Kietz [22–24] and Page [9,28] have placed the
theoretical researches for the learnability of logic programs in one of the main
research topics in inductive logic programming. Recently, they have deeply
developed by many researchers [1,20,25,26,31,32].

On the other hand, a conjunctive query problem in relational database the-
ory [2,4,14,17,36] is a problem to determine whether or not a tuple belongs
to the answer of a conjunctive query over a database. Here, a tuple, a con-
junctive query, and a database in relational database theory are regarded as
a ground atom e = p(t1, . . . , tn), a nonrecursive function-free definite clause
C = p(x1, . . . , xn)← A1, . . . , Am, and a finite set B of ground atoms in induc-
tive logic programming terminology. Then, we can say that the conjunctive
query problem is a problem to determine whether or not e is provable from C
over B, i.e., {C} ∪ B � e.

Since database schemes in relational database theory can be viewed as hyper-
graphs, many researchers such as [2,4,13,14,17,36] have widely investigated the
properties of database schemes and hypergraphs, together with the acyclicity
of them. A hypergraph is called acyclic if it reduces to an empty hypergraph
by GYO-reduction (See Section 2 bellow 3).

It is known that the acyclicity frequently makes intractable problems in cyclic
cases tractable. The conjunctive query problem is such an example. Here, a
conjunctive query is called acyclic if its associated hypergraph is acyclic. While
the conjunctive query problem is NP-complete in general [15], Yannakakis has
shown that it becomes solvable in polynomial time if a conjunctive query is
acyclic [36]. Recently, Gottlob et al. have improved the Yannakakis’s result
that it is LOGCFL-complete [17].

Concerned with the conjunctive query problem, in this paper, we present the
hardness results of predicting acyclic conjunctive queries from an instance
with a database. In particular, we deal with a j-database of which predicate
symbol is at most j-ary.

According to Cohen [5–7], we introduce two kinds of instances, a simple and an
extended instances . A simple instance of (C, B), which comes from a general
setting in learning theory, is a set {e | {C} ∪ B � e}. On the other hand, an
extended instance of (C, B), which comes from a proper setting in inductive

3 Note here that the concept of acyclicity is different from one in [1,31].

2

logic programming, is a set {(e, D) | {C} ∪ B ∪ D � e}, where D is a set
of ground unit clauses and called a description. If an extended instance is
allowed, then many programs that are usually written with function symbols
can be rewritten as function-free programs. Furthermore, some experimental
learning systems such as Foil [30] also impose a similar restriction.

The acyclic conjunctive query problem, which is LOGCFL-complete men-
tioned above, is corresponding to the evaluation problem of our prediction
problem. Schapire [34] has shown that, if the corresponding evaluation problem
is NP-hard, then the prediction problem is not polynomial-time predictable
unless NP ⊆ P/Poly. Hence, we cannot apply Schapire’s result to show the
hardness results in our problem. In order to achieve the prediction-hardness,
we adopt the prediction-preserving reduction [29] as similar as Cohen [6,7].

As the prediction-hardness from a simple instance, we show that, for each
j ≥ 3, acyclic conjunctive queries are not polynomial-time predictable with
j-databases under the cryptographic assumptions that inverting the RSA en-
cryption function, recognizing quadratic residues and factoring Blum integers
are solvable in polynomial time. Also, as same as Cohen’s proof (Lemma 11
in [7] or Theorem 4 in [9]), we point out that predicting acyclic conjunctive
queries with 2-databases is as hard as predicting DNF formulas. The lat-
ter hardness result holds even if their depth is at most 1. Furthermore, we
show that acyclic conjunctive queries are polynomial-time pac-learnable with
1-databases.

As the prediction-hardness from an extended instance, we give the similar
results as above. We show that, for each j ≥ 3, acyclic conjunctive queries are
not polynomial-time predictable with j-databases under the cryptographic
assumptions, and predicting acyclic conjunctive queries (of which depth is at
most 2) with 2-databases is as hard as predicting DNF formulas.

Our hardness results imply that acyclic conjunctive queries become a nat-
ural example that the equivalence between subsumption-efficiency and ef-
ficient pac-learnability from both a simple and an extended instances col-
lapses. In general, the subsumption problem for conjunctive queries is NP-
complete [3,15]. It is also known that, for both famous determinate [11] and
k-local [7,9] conjunctive queries, the subsumption problems are solvable in
polynomial time [24]. As the learnability results, k-local conjunctive queries
are polynomial-time pac-learnable from a simple instance, while determinate
conjunctive queries are not polynomial-time predictable from a simple instance
under the cryptographic assumptions [7]. Note that the determinate conjunc-
tive queries are defined over ordered conjunctive queries, so it is slightly artifi-
cial. On the other hand, for acyclic conjunctive queries, while the subsumption
problem is LOGCFL-complete [17], it is not polynomial-time predictable from
both a simple and an extended instances under the cryptographic assumptions.

3

2 Preliminaries

In this paper, a term is either a constant symbol or a variable. An atom is of
the form p(t1, . . . , tn), where p is an n-ary predicate symbol and each ti is a
term. A literal is an atom or the negation of an atom. A positive literal is an
atom and a negative literal is the negation of an atom. A clause is a disjunction
of literals. A definite clause is a clause containing one positive literal. A unit
clause is a clause consisting of just one positive literal. By the definition of a
term, a clause is always function-free.

A definite clause C is represented as

A← A1, . . . , Am or A← A1 ∧ . . . ∧Am,

where A and Ai (1 ≤ i ≤ m) are atoms. Here, an atom A is called the head of
C and denoted by hd(C), and a set {A1, . . . , Am} is called the body of C and
denoted by bd(C).

A definite clause C is ground if C contains no variables. A definite clause C is
nonrecursive if each predicate symbol in bd(C) is different from one of hd(C),
and recursive otherwise 4 . Furthermore, a finite set of ground unit clauses is
called a database. A database is called a j-database if each predicate symbol
in it is at most j-ary. According to the convention of relational database the-
ory [2,14,17,36], in this paper, we call a nonrecursive definite clause containing
no constant symbols a conjunctive query .

A substitution is a partial function mapping variables to constant symbols
or variables. We will represent substitutions with the Greek letters θ and σ
and (when necessary) write them as sets θ = {t1/x1, . . . , tn/xn} where xi is a
variable and ti is a term (1 ≤ i ≤ n). For a literal A, Aθ denotes the result
of replacing each variable xi in A with ti. If θ and σ are substitutions, we will
use Aθσ to denote (Aθ)σ.

Next, we formulate the concept of acyclicity. A hypergraph H = (V, E) con-
sists of a set V of vertices and a set E ⊆ 2V of hyperedges. For a hypergraph
H = (V, E), the GYO-reduct GYO(H) [2,13,14,17] of H is the hypergraph
obtained from H by repeatedly applying the following rules as long as possi-
ble:

(1) Remove hyperedges that are empty or contained in other hyperedges.
(2) Remove vertices that appear in ≤ 1 hyperedges.

Definition 1 (cf. [2,13,14,17]) A hypergraph H is called acyclic if GYO(H)

4 A recursive clause in this paper is sometimes called an ambivalent clause [16].

4

y1 y2 y3

z1 z2 z3

x1 x2 x3

y1 y2 y3

z1 z2 z3

x1 x2 x3

H(C1) H(C2)

Fig. 1. The associated hypergraphs H(C1) and H(C2) to C1 and C2.

is an empty hypergraph, i.e., GYO(H) = (∅, ∅), and cyclic otherwise.

The associated hypergraph H(C) to a conjunctive query C is a hypergraph

(var(C), {var(L) | L ∈ bd(C)}),

where var(S) denotes the set of all variables occurring in S 5 .

Definition 2 (Gottlob et al. [17]) A conjunctive query C is called acyclic
(resp., cyclic) if the associated hypergraph H(C) to C is acyclic (resp., cyclic).

Example 3 Let C1 and C2 be the following conjunctive queries.

C1 = p(x1, x2, x3)

← q(x1, y1, y2), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3), s(x1, x2, x3),

C2 = p(x1, x2, x3)

← q(x1, y1, x3), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3), s(x1, x2, x3).

Then, the associated hypergraphs H(C1) and H(C2) to C1 and C2 are described
as Figure 1. By the GYO-reduction, we can show that

GYO(H(C1)) = ({x1, x2, y2}, {{x1, x2}, {x1, y2}, {x2, y2}})
= (∅, ∅),

but GYO(H(C2)) = (∅, ∅), so C1 is cyclic but C2 is acyclic.

Gottlob et al. [17] have shown that the problem of determining whether or not
a conjunctive query or a hypergraph is acyclic is in symmetric logspace SL.

Let C be a conjunctive query A← A1, . . . , Am, B a database and e a ground
atom. Then, we say that e is provable from C over B and denote it by {C}∪B �
5 In the preliminary version [19], the associated hypergraph is given as
(var (C), {var (L) | L ∈ C}), which is different from the definition in [17] repre-
sented here. Hence, the results in Section 4 are different from ones in [19], whereas
the results in Section 5 hold under both definitions.

5

e if one of the following conditions holds.

(1) e ∈ B.
(2) There exists a substitution θ such that e = Aθ and {A1θ, . . . , Amθ} ⊆ B.

Consider the following decision problem 6 :

ACQ (Acyclic Conjunctive Query) [17]
Instance: An acyclic conjunctive query C = p(x1, . . . , xn)← A1, . . . , Am,

a database B, and a ground atom e = p(t1, . . . , tn).
Question: Does {C} ∪ B � e hold?

Theorem 4 (Gottlob et al. [17]) The problem ACQ is LOGCFL-complete.

The relationship between LOGCFL and other relevant complexity classes is
summarized in the following chain of inclusions:

AC0 ⊆ NC1 ⊆ DL ⊆ SL ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ NC ⊆ P ⊆ NP.

In the remainder of this section, we introduce some classes of conjunctive
queries.

Let C be a conjunctive query. The free variables of C are variables in bd(C)
but not in hd(C). A conjunctive query C is k-free [7] if C has at most k free
variables.

Let x and y be free variables of C. x is adjacent to y if they appear in the
same literal of C. x is connected to y if either x is adjacent to y or there exists
a variable z such that x is adjacent to z and z is connected to y. The locale
of a variable x is the set of literals that contain either x or some variable
adjacent to x. The locality of C is the cardinality of the largest locale of any
free variable in C. A conjunctive query C is k-local [7,9] if the locality of C is
at most k.

A conjunctive query C = A← A1, · · · , Am is called ordered if the order from 1
to m in C is fixed. Let C be an ordered conjunctive query A← A1, . . . , Am and
B be a database. Then, C is determinate w.r.t. B [11] if for each i (1 ≤ i ≤ n)
and substitution θ such that

Aθ ← A1θ, . . . , Ai−1θ is ground and B |= A1θ ∧ . . . ∧ Ai−1θ,

there exists at most one substitution σ such that

Aiθσ is ground and B |= Aiθσ.

6 Gottlob et al. [17] have called the problem ACQ “Acyclic Conjunctive Query
Output Tuple (ACQOT)”.

6

The depth of a variable x in a conjunctive query C = A ← A1, . . . , Am is
defined as follows: If x occurs in A, then the depth of x in C is 0. Suppose
that x first occurs in Ai. If none of the other variables in Ai already occurred
in A← A1, . . . , Ai−1, then the depth of x in C is ∞. Otherwise, the depth of
x in C is 1 plus the depth of the variable in Ai with greatest depth occurring
in A← A1, . . . , Ai−1. The depth of C is the largest depth of the variable in C.
A conjunctive query C is k-depth [11] if the depth of C is at most k.

3 Models of Learnability

In this section, we introduce the models of learnability. The definitions and
notations in this section are mainly due to Cohen [6,7].

Let C be a conjunctive query and B be a database. A ground atom e is a
fact of C if the predicate symbol of e is same as one of hd(C). In this paper,
assume that there exists no element of B of which predicate symbol is same
as hd(C).

For a conjunctive query C and a database B, the following set is called a
simple instance of (C, B):

{e | {C} ∪B � e, e is a fact of C}.

For an element e of a simple instance of (C, B), we say that e is covered by
(C, B).

Furthermore, we introduce a description D, which is a finite set of ground
unit clauses. Then, the following set of pairs is called an extended instance of
(C, B):

{(e, D) | {C} ∪D ∪ B � e, e is a fact of C}.

For an element (e, D) of an extended instance of (C, B), we say that (e, D) is
covered by (C, B).

In his learnability results, Cohen has adopted both the simple instance [7] and
the extended instance [5,6]. If the extended instance is allowed, then many
programs that are usually written with function symbols can be rewritten as
function-free programs. There is also a close relationship between extended
instances and “flattening” [10,18,26,33]. Some experimental learning systems
such as Foil [30] also impose a similar restriction. See the papers [5,6] for
more detail.

In the following, we introduce some definitions and notions in learning theory.

7

Let X be a set, called a domain. Define a concept c over X to be a representa-
tion of some subset of X, and a language L to be a set of concepts. Associated
with X and L are two size complexity measures . We will write the size com-
plexity of some concept c ∈ L or instance e ∈ X as |c| or |e|, and we will
assume that this complexity measure is polynomially related to the number
of bits needed to represent c or e. We use the notation Xn (resp., Ln) to stand
for the set of all elements of X (resp., L) of size complexity no greater than
n.

An example of c is a pair (e, b), where b = 1 if e ∈ c and b = 0 otherwise. If d
is a probability distribution function, a sample of c from X drawn according
to d is a pair of multisets S+, S− drawn from the domain X according to d,
S+ containing only positive examples of c, and S− containing only negative
examples of c.

Definition 5 (Cohen [6,7]) A language L is polynomial-time predictable if
there exists an algorithm PacPredict and a polynomial m(1/ε, 1/δ, ne, nt)
so that for every nt > 0, every ne > 0, every c ∈ Lnt , every ε (0 ≤ ε ≤ 1), every
δ (0 ≤ δ ≤ 1), and every probability distribution function d, PacPredict
has the following behavior:

(1) Given a sample S+, S− of c from Xne drawn according to d and containing
at least m(1/ε, 1/δ, ne, nt) examples, PacPredict outputs a hypothesis
h such that

prob(d(h− c) + d(c− h) > ε) < δ,
where the probability is taken over the possible samples S+ and S−.

(2) PacPredict runs in time polynomial in 1/ε, 1/δ, ne, nt, and the number
of examples.

(3) h can be evaluated in polynomial time.

The algorithm PacPredict is called a prediction algorithm for L.

Definition 6 (Cohen [6,7]) A language L is polynomial-time pac-learnable
if there exists an algorithm PacLearn so that:

(1) PacLearn satisfies all the requirements in Definition 5, and
(2) on inputs S+ and S−, PacLearn always outputs a hypothesis h ∈ L.

We will abbreviate “polynomial-time predictable” and “polynomial-time pac-
learnable” as “predictable” and “pac-learnable,” respectively.

For a language L, it is known that, if L is pac-learnable, then L is predictable,
but the converse does not hold in general. Hence, if L is not predictable, then
L is not pac-learnable.

In this paper, a language L is regarded as some set of conjunctive queries.

8

Furthermore, for a database B, L[B] denotes the set of pairs of the form
(C, B) such that C ∈ L. Semantically, such a pair denotes either a simple
or an extended instance covered by it. Furthermore, we will deal with the
following languages:

(1) ACQ denotes the set of all acyclic conjunctive queries.
(2) k-FreeCQ denotes the set of all k-free conjunctive queries.
(3) k-LocalCQ denotes the set of all k-local conjunctive queries.
(4) DetCQ denotes the set of all determinate conjunctive queries.
(5) k-DepthCQ denotes the set of all k-depth conjunctive queries.

For some set B of databases, L[B] denotes the set {L[B] | B ∈ B}. Such a set
of languages is called a language family . Also the set of j-databases is denoted
by j-B.

Definition 7 (Cohen [6,7]) A language family L[B] is predictable if for ev-
ery B ∈ B there exists a prediction algorithm PacPredictB for L[B]. The
pac-learnability of a language family is defined similarly.

Schapire [34] has shown that, if the evaluation problem is NP-hard, then the
prediction problem is not predictable unless NP ⊆ P/Poly. Since the problem
ACQ is corresponding to an evaluation problem for the prediction problem
of ACQ[B] and it is LOGCFL-complete, we cannot apply Schapire’s result to
our prediction problem.

Pitt and Warmuth [29] have introduced a notion of reducibility between pre-
diction problems. Prediction-preserving reducibility is essentially a method of
showing that one language is no harder to predict than another.

Definition 8 (Pitt & Warmuth [29]) Let Li be a language over domain
Xi (i = 1, 2). We say that predicting L1 reduces to predicting L2, denoted by
L1 � L2, if there exists a function f : X1 → X2 (called an instance mapping)
and a function g : L1 → L2 (called a concept mapping) satisfying the following
conditions:

(1) x ∈ c iff f(x) ∈ g(c).
(2) The size complexity of g is polynomial in the size complexity of c.
(3) f(x) can be computed in polynomial time.

Theorem 9 (Pitt & Warmuth [29]) Suppose that L1 � L2.

(1) If L2 is predictable, then so is L1.
(2) If L1 is not predictable, then neither is L2.

For some polynomial p, let µBFp(n)
n be the class of read-once Boolean formulas,

that is, Boolean formulas in which each variable occurs at most once, over n

9

Boolean variables of size at most p(n). Let µBFp(n) =
⋃

n≥1 µBFp(n)
n . Then:

Theorem 10 (Kearns & Valiant [21]) µBFp(n) is not predictable under the
cryptographic assumptions that inverting the RSA encryption function, recog-
nizing quadratic residues and factoring Blum integers are solvable in polyno-
mial time.

Let DNFn be the class of DNF formulas over n Boolean variables, and let
DNF =

⋃
n≥1 DNFn. It remains open whether or not DNF is predictable.

Finally, we summarize the previous results for the learnability of restricted
conjunctive queries from a simple instance.

Theorem 11 The following statements hold:

(1) (Cohen [7], Cohen & Page [9]) k-FreeCQ[j-B] (k ≥ 1, j ≥ 2) is
predictable from a simple instance iff DNF is predictable.

(2) (Cohen [7], Cohen & Page [9]) k-LocalCQ[j-B] (k ≥ 0, j ≥ 0) is
pac-learnable from a simple instance.

(3) (Cohen [7], Cohen & Page [9]) k-DepthCQ[j-B] (k ≥ 1, j ≥ 2) is not
predictable from a simple instance unless NP ⊆ P/Poly.

(4) (Cohen [7]) DetCQ[j-B] (j ≥ 3) is not predictable from a simple instance
under the cryptographic assumptions.

(5) (Džeroski et al. [11]) k-DepthDetCQ[j-B] (k ≥ 0, j ≥ 0) is pac-learnable
from a simple instance.

4 Prediction-Hardness of Acyclic Conjunctive Queries from a Sim-
ple Instance

In this section, we discuss the prediction-hardness of acyclic conjunctive queries
from a simple instance.

As the related previous results, if we can receive a fact as a ground clause,
Kietz [22,23] implicitly has shown that acyclic conjunctive queries consisting
of literals with at most j-ary predicate symbols (j ≥ 2) are not pac-learnable
unless RP = PSPACE, without databases as background knowledge. Under
the same setting, Cohen [8] has strengthened this result not to be predictable
under the cryptographic assumptions.

First, we obtain the following theorem. Note that the following proof is moti-
vated by Cohen (Theorem 5 in [6] and Theorem 9 in [7]).

Theorem 12 ACQ[j-B] (j ≥ 3) is not predictable from a simple instance
under the cryptographic assumptions.

10

PROOF. By Theorem 9 and 10, it is sufficient to show that, for each n ≥ 0,
there exists a database B ∈ 3-B such that µBFp(n)

n � ACQ[B] from a simple
instance.

Let e = e1 . . . en ∈ {0, 1}n be a truth assignment and F ∈ µBFp(n)
n be a

Boolean formula of size polynomial p(n) over Boolean variables {x1, . . . , xn}.
First, construct the following database B ∈ 3-B:

B =

⎧⎪⎨
⎪⎩

and(0, 0, 0), and(0, 1, 0), or(0, 0, 0), or(0, 1, 1), not(0, 1),

and(1, 0, 0), and(1, 1, 1), or(1, 0, 1), or(1, 1, 1), not(1, 0)

⎫⎪⎬
⎪⎭.

Also construct the following instance mapping f :

f(e) = q(e1, . . . , en, 1).

Note that F is represented as a tree of size polynomial p(n) such that each
internal node is labeled by ∧, ∨ or ¬, and each leaf is labeled by a Boolean
variable in {x1, . . . , xn}. Each internal node ni of F (1 ≤ i ≤ p(n)) has one
(ni is labeled by ¬) or two (ni is labeled by ∧ or ∨) input variables and one
output variable yi. Let Li be the following literals:

Li =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

and(zi1, zi2, yi) if ni is labeled by ∧,
or(zi1, zi2, yi) if ni is labeled by ∨,
not(zi1, yi) if ni is labeled by ¬.

Here, zi1 and zi2 denote input variables of ni. Then, construct the following
concept mapping g:

g(F) = q(x1, . . . , xn, y)← (
∧

1≤i≤p(n) Li),

where y is a variable in (
∧

1≤i≤p(n) Li) corresponding to an output of F .

Since F is represented as a tree, the associated hypergraph H(g(F)) of g(F)
is acyclic, so g(F) is acyclic. Furthermore, it holds that e satisfies F iff f(e)
is covered by (g(F), B), that is,

{g(F)} ∪B � f(e).

Hence, it holds that µBFp(n)
n � ACQ[B] from a simple instance. �

For ACQ[2-B], we obtain the following weaker hardness result than Theo-
rem 12.

11

Theorem 13 (Cohen [7], Cohen & Page [9]) If ACQ[2-B] is predictable
from a simple instance, then so is DNF.

Theorem 13 follows from the proof of only-if direction of the statement 1 in
Theorem 11, that is, for each n ≥ 1, there exists a 2-database B ∈ 2-B such
that DNFn � 1-FreeCQ[B] (Lemma 12 in [7] or Theorem 4 in [9]), because the
1-free conjunctive query in this reduction is acyclic. An extension of this proof
will be presented as the proof of Theorem 17.

Note that the conjunctive query in this reduction is also 1-depth. Then, as
the prediction-hardness of depth-bounded acyclic conjunctive queries from a
simple instance, the following corollary holds.

Corollary 14 If k-DepthACQ[j-B] (k ≥ 1, j ≥ 2) is predictable from a simple
instance, then so is DNF.

By Theorem 13 and Corollary 14, we can conclude that predicting ACQ[2-B]
and k-DepthACQ[j-B] (k ≥ 1, j ≥ 2) from a simple instance is as hard as
predicting DNF.

For ACQ[1-B], we also obtain the following theorem.

Theorem 15 ACQ[1-B] is pac-learnable from a simple instance.

PROOF. We can assume that a target acyclic conjunctive query has no vari-
ables that occur in the body but not in the head. Let n be an arity of a target
predicate q, and m be the number of distinct predicate symbols in B ∈ 1-
B, where m predicate symbols are denoted by q1, . . . , qm. We set an initial
hypothesis C as:

C = q(x1, . . . , xn)← ∧
1≤i≤n

∧
1≤j≤m qj(xi).

Then, by applying Valiant’s technique of learning monomials [35] to C, the
statement holds. �

5 Prediction-Hardness of Acyclic Conjunctive Queries from an Ex-
tended Instance

In this section, we discuss the prediction-hardness of acyclic conjunctive queries
from an extended instance.

By using Cohen’s result (Theorem 3 in [6]), we can claim that, for each
j ≥ 3, the recursive version of ACQ[j-B] is not predictable from an extended

12

instance under the cryptographic assumptions. In contrast, the following the-
orem claims that this statement also holds for the nonrecursive version of
ACQ[j-B] (j ≥ 3).

Theorem 16 ACQ[j-B] (j ≥ 3) is not predictable from an extended instance
under the cryptographic assumptions.

PROOF. By Theorem 9 and 10, it is sufficient to show that, for each n ≥ 0,
there exists a database B ∈ 3-B such that µBFp(n)

n �ACQ[B] from an extended
instance.

First, we give e, F and B as same as the proof of Theorem 12. By the definition
of an extended instance, an instance mapping f must map e to a pair of a fact
and a description. Then, construct the following instance mapping f :

f(e) = (q(1), {bit1(e1), . . . , bitn(en)}).

By using the same literals Li (1 ≤ i ≤ p(n)) as Theorem 12, construct the
following concept mapping g:

g(F) = q(y)← (
∧

1≤j≤n bit j(xj)), (
∧

1≤i≤p(n) Li).

Here, y is a variable in (
∧

1≤i≤p(n) Li) corresponding to an output of F .

Since F is represented as a tree, the associated hypergraph H(g(F)) of g(F)
is acyclic, so g(F) is acyclic. Furthermore, it holds that e satisfies F iff f(e)
is covered by (g(F), B), that is,

{g(F)} ∪ {bit1(e1), . . . , bitn(en)} ∪ B � q(1).

Hence, it holds that µBFp(n)
n � ACQ[B] from an extended instance. �

For ACQ[2-B], as similar as Theorem 13, we also obtain the following weaker
hardness result than Theorem 16.

Theorem 17 If ACQ[2-B] is predictable from an extended instance, then so
is DNF.

PROOF. It is sufficient to show that, for each n ≥ 1, there exists a 2-database
B ∈ 2-B such that DNFn � ACQ[B] from an extended instance. This proof is
an extension of the proof of Lemma 12 in [7] or Theorem 4 in [9].

Let e = e1 . . . en ∈ {0, 1}n be a truth assignment and F ∈ DNFn be a DNF
formula (l11∧ . . .∧l1m1

)∨ . . .∨(lk1∧ . . .∧lkmk
) with k terms over Boolean variables

13

{x1, . . . , xn}, where lij denotes a literal, that is, either a Boolean variable or a
negation of a Boolean variable.

First, construct the following database B ∈ 2-B. Here, k denotes the set
{1, . . . , k}.

B =
⋃

1≤i≤k

{true i(1, l) | l ∈ k} ∪ ⋃
1≤i≤k

{true i(0, l) | l ∈ k− {i}}

∪ ⋃
1≤i≤k

{falsei(0, l) | l ∈ k} ∪ ⋃
1≤i≤k

{falsei(1, l) | l ∈ k− {i}}

∪ {lit(l, 1) | l ∈ k}.

Note that the size of B is polynomially bounded by the size of F .

Construct the same instance mapping f as the proof of Theorem 16, that is,

f(e) = (q(1), {bit1(e1), . . . , bitn(en)}).

Furthermore, construct the following concept mapping g:

g(F) = q(y)← (
∧

1≤h≤n bith(xh)), (
∧

1≤i≤k(
∧

1≤j≤mi
M i

j)), lit(z, y),

where M i
j (1 ≤ i ≤ k, 1 ≤ j ≤ mi) is defined as follows:

M i
j =

⎧⎪⎨
⎪⎩

true i(x
i
j , z) if lij = xi

j ,

falsei(x
i
j , z) if lij = xi

j .

It is obvious that g(F) is acyclic and the size of g(F) is polynomially bounded
by the size of F . Note that, for each l ∈ k, the l-th term of F is satisfied by
the truth assignment e1 . . . en iff the variable z can be substituted to l when
xh is substituted to eh (1 ≤ h ≤ n). Then, it holds that e satisfies F iff f(e)
is covered by (g(F), B), that is,

{g(F)} ∪ {bit1(e1), . . . , bitn(en)} ∪ B � q(1).

Hence, it holds that DNFn � ACQ[B] from an extended instance. �

Note that we can array the atoms in bd(g(F)) as the 2-depth acyclic con-
junctive query. Then, as the prediction-hardness of depth-bounded acyclic
conjunctive queries from an extended instance, the following corollary holds.

Corollary 18 If k-DepthACQ[j-B] (k ≥ 2, j ≥ 2) is predictable from an ex-
tended instance, then so is DNF.

14

By Theorem 17 and Corollary 18, we can conclude that predicting ACQ[2-B]
and k-DepthACQ[j-B] (k ≥ 1, j ≥ 2) from an extended instance is as hard as
predicting DNF.

6 Subsumption-Efficiency and Efficient Learnability

We say that a clause C1 subsumes another clause C2 if there exists a substi-
tution θ such that C1θ ⊆ C2. The subsumption problem for a language L is
the problem of whether or not C1 subsumes C2 for each C1, C2 ∈ L.

The subsumption problem for conjunctive queries is NP-complete in gen-
eral [3,15]. As the tractable cases for the subsumption problem, it is known
the following theorem.

Theorem 19 The following statements hold:

(1) (Kietz & Lübbe [24]) The subsumption problems for DetCQ and k-
LocalCQ (k ≥ 0) are solvable in polynomial time.

(2) (Gottlob et al. [17]) The subsumption problem for ACQ is LOGCFL-
complete.

By incorporating Theorem 19 with the statement 4 in Theorem 11, the lan-
guage DetCQ is an example that the equivalence between subsumption-efficiency
and efficient pac-learnability from a simple instance collapses. Note that DetCQ
is defined over ordered conjunctive queries, which is slightly artificial; Consider
the following database B = {m(a, c),m(b, c), f (c, e), f (d, e)}. Then, gf (x, z)←
f (y, z),m(x, y) is determinate w.r.t. B, while gf (x, z) ← m(x, y), f (y, z) is
not [23]. Hence, there exist two same clauses without their order such that
one is determinate but another is not.

On the other hand, by incorporating Theorem 19 with Theorem 12 and 16,
the language ACQ is an example that the equivalence between subsumption-
efficiency and efficient pac-learnability from both a simple instance and an
extended instance collapses. Since conjunctive queries are assumed not to be
ordered for the ACQ, it is more natural than the DetCQ.

Note that we cannot directly extend the statement 4 in Theorem 11 to the
prediction-hardness from an extended instance under the determinacy with re-
spect to databases, although we can extend Theorem 12 and 13 to Theorem 16
and 17, respectively. If we adopt the determinacy with respect to databases and
descriptions, that is, if we can regard descriptions as background knowledge,
then determinate conjunctive queries are not predictable from an extended
instance (cf. the proof of Theorem 9 in [7]).

15

7 Conclusion

In this paper, we have mainly discussed the hardness results of predicting
acyclic conjunctive queries from both a simple and an extended instances.

As the prediction-hardness from a simple instance, we have shown that ACQ[j-
B] (j ≥ 3) is not polynomial-time predictable under the cryptographic as-
sumptions. Also, as same as Cohen’s proof (Lemma 11 in [7] or Theorem 4
in [9]), we have pointed out that predicting ACQ[2-B] and k-DepthACQ[j-B]
(k ≥ 1, j ≥ 2) is as hard as predicting DNF. Furthermore, we have shown that
ACQ[1-B] is polynomial-time pac-learnable from a simple instance.

As the prediction-hardness from an extended instance, we have given the simi-
lar hardness results. We have shown that ACQ[j-B] (j ≥ 3) is not polynomial-
time predictable under the cryptographic assumptions, and predicting ACQ[2-
B] and k-DepthACQ[j-B] (k ≥ 2, j ≥ 2) is as hard as predicting DNF.

The above prediction-hardness implies that the language ACQ becomes a natu-
ral example that the equivalence between subsumption-efficiency and efficient
pac-learnability from both a simple and an extended instances collapses.

Various researches have investigated the efficient learnability by using equiva-
lence and membership queries such as [1,25,26,32,31]. Our result in this paper
implies that ACQ[j-B] (j ≥ 3) is not polynomial-time learnable using equiva-
lence queries alone. It is a future work to analyze the learnability of ACQ[j-B]
(j ≥ 3) by using membership and equivalence queries, and by extending to one
containing function symbols or recursion. It is also a future work to analyze
the relationship between our acyclicity and the acyclicity introduced by [1,31].

Fagin [14] has given the degree of acyclicity; α-acyclic, β-acyclic, γ-acyclic and
Berge-acyclic. In particular, he has shown the following chain of implication
for any hypergraph H : H is Berge-acyclic ⇒ H is γ-acyclic ⇒ H is β-acyclic
⇒ H is α-acyclic (none of the reverse implication holds in general). Acyclicity
in the literature such as [2,4,13,17,36] and also in this paper is correspond-
ing to Fagin’s α-acyclicity [14]. Note that none of the results in this paper
implies the predictability of the other degrees of acyclicity, while all of the
corresponding evaluation problems are LOGCFL-complete [17]. It is a future
work to investigate the relationship between the degree of acyclicity and the
learnability.

16

Acknowledgment

The author would like to thank Hiroki Arimura in Hokkaido University for a
motivation of this paper and insightful comments. He also would like to thank
Akihiro Yamamoto in Kyoto University and Shinichi Shimozono in Kyushu
Institute of Technology for constructive discussion. Finally, he would like to
thank anonymous referees of ALT2000 for valuable comments to revise the
preliminary version [19] of this paper.

References

[1] H. Arimura, Learning acyclic first-order Horn sentences from entailment, in:
Proceedings of the 8th International Workshop on Algorithmic Learning Theory ,
LNAI 1316 (Springer, 1997) 432–445.

[2] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic
database schemes, J. ACM 30(3) (1983) 479–513.

[3] L. D. Baxter, The complexity of unification, Doctoral Thesis, Department of
Computer Science, University of Waterloo, 1977.

[4] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited, Theor.
Comput. Sci. 239 (2000) 211–229.

[5] W. W. Cohen, Pac-learning recursive logic programs: Efficient algorithms, J.
Artif. Intell. Res. 2 (1995) 501–539.

[6] W. W. Cohen, Pac-learning recursive logic programs: Negative results, J. Artif.
Intell. Res. 2 (1995) 541–573.

[7] W. W. Cohen, Pac-learning non-recursive Prolog clauses, Artif. Intell. 79(1)
(1995) 1–38.

[8] W. W. Cohen, The dual DFA learning problem: Hardness results for
programming by demonstration and learning first-order representations, in:
Proceedings of the 9th Annual Workshop on Computational Learning Theory
(ACM, 1996) 29–40.

[9] W. W. Cohen, C. D. Page Jr., Polynomial learnability and inductive logic
programming: Methods and results, New Gener. Comput. 13(3-4) (1995) 369–
409.

[10] L. De Raedt, S. Džeroski, First-order jk-clausal theories are PAC-learnable,
Artif. Intell. 70(1-2) (1994) 375–392.

[11] S. Džeroski, S. Muggleton, S. Russell, PAC-learnability of determinate logic
programs, in: Proceedings of the 5th Annual Workshop on Computational
Learning Theory (ACM, 1992) 128–135.

17

[12] S. Džeroski, S. Muggleton, S. Russell, Learnability of constrained logic
programs, in: Proceedings of the 6th European Conference on Machine Learning ,
LNAI 667 (Springer, 1993) 342–347.

[13] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM J. Comput. 24(6) (1995) 1278–1304.

[14] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes,
J. ACM 30(3) (1983) 514–550.

[15] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness (W. H. Freeman and Company, 1979).

[16] G. Gottlob, Subsumption and implication, Inform. Proc. Let. 24(2) (1987)
109–111.

[17] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive
queries, J. ACM 43(3) (2001) 431–498.

[18] K. Hirata, Flattening and implication, in: Proceedings of the 10th International
Conference on Algorithmic Learning Theory , LNAI 1720 (Springer, 1999) 157–
168.

[19] K. Hirata, On the hardness of learning acyclic conjunctive queries, in:
Proceedings of the 11th International Conference on Algorithmic Learning
Theory , LNAI 1968 (Springer, 2000) 238–251.

[20] T. Horváth, G. Turán, Learning logic programs with structured background
knowledge, in: L. De Raedt (ed.), Advances in inductive logic programming ,
(IOS Press, 1996) 172–191.

[21] M. Kearns, L. Valiant, Cryptographic limitations on learning Boolean formulae
and finite automata, J. ACM 41(1) (1994) 67–95.

[22] J.-U. Kietz, Some lower bounds for the computational complexity of inductive
logic programming, in: Proceedings of the 6th European Conference on Machine
Learning , LNAI 667 (Springer, 1993) 115–123.

[23] J.-U. Kietz, S. Džeroski, Inductive logic programming and learnability, SIGART
Bull. 5 (1994) 22–32.

[24] J. U. Kietz, M. Lübbe, An efficient subsumption algorithm for inductive logic
programming, in: Proceedings of the 11th International Conference on Machine
Learning (Morgan Kaufmann, 1994) 130–138.

[25] R. Khardon, Learning function-free Horn expressions, Mach. Learn. 35(1)
(1999) 241–275.

[26] R. Khardon, Learning range-restricted Horn expressions, in: Proceedings of
the 4th European Conference on Computational Learning Theory , LNAI 1572
(Springer, 1999) 111–125.

[27] S. Muggleton (ed.), Inductive logic programming (Academic Press, 1992).

18

[28] C. D. Page Jr., A. M. Frisch, Generalization and learnability: A study of
constrained atoms, in: [27] l29–161.

[29] L. Pitt, M. K. Warmuth, Prediction-preserving reduction, J. Comp. System
Sci. 41(3) (1990) 430–467.

[30] J. R. Quinlan, Learning logical definitions from relations, Mach. Learn. 5(3)
(1990) 239–266.

[31] C. Reddy, P. Tadepalli, Learning first-order acyclic Horn programs from
entailment, in: Proceedings of the 8th International Conference on Inductive
Logic Programming , LNAI 1446 (Springer, 1998) 23–37.

[32] C. Reddy, P. Tadepalli, Learning Horn definitions: Theory and application to
planning, New Gener. Comput. 17(1) (1999) 77–98.

[33] C. Rouveirol, Extensions of inversion of resolution applied to theory completion,
in: [27] 63–92.

[34] R. E. Schapire, The strength of weak learning, Mach. Learn. 5(2) (1990)
197–227.

[35] L. Valiant, A theory of learnable, Comm. ACM 27(11) (1984) 1134–1142.

[36] M. Yannakakis, Algorithms for acyclic database schemes, in: Proceedings of
the 7th International Conference on Very Large Data Bases (IEEE Computer
Society, 1981) 82–94.

19

