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Abstract

Linear system theory is very well developed and there exist many results which can be applied to
obtained linear models. On the other hand, most of real processes are nonlinear to some extent. If
no physical insight is available and linear approximative models are not good enough, one has to use
nonlinear black-box models. The existing noulinear black-box models (neural networks, adaptive fuzzy
systems, etc.), however, do not contain those linearity properties required by linear system theory, so
that the results based on linear system theory can not be applied to the obtained nonlinear black-box
models. The motivation of this thesis is intended to develop a black-box modeling scheme, with which
the techniques based on well developed linear system theory could be extended to nonlinear systems.
A hybrid black-box modeling scheme is proposed. Investigations are made to do system ideutification,
system analysis and control design of nonlinear systems under the framework of linear system theory
based on the new hybrid modeling scheme.

A black-box model is a standard flexible structure which can be used to approximate a large vari-
ety of different systems. In this thesis, a new black-box model structure is proposed by incorporating
a group of certain nonlinear structures into a linear model structure. A general nonlinear system is
first expressed in a linear structure whose coefficients consist of constant parameters and nonlinear
terms. Then a group of certain nonlinear nonparametric models (NNMs) (neural networks, adaptive
fuzzy systems, etc.) are incorporated into the linear structure by using them to represent the non-
linear terms. In this way, we obtain a hybrid model structure which provides more freedoms so that
particular effort can be made to find a better compromise between the model flexibility and the model
simplicity by using knowledge information efficiently. The obtained hybrid model is equipped with
linear structure, flexibility and simplicity.

Parameter estimates are usually based on criterion minimization. When a model includes a noise
model part, the criterion function is not always unimodal, even though the model is built to be linear in
the parameters. In order to solve such multimodality problem, a hybrid identification method using
Genetic Algorithms (GAs) is considered. Particular compromises provided by optimization-based
methods and GAs are obtained through introducing a new GA operator named as ‘development’
inspired by the fact that living beings adapt themselves to their environment. The proposed hybrid
method combines the reliability properties of the GAs with the accuracy of optimization-based method,
while requiring a computation time only slightly higher than the latter. Furthermore, the hybrid
identification is typically suitable for solving the multimodal problem resulted from noise models.

One of the most challenging problems is to do control design and system analysis of nonlinear
systems using the techniques based on the linear system theory. Since the proposed hybrid black-box
model has the required linearity properties, it enables us to solve this challenging problem. First as
an example of system analysis, a fault detection scheme based on the use of Kullback discrimination
information (KDI) for model discrimination is extended to nonlinear systems. Two ways are consid-
ered. One is robust fault detection like approach. A two-step identification algorithm is suggested to
identify the proposed hybrid model in such a way that the results give a best linear approximation
of the system and the estimate of the modeling error due to nonlinear undermodeling. Then KDI-
based robust fault detection scheme is applied. The second is multi-model based approach, where
the proposed model is used as an interpolation based multi-ARMAX-model consisting of several local
linear ARMAX models. The fault detection is then performed by applying the KDI to discriminate
the identified local ARMAX models. Next as an example of control design, a robust STR adaptive
controller is designed for general nonlinear stochastic systems in a similar way to the linear stochastic
control theory, based on the use of a hybrid quasi-ARMAX predictor. For such purpose, the hybrid
quasi-ARMAX modeling scheme is modified so that the obtained hybrid quasi-ARMAX model is lin-
ear not only in the parameters to be adjusted but also in the one-step past input variable, which is
tavorable to deriving a control law directly.
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Preface

The common theme of this thesis is developing a hybrid black-box modeling scheme for identification,
fault detection and control of nonlinear systems. The material is organized in seven chapters. Most
of the material has been published or considered to publish in book chapters, journal papers and
conference papers. Some of the material in Chapter 2 can be found in

J. Hu, K. Kumamaru, and K. Inoue, “A Hybrid Quasi-ARMAX Modeling Scheme for Identifi-
cation and Control of Nonlinear Systems”, In Proc. of the 35th IEEE Conference on Decision
and Control (Kobe), 1996, pp.1413-1418.

J. Hu, K. Kumamaru, and K. Inoue, “A Guaranteed Nonlinear System Identification Using ARX
Networks”, in Proc. of the 27th ISICE International Symposium on Stochastic Systems Theory
and Its Applications (Beppu), 1995, pp.7-12.

J. Hu and K. Kumamaru, “Identification of Nonlinear Systems Based on Adaptive Fuzzy Systems
Embedding Quasn—ARMAX Model”, in Proc. of the 34th SICE Annual Conference (mtematwnal
session), (Sapporo), 1995, pp.1211- 1216

which are further arranged into a journal paper:

J. Hu, K. Kumamaru, and K. Inoue, “A Hybrid Quasi-ARMAX Modeling Scheme for Identi-
fication of Nonlinear Systems ”, to be submitted to Trans. of the Society of Insirument and
Control Engineers, 1996.

The material in Chapter 3 appeared in

J. Hu, K. Kumamaru, and K. Inoue, “A Hybrid Robust Identification Using Genetic Algorithm
and Gradient Method”, Trans. of the Sociely of Instrument and Control Engineers, Vol.32,
No.5, pp.714-721, 1996.

The material in Chapter 4 can be found in

K. Kumamaru, J. Hu, K. Inoue and T. Sdderstrom, “Statistical Methods for Robust Change
Detection in Dynamical Systems with Model Uncertainty”, in Statistical Methods in Control and
Signal Processing, T. Katayama and S. Sugimoto, Eds., Mercel Dekker Inc., New York, USA,
1997 (to appear).

K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, “Robust Fault Detection Using Index
of Kullback Discrimination Information”, in Proc. of the 13th IFAC World Congress (San
Francisco), Vol.N, 1996, pp.205-210.

K. Kumamaru, J. Hu, K. Inoue and H. Ono, “Fault Detection via KDI in Presence of Unmodeled
Uncertainty”, in Proc. of the 26th ISICE International Symposium on Stochastic Systems Theory
and Its Applications (Osaka), 1994, pp.173-178.

The material in Chapter 5 can be found in

K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, “A Method of Robust Fault Detection for

Dynamic Systems by Using Quasi- ARMAX Modeling”, in Proc of the 11th IFAC Symposium on
System Identification (Kitakyushu), 1997, (to appear).

K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, “Fault Detection of Nonlinear Systems
by Using Hybrid Quasi-ARMAX Models”, Submitted to IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes (Kingston Upon Hull), 1997.

Two journal papers based on Chapter 4 and Chapter 5 are under preparation
“Robust Fault Detection Using the Index of Kullback Discrimination Information”

“Fault Detection of Nonlinear Systems by Using Hybrid Quasi-ARMAX Models”
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The material in Chapter 6 has been presented in

J. Hu, K. Kumamaru, and K. Inoue, “Adaptive Control of Nonlinear Stochastic Systems Based
on A Hybrid Quasi-ARMAX Model”, the 28th ISICE International Symposium on Stochastic
Systems Theory and Iis Applications (Kyoto), 1996.

which is extended into a journal paper

J. Hu, K. Kumamaru, and K. Inoue, “Adaptive Control of Nonlinear Stochastic Systems Based
on Hybrid Quasi-ARMAX Model”, to be submitted to Trans. of the Institute of Systems,
Control and Information Engineers, 1996.
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Glossary

Some notations may have different meaning locally.

Notations

zT

uN Uy

ZN

x*(d)

y(f)

u(t)

£(t)

e(t), v(t), v,
o(t)

#(t)

pe(t)
Pue(t)
Vn(8)
8,Q;, 0,0,
0., Q;

transpose

[u(1), ..., w{N)]T

[yN » uN]

x2-distribution with d degrees of freedom

output signal at time ¢

input signal at time ¢

prediction error at time ¢

noise, system disturbance

regression vector

regression vector ¢(f) whose element u(t — i) changed to

g~ Yu(t —1)

regression vector including past prediction errors as elements
regression vector containing nonlinear regressors

loss function

parameter vectors

parameter vector including the parameters of noise model
parameter vector including the parameters describing unmodeled dynamics
coefficient vector which is function of input-output variables
estimate of §

scale and position parameter vector of the ‘basis functions’ in nonlinear nonpara-
metric model

coordinate parameters of nonlinear nonparametric model
coefficients consisting of constant parameters and nonlinear terms
number of old output values in (t)

number of old input values in ()

number of old input and output values in p(t), r =n +m
number of old g(t) values in @.(t)

number of ‘basis functions’ in nonlinear nonparametric model, in particular for
adaptive fuzzy systems, the number of rules

dead zone in robust adaptive scheme
forgetting factor in recursive algorithm

weighting factor for control input in control law
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Operators and Functions
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dimension of the vector §

the backward shift operator, g=! f(t) = f(t — 1)
Expected value of stochastic variable z
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Kronecker production

production .
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Abbreviations

KDI Kullback discrimination information

NNM nonlinear nonparametric model
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FDI fault detection and isolation
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ARMAX autoregressive moving average model structure with exogenous inputs

ARX autoregressive model structure with exogenous input
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FDS fault detection system

STR self-tuning regulator

LIP linear in the parameters

AFS adaptive fuzzy system
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NN neural network

WN wavelet networks

PEM prediction error method

ELS extended least square method

ML maximum likelihood method

RMS root mean square

IR infinite impulse response model

FIR finite impulse response model



Chapter 1

Introduction

1.1 System Identification

A model describes reality in some way, and system identification is the theory of how mathematical
models for dynamical systems are constructed from observed data.

Typically, a parameterized set of models, a model structure, is hypothesized and data is used to
find the best model within this set according to some criterion. The choice of model structure is gnided
by prior knowledge or assumptions about the system which generates the data. It is customary to
distinguish between three levels of prior knowledge, which have been color-coded as follows [92]

¢ White Box models: This is the case when a model is perfectly known; it has been possible to
construct it entirely from prior knowledge and physical insight.

e Grey Box models: Thisis the case when some physical insight is available, but several parameters
remain to be determined from observed data. It is useful to consider two subcases:

— Physical Modeling: A model structure can be built on physical grounds, which has a certain
number of parameters to be estimated from data. This could, e.g., be a state space model
of given order and structure,

— Semi-physical modeling: Physical insight is used to suggest certain nonlinear combinations
of measured data signal. These new signals are then subjected to model structures of black
box character.

» Black Box models: No physical insight is available or used, but the chosen model structure
belongs to families that are known to have good flexibility and have been “successful in the
past”.

The terms of “white-box model”, “grey-box model” and “black-box model” may not be so popular,
but in system identification community, they have been frequently used recently, see e.g. [92, 46]. In
this thesis, we also use the term “black-box model” based on the above definition.

1.1.1 Black-Box Modeling

When little prior knowledge is available, it is common to use a black-boz model. A black-box model is
a standard flexible structure which can be used to approximate a large variety of different systems. In
real applications it is impossible to obtain a model structure that is capable of describing the system
exactly. Instead one tries to make reasonable assumptions about the system so that the hypothesized
meodel structure is “close” to the true system.

One common assumption in system identification is that the unknown system is linear. This is
never true in real applications, but often it is a good approximation. Linear system theory is very well
developed and there exist many results which can be applied to the obtained linear models. Some
typical linear black-box model structures are reviewed in Appendix A.l.

7



8 Chapter 1. Introduction

If the linear assumption is relaxed, one turns to nonlinear models. The nonlinear black-box situ-
ation is much more difficult. The main reason for that is that nothing is excluded, and a very rich
spectrum of possible model descriptions must be handled. In recent years, nonlinear modeling and
identification have attracted much interest in control and system identification community. Many
nonlinear models have been proposed in the literatures: ‘classic’ models derived from Volterra series
or Winner series [8, 10}, and nonlinear black-box models based on the nonlinear nonparametric models
(NNMs) (neural networks, fuzzy models, wavelet, etc.) [92, 46]. Especially, the latter ones have gained
increasing interest due to their ability to encompass truly nonlinear behaviors. Appendix A.2 gives a
summary for those nonlinear black-box structures.

As pointed in Appendix A.2, a great deal of attention for the nonlinear black-box models is so far
paid only to the flexibility of the model structures. The structural linearity and simplicity, which are
important features of highly successful linear black-box models, have been ignored. That is, there is
a gap between the existing linear and nonlinear black-box models. It is highly motivated to develop
a black-box medeling scheme to fill the gap so as to extend the well developed linear system theory
to nonlinear systems. A hybrid (linear-nonlinear) modeling scheme seems to be the best idea. In
the literature, some authors have used a “linear model + neural network” type hybrid scheme for
identification and control design of nonlinear system [44, 102, 34]. However as a hybrid black-box
modeling scheme, linear structures and nonlinear structures should be combined in a more effective
and efficient way. In this thesis, we will propose a hybrid quasi-linear black-box modeling scheme
which is obtained by incorporating a group of certain NNMs into a linear structure. Particular effort
will be made to find a better compromise to the trade-off between the model flexibility and the model
simplicity using knowledge information efficiently. The obtained hybrid model is equipped with a
linear structure, flexibility and simplicity, which enables us to do identification, system analysis and
control design of nonlinear systems under the framework of linear system theory.

1.1.2 Parameter Estimation

Fitting a model within a given structure (parameter estimation) is in most cases a lesser problem.
However, since model parameters are usually determined as the global minimum point of the loss
function which is not guaranteed to be unimodal, an optimization-based algorithm has a potential
risk to be stuck at a local minimum [94]. There is no easy solution to the multimodality problem [92].
A nice way to solve this problem so far is to search a good initial value where to start the iterations or
to estimate the parameters directly using global search techniques such as random search and genetic
algorithms [88, 90, 51]. However, all these techniques are rather time-consuming, and not so effective
when the number of parameters to be estimated is large.

The best way for solving the problem, however, is to construct a model which is linear in the
parameters to be estimated, since the criterion function becomes simple in such case and its multi-
modality appears only when a noise model is employed for system disturbance. In this thesis, the
proposed hybrid quasi-linear black-box model has been constructed into a form that is linear in the
parameters to be estimated, the feature of which is called as ‘model simplicity’. On the other hand,
there are few publications dealing with the multimodal] problem resulted from noise models. In some
cases, the reliability of parameter estimation is very important. Therefore, it is crucial to develop an
algorithm which may find global minimum reliably. Since in the case of multimodality resulted from
noise model, the fitness is difficult, if not impossible, to calculate, the conventional genetic algorithms
(GA) can not be employed. To solve this problem, we will propose a Non-Standard GA (NSGA) by
introducing a new GA operator named as development inspired by the fact that living beings adapt
themselves to their environment, and perform the operation by using an optimization-based method.
The NSGA is very efficient in parameter estimation and can be used to solve the multimodal problem
resulted from noise model. Then a hybrid identification algorithm is developed, in which the NSGA

is used to search for a good initial value and the estimation is continued using an optimization-based
method with the initial value.
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1.2 Fault Detection of Dynamical Systems

Due to the increasing complexity and riskiness of modern control system and the growing demands
for quality, cost efficiency, availability, reliability and safety, the call for fault tolerance in automatic
cantrol systems is gaining more and mare importance. One of the approaches to achieve fault tolerance
is to provide fault accommodation, i.e. a reconfiguration of the system when a fault has occurred.
For the fault accommodation, one of the most important and difficult tasks is fault diagnosis. The
purpose of fault diagnosis is to detect the faults of interest and their causes early enough so that a
failing of overall system can be avoided, which consists of three tasks: fault detection, fault isolation
and fault analysis. In this thesis, we concentrate on the first task, i.e., fault detection.

Depending on the method of residual generation, the methods of fault detection can be divided
into three categories: signal-based, model-based and knowledge based. The model-based approach
has received an increasing attention recently because of its portability. Many methods of model-based
residual generation have been developed during the last two decades, see [19, 21, 41, 3]. They can
be divided into three groups: parity space approach [13, 15, 97|, observer-based approach [22, 84]
and parameter estimation approach [4, 41]. Several researchers have pointed out that there are close
relationships among the different approaches [20].

1.2.1 Parameter estimation approach

The parameter estimation approach is based on the assumption that the faults are reflected in the
physical system parameters such as friction, mass, viscosity, capacitance, inductance, etc. The basic
idea of the detection method is that the parameters of the actual process are repeatedly estimated on-
line using well known parameter estimation methods and the results are compared with the parameters
of the reference model obtained initialy under fault-free conditions. Any substantial discrepancy
indicates a change in the process and may be interpreted as a fault. Many researchers have made
contributions to this approach, e.g. Isermann et al. [41], Rault et al. [87], Goodwin et al. [26] and
Kumamaru et al. [61, 60].

Since an exact mathematical modeling of the system is impossible in practice, the effects of mod-
eling uncertainties have to be taken into account with respect to which the residuals must be robust
[20). A typical scheme to the robust fault detection so far is proposed by Frank and Wunnenberg
(1989) [22] and Patton and Kangethe (1989) [84] based on observer design approaches, in which the
robustness is achieved by appropriately design the observers. In their approach, however, the distri-
bution matrices of fault should be known in the state-space representation. In this thesis, we will
propose an input-output model-based robust fault detection scheme, which is obtained by extending
the fault detection scheme using Kullback discrimination information (KDI) as an index for model
discrimination [61] to the cases of unmodeled dynamics. The idea is to apply the KDI to discriminate
the identified models with unmodeled dynamics and to consider the estimates of unmodeled dynamics
in the the KDI analysis and thresholding decision for robustness realization.

1.2.2 Fault Detection of Nonlinear Dynamical Systems

When the system to be diagnosed is nonlinear, the thing becomes difficult. One of the main reasons
is that it is available few nonlinear black-box models whose parameters have useful physical inter-
pretations that are important for fault analysis. Recently, neural networks based methods have been
proposed for fault detection and isolation of nonlinear systems. Neural networks are typical used in
two ways: (1) as classifiers; (2) as nonlinear black-box models 83, 96, 108, 95, 74]. Recently, Q.
Zhang (1996) [118] proposed a method using nonlinear black-box models in fault detection and iso-
lation. In all these approaches, however, the information provided by model parameters can not be
used. In this thesis, we will propose an alternative method for fault detection of nonlinear systems, in
which the identified model parameters can be used in the fault analysis. Since the hybrid quasi-linear
black-box modeling scheme proposed can be considered as a modeling approach based on global and
local linear approximations of nonlinear systems, the model parameters have global or local physical
interpretations. Based on these features, we will extend the KDI-based fault detection scheme to
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nonlinear systems by applying the KDI to discriminate the identified hybrid quasi-linear black-box
models. Two strategies will be considered. Omne is a robust fault detection like approach, in which
the hybrid quasi-linear black-box model is identified in such a way that the results give a best linear
approximation of system and the estimates of error due to nonlinear undermodeling. The second is
a multi-model based approach, in which the hybrid quasi-linear black-box model will be used as a
multi-model consisting of several local linear model.

1.3 Adaptive Control of Nonlinear Systems

When the systems to be controlled contain unknown parameters, adaptive controller offers certain
advantages over conventional controller. Adaptive control theory based on linear models has been
developed into a considerable mature stage [26, 63]. However, in the case of black-box type nonlinear
systems to be controlled, things become difficult. The difficulty is that a linear black-box model can
not provide enough accuracy, while a suitable nonlinear model is rather difficult to find. Recently,
many authors suggested to use neural networks as a nonlinear black-box model for the adaptive control
and proposed many approaches [40]. Generally, neural networks have been incorporated into adaptive
control systems in two ways. One is to use neural networks as nonlinear models . Most of such
schemes are working as indirect control [76, 75]. The second is to use neural networks as nonlinear
compensators to compensate the system nonlinearity or the error due to nonlinear undermodeling
[102, 34]. Loosely speaking, because of the nonlinearity in the parameters to be adjusted, the control
systems incorporating neural networks usually have some drawbacks concerning the convergence rate
and the noise sensitivity [39].

On the other hand, since the adaptive control theory based on linear models is very well developed,
it is highly motivated to develop a nonlinear black-box modeling scheme so that the existing adaptive
control theory becomes applicable to general nonlinear systems. In this thesis, we will propose a
hybrid quasi-ARMAX modeling scheme for such purpose. Particular efforts will be made to obtain
a nonlinear black-box model which (1) has a similar form to linear ARMAX model; (2) is linear not
only in the parameters to be adjusted but also in the one-step past input variable (u(¢ — 1)) that
should be synthesized in a control system. We believe that this is a perspective approach for adaptive
control of general nonlinear systems. To demonstrate such perspective, we will design a STR adaptive
controller for general nonlinear stochastic system under the framework of linear stochastic control
theory by using the hybrid quasi-ARMAX predictor structure, and apply the STR adaptive controller
to a variety of nonlinear stochastic systems to test its effectiveness.

1.4 Thesis Outlines and Main Contributions

The thesis consists of seven chapters. Chapter 1 gives a background and an outline for whole thesis.
Chapter 2 and Chapter 3 are devoted to system modeling and identification. Chapter 4, Chapter 5
and Chapter 6 are dealing with applications for fault detection and control design. Finally, Chapter
7 gives a summary for the whole thesis (Conclusions).

Chapter 2: Chapter 2 is devoted to developing a hybrid modeling scheme. A general nonlinear system
is first expressed in a linear structure, then a group of nonlinear nonparametric models (NNMs) are
incorporated into the linear structure, so that a hybrid quasi-linear black-box model structure is
obtained. Estimations of the hybrid model using both knowledge information and observed data are
discussed. Several real systems and simulated systems are used to test the proposed scheme. It is also
point out that further investigation is needed to develop an algorithm for using knowledge information
efficiently in the parameter estimation (intelligent identification).

The main achievement in Chapter 2 is that a new hybrid model structure is proposed, which
incorporates a group of NNMs into a linear model structure. The new hybrid model structure is
distinctive to other hybrid ones in the following issues.

e It is possible to provide better compromises to the trade-off between the model flexibility and
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the model simplicity and thus to obtain a model equipped with a linear structure, flexibility and
simplicity.

® The obtained model can be considered to be an extension of linear models, which avoids aban-
doning the properties of highly successful linear models as soon as a small amount of nonlinearity
introduced.

s The parameters are divided into two groups, one of which is esiimated from observed data, while
the other of which is determined using knowledge information. This may give an alternative
perspective for intelligent identification.

o It is easier to do identification, system analysis and control design for nonlinear systems with
the new model structure, since the techniques based on well developed linear system theory may

be applied.

Chapter 3: Chapter 3 discusses hybrid methods using Genetic Algorithms for global optimization.
Particular compromises provided by traditional optimization-based methods and Genetic Algorithms
(GAs) are addressed and illustrated by a particular application in the case of identifying a general
system (linear, nonlinear, etc.) based on a linear ARMAX model.

The main contribution in Chapter 3 is introducing a new GA operator named as development,
which is inspired by the purpose to solve multimodal problem resulted from noise models and the
fact that living beings adapt themselves to their environment and is performed by optimization-based
methods. The obtained Non-Standard GA (NSGA) is different with other hybrid GAs because it
combines the reliability properties of the GAs with the accuracy of optimization-based method, while
requiring a computation time only slightly higher than the latter. Furthermore, it is possible to solve
the multimodal problem resulted from noise model, which it is known to be difficult to solve via
conventional GAs,

Chapter 4: Chapter 4 concerns with the KDI-based robust fault detection of dynamic systems.
We first point out that in the fault detection scheme based on the use of Kullback discrimination
information (KDI) for model discrimination, there are two important assumptions: (1) The system to
be diagnosed is linear; (2) The model parameterization is chosen adequately for the system, which are
never true in real applications. Then we devote the rest of chapter to relaxing the assumption (2) by
extending the scheme into robust ones. The robust fault detection is performed by applying the KDI
to discriminate the identification linear model with unmodeled dynamics and considering the estimate
of unmodeled dynamics in the KDI analysis and thresholding decision for robustness realization.

Chapter 5: Chapter 5 is devoted to relaxing the assumption (1) so far made in the KDI-based fault
detection scheme, that is, extending the scheme to nonlinear systems. It is first shown that the hybrid
quasi-ARMAX model can be transformed into a combined form of a linear ARMAX model and a
multi-ARX-model consisting of several local linear ARX models. Next, the hybrid is applied to fault
detection of nonlinear systems in two ways: robust fault detection like approach and multi-model
based approach.

The main contribution in Chapter 4 and Chapter 5 is to relax the two important assumptions so far
made in the KDI-based fault detection scheme, which are never true in real applications. In Chapter 4,
the fault detection scheme is extended to the case of unmodeled dynamics. The contributions related
to this extension are that

e it is first time to construct a robust fault detection system in a similar way to robust control
theory, that is, to build a fault detection system based on a model with unmodeled dynamics
which is quantified in some forms.

o the KDI is analyzed with incorporating the description of unmodeled dynamics, by which it can
be evaluated in a feasible way. And several indexes for evaluating unmodeled dynamics are also
introduced.
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e two fault decision schemes are introduced for robustness realization so that the fault detection
is carried out on the basis of the KDI, the index of unmodeled dynamics and other information
about the systems.

In Chapter 5, the fault detection scheme is extended to nonlinear systems. The contributions related
to the extension are that

e a new model-based fault detection scheme is proposed for black-box type nonlinear systems. It
is distinctive in that the model is based global and local linear approximations of the system, so
that its parameters have physical interpretations which are useful in the followed fault analysis.

e a two-step identification algorithm is suggested to identify the hybrid quasi-ARMAX in such
a way that the results give a best linear approximation of the system and the estimate of the
error due to nonlinear undermodeling. Such identification scheme can also be considered as
an alternative approach for describing the error due to nonlinear undermodeling. It may have
potential applications in robust control.

e a multi-model based approach is proposed for KDI-based fault detection scheme, in which the
hybrid quasi-ARMAX model is used as a multi-ARMAX-model consisting of several local linear
ARMAX models. The approach is distinctive in that the KDI is not applied to discriminate the
identified model describing the system as a traditional way, instead it is applied to discriminate
the identified local linear models, of which the system model is composed.

Chapter 6: Chapter 6 concerns adaptive control of nonlinear systems. First, based on the basic idea of
quasi-ARMAX modeling and the fact that the NNMs have universal approximation ability, a hybrid
quasi-ARMAX predictor structure is proposed for adaptive control of general nonlinear stochastic
systems. Next, based on the predictor structure, a robust STR, nonlinear control is developed in a
similar way to the linear stochastic control theory. Finally, a variety of nonlinear stochastic systems
are used to test the developed robust nonlinear STR adaptive controller.

Chapter 6 offers two contributions. One is that we propose a hybrid quasi-ARMAX predictor
structure for adaptive control of general nonlinear stochastic systems. It is distinctive in that

» the hybrid quasi-ARMAX predictor is linear in the parameters to be adjusted.

s the hybrid quasi-ARMAX predictor is linear in the one-step past input variable, so that a control
law can be derived directly.

The second is that a robust nonlinear STR controller is developed under the framework of linear

stochastic control theory. The controller has the following advantages compared with the controller
based on Neural Networks:

* it has a simple structure, which is similar in form to the linear STR controller. In fact, it can
be considered as an extension of linear STR controller.

¢ it has better convergence properties, since the prediction model is linear in the parameters to
be adjusted.

e it is not so sensitive to noise, because it is a stochastic STR adaptive controller.



Chapter 2

Hybrid Quasi-Linear Black-Box
Modeling and Identification

2.1 Introduction

The key problem in system identification is to find a suitable model structure, within which a good
model is to be found. According to the levels of prior knowledge used, there are three types of models:
white-box models, grey-box models and black-box models. When no physical insight is available or
used, one has to choose black-box model structure which belongs to families that are known to have
good flexibility and have been “successful in the past”.

Under the assumption that the unknown system is linear, linear black-box models can be chosen
for the system identification. The identification based on linear approximation has been extensively
and successfully handled within some well known linear black-box structures [70, 69, 94]. If the linear
assumption is relaxed, one has to use nonlinear black-box models. For nonlinear black-box modeling,
the “classic” literature seems to have concentrated on global basis function expansions, such as Volterra
expansions [10]. These have apparently had limited success. Recently, some anthors have suggested
the use of nonlinear structures based on neural networks (NN}, wavelet networks (WN), radial basis
function networks (RBFN), etc, and have achieved reasonable success, see [92, 46]. However, the
latter ones have resulted in an abrupt abandonment of the highly successful linear black-box modeling
methods, which have some useful properties, as soon as a small amount of nonlinearity is introduced.

From a user’s point of view, a nonlinear black-box model is preferred to have the following prop-
erties:

e A linear structure. In order to take advantage of linear system theory that is very well
developed, a linear structure may be useful. Therefore, one would benefit by constructing a
nonlinear black-box model as an extension of linear model instead of abandoning the properties
of linear model totally.

e Flexibility. Since a nonlinear system can be nonlinear in so many ways, a nonlinear black-box
model structure, in general, must be feasible enough to deal with various nonlinear systems.

e Simplicity. A nonlinear black-box maodel usually offer a large amount of parameters. If the
model is constructed to be linear in the parameters, its estimation becomes simple. Furthermore,
if the model is constructed to be linear in the one-step past input, it is simple to derive a control
law based on the model.

Unfortunately, no existing nonlinear black-box models have those properties simultaneously. For those
nonlinear black-box model structures, the three features appear to be conflicting ones. For example
in the nonlinear black-box models described by (A.16) in Appendix A, if the scale and position
parameter vectors p; are determined a priori for simplicity, it is necessary to use a rather fine grid of
‘basis functions’ in order to get a sufficient approximation capability, which then typically would lead

13
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to many coordinate parameters w;. Therefore, it is highly motivated to develop a modeling scheme
in order to obtain a nonlinear model equipped with a linear structure, flexibility and simplicity. For
this purpose, we have the following motivations:

¢ To find a better compromise to the trade-off between the conflicting properties, since some of
the properties, for instance flexibilily and simplicity, usually appear to be conflicting ones.

e To divide the model parameters into two groups, and to determine one of which by using
knowledge information, since some of knowledge information are always available or can be
obtained via some ways in practice.

It seems natural to consider the use of hybrid (linear-nonlinear) structure ! for realizing these motiva-
tions. In the literature, some authors have employed a “linear model + neural network” type hybrid
scheme for identification and control of nonlinear systems, in which neural network is simply used
as a compensator to describe the error due to nonlinear undermodeling [44, 102, 34]. Such simple
hybrid scheme does not, however, secem to have the properties of simplicity. In this chapter, we will
propose a new hybrid model structure based on an effective combination of a linear structure and a
group of certain nonlinear nonparametric models (NNMs) (neural networks, adaptive fuzzy systems,
etc.). The basic idea of such hybrid modeling is first to increase the overall model flexibility by using
a group of certain NNMs and then to restrict the flexibility in the higher order nonlinearity band
to achieve the model simplicity. Note that by saying ‘nonlinearity band’ we have used a concept of
‘nonlinearity spectrum’?, which may be not so strict. The model constructed using this idea will be
favorable to the lower order nonlinearity band than the higher one, which may give a property that
it is more robust to noise in the parameter estimation. Furthermore, the idea also accords with the
motivation to obtain a nonlinear model by extending the linear model to nonlinear one without totally
abandoning the properties of the linear model.

It is shown that a general nonlinear system can be expressed in a linear structure whose coefficients
consist of constant parameters and nonlinear terms. The structure allows us to incorporate a group of
certain NNMs into the linear structure by using them to represent the nonlinear terms. Since in the
hybrid structure, what each NNM used to represent is only one nonlinear term of the coefficients, i.e.,
the role required for each NNM is reduced, the flexibility of individual NNM can be restricted to some
extent. Therefore, the parameters specifying the ‘basis functions’ in the NNM can be appropriately
determined by using knowledge information. The efficient use of various knowledge information will
play a key role on the hybrid modeling. The model built in this way is named as hybrid quasi-linear
black-boz model, which has a linear structure, flexibility and simplicity.

This chapter is organized as follows: Section 2.2 proposes a hybrid quasi-linear black-box mod-
eling scheme by joining the linear and nonlinear black-box models together. Our discussions are
concentrated on the linear structure of the proposed hybrid model, its flexibility for describing various
nonlinear systems and its simplicity for parameter estimation. In Section 2.3, we discuss the esti-
mation of the hybrid model based on criterion optimization. In Section 2.4, we point out a possible
perspective: intelligent identification of the hybrid model. Several numerical examples with real data
and simulated data are given in Section 2.5, The relations between the proposed hybrid model and
some existing models, and the possible applications are discussed in Section 2.6.

2.2 Hybrid Quasi-Linear Black-Box Modeling

In this section, we will propose a hybrid quasi-linear black-box modeling scheme. Without loss of
generality, our discussions will be concentrated mainly on ARMAX model structure because of its
popularity. The results can however be extended to general black-box model structure by considering
the general regression vectors which are referred to Appendix A.1.

1By “hybrid structure”, we mean that the structure is obtained by combining the linear model structure in ‘classic’
literature with the nonlinear model structure in AI (artificial intelligent) literature. Therefore, the term “hybrid” means
a combination of ‘classic’ approach and ‘Al’ approach.

2Let y(t) = g(e(1)) be a nonlinear function. Performing Taylor expansion to g((t)) around the region (1) = (1),
we have y(1) = ag + o1 ((t) - w0(2)) + [le(t) — wo(f)l|2, + ... Then the norms of coefficients ; (i = 0,1,2,...) form «

‘nonlinearity spectrum’.
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Figure 2.1: A schematic description of quasi-ARX modeling.

2.2.1 Hybrid Quasi-ARMAX Modeling
Let us consider SISO general nonlinear ARX (NARX) systems described by

Sz y(t) = gle(t)) +(t) (2.1)
o(t) = [y(t—1) ... y(t = n) u(t — 1) ... u(t = m)}T (2.2)

where y(t) is the output at time (¢ = 1,2,...), u(t) the input, u(t) the regression vector, v(t) the
system disturbance, and g( - ) the unknown continuously differentiable nonlinear function.

In Appendix B, we have shown that a general NARX system (2.1) can be expressed in a hierarchical
structure, e.s. ARX networks, provided that g{ - ) is continuously differentiable. Based on this result,
we can express the system (2.1) in a linear ARX structure, whose coefficients consist of constant
parameters and nonlinear terms, see Fig. 2.1 where we call it quasi-ARX modeling in order to
distinguish it to the NARX modeling

y(t) = ¢7 (B)(0 + £8,) + v(2) )

where
8 =[a1 ... an by ... b]” 2.4
Ab = [Aayy ... Dap 1 Abyy . Dbyy]T [° e

and where the index ¢ in the nonlinear terms Aa;, and Ab;, denotes that they are functions of the
regression vector p(t), instead of constants. We may call such treatment as “nonlinearity embedding”
technique, which is actually not new. The techniques of embedding certain kind of nonlinear elements
in the coefficients of a linear model are known to be effective in modeling some real processes [82].

When a moving average (MA) noise model is employed for the system disturbance v(t), we have a a
quasi-ARMAX model

y(t) = @ (£)(8 + £80) + Cg 7 )e(?) (2.5)

where C(g™1) = 1+ 17! +... + cig™! (¢~': backward shift operator), and e(t) is white noise.

For the case where the g((t)) is a nonlinear system expressed in Kolmogorov-Gabar polynomial
described by (B.2) of Appendix B, in which ¢(t) is assumed to be [z;(t), i = 1,...,r], the nonlinear
terms Aa;  and Ab; ; can be explicitly expressed as (B.6) and (B.7), respectively. However for general
nonlinear systems, the nonlinear terms Aa;; and Ab;; may become very complicated functions. We
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therefore represent them using the NNMs described by (2.7)

Aaig = filp(t) (E=1,..,7m)
Abjye =fj+t(‘P(t)) (j=1,..,m) } (2.6)

M
Filp(8)) = Y wiiNg (s, 0(1)) 27

j=1
where Ny (pj, cp(t))’s are the ‘basis functions’, w;;’s are the coordinate parameters, and p_,-’s are the
scale and position parameter vectors. The N(-) is referred as ‘basis functions’, since the role they
play in (2.7) is similar to that of a functional space basis. In some particular situations, they do
constitute a functional basis. Typical examples are wavelet bases [46]. Without loss of generality, the
NNMs used to realize fi(o(t)) are assumed to have the same structure, so that the ‘basis function’
is independent of the index i. A preferable candidate for the NNMs is adaptive fuzzy systems (AFS)

[110], which can be explicitly expressed as

Tims wii(Nicy 4 (2(1))
Ej‘i] (Ak=1 Hai (mk(t)))

where A is the minimum operator, M is the number of rules, z;(t) are the elements of ¢(t), and p A

is the membership function of fuzzy set A‘};. The model described by (2.5)-(2.7) is named as hybrid
quasi-ARMAX model.

It is well known that the NNMs are flexible enough to represent most reasonable systems in practice.
It should be noted that there are a group of such certain NNMs in the hybrid quasi-ARMAX model.
The hybrid quasi-ARMAX model becomes so flexible (complex) that it is impossible to estimate all
of the parameters (a;, b;, ¢;, wij and p’-) from observed data as usual. In order to make the problem
feasible, we will appropriately determine the parameter vectors p; specifying the ‘basis functions’ in
the NNM by using knowledge information, and only estimate a;, b;, ¢; and w;; from observed data.
We will discuss these estimations in the next section.

The followings are some interpretations for the hybrid quasi-ARMAX model:

fi(p(t)) = (2.8)

(1) Expression in Linear ARMAX Structure

Introducing a coefficient vector ©,

O, =0 + A8, (2.9)
we have an expression of the hybrid quasi-ARMAX model given by
M y(t) = ¢ (®0, + Cla™)e(t) (2.10)

From (2.10), we can see that the hybrid quasi-ARMAX model has a linear ARMAX structure. It can

be shown that such a linear ARMAX structure is useful for control design and system analysis, see
Chapter 4, 5 and 6.

(2) Expression in Combined Structure

Using (2.6), (2.7) and (2.4) in (2.5) we can obtain another expression of the hybrid quasi-ARMAX
model as .

e .
M y(t) =708 + Ol Ve(t) + 3 0T (O N (p;,0(1) (2.11)
J_=1\-_ﬁ'
ARX
where §; = [wy;...wr;]7. The expression (2.11) shows that the hybrid quasi-ARMAX model is equiv-
alent to a model combining a linear ARMAX model and a multi-ARX-model. The multi-ARX-model

consists of M local ARX models and its overall performance is obtained via an interpolation using
the ‘basis function’ M¢(z}. It also implies that
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Figure 2.2: The hybrid quasi-ARMAX model shown as an associative memory networks. (the MA
noise model has be omitted for clarity.)

e the proposed model can be shown to be able to describe any sufficiently smooth nonlinear
function in (2.1) on a compact interval arbitrarily well by merely increasing the value of M.

o the proposed model is based on global and local linear approximations of system, which is
favorable to lower order nonlinearity band. This makes the robustness of model to noise increased
in the parameter estimation.

From the expression (2.11), we can see that the hybrid scheme proposed here is different from the
“linear model + neural network” type hybrid schemes appeared in the literature [44].

(3) Expression in Linear Regression Structure

Since the hybrid quasi-ARMAX model has been constructed to be linear in the parameters to be
estimated, it is easy to express it in a ‘pseudo-linear’ regression structure. Introduce a parameter
vector © and a regression vector ,, (t) defined as

0= [BT, W11 eeo Wepfy, €1 one C;]T (2.12)

on(t) = [#7 (1), () ® 0T, (1), et —1) .. et — VI (2.19)

where cpif (t) = Ns(p;, (1)), 7 =1,..., M], and the symbol ® denotes Kronecker production. Then
we have the third expression of the hybrid quasi- ARMAX model given by

M: y(t) =l (1)O +e(t) (2.14)

The expression (2.14) shows that the proposed model is linear in the parameters, so that it is simple
for parameter estimation.

From the expressions (2.10), (2.11) and (2.14), we can conclude that the hybrid quasi-ARMAX
model is equipped with a linear ARMAX structure, flexibility and simplicity 3. These features make
the proposed hybrid model very practicable.

31t will be discussed in Chapter 6 about how to construct the hybrid quasi-ARMAX model to be linear in the one-step
past input variable, which is typical useful for control design.
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Figure 2.3: Basic configuration of MISO fuzzy system

(4) Associative memory networks

Form a network’s point of view, the hybrid quasi-ARMAX model can also be seen as an associative
memory networks, which consists of two hidden layers: the first layer (next to the input layer) with
weights determined by a set of simplified NNMs; the second layer with weights simply taking the time
delayed value of the system input and output, see Fig. 2.2. We could expect that such a specially
structured associative memory network is more suitable for control design or system analysis than a
general neural network.

Finally, if the regression vector y(t) is considered to be a general one as that of linear black-box
model, referred to Appendix A, the hybrid quasi-ARMAX modeling scheme can be generalized as
hybrid quasi-linear black-boz modeling scheme.

2.2.2 Fuzzy Inference Based Multi-Modeling

If we inspect the hybrid quasi-ARMAX model in the expression (2.10) from a viewpoint of linear
approximation, we may find that in the hybrid quasi- ARMAX modeling, a nonlinear system is rep-
resented using local linear ARMAX models for each operating point. Furthermore, based on the
expression (2.11), we know that it is equivalent to a hybrid model combining a linear ARMAX model
and a multi-ARX-model consisting of several local linear ARX models with employing an interpo-
lation using the ‘basis functions’. In this subsection, we will derive the multi-ARX-model from the
viewpoint of an adaptive fuzzy modeling. It is shown that if the AFSs are used as the NNMs, the
multi-ARX-model part is actually equivalent to a Sugeno-Takagi fuzzy system [99]. This result leads
to a fuzzy inference based multi-modeling scheme for identification of nonlinear systems.

(1) Sugeno-Takagi Fuzzy System

Generally, as shown in Fig. 2.3, the basic configuration of a fuzzy system includes four principal
elements: fuzzification interface, knowledge base (fuzzy rule base and data base), fuzzy inference
machine, and defuzzification interface [64]. Here we use a MISO fuzzy system: U ¢ R” — W C R,
where U and W are compact.

The fuzzification interface is a mapping from the observed non-fuzzy input space U C R" to
fuzzy sets defined in U, where a fuzzy set defined in U is characterized by a membership function
tai i U— [0, 1], and is labeled by a linguistic term A! such as "small”, "medium”, ”large”, "very
larée”, etc.

The knowledge base contains rule base and data base which discretizes the universes of discourse
and describes the membership functions u ,;, # ;- The j-th linguistic rule has the form:

ith: If z; is A! and, ... is A7 th s B
J .I.'l 15 1;],1-]'.: ,1’ ,, :J-:A}IS r en ’y i5 (215)
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A,

Figure 2.4: Diagrammatic representation of fuzzy reasoning

For a Sugeno-Takagi fuzzy system, the consequent (y is B7) is represented as a function of the process
state variables (z,..., z,), i.e.,

Y= fj(mla"wwr) (216)

The fuzzy inference machine is decision making logic which employs fuzzy rules from the knowledge
base to determine fuzzy outputs of a fuzzy system corresponding to its fuzzified inputs. There are
different kinds of fuzzy inference machines [65}, here we use Mamdani’s minimum operation rule.

In the fuzzification interface, the crisp inputs may be treated as fuzzy singletons. Then the firing
strengths a; of the jth rule (2.15) may be expressed as

a5 = A nay(e) (.17)

where A is the minimum operator. Based on Mamdani’s minimum operation rule, the output of the
jth rule defined as pg; is given by

Pos(¥) =i Apy, () (2.18)

which implies that the membership function g, of the inferred consequence B is pointwise given by
M M
re(W) = U pgy ()= U (a5 Ap,,(v) (2.19)

Figure 2.4 shows the fuzzy reasoning diagrammatically.

The defuzzification interface defuzzifies the fuzzy outputs of the fuzzy inference machine and gen-
erates a non-fuzzy output which is the actual output of the whole fuzzy system. There are a lot of
defuzzification strategies [65], here we use centroid defuzzification method which is the most commonly-
used method.

Iy ps(y)dy
S, 2 2.20
“C T ra(y)dy (2.20)
In the case of Sugeno-Takagi fuzzy system, p,(y) can be described as
— C!'j ifg:fj(xl:l"“.\mf‘) J= 17"-3M
Ha(y) = { 0 otherwise (2.21)
Using (2.21) in (2.20), we can then express the defuzzified output explicitly
T 1@ ) (N s (2)
Yoo = . (2.22)

E;‘il (A¥=1 K af (:r:,))
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Figure 2.5: A linear approximation of the system in the region around ¢(t) = X;.

(2) Fuzzy Inference Based Multi-Model

Consider a general nonlinear system described by (2.1), whose operating region is assumed to be mostly
located in Xmin < ¢(t) € Xmax- Based on multi-modeling approach, for a region near X; (Xpin <
X; € Xmax), the system can be approximated by using a linear black-box model

v;i(t) = 0T (H)9; (2.23)

where §2; = [a1; ... @nj b1j ... b;|T is unknown parameter vector. If the region is chosen to be so
small that the approximation can be achieved with an arbitrary accuracy, see Fig. 2.5.

Now introduce a Sugeno-Takagi fuzzy system with the following fuzzy rule base to represent the
systems

jth: If o(t) is A7 then y(t) = T (1)
Pl (2.24)

where A’ = [A] ... A?] (r = n+4 m) is a vector with linguistic elements corresponding to X j,and M
is the number of rules. Obviously, if M is chosen large enough, the fuzzy system can approximate the
sufficiently smooth continue nonlinear system with an arbitrary accuracy. Corresponding to the rule
base (2.24), the fuzzy inference based multi-model can be expressed as

T o7 (005 (N 143 ()
T (A s (wi2))

y(t) = + v(t) (2.25)

where z;()'s are the elements of regression vector ¢(t). The fuzzy sets in the input space A'z (hence
their membership functions p 45, 7 = 1,..., M; i = 1,...,n+m) will be determined by using knowledge
information about system structure. For example, if we only know that the system operating region

is mostly located in X;, < @(t) € Xingz, the possible fuzzy sets may be chosen to be something
shown in Fig. 2.6. If we introduce the notation

ANizs Hai (zi(2))

Ni(pjre(t)) = S (e ot ) (2.26)
(2.25) can be further expressed as
M
y(t) = ;ml\ﬁ(ﬁ,w(t}) + (1), , (2.27)

ARX

which is the same as the multi-ARX-model part in (2.11).
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Xmin X max ?([)

Figure 2.6: The fuzzy sets in the input space

Moreover, if a MA noise model is employed for system disturbance v(t), we have
i
y(t) = ztp ) N5 (pj, (1)) + D cie(t — 1) +&(t) (2.28)
i=1
ARX

where e(t) is white noise. The (2.28) can be further expressed in a ‘pseudo-linear’ regression form

y(t) = the )Qej N5 (pj, p(2)) + e(t) (2.29)
S g ARMAX

where T (t) and 0,; denote the extended regression vector and parameter vector defined as

pe(t) = [y(t = 1) . y(t =n) u(t ~ 1) ... u(t —m) e(t —1) ... e(t = D)]T

ﬂej = [ﬂ.]j wee Bpj blj bmj Cl . CL]T. (2.30)

We will call the model described by (2.29) a fuzzy inference based model, which can be used to
identify various nonlinear systems. A distinctive feature of the fuzzy inference based model is that it
is typically easy to perform the identification in a multiresolution way. Furthermore, fuzzy systems
are known to have good flexibility for describing various nonlinear systems. Therefore, it implies that
the hybrid quasi-ARMAX model is flexible enough to identify various nonlinear systems in practice.

2.2.3 Determining p; Using Knowledge Information

As mentioned earlier, in order to achieve the model simplicity and the model flexibility simultaneously,
in the hybrid black-box modeling, one first increases the overall flexibility of model by using a group of
NNMs and then restricts the flexibility in the higher order nonlinearity band for the model simplicity.
The latter is done by determining the scale and position parameter vectors p; of the ‘basis functions’ in
the NNMs using knowledge information. Since in a black-box modeling, the physical insight of system
is assumed to be not available, the knowledge information are mainly obtained from the observed
data and the prediction error during the estimation. Several kinds of knowledge information can be
considered to be useful. They are:

o the information concerning the operating region of ¢(t). This information can be obtained easily
from the observed data.

o the information about the structure of nonlinearity. This may sometime be obtained by trying
various linear black-box models to identify the system.

e the information concerning the relations among the elements in (t). This is always known when
() is chosen.

e the information about the size of prediction errors and their relations with the operating region
of p(t). This may be obtained during the estimation.

However, how to obtain and how to use those kinds of information are still under investigation. Here
only some suggestions can be given.
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Figure 2.7: An example for determining p; for AFS and RBFN.

(1) A Strategy for Determining p;

How to determine the parameter vector p; for general NNMs is still an open problem to be solved,
which depends on the kind of NNMs used. The following strategy is suitable for adaptive fuzzy
systems (AFS), radial basis function networks (RBFN) and B-spline based models.

Suppose the NNM has r inputs, X = [z;, ¢ = 1,...,7] and the operating region is mostly located in
Xomin - X < anx, Kmin = [-T"l' miny ¢ = 11---,7']1 Xmax = [-751‘ max §= j L 1"]. X ¢ [Xmin; Xmax} is
allowable in practice. We first put nodes into the input hyperplane. As shown in Fig. 2.7, if the number
of nodes corresponding to z; is denoted as n;, the total number of the nodes in the hyperplane will
be M = []i_, ni. Next, the parameter vectors p; are chosen so that the ‘basis functions’ N¢(p;, X)
have appropriate shape and are put onto each node. Without using other knowledge information, the
nodes will be uniformly assigned in the hyperplane. Figure 2.7 shows an example for determining P;
for AFS and RBFN with r = 2 and M = 4 x 4. It should however be noticed that this strategy is
suitable for AFS, RBFN and B-spline based model, but it may not be suitable for other NNMs such
as neural networks and wavelet networks. Further research is needed for using neural networks and
wavelet networks as NNMs in the hybrid quasi-ARMAX model.

(2) Several Hints for Reducing the Total Number of Nodes

The prior knowledge concerning the operating region [Xin, Xmax] is the least information required
for determining the scale and position parameter vectors p;- However, when dim(X) is large, the total
number of nodes (M) may be rather large. Therefore, further information should be used to reduce

the number of nodes or to improve the node assignment. The following hints can be considered to
reduce the total number of nodes M:

o Hint A: If the system is linear with respect to z;, n; may be chosen to be 1.
¢ Hint B: If no other useful information, 7, and n4; corresponding to y(t — 1) and u(t — 1) are
assigned with appropriate values, while all other n;’s are set to 1, since y(t — 1) and u(t — 1)

include the information about other variables.

e Hint C: If the role of nodes can be replaced by employing interpolation of NNMs, those nodes
may be removed from the hyperplane.
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It should be pointed out here that user’s experience will play an important role on using these simple
hints efficiently. In order to make the modeling scheme less heuristically dependent, further investi-
gations are needed to develop an algorithm for incorporating knowledge information automatically.

2._3 Estimation of the Hybrid Models

In the previous section, we discussed the hybrid quasi-linear black-box modeling scheme. Now let us
have a summary on what steps are needed in order to find a hybrid quasi-linear black-box model.

(1) Select the regression vector ¢(t). This is equivalent to determining the order » and m. Since
the hybrid quasi-linear black-box model is basically an extension of linear black-box model to
the nonlinear cases, p(t) will be determined based on the results of identifying the system using
a linear black-box model. Therefore, many existing approaches for determining the order of
linear models such as Akaike criteria AIC and FPE can be applied. However, we do not limit
ourselves only to use the ‘optimal’ order 4, the values n and m for o(t) should be chosen as
small as possible, so far as the performance of the linear model is not significantly worse.

(2) Select a scalar ‘mother basis function’ Ny, Theoretically, all the NNMs which can be
described by (2.7) can be used. However, the parameters p; specifying the nature of the ‘basis
function’ will be determined using knowledge information, so some of them (e.g. AFS, RBFN
and B-spline based model) are more feasible, while some others (e.g. NN and WN) are less
feasible. Based on author’s experience and simulation results, the adaptive fuzzy systems (AFS)
seem to be preferred.

(3) Determine the parameter vectors p;. For general NNMs, this is still an open problem to
be solved, which depends on the kind of NNMs used. Section 2.2.3 describes a strategy for the
cases where AFS, RBFN or B-spline based model are used.

(4) Determine the order M. This is related with determining the parameter vectors p;. Section
2.2.3 gives several hints to reduce the order M. When the AFSs are used as the NNMs, the order
M denotes the number of rules in the AFS. Therefore, this is a problem similar to building an
adaptive fuzzy system using knowledge information and observed data. Many existing results for
fuzzy system design can be applied. An alternative perspective of determining M is Intelligent
Identification. We will discuss the possibility later.

(5) Estimate model parameters ©. The © denotes the unknown parameters to be estimated,
which includes the ARMAX parameters (a;, i = 1,...,n; b;, i = 1,..,m; ¢;, i = 1,...,1) and
the coordinate parameters of the NNMs (w;j, ¢ = 1,...,7, j = 1,..., M). We will discuss the
estimation problem in the rest of this section.

2.3.1 Model Estimation and Model Properties

The followings are some basic and general features that affect the model properties.

(1) Models and Model Estimation

Consider our general hybrid quasi-linear black-box model

y(t) = g(p(t), ©) + e(t) (2.31)

where
n

m 1
a(e(t),8) = > aiwy(t — i) + Z bi sult — i) + Z cie(t — i) (2.32)

i=1

4Strictly speaking, since there exists error of nonlinear undermodeling, the optimal order might not exist. In such
cases, the Akaike criteria are only used as indicator of the error of nonlinear undermodeling.
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a;y =a; + fi(e(t)) (i=1,...,n) 9.33
b = by + Fjn(p() (G = 10sm) s
M
Filp() = D wiiNy (pjy 0(t)) (2.34)
j=1
@(t) = [yt = 1) ... y(t = n) uw(t —1) ... u(t — m)]T (2.35)
Q= [fl] R bl bm W11 oo Wepr C1 oee C:]T (236)
Assume that we are given a finite set ZV of measured regressor-output part:
zy = {(y(®),¢(t), t=1,..,N} (2.37)

We refer to Z)Y as the estimation data set, since the model parameter estimation will rely on it.
Now, a leading guideline for estimating © will be to minimize the error between the output of the
model and the measured output using Z¥

N
V(0. 28) = 3 3 lln(e) - a(e(0), O)|” (2:38)
Oy = arg min {vn(©,2M)} (2.39)

which can be performed using existing well-known identification algorithms.

(2) Model Quality
Suppose that the actual data can be described by
3(t) = go((t)) + e(t) (2.40)

where gy is some unknown ‘true model’ and e(t) is white noise. Then for the estimate of © based on
ZY, Oy, we want go(p(t)) and g(p(t),On) to be ‘close’.

Measure of model quality
There are many possible measures for model quality. We here use the following one:

N
7(©) = Jim =3 flan(e(®)) ~ gl (t), O)IP (2.41)
=1

Based on this measure, the root mean square (RMS) error is introduced as

RMS error = \I %Z llgo(e(8)) - a(e(t), ON)II2 (2.42)
=1

Bias error and variance error
Under reasonable conditions [69, 25]

Oy —» O (2.43)
where
0* = arg min {v(e)} (2.44)

With this definition of ©*, we can decompose the total error into tow part: bies error and variance
error )

EV(6n) Ellgo(¢()) = g((2), On)|I?
Ellgo(e()) - 9(p(t), )2 + Ellg(e(2), ©°) — g((t), Om)II® .

bias error variance error

il

(2.45)

In order to obtain a ‘good’ model, one should try to make both bias error and variance error small.
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(3) Model Flexibility and Model Parameters

Since as the number of data N tends to infinity, the variance erro[r vanishes, a model structure should
be flexible enough in order to have bias error small. For such purpose, a nonlinear black-box usually
offers a large number of parameters. However, the estimation of © is realized using finite data set in
practice, so that there inevitably exists variance error which is proportional to the number of ‘active’
or ‘used’ parameters [94, 92)

Ellg(p(t),0%) - 9(p(0), On)I* ~ * (2.46)

where 02 = Ee?(t) and p, is the number of ‘active’ or ‘used’ parameters. Therefore, an attention
should be paid to making the number of ‘active’ or ‘used’ parameter p, << (far smaller than) the
number of ‘offered’ parameters dim(©).

Regularization

In the case (e.g. neural network) where the model parameters do not have physical interpretations,
the effort has to be made in the estimation algorithm. The ‘regularization’ is'one of the common and
useful techniques [91]. In order to distinguish between more and less ‘important’ parameters, a penalty
term is added to the criterion (2.38):

Wn(8,2]) =V (0w, Z)) + 80| (2.47)

where § is a small number. Then the estimation of @ is done by minimizing (2.47) instead of (2.38).
Intuitively, the idea is that a parameter that does not influence the first term of {2.47) very much will
be kept close to zero by the second term, so that only the ‘important’ parameters among the offered
are used. However, the bias error may increase by introducing extra term 6||0||%.

Parameter localization

In the hybrid quasi-linear black-box modeling, the model structure flexibility is realized by employ-
ing a group of NNMs, which of course brings a large number of parameters into the model. However,
all those parameters which are globally active will be determined using knowledge information, so
that the parameters needed to be estimated are only locally active. For example, in the case where
the ‘basis functions’ are chosen to be convex and compact, the parameter vector Q; = [w1j ... Waym j]
of © in (2.36) is only active in the operating region around jth node. We call this technique, which
lets the parameters to be estimated be only locally active, a parameter localization. In such a case, for
each operating point, the number of active parameters will be small, so that p, << dim(®) holds.

2.3.2 Estimation Algorithm

The estimation of © based on (2.39) is a well established problem, see e.g. {70, 94]. Especially, since
the hybrid quasi-linear black-box model is linear in the parameters (LIP), it can be expressed in a
‘pseudo-linear’ regression structure (2.14). The existing estimation techniques can be applied.

For clarity, we recall (2.14)

y(t) = @%, ()0 +e(t) (2.48)

where gai . (t) is a regression vector consisting of both linear and nonlinear elements, given by

oL, = [p7(0), ¢T O @6k, (), elt=1),.relt—)]" (2.49)

and where

o, (1) = Nr(pj p(t)), = 1,0, M] (2.50)
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(1) Least Squares Method

If (2.48) does not include the noise model (e.g. I = 0), the @ can be estimated efficiently and
analytically by solving the normal equations. For an estimation data set ZN, the optimal parameter

estimate is 1
e

N N
E':}N = [Z PaL (t)‘PgL(t)] Z ﬁowb(t)y(t) = R;’l Z: PrL (t)y(t) (2'51)

provided that the inverse of the d x d (d = dim®) regression matrix Ry exists. For numerical reasons
this inverse is rarely formed, but instead the estimate is computed via approaches such as singular
value decomposition (SVD), which is able to handle rank deficient regression matrices. The estimation
algorithm (2.51) can easily be transformed into a recursive form. However, instead doing this we shall
derive recursive algorithm for the case where (2.48) includes MA noise model.

{2) Recursive Estimation Algorithm

If a noise model such as MA noise model is included, or the hybrid quasi-linear black-box models
are employed for on-line applications such as adaptive control of nonlinear systems, the estimation
should be performed in a recursive way. Based on the well developed recursive identification theory
[70, 94], we will first introduce the prediction error method (PEM) generally, then apply it to the
hybrid quasi-linear black-box models.

Recursive PEM algorithm
Consider the problem of estimation © by minimizing a criterion based on prediction error

(:)(N) = arg ngn {Vn(©)} (2.52)
1 N

Vn(©) = 5 > €t ) (2.53)
t=1

(t,0) 24(t) - §(t10). (2.54)

A recursive algorithm for this problem can be given as follows, see Appendix C for the details of the
derivation

O(t) = O(t — 1) + L(t)e(t, O(t — 1)) (2.55)
_ P(t — 1)9(t, 6(t ~ 1))
L= 1+ 97 (t,0(t — 1)) P(t — 1)y(t, Ot — 1)) (2.56)
P(t) - P(t _ 1) _ P(t - 1)¢(t1 (:)(t - 1))¢T(t3é(t = 1))P(t = 1) (2_57)

1+ 9T(t,0(t — 1))P(t - 1)9(t, Ot — 1))

where ¥(t, ©(t)) is the negative derivative of (¢, ©) with respect to ©.
In order to apply the recursive algorithm (2.55)-(2.57) to the hybrid quasi-linear black-box models,

we should discuss how to determine the £(t, ©(t—1)) and (t, ©(t—1)) for those models. The following
two methods can be considered.

Extended Least Squares (ELS) Method
Let us write (2.48) as

e(t) = y(t) — pN . (1)O (2.58)

If we have a sequence of estimates ©(t) available, it seems natural to estimate e(t) by £(t), computed
according to

&(t) = y(t) — eR L ()O() (2-59)
In this way, the e(t,O(t — 1)) and ¥(t, ©(t ~ 1)) can be determined as

£(t,0(t - 1)) = y(8) — PR L(1)O(t - 1) (2.60)
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de(t,0)
90 0=0(t-1)

¥ (t,0(t - 1) = - = B (t) (2:61)

where p,,, (t) is described by (2.49) whose elements e(t — i) will be replaced by e(t — i,0(t — i — 1)).

Prediction Error Method (PEM)
According to the contents of 4, () in (2.49), (2.48) can be decomposed as

y(t) = pT ()0 + o7 (1) @ X, ()05 + C(g7", ©)e(t) (2.62)

where
9: [HT, 6}1, Cy -.. Cg]T (263)
Clg,0)=1+a¢'+..+ag! (2.64)

and Oy is the parameters associated with the p(t) ® pu, (t) part of ¢, (t), defined as

@f = [wn w,-M]T. (2.65)

Then for (2.62), the prediction of y(t) can be computed recursively

9(110) = =i [ 00+ 47 () 8 e, (90 + (Cla™, ) - (1) (266)

using data up to ¢t — 1 with given O, in which the initial conditions can be taken to zero. We can also
evaluate the prediction error

(t,0) 2y(t) - 7(¢10) (2.67)

according to the model parameter ©.
With (2.67), we can write (2.66) as

Clg™, ©)e(t,0) = y(t) — ¥™ ()6 — " (t) ® ¥, (1)6¢ (2.68)

0¢(t,0)/9O can thus be computed as

Clg™ e)af(t :0) _ _ Tty (2.69)
0la™,0) X2 = —p" (00 + ") © 6%, (0 (2:70)
C(g,0) ae(t 9) —&(t - i,0). (2.71)

It therefore follows that (¢, &(t — 1)) and %(t, @(t — 1)) are determined as
e(t,0(t — 1)) = y(t) — R (Ot - 1)O(t - 1) (2.72)

#(6,6(~ 1) = g i 1O - 1) (2.73)

where @, (t|6(t — 1)) is ¢, (t) whose elements e(t — i) are replaced by &(t — i, O(t — 1)
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(3) Local Minimum and Over-fitting

Local minimum and over-fitting are two difficult problems associated with the identification of non-
linear black-box models. The reason is that a nonlinear black-box model usually offers a large number
of parameters and is often nonlinear in those parameters. Using ‘regularization’ technique, several
authors state that the over-fitting problem can be solved [91]. But it seems that there is so far no easy
solution for local minimum problem [92), since a hybrid identification method using genetic algorithm
does not seem to be very efficient when the number of parameters is large.

For the hybrid quasi-linear black-box meodels, local minimum and over-fitting do not seem to
be problems. Since the models are linear in the parameters (LIP) to be estimated, local minimum
problem appears only when a noise model is employed for the system disturbance. We will show that
this problem can be solved using our proposed hybrid identification algorithm [38], see also Chapter 3.
On the other hand, since the parameters in the hybrid quasi-linear black-box are only locally active,
the over-fitting does not appear to be a big problem. In particular, when the identification is done via
a multi-resolution approach, i.e., the identification is started with fewer parameters, while the number

of parameter increases only when higher resolution (modeling accuracy) is required, the over-fitting
problem vanishes.

2.3.3 Implementation of the Estimation Algorithm

In contrast to the case of linear system identification, when a recursive algorithm is implemented to
identify nonlinear systems, the following two problems arise: (1) how to improve the convergence
property; (2) how to estimate the separate noise model. We will show that these problems can be
solved in the identification of the hybrid quasi-linear black-box models.

(1) Two-Step Estimation of Hybrid Quasi-Linear Black-Box Models

When the estimation is done using the optimization-based algorithm (2.55)-(2.57), a better initial
value will improve the convergence property very much. This is particularly true when the number
of parameters to be estimated is large and larger than that may be really needed. In the hybrid
quasi-ARMAX model, the number of the parameter is dim{Q} = n 4 m + [ + (n 4 m} x M, which
is much larger than that of a linear model. Moreover, # in the © is obviously not really needed in

the sense of describing the system. Therefore, we will implement the estimation in the following two
steps.

Step 1: Estimation of linear approximation

Assume the parameters associated with the nonlinear terms of coefficients in the hybrid quasi-
ARMAX model to be zero, ie., Op = [wy;, v = 1,..,7; j = 1,..,M|T = 0in (2.5). Then we
have

n

y{t) = Za,-y(t - z) + i b;u(t - 3) +
i=1

i=]

cie(t — 1) + e(t) (2.74)

n
Indeed, (2.74) is nothing but a linear ARMAX model. Hence the estimate of the linear approximation
can be used as an initial value for the estimation of the hybrid quasi-linear black-box model. The
linear estimate can be considered as a nice initial value because of the following two reasons: (1)
most processes in practice can be approximated with a linear model in a reasonable accuracy; (2)
the constant parameters a; and b; are not independent of the parameters Wyj, i.e., the roles of the
parameters a; and b; can be replaced by the parameters w,; (we call a; and b; as redundant parameters).

It is well known that the estimation of (2.74) can be realized using a recursive PEM algorithm
[70, 94]. However, it should be noticed that the criterion function in this estimation is not always
unimodal because of the noise model, so that there is a risk that the optimization-based algorithm is
stuck at a local minimum. Moreover, the unmodeled dynamics resulted from the linear approximation
will increase the risk [58]. On the other hand, it has been found experimentally that the parameters
of noise model should be estimated in this linear approximation and be fixed in the next stage where
the parameters of system model are estimated, because a noise model can not be well identified if
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its parameters are estimated together with a large number of system model parameters. Therefore,
a reliable identification algorithm is crucially needed to improve the convergence in the estimation
of linear approximation. In {38], we have proposed an hybrid identification algorithm based on an
effective combination of genetic algorithm and an optimization-based method. Using that algorithm,
a;, b;, and c; can be estimated reliably. We will discuss this problem further in Chapter 3.

Step 2: Estimation with using the initial value

With the estimates of linear approximation (&,—, I;.-, é,-), we may now take a; = a;, b; = 5,—, ;=&
and wy; = 0 as initial values, and estimate a;, b;, ¢; and w,; using the algorithm (2.55)-(2.57).
However, it is found experimentally that fixing ¢; = &; in this step gives better identified noise model.

On the other hand, in some applications, a nonlinear system is preferred to be approximated using
a linear model, and the error due to nonlinear undermodeling is treated as unmodeled dynamics or is
modeled using a nonlinear compensator. One of the motivations for such identification is that many
existing results can be applied to linear models, but rare for nonlinear models. For such applications,
we just fix a; = a;, b; = b;, ¢; = &, and only estimate wy; using (2.55)-(2.57). Since in the hybrid
quasi-ARMAX model, a; and b; are redundant parameters, i.e., they are not independent of w,;, the
estimation with a; = d;, b; = f),-, ¢; = &; fixed can be approximately achieved at the global minimum
of the criterion function. The estimation results will thus give an identified linear ARMAX model (a;,
b; and &;) for the best linear approximation of the system and the estimate of modeling error due to
nonlinear undermodeling described by Aa; +(@,;) and Ab; ¢(@y;).

(2) Estimation of the Noise Model

Generally, it is harder to obtain good noise models than system models, so that it is important to
restrict the flexibility of the noise model. With assuming the model to be linear to the residuals, we
simply add linear noise terms to our quasi-linear black-box models. For example, the hybrid quasi-
ARMAX model can be viewed as a hybrid quasi-ARX model with a linear MA noise term added to
it. Such noise models are also considered in connection to nonlinear black-box models [89]. However,
in [89], J. Sjoberg concluded based on his experiment results that the separate noise models did not
improve the fit substantially, hence it was more important to model the nonlinearities than to model
the noise dynamics. But from our experiment results, we do not agree to his conclusion. The problem
arisen here is how fo estimate the noise terms in a nonlinear model with a large number of parameters
to be estimated. We found that it is difficult, if not impossible, to estimate the noise model and the
system model by minimizing the same criterion function. In this section, a two-step approach is thus
suggested for such estimation, in which the noise model is first identified by approximating the system
with a corresponding linear model, then the estimate of the noise model is fixed when the system
model is identified.

2.4 Intelligent Identification of the Hybrid Models

We believe that the hybrid quasi-linear black-box modeling to be distinctive not only in that it is
equipped with a linear structure, flexibility and simplicity, but also in that it is able to incorporate
various knowledge information during the modeling and the parameter estimation. In Section 2.2.3,
we describe a strategy for determining the scale and position parameter vectors p; using knowledge
information. In this section, we will discuss the possibility using knowledge information to optimize
the model structure during the parameter estimation.

As mentioned earlier, in the quasi-linear black-box model, the parameters offered by the NNMs
are locally active, and the overall performance of the model is obtained by employiug interpolation.
This localization and interpolation makes the following intelligent identification possible:

(1) If modeling error is large in the operating region near the jth node, the node density near the
jth node should be increased, which can be done on-line.

(2) The identification can be realized using a multiresolution approach, in which few nodes are
chosen at the beginning, the new nodes will then be added when higher resolution (modeling
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(a) Use 4 rule first (b) Add a rule between R3 and R4

¥ ¥y

{c) Add another 2 rules (d) Remove rule R2

Figure 2.8: Diagrammatic representation of optimizing a fuzzy system

accuracy) is required. The parameters associated with the latter added nodes can be assigned
with better initial values using the knowledge obtained during the estimation.

2.4.1 Self-Optimization of Model Structure

When only the information concerning the operating region [Xmi“, Xmax] is used, the nodes will be
uniformly assigned in the hyperplane. A preferable way to optimize the model structure is to reduce
the total number of the nodes automatically during the parameter estimation. Two ways may be
considered: (1) start the estimation algorithm with a low node density, and then add nodes only to
where they are necessitated; (2) start the estimation algorithm with a rather high node density, and
then remove the nodes which are not necessitated. If the contribution of a node can be obtained from
the interpolation of its neighborhood, the node can be removed. We know that when adaptive fuzzy
systems are used as the NNMs, the nodes corresponds to fuzzy rules. Therefore, the existing results
for optimizing fuzzy systems using knowledge information and observed data can be applied to the
above optimization.

However, how to implement those results in the estimation algorithm is a problem to be solved.
We here discuss a simple case to show how a fuzzy system is optimized. Consider a nonlinear system
whose input-output relation is shown in Fig. 2.8(a) with solid line. A fuzzy system with 4 rules is
first using to represent the system. Based on the interpolation property of a fuzzy system, we can
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(a) Start with 2 rules (b) Add one rule R3

(c) Add another two rules R4 and RS (d) Final result

Figure 2.9: An example of estimating an adaptive fuzzy system in a multiresolution way

give its output shown with dashed line. We may find that after estimation the modeling error in the
operating region between R3 and R, is large. Then we add a rule R5 between the Ry and Ry. The
performance has been improved, see Fig. 2.8(b). However, it seems that higher modeling accuracy
is needed in the operating region near the Rs, so that another two rule Rg and R; are added, Fig.
2.8(c). On the other hand, the contribution of the Ry seems can be obtained from the interpolation
of R; and Rgj, so that it can be removed. In this way, we can build an optimized fuzzy system with 6
rules, see Fig. 2.8(d).

2.4.2 Identification via Multiresolution Approach

Crucial points for estimating a model with large number of parameters are to improve its convergence
property, to prevent being stuck at a local minimum, and to avoid being over-fitted. Since the quasi-
linear black-box model is linear in the parameters, the local minimum does not seem to be a problem.
It is well known that a better initial value can improve the convergence property very much. We have
shown that the initial values of the parameters associated with the linear part of the model can be
given by using the result of the linear approximation. We here will further show that the parameters
associated with the nonlinear terms can be estimated in a multiresolution way, i.e., the estimation
starts with few nodes for the NNMs, and the node density increases during the estimation. The initial
values of the parameters associated with the newly added nodes can be obtained from the current
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Figure 2.10: Real data: (a) the input u(t), (b) the output y(t).

estimates of the parameters associated with the neighbor nodes. In this way, all parameters associated
with later added notes will have better initial values, the later the more close to their ‘true’ values.

Figure 2.9 shows an example of estimating an adaptive fuzzy system in a multiresolution way.
The estimation starts with the adaptive fuzzy system containing two parameters to be adapted,
corresponding two rules. After estimating the two parameters for a while, rule Rz is added, which
give the parameter w3 to be estimated. Using the interpolation property, the initial value for wy can be
given as wyp (Fig. 2.9(b)) which is calculated from @, and &,. Then after estimation, the rules R4 and
R are added. The initial values for wy and ws can be given as w4g and wsp which can be determined
using @y, @y and &3 (Fig. 2.9(c)). Finally, we have the result shown in Fig. 2.9(d). Obviously, the
estimation carried out in such multiresolution way is expected to have better convergence property
and the over-fitting problem will vanish.

It has been well-known in the literature that wavelet transform is very suitable for multiresolution
analysis. How to use the wavelet transform as the NNMs in the quasi-linear black-box model seems
to be an interesting topic for further research.

2.5 Experimental Studies

In this section, we will apply the hybrid quasi-linear black-box model to identify a variety of real
systems and simulated systems. We have argued that the proposed hybrid quasi-linear black-box has
linear structure, flexibility and simplicity. The model simplicity is clearly shown in its estimation
algorithm. The usefulness of the linear structure will be shown in Chapter 5 and 6 by applying it
to fault detection and control design of nonlinear systems. We here will show its flexibility and its
generalization ability by applying it to identify a variety of nonlinear systems and comparing the results
with those using Neural Networks and Wavelet Networks which are known to have good: flexibility.
For such purposes, some of the systems chosen in this section are well known in the literature, where
they have been used to test nonlinear black box models such as Neural Networks, Wavelet Network

and Hinging Hyperplanes. We can easily compare our results with those using nonlinear black-box
models. .

2.5.1 Modeling A Hydraulic Robot Actuator

The position of a robot arm is controlled by a hydraulic actuator. The oil pressure in the actuator is
controlled by the size of the valve opening through which the oil flows into the actuator. The position
of the robot arm is then a function of the oil pressure. Let us denote by u(t) and y(t) the position
of the valve and the oil pressure at time £, respectively. A sample of 1024 pairs of {y(t),u(t)} was
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Figure 2.11: Simulation of identified models on validation data. The solid line shows the true oil
pressure and the dashed line the simulated model output.

registered®. We divide it into two equal parts for estimating and for validating our model, respectively.
The estimation data are depicted in Fig. 2.10 (left). and the validation data in Fig.2.10 (right).

(1) Using a linear model

Following the principle of ‘try simple things first’, we try to use a linear ARX model to identify the
system. A reasonable modeling result has obtained with n = 3 and m = 2, that is, the regression
vector p(t) = [y(t — 1) y(t — 2) y(t — 3) u(t — 1) u(t — 2)]”. Figure 2.11 (left-upper) shows the result
of a simulation with the obtained linear model on validation data, which gives a root mean square
(RMS) error of 1.0160. The result is not very impressive.

(2) Using neural network and wavelet network models

The problem of modeling the hydraulic robot actuator has been discussed comprehensively by Sweden
and France groups. J. Sjoberg modeled the system usin