Generalization of the Self-Organizing Map:
From Artificial Neural Networks to Artificial Cortexes

Tetsuo Furukawa and Kazuhiro Tokunaga

Kyushu Institute of Technology, Kitakyushu 808-0196, Japan,
furukawa@brain.kyutech.ac.jp , tokunaga@brain.kyutech.ac.jp
WWW home pagehttp://www.brain.kyutech.ac.jp/ furukawa

Abstract. This paper presents a generalized framework of a self-organizing map
(SOM) applicable to more extended data classes rather than vector data. A modu-
lar structure is adopted to realize such generalization; thus, it is called a modular
network SOM (mnSOM), in which each reference vector unit of a conventional
SOM is replaced by a functional module. Since users can choose the functional
module from any trainable architecture such as neural networks, the mnSOM has
a lot of flexibility as well as high data processing ability. In this paper, the essen-
tial idea is first introduced and then its theory is described.

1 Introduction

In this paper, a generalized framework of Kohonen's self-organizing map (SOM) is pre-
sented. The generalization is realized by adopting a modular structure, thus it is called
modular network SOMmMnSOM), which was first proposed by Tokunagaal. [1, 2]

Our aim is to develop a generalized SOM algorithm that allows users to generate a
map of given objects that are not only vector data but also functions, dynamical sys-
tems, controllers, associative memories and so on. We also aim to give the capability
of information processing to every nodal unit of a SOM. Thus, unlike the conventional
SOM, the map generated by the mnSOM is no longer static and can be an assembly of
information processors that can dynamically process data.

The idea of the mnSOM is simple: every reference vector unit of the conventional
SOM is replaced by a trainable functional module such as a neural network (Figure
1). The functional modules can be designed to suit each application while keeping the
backbone algorithm of the SOM untouched. This generalization strategy provides high
degrees of both design flexibility and reliability to SOM users, because the mnSOM
allows one to choose the functional modules from the great number of already proposed
trainable architectures, and at the same time the consistent extension method assures the
theoretical consistency, e.g., statistical properties, of the result.

As an example, let us consider a case in which an mnSOM user wants to make
a map of controllers for a set ef-controlled objects. For this, all the user has to do
is (i) determine the architecture of the controllers (it should be trainable, e.g., neural
network controllers) as functional modules of the mnSOM, and (ii) define an appro-
priate distance measure that determines the distance between two controllers. The task
of the mnSOM is to train those functional modules to be desired controllers fer-the
objects, while at the same time generating a feature map that indicates the similarities

Fig. 1. The architecture of mnSOM

or differences between those controllers. If the controlled-objects A and B have similar
dynamics, then the corresponding controllers should be located near each other in the
map space of the mnSOM, whereas if controlled-objects C and D have quite differ-
ent dynamics, then those controllers should be arranged further apart. Additionally, the
intermediate modules are expected to become controllers for objects that have interme-
diate dynamics of the given ones. After the training has finished, the user can then use it
as an assembly of controller modules that can adapt the dynamic changes of the target
object. This is a new aspect that is not found in the conventional SOM. Therefore, the
mnSOM is expected to greatly enlarge the number of fields for applications of SOMs .

2 Architecture of an mnSOM

The architecture of an mnSOM is shown in Figure 1. The architecture is such that each
vector unit of a conventional SOM is replaced by a trainable functional module. These
modules are usually arrayed on a lattice that represents the coordinates of the feature
map. (Though any modifications such like a growing-map, a hierarchical map and a
neural gas network are all available; here, we consider the simplest map structure).

Figure 1 illustrates the case of multilayer perceptron (MLP) modules as a typical
case, but many other module types are available. Table 1 shows a catalogue of mod-
ule types that have been tried. In the case of MLP modules, i.e., MLP-mnSOM, each
MLP-module represents a nonlinear function, and as the result the entire mnSOM gen-
erates a map of functions. Therefore, MLP-mnSOM is an SOM in function space rather
than vector space [1-4]. Users can also employ radial basis function network modules
(RBF-mnSOM) instead of the conventional MLPs. In such cases, the distance mea-
sure is defined in the function space. Siblings of MLP are all possible to be mnSOM
modules. For example, recurrent neural networks (e.g., Jordan type and Elman type)
and autoassociative neural networks (i.e., 3- or 5-layer autoencoder MLPs with a sand
clock structure) can be employed as well [5-8].

Table 1. Examples of module types and their applications

Module type (Name)

Object type

Applications

Layer type

— Multilayer perceptron
(MLP-mnSOM)

— Autoassociative networ|
(ANN-mnSOM)

— Reccurent network
(RNN-mnSOM)

— Predictor & cotroller pa
(SOAC)

— RBF network
(RBF-mnSOM)

Kk

nonlinear functiong

manifolds

dynamical systemg

radaptive controllers

nonlinear functions

Weather dynamics [1-3]

Bifurcation map of logistic mapping [5,
2D images of 3D objects [7]

Texture map [8]

Periodical waveforms

Dumped oscillatory systems [7]
Bifurcation map of BVP model [5, 6]
Autonomous mobile robots [15, 16]
sinverted pendulums [17]

Autonomous underwater vehicle [19-2

— Single-layer perceptrony linear operators |[12]
(Operator map)
SOM type
— SOM (SOM) manifolds 2D images of 3D objects [9, 10]

— Neural gas network
(NG?, NG-SOM)
— Local linear map

density functions

nonlinear functiong

Face image recognition [9]
Shape classification [11]
Handwritten character recognition [11]

Stochastic type
— Hopfield network
— Boltzmann machine

associative memories

Component analysis type
— PCA (ASSOM)
— Nonlinear PCA

linear subspaces
nonlinear subspace

[13]
See autoassociative network module

Single neuron type
— Hebbian neuron
(Basic SOM)

static vectors

Other module type

—Image filter

visual image filters|

Adaptive visual filter [22]

—_

—_—

Another big group of mnSOMs is made up of the SOM module types proposed
by Furukawa [9, 10]. SOM-module-mnSOM, called S&Nt a “self-organizing ho-
motopy” rather than a “self-organizing map” [11]. One of the prominent properties of
this group is that this type mnSOM can have a nested structure like a Russian doll. For
example, SOM can be a module of a meta-mnSOM. Thus, SGiodule mnSOM,

i.e., SOM, is also possible. It is easy to extend th¢h order, i.e., SOM as SOM -
module mnSOM. SOMand its family demonstrate their potential when tasks involve
nonlinear manifolds or nonlinear subspaces.

Stochastic type networks such as a Boltzmann machine and a Hopfield network
make up another group. They are expected to generate a “map of memories”.

The mnSOM includes some variations of SOM that have been proposed previously.
If one employs a linear operator module, then it is an Operator Map as proposed by
Kohonen [12]. When a principle component analysis (PCA) module is used, then the
mnSOM becomes an ASSOM [13]. If one employs Hibbian neurons as the functional
modules, then the mnSOM becomes a conventional SOM [14]. Therefore, the mnSOM
is a generalization of an SOM rather than an extension, because it includes the conven-
tional cases.

Though there are many architectures that have not been tried before, they would be
also available as modules of the mnSOM. Users can derive the algorithm theoretically
described in the next section, without needing to try any heuristic ways.

3 Theory of mnSOM

Now let us describe the generalized theory of an mnSOM algorithm. Suppose that an
mnSOM user is trying to map a set bbbjects, 0 = {O4,...,O;}. In a conventional
SOM, each data vector is A mapping object, whereas in the case of an MLP-mnSOM,
each object corresponds to each of the nonlinear functions i.e., the input—output rela-
tions.

There is one big difference between a conventional SOM and the generalized SOM
case. In the case of the conventional SOM, all the mapping objects, i.e., the data vectors,
are known and there is no need to estimate the objects. But in the generalized case, it
often happens that the entities of the objects are unknown. For example, let us consider
a case in which a user is trying to map a set of dynamical systems. In such a case, the
observed input and output signals of the systems are usually given, however, their dy-
namics are unknown in most cases. Therefore, the user should identify those dynamics
in parallel with generating their self-organizing map. Thus the mnSOM should solve
the simultaneous estimation problem.

Let us assume thab; = {r;i,...,r; s} is the dataset observed from th¢h
objectO;. If the mapping objects are systems or functions, thenis defined as a set
of input-output vectors; ; = (x;;,y; ;) observed from the-th system. Suppose that
the mnSOM hags functional moduleg /!, ..., M X}, which are designed to have the
ability of regenerating, or mimicking the objects. In other words, a module is capable
of approximating an objeaD; after training byD,. Suppose further that the property
of each function modul@/* is determined by a parameter 8ét In the case of MLP-
mnSOM,¢* is the weight vector of thé-th MLP module. Each functional modulg

is given a fixed positio” in the map space. Therefor€: assigns the coordinates of
MP* in the map space, whil¢* determines the position in the data space.

Under such a situation, the tasks of the mnSOM are (i) to identify the entities of
{O;} from the observed datasef®;} by training the function module§M*}, and
(ii) to generate a map that shows the degrees of similarity and difference between the
objects. These two tasks should be processed in parallel. Note that the map generated
by the mnSOM is expected to show the relationships between the entities of the objects,
direct comparisons between the datasets are meaningless.

The mnSOM user needs to define an appropriate distance md&garg M*) that
signifies the difference between an objéxt and a module)M*. Since the distance
measure depends on how the user wants to define similarities and differences between
two objects, the measure should be defined depending on the user’s purpose.

By using the distance measure, an important derivative definition, namely, the defi-
nition of mass center can be determined as follows.

O(m = arg min Z m;L?*(0;,0) (1)
HereO is the center of mass of the given obje€ts= {01, ..., Or} with the weights
m = (mq,...,my). If O belongs to a vector space, th@ris given by

O:m101+~-~+m101. (2)
m1+...+m1

Since the entities of the objects are assumed to be unknown, we can measure only the
distance between an estimated object and a module[£)(D;), M*). HereO(D;)
is the object entity estimated from;.

Each module is updated so as to be the center of mass, the weights of which are
given by the neighborhood function. Thus, the update algorithm of mnSOM is described
as

I

Ok (t4+1) = argeminz¢f(t)L2(O(Di),]VI(0)). (3)

=1

#%(t) is the mass of the-th object for thek-th module given by the neighborhood
function at timet. Usually a gauss function is used as the neighborhood function;

x _ ck|)?
& &H] @

o(t)

Here¢; denotes the coordinate of the winner module ofitiie object.

In many cases (but not always) the estimated distdﬁcﬁé)(DiL M*) can be ap-
proximated by the mean square error between the madiflend the datasdb; such
as

¢ () = exp [—

J
1
L*(0;, M") ~ B £ 72 : (5)

Heree? i 1s the error between the data vectgy; and the corresponding output of the
k-th module. In such cases, the update algorithm (3) becomes much easier, as follows.

0k (t +1) —argmanZ(bk 2. (6)

=1 j=1

The algorithm of the generalized SOM consists of three processes; like in the case of
the conventional SOM. First, in theompetitive processhe least average error module
becomes the “winner” or the “best matching module” (BMM) for a given dataset. The
BMM is determined for every dataset. Second, in¢beperative processhe learning
weight is determined using the neighborhood function. This process is identical with
the conventional one. Finally, in tredaptive processall modules are updated so as
to be the mass center of the objects with the weidh{s}. These three processes are
iterated reducing the neighborhood size until the network gets to a steady state.

The algorithm described above is general case; now we look at the case of an MLP-
mnSOM as an example. Since MLPs represent nonlinear functions, the distance mea-
sure is defined in function space.

LQ(Oi,]V[k) = / Hfz(x) — gk(x)H2p(x)dx @)

fi(x) is thei-th object, i.e., the-th nonlinear function ang”(x) is the function rep-
resented by thé-th MLP module. Heref;(x) is assumed to be unknown, and the ob-
served input-output data are supposed to be given. Thus; {r; ;} = {(x;;,¥:;)}

is available to use as the training dataset. In this case, the mean square error is de-
termined by the error between the output of théh moduleg® (x; ;) and the actual
(desired) outpuy; ;, i.e.,

ei; = ||g" (xi5) = yisll - (8)

The least mean square error module foy is determined as the winner (BMM) of
the i-th object. In this case, the weight vectors of MLP-modules are updated by the
backpropagation algorithm.

I J k
¢k Oe;
- 7772 Z ¢k ¥ ¢k &gkj (9)

1=1 j=1

Note that (9) updates the MLP toward the center of mass of the given functions with
the weights{¢*}. This backpropagation learning is iterated several times for all data
vectors (not only once) with fixing? (), so that9* is updated enough. The detailed
algorithms of individual module types have been described in previous works [2, 3, 6,
7,9,10].

4 Conclusion: Can our mnSOM be an artificial cortex?

The mnSOM has several advantages comparing to other neural network architectures.
First, the mnSOM can process larger tasks than single neural networks, and it has less

interference of memories because of its modular structure. Second, the entire output
of an mnSOM is trained in a supervised manner with given datasets, while maps of
functions are organized in an unsupervised manner. Therefore the mnSOM seems to
transcend the dualism of supervised and unsupervised learning. Finally, the mnSOM is
a meta-learning framework which rules an assembly of functional modules. The flexi-
bility of the type of module is also an advantage inherent in the mnSOM.

Interestingly, the architecture of the mnSOM looks similar to the column structure
of our cortex. Each module looks like a functional column of the cortex, and the map in
the mnSOM corresponds to the map of a brain. Of course the mnSOM was not invented
by mimicking the cortex, and it is just a straightforward generalization of Kohonen’s
SOM. But considering the above advantages, our mnSOM is expected to be a good
platform to initiate an artificial cortex; though much remains to be done to realize that
far off goal.

Acknowledgement

This work was partially supported by a Center of Excellence Program (Center #J19)
granted by MEXT of Japan. This work was also partially supported by a Grant-in-Aid
for Scientific Research (C) granted by MEXT of Japan.

References

1. Tokunaga, K., Furukawa, T., Yasui, S.: Modular network SOM: Extension of SOM to the
realm of function space. Proc. of WSOM?2003 (2003) 173-178
2. Tokunaga, K., Furukawa, T., Yasui, S.: Modular network SOM: Self-organizing maps in
function space. Neural Information Processing — Letters and Re@gy$2005) 15-22
3. Furukawa, T., Tokunaga, K., Morishita, K., Yasui, S.: Modular network SOM (mnSOM):
From vector space to function space. Proc. of IJCNN2005 (2005) 1581-1586
4. Tokunaga, K., Furukawa, T.: Modular network SOM: Theory, algorithm and applications.
Proc. of ICONIP2006 (2006)
5. Furukawa T., Tokunaga K., Kaneko S., Kimotsuki K., Yasui, S.: Generalized self-organizing
maps (MnSOM) for dealing with dynamical systems. Proc. of NOLTA2004 (2004) 231-234
6. Kaneko, S., Tokunaga, K., Furukawa, T.: Modular network SOM: The architecture, the algo-
rithm and applications to nonlinear dynamical systems. Proc. of WSOM2005 (2005) 537-544
7. Tokunaga, K., Furukawa, T.: Nonlinear ASSOM constituted of autoassociative neural mod-
ules. Proc. of WSOM2005 (2005) 637-644
8. Tokunaga, K., Furukawa, T.: Realizing the nonlinear adaptive subspace SOM (NL-ASSOM)
Proc. of BrainIT 2005 (2005) 76
9. Furukawa, T.: SO¥las “SOM of SOMs”. Proc. of WSOM2005 (2005) 545-552
10. Furukawa, T.: SOM of SOMs: Self-organizing map which maps a group of self-organizing
maps. Lecture Notes in computer Scier®@96(2005) 391-396
11. Furukawa, T.: SOM of SOMs: An extension of SOM from ‘map’ to ‘homotopy’. Proc. of
ICONIP2006 (2006)
12. Kohonen, T.: Generalization of the Self-organizing map. Proc. of IJCNN93 (1993) 457-462
13. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organized formation of various invariant-
feature filters in the adaptive-subspace SOM. Neural Comput@t{®897) 1321-1344
14. Kohonen, T.: Self-Organizing Maps, 3.ed., Springer (2001)

15.

16.

17.

18.

19.

20.

21.

22.

Aziz Muslim, M., Ishikawa, M., Furukawa, T.: A new approach to task segmentation in
mobile robots by mnSOM. Proc. of IJCNN2006 (2006)

Aziz Muslim, M., Ishikawa, M., Furukawa, T.: Task segmentation in a mobille robot by
mnSOM: A new approach to training expert modules. Proc. of ICONIP2006 (2006)
Minatohara, T., Furukawa, T.: Self-organizing adaptive controllers: Application to the in-
verted pendulum. Proc. of WSOM2005 (2005) 41-48

Minatohara, T., Furukawa, T.: A proposal of self-organizing adaptive controller (SOAC).
Proc. of BrainlT2005 (2005) 56

Nishida, S., Ishii, K.: An adaptive controller system using mnSOM. Proc. of BrainIT 2005
(2005) 85

Nishida, S., Ishii, K.: An adaptive neural network control system using mnSOM. Proc. of
OCEANS2006if pres9

Nishida, S., Ishii, K.: An Online Adaptation Control System using mnSOM. Proc. of
ICONIP2006 (2006)

Horio, K., Suetake, N.: Inverse halfoning based on pattern information and filters constructed
by mnSOM. Proc. of BrainIT 2005 (2005) 102

