
 
 

 

  

Abstract—In this paper, a novel fuzzy-clustering-based 
method for 3D shape modeling is proposed.  This method is 
intended for scenes involving multiple objects, where each 
object is replaced by a primitive model. The proposed method is 
composed of three stages. In the first stage, 3D data is 
reconstructed using stereo matching technique from a stereo 
image taking multiple objects. Next, the 3D data is divided into 
a single object by employing a Fuzzy c-Means augmented with 
Principal Component Analysis (PCA) and a criterion about the 
number of clusters. Finally, the shape of each object is 
extracted by Fuzzy c-Varieties with Noise Clustering. 

I. INTRODUCTION 
Techniques for acquisition of three-dimensional (3D) 

information can be roughly classified into two categories: 
active and passive methods. The former is usually 
accomplished by range finders. This method can measure the 
exact distance. However it has a limit of object and a lack of 
portability, and the instrument is expensive. The latter is 
generally based on stereo vision. Compared with active 
methods, the accuracy of stereo vision is lower. Those 
methods, however, have a high versatility, because specific 
objects are not targeted. In addition, 3D information can be 
obtained without affecting the scene, and the instruments 
have comparatively lower costs. For these reasons, the 
passive methods are suited for applications of robot vision. 

Most of past studies of shape modeling have focused on 
processing data obtained from active sensors [1]-[7]. This 
fact is caused by the following difficulties: 3D information 
obtained from stereo vision contains a lot of outliers due to 
mismatching, and usually sparse. To achieve shape modeling 
using stereo vision [8], those difficulties should be overcome.  

In this paper, a novel method of 3D shape modeling is 
proposed in the framework of fuzzy clustering by considering 
3D noisy data obtained from stereo vision as fuzzy data in 
order to deal with the difficulties mentioned above. This 
method is intended for scenes involving multiple objects, 
where each object is represented by a primitive model. The 
proposed method is composed of three stages. In the first 
stage, 3D data is reconstructed using stereo matching from a 
stereo image of a scene composed of multiple objects with 
primitive shapes (box, cylinder, cone and sphere). Next, the 
3D data is separated into objects by using a Fuzzy c-Means 
algorithm augmented with PCA and a criterion about the 
number of clusters based on variance ratio. Finally, the shape 
of each object is extracted by Fuzzy c-Varieties with Noise 

 
 

Clustering.   Figure 1 shows the process flow of the proposed 
shape modeling method. In Fig. 1, the related techniques to 
each process are also summarized. 

 

II. ESTIMATION OF THE NUMBER OF OBJECTS AND 
EXTRACTION OF EACH OBJECT 

This section discusses the technique that the 3D data is 
separated into objects by using a Fuzzy c-Means algorithm 
augmented with a criterion about the number of clusters. 

A. Principal Component Analysis 
To separate into each object, 3D range data from stereo 

images are projected on x - z plain and principal component 
is obtained using PCA. Then, histogram for the first 
principal component is made. Finally, the rough sketch of 
range data can be found, initial cluster centers in FCM is 
calculated. Therefore, vulnerable clustering result which is 
caused by random initial cluster center and the convergence 
to local optimal solution are alleviated. So, cluster validity 
to decide the number of clusters automatically can be used. 
Next, PCA is explained briefly. 

 Let TX = {x1, . . . , xl} be a set of training vectors from the 
n-dimensional input space Rn. The set of vectors TZ = 
{z1, . . . , zl} is a lower dimensional representation of the 
input training vectors TX in the m-dimensional space Rm. 
The vectors TZ are obtained by the linear orthonormal 
projection. 
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Fig. 1. Overview of shape recognition system 
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        bxz += TW           
 (1) 

where the matrix W [n × m] and the vector b [m × 1] are 
parameters of the projection. The reconstructed vectors 

}~,,~{ 1~ lX xxT K=  are computed by the linear back 

projection 
)(~ bzx −= W            (2) 

obtained by inverting (1). The mean square reconstruction 
error  
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is a function of the parameters of the linear projections (1) 
and (2). The PCA is the linear orthonormal projection (1) 
which allows for the minimal mean square reconstruction 
error (3) of the training data TX. The parameters (W, b) of 
the linear projection are the solution of the optimization 
task  
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where wi, i = 1, . . .,m are column vectors of the matrix W = 
[w1, . . . ,wm] andδ(i, j) is the Kronecker delta function. 
The solution of the task (4) is the matrix W = [w1, . . . ,wm] 
containing the m eigenvectors of the sample covariance 
matrix which have the largest eigen values. The vector b 
equals to WTµ, where µ is the sample mean of the training 
data.  
 

B. Cluster Validity 
In Fuzzy c-Means algorithm [10], when the number of 

clusters is automatically decided, another measure is 
generally needed with the technique of making to the cluster. 
The validity which quantitatively decides the number of 
cluster can get if the measure is used. Here, the cluster is seen 
from the aggregative aspect. When the data is divided into k 
clusters that are the rebellion and not empty, let Sr: Sum of 
Squares Total, SW: Sum of Squares Within, SB: Sum of 
Squares Between. It is well-known the following relational 
expression. 

                BWr SSS +=                 (5) 
Eq.(5) is the measure of the aggregative. However, let k 
variable and the aggregative is calculated. So, by using Eq.(5), 
the validity based on subgroup both sum of square and 
determinant are considered. 
 
 

C. Cluster Validity by Calinski and Harabasz (C-H 
criterion) 
Cluster Validity based on variance ratio proposed by 

Calinski and Harabasz is called VRC (Variance Ratio 
Criterion) [9], 
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where tr(A) is the trace of matrix A．When the VRC value 
takes the maximum value or it increases rapidly compared 
with the change from (k－1)  to k with the number of clusters, 
the value of the k  is chosen as measure of the number of 
clusters. However, if the VRC value includes some maximum 
values, the minimum value of the value of k  at that time is 
assumed to be the number of clusters. 

 
 

D. Fuzzy c-means with a Variable for cluster Sizes 
In standard fuzzy c-means, all clusters are classified with 

equal sizes. In this study, 3D range data of each object have 
each different size. When these kinds of data are classified by 
FCM, the bigger cluster is absorbed by the smaller one. To 
solve this problem, fuzzy c-means with a variable for cluster 
sizes [12] is used. The following is this algorithm. 

Let { }NkX k L1| == x  be a finite subset of a p dimensional 
vector space over the reals  Here, xk denotes the set of feature 
vectors. Let c denote the number of clusters. And c×n matrix 

ikU u=  denotes the grade of membership of kx  in the i th 
fuzzy subset of X. And let ),,( 1 p

iii vv K=v be the vector 
collecting all cluster centers, and ),,( 1 cV vv K= . Following 
the idea that cluster which has the less data has the smaller 
field, size variables α  for clusters are applied. The constrain 
of α  is 
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Dik is assumed to be the square of Euclidean distance between 
the individual xk and the center vi of the cluster i. Objective 
function is:   
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Algorithm : Fuzzy c-Means with a Variable for cluster 
Sizes 
 

Step 1.        InitializeV , α properly. 
Step 2.     Calculate ),,(min αVUJ

MU ∈
 using Eq. (9) and 

update U . 
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 (9) 
Step 3.       Calculate ),,(min αVUJ

MU ∈
using Eq. (10) and 

update V . 
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Step 4.       Calculate ),,(min αVUJ
MU ∈

using Eq. (11) and 

update α . 
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Step 5.       If ε<−UÛ , then stop. Otherwise, return 

to Step 2. 
 

III. SURFACE  EXTRACTION  AND  SHAPE  RECOGNITION  
In this section, first, Fuzzy c-Varieties for extraction of 

surfaces are presented. Next, a principle of ‘Noise Clustering’ 
is introduced such that noisy data points may be assigned to 
the noise class. Finally, FCV algorithm in the enlarged data 
space is presented. 

A.  Fuzzy c-Varieties Clustering 
Fuzzy c-Varieties (FCV) [10, 11, 13] partitions data using 

linear varieties as the prototypes of the clusters, local 
principal component vectors as the basis of the prototypical 
linear varieties can be also extracted.   The linear variety (or 
manifold) of dimension q (≥1) through the point p

i R∈w  
spanned by the linearly independent vectors { } p

iqi R,,1 ⊂ss K  

is 
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When the { }ils  are an orthonormal basis for their span, the 
orthogonal projection theorem yields 
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Then, objective function is 
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where ),1( ∞∈m  is weighting exponent. )( ikuU = , 

),,( 1 cwww K= , ),,( 1 csss K=  are the parameters of this 
objective function. So, iterative algorithm needs the 
following steps: 
 

Step 1.       Initialize U randomly. 
 
Step 2.   Calculate ),,(min swUJ fcvw

using Eq. (15) and 

update ),,( 1 cwww K . 
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Step 3.      Calculate ),,(min swUJ fcvs
using Eq. (16) and 

get q eigen vectors with normalization 
),,( 1 iqi sss K  from eigen value of matrix Ai,.  
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Step 4.      Calculate ),,(min swUJ fcvMU f∈
 using Eq. (17) and 

update U . 
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Step 5.      If ε<−UÛ , then stop. Otherwise, return to 

Step 2. 
 

B. Noise Clustering 
In [12], Davé  independently proposed the idea of a noise 

cluster to deal with noisy data. In this approach referred to as 
the NC approach, the noise is considered to be a separate class 
and is represented by a prototype that has a constant distance, 
δ, from all data points. The membership  

Noise prototype is a universal entity such that it is always at 
the same distance from every point in the data-set. Let cv  be 
the noise prototype, and kx  be the point in feature space, 

p
kc R, ∈xv . Then the noise prototype is such that the 

distance δ=ikd , distance of point kx  from cv , is 

kdik ∀= ,δ           (18) 
Eq.(9) doesn’t define what the distance δ  is. It simply says 

that all the points are at the same distance δ  from cv . 
Physically, this means that all the points have equal a priori 
probability of belonging to a noise cluster. This makes sense 
since given no prior information all the points should have an 
equal probability of falling into a noise class. It is hoped, 
however, that as the algorithm progresses, the good points 
increase their probability of being classified into a good 
cluster. 

Let there be 1−c  good clusters in the data-set, and let the 
c-th cluster be the noise cluster. Then the functional nfcvJ  

including the noise cluster is defined:  
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The membership k∗u  of a point kx  in the noise cluster is 
defined to be  
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Thus, the membership constraint for the good cluster is 
effectively relaxed to 
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In this paper, noise clustering is applied to Fuzzy 
c-Varieties. Algorithm is similar to FCV. 
 

C. Enlarged dimension 
FCV is the clustering technique that can find linear 

singularities. FCV is the clustering technique that can find 
linear singularities. It is available for only a linear space. To 
extract non-linear structure from 3D information that are 
targeted in this study, non-linear data have to be regarded as 
linear data in form. The enlarged data space is the 

zyxzyx −−−−− 222  coordinate system that adds 222 ,, zyx  
to the zyx −−  coordinate system. The equation of the 
upright cylinder is given (14). So, the data must be enlarged 
to 4D. 

222 )()( rbzax =−+−             (22) 
Similarly, the equation of the upright cone and sphere is 
given (23). So, the data must be enlarged to 6D. 

 222 )()()( cydbzax −=−+−                 (23) 
To decide the shape that fits closely, FCV is applied to all 
dimensions namely 3D, 4D and 6D.In each case, the number 
of points included in each cluster and the noise cluster are 
examined. In addition, the dimension that has the most 
numbers of points included in the cluster is decided. Finally, 
its prototype is extracted as shape of the object. 
 

IV. EXPERIMENTAL RESULTS 
In this section, experimental results are shown. At first, 

multiple objects are taken by stereo camera system as shown 
in Fig. 2. Figure 3 shows a couple of images obtained by the 
stereo camera system. By using stereo matching technique, 
3D information about the objects is acquired as shown in Fig. 
4. 
    Next, the 3D information is projected onto x-z plane and 
PCA is conducted. Figure 5 is the result of PCA. A histogram 
along with the first principal component axis is constructed 
from data distribution. According to the shape of the 
histogram, initial points in FCM stage are determined. The 
initial points are arranged to centers of some agglomerates 
discovered in the histogram. Each VRC is calculated by FCM 
with C-H criterion changing the number of cluster centers 
from two to five. The result is summarized in Fig. 7. Based on 
the rule previously mentioned in the section 2, the number of 
clusters, i.e. the number of objects, is determined as two.  And 
then, FCM with variables for cluster-sizes is applied. The 
result is shown in Fig. 8.  

    As shown in Fig. 8, sizes of two clusters are 7501.01 =α  , 
2499.02 =α  respectively. This result shows the applicability 

for the case with different cluster sizes. Then, Fuzzy 
c-Varieties with noise clustering is applied to each object in 
the cases of 3D, 4D, and 6D. From Fig. 9, 10 it can be said 
that shape modeling is achieved by the proposed method. 

 

 
 

Fig. 2. Experimental setup with stereo camera and multiple objects 
 

  
 

(a) Left image                               (b) Right image 
 

Fig. 3. Binocular stereo images 

 
Fig. 4. 3D information obtained by stereo matching 
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Fig. 5. PCA on X-Z plane 
 

 
 

Fig. 6. Histogram on PCA 
 

 
 
 

Fig. 7. Variation of VRC 
 

(a) Cylinder: The number of data 1121/1141, delta=0.5 

 
 

(b) Sphere: The number of data 1093/1195, delta=0.2 
 

Fig. 9. Result of NFCV algorithm 
 

 
 

Fig. 8. Result of FCM algorithm on X-Z plane 
 (α1= 0.7501, α2= 0.2499) 
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V. CONCLUSIONS 
3D range data from a stereo image includes outlier data 

because of human error by setting camera, technical problem 
of stereo matching itself, and problems which depends on 
characteristic of equipments or lighting environment.  
 In this paper, a new approach based on fuzzy-clustering for 
object recognition from rough 3D range data is proposed. 

Suitable object could be recognized from 3D range data 
including outlier by fuzzy clustering combined with size 
function, noise clustering, and enlarged dimension. 
 It can be said that being able to apply fuzzy clustering that 
has few utilitarian application to object recognition which is a 
popular field of study is interesting study. 

A further direction of this study will be to enable to 
recognize more complicated shapes by increasing the kind of 
the prototype. 
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Fig. 10. Result of 3D shape modeling 
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