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Abstract. This paper proposes an extension of an SOM called the “SOM of
SOMs,” or SOM2, in which objects to be mapped are self-organizing maps. In
SOM2, each nodal unit of a conventional SOM is replaced by a function module
of SOM. Therefore, SOM2 can be regarded as a variation of a modular network
SOM (mnSOM). Since each child SOM module in SOM2 is trained to represent
an individual map, the parent map in SOM2 generates a self-organizing map rep-
resenting the continuous change of the child maps. Thus SOM2 is an extension of
an SOM that generates a ‘self-organizing homotopy’ rather than a map. This ex-
tension of an SOM is easily generalized to the case of SOMn, such that “SOM3

as SOM of SOM2s”, corresponding to then-th order of homotopy. This paper
proposes a homotopy theory of SOM2 with new simulation results.

1 Introduction

SOM2 is an extension of Kohonen’s self-organizing map (SOM) aimed at generating
a self-organizing map of a set of self-organizing maps [1, 2]. A SOM2 consists of an
assembly of basic (conventional) SOM modules arrayed on a lattice, which are the
replacement of the reference vectors of the basic SOM. Thus SOM2 is called the ‘SOM
of SOMs’, the name may sound a bit eccentric, perplexing or even curious. However,
despite its strange name, SOM2 is a straightforward extension of a conventional SOM
and is a powerful tool based on a sound mathematical theory.

Since a basic SOM represents a map from a high-dimensional data space to a low-
dimensional feature one, the actual task of SOM2 is to represent the continuous change
of those maps, i.e., a homotopy. Thus, SOM2 is an extension from a “self-organizing
map” to a “self-organizing homotopy”. When a group of datasets is given, SOM2 ap-
proximates their distributions by using a set ofchild SOMs, and simultaneously the
parent SOMgenerates a map of those child maps. If two distributions of datasets are
comparatively similar (or different), then those two datasets are located at nearer (or
further) positions in the parent map.

Such architecture is useful when a set of data vectors observed from the same object
forms a corresponding manifold in the data space. A typical example is face classifica-
tion for a set of 2-dimensional photographs. In this case, a set of photographs taken of
a single person from various viewpoints forms a manifold that is unique to that person.
Therefore, if there aren people, then one obtainsn face image manifolds that can be
classified by a SOM2. This ability of SOM2 has been shown previously [1].
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Fig. 1. (a) The architecture of SOM2. In this case, the SOM2 has5×1 child SOMs, each of which
has5× 5 reference vectors. Thus, the parent map space is5× 5, while the child map spaces are
5 × 5. (b) A simulation result when datasets{D1, D2, D3} are given.{M1, . . . , M5} are the
child maps, andM1, M3, M5 are the best matching maps (BMMs) of the datasetsD1, D2, D3,
respectively. The dashed lines between child maps are called ‘fibers’, and these connect reference
vectors with the same index of each child SOM.

The purpose of this paper is to propose a homotopy theory of SOM2. In addition,
a new application field of SOM2 is also presented, namely, shape classification. The
theory and an algorithm of SOM2 are presented first, then followed by some simulation
results.



2 Algorithm and Theory of SOM2

2.1 What is SOM2 ?

Like a conventional SOM, an SOM2 has an arrayed structure of reference units on a
lattice. In the case of the conventional one, each reference unit represents a vector in the
data space, whereas the reference units in SOM2 represents an SOM. Figure 1 (a) shows
an architecture of SOM2 that has5×1 reference maps (i.e., child SOMs)M1, . . . , M5,
each of which has5×5 reference vectors. In other words, the parent SOM has5×1 map
size, while the child SOM has5 × 5 map size for each. SOM2 is regarded as an SOM
with modular structure, the modules of which are the basic SOMs. Therefore, SOM2 is
a variation of a modular network SOM (mnSOM), i.e., SOM-module-mnSOM [3–6].

To clarify the purpose of the algorithm, we take a typical case in which three fam-
ilies of sets{D1, . . . , D3} are given to the SOM2 (Figure 1 (b)). In this case, the data
vectors are distributed in 2-dimensional squares, which are topologically congruent but
their positions and orientations are different in the 3-dimensional data space.

Figure 1 (b) also shows an actual simulation result. The child map that represents
a class distribution best is called a ‘winner map’ or a ‘best matching map’ (BMM). In
the case of Figure 1, the child mapsM1,M3,M5 became the BMMs ofD1, D2, D3,
respectively. As a result, the three squares were arranged in the parent map in the de-
sired orderD1 → D2 → D3. Child mapsM2 andM4 that lost in the competition
formed ‘intermediate squares’ to represent the continuous change of square positions
and orientations. Thus, the homotopy was successfully organized in SOM2.

The lines connecting the reference vectors with same indexes are the so-called
‘fibers’ (the dashed lines in Figure 1 (b)). As shown in the figure, the fibers connect
the corresponding points of five child maps. Therefore, SOM2 not only generates a map
of objects, but it also finds out correspondences between given objects. In other words,
SOM2 can represent a set of data distributions by a bundle of fibers. Therefore, SOM2

can be also regarded as an extension of an SOM that represents a “fiber bundle” rather
than a manifold.

The task of SOM2 described above can be summarized as follows. (i) For a given
family of sets{D1, D2, . . .}, representing those distributions using child maps{M1,M2, . . .}.
(ii) Mapping those datasets in the parent map. (iii) Finding out corresponding points in
objects and connecting them by fibers. These three tasks are conducted simultaneously.

2.2 Algorithm of SOM2

The algorithm of SOM2 is based on the batch learning algorithm of the conventional
SOM, which can be described as follows.

wl(t + 1) =
∑

i

αl
i(t)xi (1)

wl andxi denote thel-th reference vector andi-th data Vector, respectively, andαl
i is

determined by the neighborhood function. Hereαl
i is normalized so as to be

∑
i αl

i = 1.



Thus,

αl
i =

exp[−‖ξ∗i − ξl‖2/2σ2(T )]∑
i′ exp[−‖ξ∗i′ − ξl‖2/2σ2(T )]

. (2)

Hereξ∗i andξk are the coordinates of the BMU ofxi and thel-th child SOM in the
parent map space.

The algorithm of SOM2 has been described in an earlier work, but here I derive it
another way. Suppose that an SOM2 hasK child maps, each of which hasL reference
vectors. Letwk,l denote thel-th reference vector of thek-th child map, and letW k =
(wk,1, . . . ,wk,L) be a vector obtained by joining all reference vectors belonging to the
k-th child map. ThusW k is the joint reference vector of thek-th child mapMk. By
regarding these joint reference vectors of the child SOMs as the reference vectors of the
parent SOM, the entire SOM2 can be regarded as a conventional SOM with reference
vectors{W 1,W 2, . . . , WK}.

Suppose{D1, . . . , DI} is a family of sets observed fromI objects. We now suppose
that we have another set of conventional SOMs, the reference vectors of which are
Vi = (v1

i ,v
2
i , . . . ,v

L
i ). Further suppose thatVi learns only the datasetDi. Here let us

call Vi a “class map ofDi”, sinceVi organizes a map specialized to thei-th class.
Under this condition, a naive algorithm for SOM2 is to train{V1, V2, . . . , VI} by

regarding them as ordinary data vectors. Thus, the class maps are calculated in advance,
and then the joint reference vectorW k is updated as

W k(t + 1) =
∑

i

αk
i (t)Vi. (3)

This naive version of SOM2 algorithm indicates good suggestions for better solutions,
though it has a fatal defect. (i) Usually, it is not easy to define the distance measure
between two manifolds. This method provides the definition of the measure as the Eu-
clidian distance between two joint reference vectors. It is a natural definition because
the distance also means the sum of the lengths of the fibers between two manifolds.
(ii) It is also easy to define the “median point” of a set of manifolds, which is given by
the median point of the joint reference vectors. However, the fatal defect is that there
are several equivalent solutions of reference vectors organized by an SOM, e.g., a map
with rotated 180 degrees and a map turned over. Therefore, it is nonsense to measure
the distance between two manifolds without matching the corresponding points. This
means that it is necessary to ascertain good correspondences between manifolds, i.e., to
determine the good “fibers” between child maps and class maps.

To resolve this problem, one needs to simultaneously estimate both child and class
maps. In such a case, an expectation maximizing (EM) algorithm is available, i.e., the
class and the child maps are reciprocally estimated. In the initial state, both class and
child maps are set to random, and the tentative class map is estimated from the datasets.
Then the child maps are updated using the tentative class map; after which the class
maps are estimated from the BMMs.

Now suppose that thei-th datasetDi is picked up at timet. Then the child map with
the least quantization error becomes the BMM ofDi, and the joint reference vector of
the BMM is supposed to beW ∗

i (t). Next the class map̃Vi is estimated from the BMM



W ∗
i (t). Thus, substitutingW ∗

i (t) to Ṽi(t) as the initial state, and then updatingṼi(t) by
using the batch learning SOM algorithm. Here batch learning is assumed to be executed
in one step as follows.

ṽl
i(t) =

∑

j

βl
i,j(t)xi,j (4)

Hereβl
i,j is given by the normalized neighborhood function that determines howxi,j

affectsṽl
i, and it satisfies

∑
j βl

i,j = 1. Now the estimated class maps are obtained, then
the child maps are updated from these estimated class maps.

W k(t + 1) =
∑

i

αk
i Ṽi(t) (5)

This equation is equivalent to (2) with the exception that the class maps are tentatively
estimated ones. By combining (3) and (4), we obtain

wk,l(t + 1) =
∑

i

∑

j

αk
i (t) βl

i,j(t)xi,j (6)

=
∑

i

αk
i (t)





∑

j

βl
i,j(t)xi,j



 . (7)

This is the algorithm for SOM2. Please note that the estimated class maps{Ṽi} are not
necessary to update child maps{W k} anymore, because they are just introduced derive
the algorithm. This updated algorithm is iterated, so reducing the neighborhood size
until both parent and child maps achieve a steady state.

The updated algorithm (6) has a recursive structure like a Russian doll. Therefore,
it is easy to extend SOM3, SOM4, . . . , by further nesting.

2.3 Theory of SOM2

Here let us consider a theoretical aspect underlying SOM2 from the point of view of
topology. Let us assume that the data vectors dealt with by SOM2 are distributed on a
set of manifolds{Ui} that are homotopic. Let us further suppose that the manifoldUi

is obtained by a continuous surjective mapϕi from a base spaceB = In (n < m, and
n equals the dimension of child SOMs), as follows.

ϕi : B → Ui (8)

ξ 7→ xi (9)

Now let the nonlinear maps{ϕi} be obtained by a continuous change of an intrinsic
parameterθ. Thus,

xi = Φ(ξ, θi) = ϕi(ξ). (10)
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Fig. 2. A result of the shape classification task. (a) 15 contours are given to an SOM2. The con-
tours are represented by a set of dots that are the data vectors. (b) The map generated by the
SOM2. The SOM2 successfully generated a map of contours, indicating the continuous changes
of shapes, sizes and orientations.

HereΦ(ξ, θi) is the homotopy. Under this condition, the distance between two mani-
foldsU1 andU2 can be defined as follows.

L2(U1, U2) ,
∫

ξ∈B

‖ϕ1(ξ)− ϕ2(ξ)‖2p(ξ)dξ (11)

=
∫

ξ∈B

‖Φ(ξ, θ1)− Φ(ξ, θ2)‖2p(ξ)dξ. (12)

Herep(ξ) gives the density ofξ. By employing this definition, the distance between a
data classDi and a child mapW k is approximated by

L2(Di,W
k) ' 1

L

L∑

l=1

∥∥vl
i −wk,l

∥∥2
=

1
L

∥∥Vi −W k
∥∥2

, (13)

and we obtain the algorithm of SOM2, which is an unsupervised learning machine that
ascertains the homotopyΦ from a family of set{D1, . . . , DI}, and is also regarded as
using a fiber bundle for representing data distributions, the sections of which represent
the data classes.

3 Simulation Results

The ability of SOM2 has been shown in cases of artificial manifolds and 2D images pro-
jected from 3D objects [1, 2]. SOM2 has also been applied to facial image recognition
[1].



Fig. 3.The map of alphabet generated by NG-SOM.

In this paper, another application field of SOM2 is presented; namely, shape classi-
fication. It is known that a conventional SOM can be used for shape representation. In
such cases, data vectors are assumed to be distributed on the surface of the object, and
a conventional SOM learns the distribution of data vectors. If one hasn objects, then
one needsn conventional SOMs to represent those shapes. Consequently, an SOM2 can
make a map of these SOMs, i.e., a set of shapes. It is expected that objects with similar
shapes are mapped nearer, while those with different shapes are mapped further in the
SOM2. The advantage of this method is that a user can directly deal with “shapes of
objects” without employing any heuristic vectorization.

Figure 2 shows a result of a simulation of shape classification. In this case, 15 con-
tours are given to an SOM2. Each contour consists of a set of small dots that cor-
responds to the dataset. Thus, thei-th contour corresponds to thei-th datasetDi =
{xi,1,xi,2, . . . ,xi,J}, andxi,j = (xij , yij) represents the coordinate of thej-th dot in
the i-th contour. The child SOMs has a one-dimensional closed ring structure to rep-
resent a contour, and the parent SOM has7 × 7 child SOMs. Figure 2 (b) shows a
map generated by the SOM2. The SOM2 successfully generated a map of contours that
shows continuous changes of shapes, sizes and orientations of the objects. An advan-
tage of this method is that the result is robust to a small change of position or orientation
of the contours.

Figure 3 is a tentative result of handwritten character classification. Since the topo-
logical structures of the characters are all different, neural gas networks are employed
instead of child SOMs for this task; namely, an NG-SOM was used. The handwritten
data were also represented by sets of small dots. In the case of Figure 3, 26 characters
written by a person were given to the NG-SOM. After the map was generated, then



another 9 sets of characters written by 9 people, i.e.,26 × 9 = 234 characters were
given to the NG-SOM. The recognition rate was93.2 ± 6.7% (mean±SD,n = 9). In
this case, the training dataset has only 1 data for each alphabet, whereas the test dataset
has 9 data for each alphabet with slightly different positions, shapes, sizes, and written
by different people. Note that neither a heuristic preprocess nor an additional algorithm
for feature extraction were used.

4 Conclusion

In this paper we have proposed an extension of an SOM called an SOM2. Despite the
eccentric impression given by the name of ‘SOM of SOMs’, SOM2 is a straight forward
extension of a conventional SOM from a ‘map’ to a ‘homotopy’.

As a closing remark, I have some comments about SOM2. First, some people may
think that SOM2 is a supervised algorithm, because it requires a labeled dataset. How-
ever, such an understanding is not realistic. The mapping objects of SOM2 are distri-
bution data vectors, and each distribution should be estimated by a set of data vectors.
Each data vector in a conventional SOM case corresponds to each data distribution in
an SOM2.

Second, our aim is not to develop an alternative algorithm that supersedes the con-
ventional one. The concept of SOM2 tells us that we have a family of SOM1 (the con-
ventional SOM), SOM2, SOM3, . . . , etc., and users can choose an appropriate order for
the SOMn family depending on their purpose. For some tasks an SOM2 would be the
best solution, and for others a conventional SOM would be appropriate. Therefore the
idea of SOM2 will further enlarge the application fields for SOMs.
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