
Article Submitted to Journal of Symbolic Computation

Tractable and Intractable
Second-Order Matching Problems ∗†

Kouichi Hirata
1
, Keizo Yamada

1
and Masateru Harao

1

1Department of Artificial Intelligence, Kyushu Institute of Technology,
Kawazu 680-4, Iizuka 820-8502, Japan.‡

Abstract

The second-order matching problem is to determine whether or not a
first-order term without variables is an instance of a second-order term
that is allowed to contain not only individual variables but also func-
tion variables. It is well-known that the second-order matching problem
is NP-complete in general. In this paper, we first introduce the several
restrictions for the second-order matching problems, such as the bounded
number, arity and occurrence of function variables, ground that contains
no individual variables, flat that contains no function constants, and pred-
icate that no function variable occurs in the terms of arguments of each
function variable. By combining the above restrictions, we give the sharp
separations of tractable second-order matching problems from intractable
ones. Finally, we compare them with the separations of decidable second-
order unification problems from undecidable ones.

1. Introduction

The unification problem is to determine whether or not any two terms pos-
sess a common instance. The matching problem, on the other hand, is to de-
termine whether or not a term is an instance of another term. Both the unifi-
cation and matching play an important role in many research areas, including
resolution-based theorem proving, term rewriting systems, logic and functional

∗The preliminary version of this paper was published in Proceedings of the 5th Annual
International Computing and Combinatorics Conference, Lecture Notes in Computer Science
1627, Springer-Verlag, 1999, pp.432–442.

†This work is partially supported by the Japan Society for the Promotion of Science, Grand-
in-Aid for Scientific Research (B) 13558036 and for Encouragement of Young Scientists (B)
15700137.

‡email: {hirata,yamada,harao}@ai.kyutech.ac.jp

1

K. Hirata et al.: Second-Order Matching Problems 2

programming, constraint-based programming, program synthesis and transfor-
mation, database query language, and so on.

For higher-order unification and matching problems, it is known the follow-
ing general complexity results. The higher-order unification problem is unde-
cidable even if the order is 2 [14]. On the other hand, the higher-order match-
ing problem is decidable for the order ≤ 4 and remains open for the order
≥ 5 [3, 28]. In particular, both the second- and third-order matching problems
are NP-complete [2, 3, 12, 28].

According to [10, 14], let L be a term language consisting of individual con-
stants, individual variables, function constants and function variables. Then,
L-terms are defined similar as first-order terms allowing function variables.

The second-order unification problem in L is formulated as the problem of
determining, for a finite set {〈ti, si〉 | i ∈ I} of pairs of L-terms ti and si,
called a unification expression in L, whether or not there exists a substitution σ
such that tiσ = siσ for each i ∈ I. The second-order matching problem in L is
the special second-order unification problem in L that si contains no variables.
Hence, it is formulated as the problem of determining whether or not there exists
a substitution σ such that tiσ = si for each i ∈ I. We call a unification expression
in L for the second-order matching problem a matching expression in L.

Concerned with the second-order matching problem, Huet [17] has designed
a complete and nonredundant algorithm based on the transformation rule con-
sisting of a simplification, an imitation, and a projection. Intuitively, the reason
why the second-order matching problem is intractable is to allow the projection.

Since the second-order unification problem is undecidable as mentioned above,
various researchers have separated decidable unification problems from undecid-
able ones, by introducing the several restrictions for term languages or unifica-
tion expressions [1, 8, 9, 10, 13, 14, 21, 22, 23, 26]. On the other hand, while the
second-order matching problem is NP-complete [2], there exist few researches to
analyze deeply the complexity of the matching problem as similar as the uni-
fication problems. It is one of the reasons that the interest of the researchers
is rather to design the matching algorithm aiming to apply to program synthe-
sis and transformation, schema-guided proof, analogical reasoning and machine
learning [5, 6, 7, 11, 15, 18, 19, 29], than the matching problem itself.

In this paper, by introducing the following restrictions for term languages and
matching expressions, we give the several sharp separations of tractable second-
order matching problems from intractable ones.

A term language L is called k-ary if each function variable in L is at most
k-ary and k-fv if L contains at most k distinct function variables. Also a term
language L is called flat if L contains no function constants, ground if L contains
no individual variables, monadic [9] if each function constant in L is unary, and
nonmonadic [10] if L is not monadic. On the other hand, a matching expression
E is called predicate if no function variable occurs in terms of any argument
of each function variable in E and read-k-times if each function variable in E
occurs at most k times.

K. Hirata et al.: Second-Order Matching Problems 3

Hence, we obtain the following results:

1. The second-order matching problems remain NP-complete for read-twice
predicate matching expressions in unary or 1-fv term languages, for read-
thrice predicate matching expressions in ternary flat term languages, and
for arbitrary matching expressions in unary ground or binary flat ground
term languages.

2. As the corollaries, the second-order matching problems also remain NP-
complete for arbitrary matching expressions in nonmonadic unary or monadic
term languages, and for read-twice predicate matching expressions.

3. On the other hand, the second-order matching problems are solvable in
polynomial time for predicate matching expressions in binary flat or ground
term languages, and for arbitrary matching expressions in unary flat or k-fv
(k ≥ 0) flat term languages.

Finally, we compare the above results with the separations of decidable second-
order unification problems from undecidable ones given by [1, 8, 9, 10, 13, 14,
21, 22, 23, 26].

2. Preliminaries

Instead of considering arbitrary second-order languages, we shall restrict our
attention to languages containing just simple terms (i.e., terms without variable-
binding operators like the λ operator, e.g., [16, 17, 18, 27]). Throughout this
paper, we deal with the term languages used by Goldfarb [14] and Farmer [10].

Let a term language L be a quadruple (ICL, IVL, FCL, FVL), where

1. ICL is a set of individual constants (denoted by a, b, c, . . .);

2. IVL is a set of individual variables (denoted by x, y, z, . . .);

3. FCL is a set of function constants (denoted by f, g, h, . . .);

4. FVL is a set of function variables (denoted by F, G, H, . . .).

Each element of FCL ∪ FVL has a fixed arity ≥ 1, and ICL, IVL, FCL and FVL

are mutually disjoint. We call an element of IVL ∪ FVL a variable simply.
The L-terms are defined inductively by:

1. Each d ∈ ICL ∪ IVL is an L-term.

2. If d ∈ FCL ∪ FVL has an arity n ≥ 1 and t1, . . . , tn are L-terms, then
d(t1, . . . , tn) is an L-term.

Let BVL be an infinite collection {wi}i≥1 of symbols not contained in L called
bound variables. Then, the L∗-terms are defined inductively by:

1. Each d ∈ ICL ∪ IVL ∪ BVL is an L∗-term.

2. If d ∈ FCL ∪ FVL has an arity n ≥ 1 and t1, . . . , tn are L∗-terms, then
d(t1, . . . , tn) is an L∗-term.

K. Hirata et al.: Second-Order Matching Problems 4

The rank of an L∗-term t is the largest n such that wn occurs in t. (L-terms have
rank 0.) For n ≥ 1, L∗-terms of rank n intuitively represent n-ary functions. We
sometimes call an L-term simply a term.

Let t be an L∗-term. The head of t, denoted by hd(t), is the outermost symbol
occurring in t. We say that t is closed if t contains no variables. The size of t,
denoted by |t|, is the number of symbols of L occurring in t.

For L∗-terms t, t1, . . . , tn, we write t[t1, . . . , tn] for the L∗-term obtained by
replacing each occurrence of wi in t with ti for all i (1 ≤ i ≤ n) simultaneously.

A substitution in L is a function σ with a finite domain dom(σ) ⊆ IVL ∪ FVL

which maps individual variables to L-terms and n-ary function variables with
n ≥ 1 to L∗-terms of rank ≤ n. The result applying a substitution σ in L to
v ∈ dom(σ) is denoted by vσ instead of σ(v). We assume that xσ
= x and
Fσ
= F (w1, . . . , wn) for all substitutions σ and x, F ∈ dom(σ). A substitution
σ is denoted as {s1/v1, . . . , sm/vm}, where dom(σ) = {v1, . . . , vm} and σ maps
vi to si for each i (1 ≤ i ≤ m). Each si/vi is called a binding of σ.

Let σ be a substitution {s1/v1, . . . , sm/vm} in L. The result tσ of applying σ
to an L∗-term t is defined inductively by:

1. If t = c, then tσ = c.

2. If t = x and x ∈ dom(σ), then tσ = xσ.

3. If t = x and x
∈ dom(σ), then tσ = x.

4. If t = f(t1, . . . , tn), then tσ = f(t1σ, . . . , tnσ).

5. If t = F (t1, . . . , tn) and F
∈ dom(σ), then tσ = F (t1σ, . . . , tnσ).

6. If t = F (t1, . . . , tn) and F ∈ dom(σ), then tσ = (Fσ)[t1σ, . . . , tnσ].

The composition of substitutions σ and θ, denoted by σθ, is the substitution such
that v(σθ) = (vσ)θ for any variable v.

A matching expression in L is any finite set E = {〈ti, si〉 | i ∈ I}, where ti is an
L-term and si is a closed L-term for each i ∈ I. For a substitution σ, Eσ denotes
the matching expression {〈tiσ, si〉 | i ∈ I}. For a matching expression E and a
function variable F , EF denotes a matching expression {〈t, s〉 ∈ E | hd(t) = F}.
The size of E, denoted by |E|, is defined to be

∑
i∈I(|ti| + |si|).

Let L be a term language and E be a matching expression {〈ti, si〉 | i ∈ I}
in L. Then, E is matchable in L if there exists a substitution σ in L such that
tiσ = si for each i ∈ I. Such a substitution is called a matcher of E in L, and
we also say that σ matches E in L. We sometimes omit the notion “in L”.

Huet [17] has designed the second-order matching algorithm, based on the
following transformation rule.

Definition (Huet [17]): Let E be a matching expression in L. Then, the trans-
formation rule ⇒ is defined as follows:

1. simplification:

{〈f(t1, . . . , tn), f(s1, . . . , sn)〉} ∪ E ⇒ {〈t1, s1〉, . . . , 〈tn, sn〉} ∪ E (n ≥ 0).

K. Hirata et al.: Second-Order Matching Problems 5

2. imitation (on F): if 〈F (t1, . . . , tn), f(s1, . . . , sm)〉 ∈ E (n, m ≥ 0), then

E ⇒ E{f(H1(w1, . . . , wn), . . . , Hm(w1, . . . , wn))/F}.
Here, H1, . . . , Hm are new function variables not occurring in E.

3. projection (on F): if 〈F (t1, . . . , tn), s〉 ∈ E (n ≥ 1, 1 ≤ i ≤ n), then

E ⇒ E{wi/F}.

By a simplification that n = 0, a matching expression {〈c, c〉} ∪ E (c ∈ ICL)
is transformed to E. Furthermore, if E contains no function variables, then a
projection cannot be applied to E but an imitation can as E ⇒ E{s/x} if
〈x, s〉 ∈ E and x ∈ IVL.

The transitive closure of ⇒ is denoted by ⇒∗. Then, the following theorem
holds:

Theorem 2.1 (Huet [17]): A matching expression E is matchable in L if and
only if E ⇒∗ ∅.

By Theorem 2.1, we can obtain the following corollary.

Corollary 2.1: Let L be a term language and E be a matching expression in
L such that EF = {〈F (ti1, . . . , t

i
n), f(si

1, . . . , s
i
m)〉 | i ∈ I} for F ∈ FVL. Also

let L′ and E ′ be the following term language and matching expression in L′,
respectively:

L′ = (ICL, IVL, FCL, FVL ∪ {H1, . . . , Hm}),
E ′ = E{f(H1(w1, . . . , wn), . . . , Hm(w1, . . . , wn))/F}.

Then, E is matchable in L if and only if either of the following two statements
holds:

1. E ′ is matchable in L′, or

2. there exists an index j (1 ≤ j ≤ n) and a substitution σ in L such that
tijσ = f(si

1, . . . , s
i
m) for each i ∈ I.

The main topic in this paper is to analyze the computational complexity of
the following second-order matching problem in a term language L:

Second-Order Matching (Matching)

Instance: A matching expression E in a term language L.

Question: Is E matchable in L?

The following theorem has been shown in early 1970’s.

Theorem 2.2 (Baxter [2, 12]): Matching is NP-complete.

K. Hirata et al.: Second-Order Matching Problems 6

3. Complexity of the Second-Order Matching Problems

First we introduce the following restrictions for term languages and matching
expressions.

Definition: Let L be a term language.

1. L is k-ary if each function variable in L is at most k-ary. For the case that
k = 1, 2 or 3, we call it unary , binary or ternary , respectively.

2. L is k-fv if L contains at most k distinct function variables, that is, #FVL ≤
k. (Here, # denotes the cardinality of a set.)

3. L is ground if L contains no individual variables, that is, IVL = ∅.
4. L is flat if L contains no function constants, that is, FCL = ∅.
5. L is monadic if each function constant in L is unary.

6. L is nonmonadic if L is not monadic.

Definition: Let E be a matching expression in L.

1. E is read-k-times if each function variable occurs in E at most k times. For
the case that k = 1, 2 or 3, we call it read-once, read-twice or read-thrice,
respectively.

2. E is predicate if no function variable occurs in the terms of arguments of
each function variable in E.

Then, we formulate the following restricted problems for Matching:

kAry (resp., kFV, Ground, Flat, Mon, Nonmon) Matching

Instance: A matching expression E in a k-ary (resp., k-fv, ground,
flat, monadic, nonmonadic) term language L.

Question: Is E matchable in L?

kTimes (resp., Pred) Matching

Instance: A read-k-times (resp., predicate) matching expression E
in a term language L.

Question: Is E matchable in L?

In this section, we analyze the computational complexity of Matching, by
combining the above restrictions. In order to show the tractability, we either
design the deterministic applications of the transformation rule in Definition 2.1
(Theorem 3.6, 3.8 and 3.9) or reduce it to the tractable problem (Theorem 3.4).

In order to show the intractability, on the other hand, we reduce the following
problem Monotone 1-in-3 3SAT [12] to the several restricted problems for
Matching (Theorem 3.1, 3.2, 3.3, 3.5 and 3.7). It is said that this reduction
technique is also a key idea of word unification or word matching problem.

Monotone 1-in-3 3SAT

K. Hirata et al.: Second-Order Matching Problems 7

Instance: A set X of variables and a collection C of monotone 3-
clauses (i.e., clauses consisting of exactly three positive
literals) over X.

Question: Is there a truth assignment to X that makes exactly one
literal of each clause in C true?

Throughout this paper, we fix X and C to the set {x1, . . . , xn} of variables
and the set {c1, . . . , cm} of clauses, respectively, as an instance of Monotone 1-

in-3 3SAT. In particular, we assume that cj ∈ C consists of variables xj
1, xj

2

and xj
3 for each j (1 ≤ j ≤ m), and (nonindexed) c ∈ C consists of variables z1,

z2 and z3.
By Theorem 2.2, the restricted problems for Matching to be treated below

are always in NP, so we do not state it explicitly.

3.1. The bounded arity of function variables

In this section, we investigate the computational complexity of the restricted
problems for kAryMatching.

Theorem 3.1: UnaryTwicePredMatching is NP-complete. In other words,
Matching is NP-complete even if

1. each function variable is unary and occurs at most twice, and

2. no function variable occurs below other function variables.

Proof: Let C be an instance of Monotone 1-in-3 3SAT over X. Consider the
following unary term language L:

L = ({0, 1}, X ∪ {y1, . . . , ym}, {f}, {F1, . . . , Fm}).
Here, Fj (1 ≤ j ≤ m) is a unary function variable and f is a binary function
constant. For each clause c = z1 ∨ z2 ∨ z3 ∈ C, let Ec be the following read-twice
predicate matching expression:

Ec =

{ 〈F (f(z3, f(z2, f(z1, y)))), f(0, f(0, f(1, f(0, f(0, 0)))))〉,
〈F (y), f(0, f(0, 0))〉

}
.

Suppose that c is satisfiable and let (a1, a2, a3) be a truth assignment to
(z1, z2, z3) satisfying c, where there exists exactly one index i (1 ≤ i ≤ 3) such
that ai = 1 and al = 0 (l
= i). Hence, we can construct the matcher σ of Ec as
follows:

1. If (a1, a2, a3) = (1, 0, 0), then σ = {w1/F, 1/z1, 0/z2, 0/z3, f(0, f(0, 0))/y};
2. If (a1, a2, a3) = (0, 1, 0), then σ = {f(0, w1)/F, 0/z1, 1/z2, 0/z3, f(0, 0)/y};
3. If (a1, a2, a3) = (0, 0, 1), then σ = {f(0, f(0, w1))/F, 0/z1, 0/z2, 1/z3, 0/y}.

K. Hirata et al.: Second-Order Matching Problems 8

Conversely, suppose that Ec is matchable and let σ be a matcher of Ec. Then,
σ contains the binding t/F , where t is w1, f(0, w1), or f(0, f(0, w1)).

Suppose that w1/F ∈ σ. Since Ec{w1/F} is of the form

{〈f(z3, f(z2, f(z1, y))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, f(0, f(0, 0))〉},
and by a simplification, σ contains the bindings 1/z1, 0/z2 and 0/z3.

Suppose that f(0, w1)/F ∈ σ. Since Ec{f(0, w1)/F} is of the form

{〈f(0, f(z3, f(z2, f(z1, y)))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, f(0, 0)〉},
and by a simplification, σ contains the bindings 0/z1, 1/z2 and 0/z3.

Suppose that f(0, f(0, w1))/F ∈ σ. Since Ec{f(0, f(0, w1))/F} is of the form

{〈f(0, f(0, f(z3, f(z2, f(z1, y))))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, 0〉},
and by a simplification, σ contains the bindings 0/z1, 0/z2 and 1/z3.

Then, we can construct the truth assignment (a1, a2, a3) to (z1, z2, z3) satisfying
c such that ai = 1 if 1/zi ∈ σ; ai = 0 if 0/zi ∈ σ (1 ≤ i ≤ 3). Hence, (a1, a2, a3)
satisfies c, where exactly one of a1, a2 and a3 is 1 and others are 0.

For C = {c1, . . . , cm}, let E be the following read-twice predicate matching
expression in L: ⋃m

j=1(Ecj
{Fj(w1)/F, yj/y}).

Then, C is satisfiable by a truth assignment that makes exactly one literal of
each clause in C true if and only if E is matchable in L. �

Theorem 3.2: UnaryGroundMatching is NP-complete. In other words,
Matching is NP-complete even if

1. each function variable is unary and

2. no individual variable occurs.

Proof: Let C be an instance of Monotone 1-in-3 3SAT over X. Consider the
following unary ground term language L:

L = ({0, 1}, ∅, {f}, {Fx1, . . . , Fxn}).
Here, Fxi

(1 ≤ i ≤ n) is a unary function variable and f be a unary function
constant. For each clause c = z1 ∨ z2 ∨ z3 ∈ C, let Ec be the following matching
expression:

Ec = {〈Fz1(Fz2(Fz3(0))), f(0)〉, 〈Fz1(Fz2(Fz3(1))), f(1)〉}.

K. Hirata et al.: Second-Order Matching Problems 9

If c is satisfiable by a truth assignment (a1, a2, a3) to (z1, z2, z3) such that
ai = 1 for exactly one index i (1 ≤ i ≤ 3) and al = 0 (1 ≤ l ≤ 3, l
= i), then we
can construct a matcher σ of Ec such that f(w1)/Fzi

∈ σ if ai = 1 and w1/Fzl
∈ σ

if al = 0. Conversely, if Ec is matchable and σ is a matcher of Ec, then there
exists exactly one index i (1 ≤ i ≤ 3) such that f(w1)/Fzi

∈ σ and w1/Fzl
∈ σ

(1 ≤ l ≤ 3, l
= i). Thus we can construct a truth assignment (a1, a2, a3) to
(z1, z2, z3) such that ai = 1 if f(w1)/Fzi

∈ σ and al = 0 if w1/Fzl
∈ σ. Hence,

c is satisfiable by a truth assignment that makes exactly one literal true if and
only if Ec is matchable.

For C = {c1, . . . , cm}, let E be the matching expression
⋃m

j=1 Ecj
in L. Then,

C is satisfiable by a truth assignment that makes exactly one literal of each
clause in C true if and only if E is matchable in L. �

In the proofs of Theorem 3.1 and 3.2, we cannot eliminate the function con-
stant f . Hence, the existence of such a function constant is essential for these
intractabilities. On the other hand, for the flat term language, the following
theorem holds.

Theorem 3.3: TernaryFlatThricePredMatching is NP-complete. In other
words, Matching is NP-complete even if

1. each function variable is at most ternary and occurs at most thrice,

2. no function constant occurs, and

3. no function variable occurs below other function variables.

Proof: Let C be an instance of Monotone 1-in-3 3SAT over X. Consider the
following ternary flat term language L:

L = ({0, 1}, X, ∅, {F1, . . . , Fm}).
Here, Fj (1 ≤ j ≤ m) is a ternary function variable. For each clause c =
z1∨z2∨z3 ∈ C, let Ec be the following read-thrice predicate matching expression:

Ec = {〈F (z1, z2, z3), 1〉, 〈F (z2, z3, z1), 0〉, 〈F (z3, z1, z2), 0〉}.
If c is satisfiable by a truth assignment (a1, a2, a3) to (z1, z2, z3) such that

ai = 1 for exactly one index i (1 ≤ i ≤ 3) and al = 0 (1 ≤ l ≤ 3, l
= i), then
we can construct a matcher σ of Ec such that 1/zi ∈ σ if ai = 1 and 0/zl ∈ σ if
al = 0. Conversely, if Ec is matchable and σ is a matcher of Ec, then there exists
exactly one index i (1 ≤ i ≤ 3) such that 1/zi ∈ σ and 0/zl ∈ σ (1 ≤ l ≤ 3, l
= i),
because σ must contain one of the bindings w1/F , w2/F or w3/F . Thus we can
construct a truth assignment (a1, a2, a3) to (z1, z2, z3) such that ai = 1 if 1/zi ∈ σ
and al = 0 if 0/zl ∈ σ. Hence, c is satisfiable by a truth assignment that makes
exactly one literal true if and only if Ec is matchable.

For C = {c1, . . . , cm}, let E be the following read-thrice predicate matching
expression in L:

K. Hirata et al.: Second-Order Matching Problems 10⋃m
j=1(Ecj

{Fj(w1, w2, w3)/F}).
Then, C is satisfiable by a truth assignment that makes exactly one literal of
each clause in C true if and only if E is matchable in L. �

If we strengthen the condition ternary in Theorem 3.3 to binary and weaken
the condition read-thrice to nothing, respectively, then we obtain the following
result.

Theorem 3.4: BinaryFlatPredMatching is solvable in polynomial time.
In other words, Matching is solvable in polynomial time if

1. each function variable is at most binary,

2. no function constant occurs, and

3. no function variable occurs below other function variables.

Proof: We reduce BinaryFlatPredMatching to 2SAT [12], which is solvable
in polynomial time:

2SAT

Instance: A set X of variables and a collection C of 2-clauses (i.e.,
clauses consisting of at most two literals) over X.

Question: Is there a truth assignment to X satisfying C?

Let L be a binary flat term language and E be a predicate matching expression
in L. If EF is of the form {〈ti, s〉 | i ∈ I}, then EF is always matchable. Hence,
without loss of generality, we can suppose that, for a function variable F , EF

contains pairs 〈t1, s1〉 and 〈t2, s2〉 such that s1
= s2.
Let ICE , IVE , and FVE be the sets of all individual constants, individual

variables, and function variables in E, respectively. Then, EF is of the form either
(1) {〈F (ti,1, ti,2), si〉 | i ∈ I, si ∈ ICL} or (2) {〈F (ti,1), si〉 | i ∈ I, si ∈ ICL}.

In Case (1), for each pair 〈F (ti,1, ti,2), si〉 ∈ EF , construct the following formula
T F

i,j (j = 1, 2):

1. If ti,j ∈ ICE and ti,j = si, then T F
i,j = true;

2. If ti,j ∈ ICE and ti,j
= si, then T F
i,j = false;

3. If ti,j = v ∈ IVE, then T F
i,j = xvsi

∧ (
∧

c∈ICE−{si} xvc).

Also let TEF
be a DNF formula (

∧
i∈I T F

i,1)∨ (
∧

i∈I T F
i,2). In Case (2), for each pair

〈F (ti,1), si〉 ∈ EF , construct the formula T F
i,1 as above, and let TEF

be
∧

i∈I T F
i,1.

For example, let E be the following expression:{ 〈F (v, y), a〉, 〈F (b, v), b〉, 〈F (y, z), b〉, 〈F (z, c), c〉,
〈G(y, v), a〉, 〈G(b, y), b〉

}
.

Then, TEF
and TEG

are constructed as follows:

K. Hirata et al.: Second-Order Matching Problems 11

TEF
= {((xva ∧ xvb ∧ xvc)︸ ︷︷ ︸

T F
1,1

∧ true︸︷︷︸
T F
2,1

∧ (xyb ∧ xya ∧ xyc)︸ ︷︷ ︸
T F
3,1

∧ (xzc ∧ xzb ∧ xzb)︸ ︷︷ ︸
T F
4,1

)

∨ ((xya ∧ xyb ∧ xyc)︸ ︷︷ ︸
T F
1,2

∧ (xvb ∧ xva ∧ xvc)︸ ︷︷ ︸
T F
2,2

∧ (xzb ∧ xza ∧ xzc)︸ ︷︷ ︸
T F
3,2

∧ true︸︷︷︸
T F
4,2

)}

TEG
= {((xya ∧ xyb ∧ xyc)︸ ︷︷ ︸

T G
1,1

∧ true︸︷︷︸
T G
2,1

) ∨ ((xva ∧ xvb ∧ xvc)︸ ︷︷ ︸
T G
1,2

∧ (xyb ∧ xya ∧ xyc)︸ ︷︷ ︸
T G
2,2

)}

The 2CNF formula equivalent to TEF
is denoted by CEF

and
∧

F∈FVE
CEF

is
denoted by CE. Note that the number of clauses in CE is at most (#ICE ×
#E)2 × #FVE ≤ |E|5.

Suppose that CE is satisfiable and let a be a truth assignment to variables
{xvc | v ∈ IVE , c ∈ ICE} satisfying CE. By the definition of CE , a satisfies
CEF

for each F ∈ FVE , so it satisfies TEF
for each F ∈ FVE. Then, it also

satisfies
∧

i∈I T F
i,1,

∧
i∈I T F

i,2, or both for each F ∈ FVE . If a satisfies
∧

i∈I T F
i,j

(j = 1, 2), then we add the bindings wj/F and c/v to σ for each positive literal
xvc ∈ ∧

i∈I T F
i,j for each F ∈ FVE. Hence, by the construction of σ and the

definition of
∧

i∈I T F
i,j, σ is a matcher of E.

In the above example, let a be a truth assignment that assigns 1 to xya, xvb

and xzb and 0 to the other variables. Then, a satisfies CE, and σ is constructed
as {w2/F, w1/G, a/y, b/v, b/z}.

Conversely, suppose that E is matchable and let σ be a matcher of E. For
v ∈ IVE and c ∈ ICE, let a truth assignment avc to the variable xvc be 1 if
c/v ∈ σ; 0 otherwise. By the supposition, σ contains the binding either w1/F or
w2/F for each F ∈ FVE. Suppose that wj/F ∈ σ (j = 1, 2). Since EF{wj/F}
is of the form {〈ti,j, si〉 | i ∈ I}, it holds that ti,jσ = si. If ti,j ∈ ICE , then it
holds that T F

i,j = true, since ti,jσ = ti,j = si. Then, T F
i,j is always satisfiable.

If ti,j = vi ∈ IVE, then it holds that si/vi ∈ σ, since ti,jσ = si. Since T F
i,j is of

the form xvisi
∧ (

∧
c∈IC−{si} xvic), the truth assignment {avic | c ∈ ICE} satisfies

T F
i,j. By the definition of TEF

, the truth assignment aF = {avic | c ∈ ICE, i ∈ I}
satisfies TEF

, so it satisfies CEF
. Hence, by collecting the truth assignment aF

for each F ∈ FVE, CE is satisfiable.
In the above example, if a matcher σ of E contains the bindings w1/F and

w2/G, then σ must also contain the bindings a/v, b/y and c/z. For this σ, the
satisfiable truth assignment of CE is constructed such that xva, xyb and xzc are
assigned 1 and the other variables 0. �

Concerned with Theorem 3.4, if we replace the condition predicate with ground ,
then the following theorem holds.

Theorem 3.5: BinaryFlatGroundMatching is NP-complete. In other words,
Matching is NP-complete even if

1. each function variable is at most binary and

2. neither function constant nor individual variable occurs.

K. Hirata et al.: Second-Order Matching Problems 12

Proof: Let C be an instance of Monotone 1-in-3 3SAT over X. Consider the
following binary flat ground term language L:

L = ({0, 1}, ∅, ∅, {Fx1, Gx1, Hx1, . . . , Fxn, Gxn, Hxn}).
Here, Fxi

, Gxi
and Hxi

(1 ≤ i ≤ n) are binary function variables. For each clause
c = z1 ∨ z2 ∨ z3 ∈ C, let Ec be the following matching expression:

Ec =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈Fz1(Gz1(Hz2(0), Hz3(0)), Hz1(0)), 1〉,
〈Fz1(Hz1(1), Hz2(1)), 0〉, 〈Gz1(0, 0), 0〉,
〈Fz2(Gz2(Hz3(0), Hz1(0)), Hz2(0)), 1〉,
〈Fz2(Hz2(1), Hz3(1)), 0〉, 〈Gz2(0, 0), 0〉,
〈Fz3(Gz3(Hz1(0), Hz2(0)), Hz3(0)), 1〉,
〈Fz3(Hz3(1), Hz1(1)), 0〉, 〈Gz3(0, 0), 0〉

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Suppose that c is satisfiable by a truth assignment (a1, a2, a3) to (z1, z2, z3)
such that ai = 1 for exactly one index i (1 ≤ i ≤ 3) and al = 0 (1 ≤ l ≤ 3, l
= i).
Then, we can construct a matcher σ of Ec such that 1/Hzi

, w2/Fzi
∈ σ if ai = 1

and 0/Hzl
, w1/Fzl

∈ σ if al = 0.
Conversely, suppose that Ec is matchable and σ is a matcher of Ec. Then, σ

must contain the binding either w1/Fzi
or w2/Fzi

for each i (1 ≤ i ≤ 3).

1. If σ contains the bindings w1/Fz1, w1/Fz2 and w1/Fz3 , then Ecσ must be
of the following form:

Ecσ =

⎧⎨
⎩

〈Gz1(Hz2(0), Hz3(0)), 1〉, 〈Hz1(1), 0〉, 〈Gz1(0, 0), 0〉,
〈Gz2(Hz3(0), Hz1(0)), 1〉, 〈Hz2(1), 0〉, 〈Gz2(0, 0), 0〉,
〈Gz3(Hz1(0), Hz2(0)), 1〉, 〈Hz3(1), 0〉, 〈Gz3(0, 0), 0〉

⎫⎬
⎭.

In this case, σ must contain the binding either w1/Gzi
or w2/Gzi

for each
i (1 ≤ i ≤ 3). Thus, for some j (1 ≤ j ≤ 3), Ecσ contains both 〈Hzj

(0), 1〉
and 〈Hzj

(1), 0〉, so σ is not a matcher of Ec.

2. If σ contains the bindings w2/Fz1, w2/Fz2 and w2/Fz3 , then Ecσ must be
of the following form:

Ecσ =

⎧⎨
⎩

〈Hz1(0), 1〉, 〈Hz2(1), 0〉, 〈Gz1(0, 0), 0〉,
〈Hz2(0), 1〉, 〈Hz3(1), 0〉, 〈Gz2(0, 0), 0〉,
〈Hz3(0), 1〉, 〈Hz1(1), 0〉, 〈Gz3(0, 0), 0〉

⎫⎬
⎭.

By focusing on Hzi
, σ is not a matcher of Ec.

3. If σ contains the bindings w1/Fzi
, w2/Fzj

and w2/Fzk
for mutually distinct

i, j and k (1 ≤ i, j, k ≤ 3), then Ecσ must be of the following form:

Ecσ =

⎧⎨
⎩

〈Gzi
(Hzj

(0), Hzk
(0)), 1〉, 〈Hzi

(1), 0〉, 〈Gzi
(0, 0), 0〉,

〈Hzj
(0), 1〉, 〈Hzk

(1), 0〉, 〈Gzj
(0, 0), 0〉,

〈Hzk
(0), 1〉, 〈Hzi

(1), 0〉, 〈Gzk
(0, 0), 0〉

⎫⎬
⎭.

By focusing on Hzk
, σ is not a matcher of Ec.

K. Hirata et al.: Second-Order Matching Problems 13

4. If σ contains the bindings w2/Fzi
, w1/Fzj

and w1/Fzk
for mutually distinct

i, j and k (1 ≤ i, j, k ≤ 3), then Ecσ must be of the following form:

Ecσ =

⎧⎨
⎩

〈Hzi
(0), 1〉, 〈Hzj

(1), 0〉, 〈Gzi
(0, 0), 0〉,

〈Gzj
(Hzk

(0), Hzi
(0)), 1〉, 〈Hzj

(1), 0〉, 〈Gzj
(0, 0), 0〉,

〈Gzk
(Hzi

(0), Hzj
(0)), 1〉, 〈Hzk

(1), 0〉, 〈Gzk
(0, 0), 0〉

⎫⎬
⎭.

Furthermore, σ must contain the bindings w2/Gzj
and w1/Gzk

, and Ecσ
must be of the following form:

Ecσ =

⎧⎨
⎩

〈Hzi
(0), 1〉, 〈Hzj

(1), 0〉, 〈Gzi
(0, 0), 0〉,

〈Hzi
(0), 1〉, 〈Hzj

(1), 0〉, 〈0, 0〉,
〈Hzi

(0), 1〉, 〈Hzk
(1), 0〉, 〈0, 0〉

⎫⎬
⎭.

In this case, there exists exactly one index i (1 ≤ i ≤ 3) such that 1/Hzi
∈ σ

and 0/Hzl
∈ σ (l
= i). Thus we can construct a truth assignment (a1, a2, a3)

to (z1, z2, z3) such that ai = 1 if 1/Hzi
∈ σ and al = 0 if 0/Hzl

∈ σ.

Hence, c is satisfiable by a truth assignment that makes exactly one literal
true if and only if Ec is matchable.

For C = {c1, . . . , cm}, let E be the matching expression
⋃m

j=1 Ecj
in L. Then,

C is satisfiable by a truth assignment that makes exactly one literal of each
clause in C true if and only if E is matchable in L. �

Theorem 3.6: UnaryFlatMatching is solvable in polynomial time. In other
words, Matching is solvable in polynomial time if

1. each function variable is unary and

2. no function constant occurs.

Proof: Let L be a unary flat term language and E be a matching expression in
L. For the transformation rule, we adopt the constraint that a projection on F
is applied to E if there exist pairs 〈t1, s1〉, 〈t2, s2〉 ∈ EF such that s1
= s2. Since
L is unary, the transformation rule can be applied deterministically to E. This
algorithm runs in time O(|E|2). �

3.2. The bounded number of function variables

In this section, we investigate the computational complexity of the restricted
problems for kFVMatching.

Theorem 3.7: 1FVTwicePredMatching is NP-complete. In other words,
Matching is NP-complete even if

1. just one function variable occurs at most twice and

2. one function variable does not occur below another function variable.

K. Hirata et al.: Second-Order Matching Problems 14

Proof: We show this statement by the similar proof to Theorem 3.1.
Let C be an instance of Monotone 1-in-3 3SAT over X. Consider the

following 1-fv term language:

L = ({0, 1}, X ∪ {y1, . . . , ym}, {f1, . . . , fm, f}, {F}).
Here, F and f are m-ary function variable and constant, respectively, and fj

(1 ≤ j ≤ m) is a binary function constant. For each clause cj = xj
1 ∨xj

2 ∨xj
3 ∈ C

(1 ≤ j ≤ m), let sj, tj and uj be the following terms:

sj = fj(x
j
3, fj(x

j
2, fj(x

j
1, yj))),

tj = fj(0, fj(0, fj(1, fj(0, 0)))),
uj = fj(0, fj(0, 0)).

Then, let E be the following read-twice predicate matching expression in L:

E = {〈F (s1, . . . , sm), f(t1, . . . , tm)〉, 〈F (y1, . . . , ym), f(u1, . . . , um)〉}.
Suppose that C is satisfiable by the truth assignment a = (a1, . . . , an) that

makes exactly one literal of each clause in C true. For each cj ∈ C, let (aj
1, a

j
2, a

j
3)

denote the truth assignment to xj
1, xj

2 and xj
3 from a. Then, there exists exactly

one index ij (1 ≤ ij ≤ 3) such that aj
ij

= 1 and aj
l = 0 (1 ≤ l ≤ 3, l
= ij) for each

j (1 ≤ j ≤ m). Let ρ(l, n) = ((l + n− 2) mod 3) + 1 (1 ≤ l, n ≤ 3). Consider the
following L∗-terms pj and qj for each j.

1. If ij = 1 (aj
1 = 1), then pj = wj and qj = fj(0, fj(0, 0)).

2. If ij = 2 (aj
2 = 1), then pj = fj(0, wj) and qj = fj(0, 0).

3. If ij = 3 (aj
3 = 1), then pj = fj(0, fj(0, wj)) and qj = 0.

Hence, the following substitution σ is a matcher of E.

σ = {f(p1, . . . , pm)/F} ∪ {1/xρ(ij ,1), 0/xρ(ij ,2), 0/xρ(ij ,3), qj/yj | 1 ≤ j ≤ m}.
Conversely, suppose that E is matchable in L. By Corollary 2.1 and by the

form of E, E is matchable in L if and only if so is the matching expression E ′

in the term language L′ as follows:

E ′ = {〈Hj(s1, . . . , sm), tj〉, 〈Hj(y1, . . . , ym), uj〉 | 1 ≤ j ≤ m},
L′ = (ICL, IVL, FCL, FVL ∪ {H1, . . . , Hm}).

Let σ be a matcher of E ′. By the forms of sj , tj and uj, σ contains one of the
following bindings for each j (1 ≤ j ≤ m).

1. wj/Hj, 1/xj
1, 0/xj

2, 0/xj
3 and fj(0, fj(0, 0))/yj,

2. fj(0, wj)/Hj, 0/xj
1, 1/xj

2, 0/xj
3 and fj(0, 0)/yj, or

3. fj(0, fj(0, wj))/Hj, 0/xj
1, 0/xj

2, 1/xj
3 and 0/yj.

K. Hirata et al.: Second-Order Matching Problems 15

Since E ′ is matchable, it is uniquely determined whether each xi ∈ X is sub-
stituted to 0 or 1. By using the bindings with xi in the substitution, we can
construct the truth assignment to X that makes exactly one literal of each
clause in C true. �

On the other hand, if we add the condition flat to kFVMatching, then the
following theorem holds.

Theorem 3.8: kFVFlatMatching is solvable in polynomial time for each
k ≥ 0. In other words, Matching is solvable in polynomial time if

1. at most k different function variables occur and

2. no function constant occurs.

Proof: Let L be a k-fv flat term language with k function variables F1, . . . , Fk and
E be a matching expression in L. Let n be the maximum arity of Fi (1 ≤ i ≤ k).
We adopt the same constraint of Theorem 3.6. Since L is flat, E contains no
function constants, so when we once apply an imitation or a projection to E it
decreases at least one function variable in E. Furthermore, a projection is applied
to E at most n times for every function variable. Hence, we can determine
whether E is matchable or not by checking at most nk first-order matching
expressions. Here, this algorithm runs in time O(|E|k). �

3.3. Predicate matching expressions in ground term languages

Theorem 3.3 and 3.5 claim that both FlatPredMatching and FlatGround-

Matching are NP-complete in general. On the other hand, the following theo-
rem holds.

Theorem 3.9: GroundPredMatching is solvable in polynomial time. In
other words, Matching is solvable in polynomial time if

1. no individual variable occurs and

2. no function variable occurs below other function variables.

Proof: Let L be a ground term language and E be a predicate matching expres-
sion in L. Consider the following two projections, instead of a projection:

1. projection 1 (on F): if there exists an index i such that EF is of the form
{〈F (t11, . . . , t

1
n), t1i 〉, . . . , 〈F (tm1 , . . . , tmn), tmi 〉}, then

E ⇒ E{wi/F}.
2. projection 2 (on F): if EF does not satisfy the above condition and there

exist pairs 〈F (t1, . . . , tn), s1〉, 〈F (u1, . . . , un), s2〉 ∈ EF such that hd(s1)
=
hd(s2), then

E ⇒ fail.

K. Hirata et al.: Second-Order Matching Problems 16

An imitation on F is applied to E if E does not satisfy the above conditions in
projections 1 and 2 on F . Then, the transformation rule ⇒ is applied determin-
istically to E.

Since L is ground and E is predicate, E is transformed to fail by a projec-
tion 2 if and only if E
⇒∗ ∅ by only an imitation and a simplification. Fur-
thermore, by an imitation on F and a simplification, the right-hand term of
pairs in EF is decomposed into the proper subterms. Hence, by Theorem 2.1,
the statement holds, where this algorithm runs in time O(|E|2). �

4. The Comparison between Second-Order Matching and
Unification Problems

In this section, we compare the separations of tractable second-order matching
problems from intractable ones with the separations of decidable second-order
unification problems from undecidable ones.

1. Amiot [1] (and implicitly Farmer [10]) has shown that the unification prob-
lem is undecidable for read-twice predicate unification expressions in unary term
languages with at least one binary function constant. On the other hand, by
Theorem 3.1, the matching problem is NP-complete for read-twice predicate
matching expressions in unary term languages with at least one binary function
constant.

2. Farmer has shown that the unification problem is decidable in monadic
term languages [9], but undecidable in nonmonadic unary term languages with
at least one binary function constant [10]. On the other hand, by Theorem 3.1
and 3.2, both of the corresponding matching problems are NP-complete.

3. Goldfarb [14] has shown that the unification problem is undecidable in
ternary ground term languages. On the other hand, by Theorem 3.2, the match-
ing problem is NP-complete in unary ground term languages. Note that Amiot’s
and Farmer’s results [1, 10] do not imply that the unification problem is un-
decidable in unary ground term languages, because the existence of individual
variables is essential in their proofs.

4. As pointed by Goldfarb [14], the unification problem is decidable in flat term
languages. On the other hand, by Theorem 3.3 or 3.5, the matching problem is
NP-complete in flat term languages. However, it is solvable in polynomial time
for predicate matching expressions in binary flat term languages, in unary flat
term languages, or in k-fv (k ≥ 0) flat term languages by Theorem 3.4, 3.6 or
3.8.

5. Ganzinger et al. [13] have shown that the unification problem is undecidable
for read-twice predicate matching expressions in 1-fv term languages. On the
other hand, by Theorem 3.7, the matching problem is NP-complete for read-
twice predicate matching expressions in 1-fv term languages.

6. Levy and Veanes [23] have shown that the unification problem is undecidable

K. Hirata et al.: Second-Order Matching Problems 17

in 1-fv ground or unary term languages. Whether the corresponding matching
problems are NP-complete is still open.

7. Schubert [26] has shown that the unification problem is undecidable for
predicate unification expressions in ground term languages. On the other hand,
by Theorem 3.9, the matching problem is solvable in polynomial time for predi-
cate matching expressions in ground term languages.

8. Dowek [8] has shown that the unification problem is decidable for read-once
unification expressions, and the matching problem is solvable in linear time for
read-once matching expressions. Furthermore, Levy [22] has shown that the uni-
fication problem is undecidable for read-twice predicate unification expressions.
On the other hand, Theorem 3.1 or 3.7 claims that the matching problem is NP-
complete for read-twice predicate matching expressions even if term languages
are either unary or 1-fv.

5. Conclusion

We summarize the results obtained by this paper as Table 1.

term language expression matching reference unification reference
– – NP-complete [2] undecidable [14]
Unary TwicePred NP-complete Theorem 3.1 undecidable [1, 10]
TernaryGround – NP-complete Theorem 3.2 undecidable [14]
UnaryGround – NP-complete Theorem 3.2
TernaryFlat ThricePred NP-complete Theorem 3.3 decidable [14]
BinaryFlat Pred poly time Theorem 3.4 decidable [14]
BinaryFlatGround – NP-complete Theorem 3.5 decidable [14]
UnaryFlat – poly time Theorem 3.6 decidable [14]
1FV TwicePred NP-complete Theorem 3.7 undecidable [13]
1FVGround – open undecidable [23]
1FVUnary – open undecidable [23]
kFVFlat (k ≥ 0) – poly time Theorem 3.8 decidable [14]
Ground Pred poly time Theorem 3.9 undecidable [26]
Mon – NP-complete Theorem 3.2 decidable [9]
NonmonUnary – NP-complete Theorem 3.1 undecidable [10]
– Once linear time [8] decidable [8]
– TwicePred NP-complete Theorem 3.1,3.7 undecidable [22]

Table 1: The complexity of second-order matching and unification problems

The existence of function constants and individual variables works essentially
for separating tractable second-order matching problems from intractable ones
and decidable second-order unification problems from undecidable ones. In par-
ticular, the nonexistence of function constants makes the second-order unification
problems decidable [14], but does not separate tractable second-order matching
problems from intractable ones. On the other hand, the nonexistence of indi-
vidual variables makes the second-order matching problems tractable for the
predicate expressions, but does not separate decidable second-order unification
problems from undecidable ones.

K. Hirata et al.: Second-Order Matching Problems 18

In this paper, we have dealt with the second-order matching problems for
matching expressions consisting of L-terms, but not one consisting of L∗-terms.
The later derives the matching problem of second-order patterns [24, 25], which
is related to the problem GroundPredMatching: If we can regard the bound
variables in L∗-terms as individual constants, then it is related to the problem
GroundPredMatching. Furthermore, the second-order matching for match-
ing expressions consisting of L∗-terms is also related to the pure matching prob-
lem: Wierzbick [28] has shown that the second- and third-order pure matching
is NP-complete and the fourth-order one is NEXPTIME-hard.

Curien et al. [4] have designed a complete second-order matching algorithm
which works more efficient than the one of Huet [17] and Huet and Lang [18] in
most cases. Roughly speaking, their algorithm is regarded as the algorithm of
GroundPredMatching with the recursive calls for the nested function vari-
ables. When it is necessary to obtain the complete set of matchers for a given
matching expression, we know no more efficient algorithm than their algorithms
although it is not a polynomial-time algorithm. From the viewpoint of applica-
tions, on the other hand, there are many cases necessary to extract the optimum
matcher in some sense rather than to extract all of the matchers. We are in-
vestigating it [20, 29, 30] in the framework of schema matching and analogical
reasoning . It is a future work to give the trade-off between completeness and
efficiency of the second-order matching adequate for each research field.

Acknowledgment

The authors would like to thank anonymous referees for valuable comments to
revise the preliminary version of this paper.

References

[1] G. Amiot, The undecidability of the second order predicate unification prob-
lem, Archive for Mathematical Logic 30, 193–199, 1990.

[2] L. D. Baxter, The complexity of unification, Doctoral Thesis, Department
of Computer Science, University of Waterloo, 1977.

[3] H. Comon, Y. Jurski, Higher-order matching and tree automata, Se-
lected Papers of 11th International Workshop on Computer Science Logic,
LNCS 1414, 157–176, 1997.

[4] R. Curien, Z. Qian, H. Shi, Efficient second-order matching , Proc.
7th International Conference on Rewriting Techniques and Applications,
LNCS 1103, 317–331, 1996.

[5] G. de Moor, G. Sittampalam, Generic program transformation, Lect. 3rd
International School on Advanced Functional Programming, LNCS 1608,
116–149, 1998.

K. Hirata et al.: Second-Order Matching Problems 19

[6] G. Défourneaux, C. Bourely, N. Peltier, Semantic generalizations for proving
and disproving conjectures by analogy , Journal of Automated Reasoning 20,
27–45, 1998.

[7] M. R. Donat, L. R. Wallen, Learning and applying generalized solutions
using higher order resolution, Proc. 9th International Conference on Auto-
mated Deduction, LNCS 310, 41–60, 1988.

[8] G. Dowek, A unification algorithm for second-order linear terms,
manuscript, 1993. Also available at http://coq.inria.fr/~dowek/.

[9] W. M. Farmer, A unification algorithm for second-order monadic terms,
Annals of Pure and Applied Logic 39, 131–174, 1988.

[10] W. M. Farmer, Simple second-order languages for which unification is un-
decidable, Theoretical Computer Science 87, 25–41, 1991.

[11] P. Flener, Logic program synthesis from incomplete information, Kluwer
Academic Press, 1995.

[12] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the
theory of NP-completeness , W. H. Freeman and Company, 1979.

[13] H. Ganzinger, F. Jacquemard, M. Veanes, Rigid reachability , Proc. 4th
Asian Computing Science Conference, LNCS 1538, 4–11, 1998.

[14] W. D. Goldfarb, The undecidability of the second-order unification problem,
Theoretical Computer Science 13, 225–230, 1981.

[15] M. Harao, Proof discovery in LK system by analogy , Proc. 3rd Asian
Computing Science Conference, LNCS 1345, 197–211, 1997.

[16] G. P. Huet, A unification algorithm for typed λ-calculus, Theoretical Com-
puter Science 1, 27–57, 1975.

[17] G. P. Huet, Résolution d’equations dans les languages d’ordre 1, 2, . . . , ω
Thèse d’Etat, Universitè de Paris VII, 1976.

[18] G. P. Huet, B. Lang, Proving and applying program transformations ex-
pressed with second-order patterns, Acta Informatica 11, 31–55, 1978.

[19] T. Kolbe, C. Walther, Proof analysis, generalization and reuse, W. Bibel,
P. H. Schmitt (eds.), Automated deduction – A basis for applications, Vol. II,
Chapter 8, Kluwer Academic Publishers, 189–219, 1998.

[20] K. Kubo, K. Yamada, K. Hirata, M. Harao, Efficient schema matching
algorithm based on pre-checking , Transactions of IEICE J85-D-I, 143–151,
2002 (in Japanese).

K. Hirata et al.: Second-Order Matching Problems 20

[21] J. Levy, Linear second-order unification, Proc. 7th International Conference
on Rewriting Techniques and Applications, LNCS 1103, 332–346, 1996.

[22] J. Levy, Decidable and undecidable second-order unification problem, Proc.
9th International Conference on Rewriting Techniques and Applications,
LNCS 1379, 47–60, 1998.

[23] J. Levy, M. Veanes, On the undecidability of second-order unification, In-
formation and Computation 159, 125–150, 2000.

[24] D. Miller, A logic programming language with lambda-abstraction, function
variables, and simple unification, Journal of Logic and Computation 1,
497–536, 1991.

[25] C. Prehofer, Decidable higher-order unification problems, Proc. 12th Inter-
national Conference on Automated Deduction, LNAI 814, 635–649, 1994.

[26] A. Schubert, Second-order unification and type inference for Church-style
polymorphism, Proc. 25th ACM Symposium on Principle of Programming
Languages, 279–288, 1998.

[27] W. Snyder, J. Gallier, Higher-order unification revisited: Complete sets of
transformations , Journal of Symbolic Computation 8, 101–140, 1989.

[28] T. Wierzbicki, Complexity of the higher order matching , Proc. 16th Inter-
national Conference on Automated Deduction, LNAI 1632, 82–96, 1999.

[29] K. Yamada, K. Hirata, M. Harao, Schema matching and its complexity ,
Transactions of IEICE J82-D-I, 1307–1316, 1999 (in Japanese).

[30] K. Yamada, K. Hirata, M. Harao, Second-order schema matching based on
projection point labeling , Proc. 15th International Workshop on Unification,
Technical Report DII 09/01, Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Siena, 49–53, 2001.

