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Abstract

Linear system theory is very well developed and there exist many results which can be applied to 

obtained linear models. On the other hand, most of real processes  are nonlinear to some extent. If 
no physical insight is available and linear approximative models are not good enough, one has to use 

nonlinear black-box models. The existing nonlinear black-box models (neural networks, adaptive fuzzy 
systems, etc.), however, do not contain those linearity properties required by linear system theory, so 
that the results based on linear system theory can not be applied to the obtained nonlinear black-box 
models. The motivation of this thesis is intended to develop a black-box modeling scheme, with which 
the techniques based on well developed linear system theory could be extended to nonlinear systems. 
A hybrid black-box modeling scheme is proposed. Investigations are made to do system identification, 
system analysis and control design of nonlinear systems under the framework of linear system theory 
based on the new hybrid modeling scheme. 

  A black-box model is a standard flexible structure which can be used to approximate a large vari-
ety of different systems. In this thesis, a new black-box model structure is proposed by incorporating 
a group of certain nonlinear structures into a linear model structure. A general nonlinear system is 
first expressed in a linear structure whose coefficients consist of constant parameters and nonlinear 
terms. Then a group of certain nonlinear nonparametric models (NNMs) (neural networks, adaptive 
fuzzy systems, etc.) are incorporated into the linear structure by using them to represent the non-
linear terms. In this way, we obtain a hybrid model structure which provides more freedoms so that 
particular effort can be made to find a better compromise between the model flexibility and the model 
simplicity by using knowledge information efficiently. The obtained hybrid model is equipped with 
linear structure, flexibility and simplicity. 

   Parameter estimates are usually based on criterion minimization. When a model includes a noise 
model part, the criterion function is not always unimodal, even though the model is built to be linear in 
the parameters. In order to solve such multimodality problem, a hybrid identification method using 
Genetic Algorithms (GAs) is considered. Particular compromises provided by optimization-based 
methods and GAs are obtained through introducing a new GA operator named as 'development' 

inspired by the fact that living beings adapt themselves to their environment. The proposed hybrid 
method combines the reliability properties of the GAs with the accuracy of optimization-based method , 
while requiring a computation time only slightly higher than the latter. Furthermore, the hybrid 
identification is typically suitable for solving the multimodal problem resulted from noise models . 

  One of the most challenging problems is to do control design and system analysis of nonlinear 
systems using the techniques based on the linear system theory. Since the proposed hybrid black-box 

model has the required linearity properties, it enables us to solve this challenging problem. First as 
an example of system analysis, a fault detection scheme based on the use of Kullback discrimination 
information (KDI) for model discrimination is extended to nonlinear systems . Two ways are consid-
ered. One is robust fault detection like approach. A two-step identification algorithm is suggested to 
identify the proposed hybrid model in such a way that the results give a best linear approximation 
of the system and the estimate of the modeling error due to nonlinear undermodeling . Then KDI-
based robust fault detection scheme is applied. The second is multi-model based approach , where 
the proposed model is used as an interpolation based multi-ARMAX-model consisting of several local 
linear ARMAX models. The fault detection is then performed by applying the KDI to discriminate 
the identified local ARMAX models. Next as an example of control design, a robust STR adaptive 
controller is designed for general nonlinear stochastic systems in a similar way to the linear stochastic 
control theory, based on the use of a hybrid quasi-ARMAX predictor. For such purpose, the hybrid 

quasi-ARMAX modeling scheme is modified so that the obtained hybrid quasi-ARMAX model is lin-
ear not only in the parameters to be adjusted but also in the one-step past input variable , which is 
favorable to deriving a control law directly.
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Preface

The common theme of this thesis is developing a hybrid black-box modeling scheme for identification, 
fault detection and control of nonlinear systems. The material is organized in seven chapters. Most 
of the material has been published or considered to publish in book chapters, journal papers and 
conference papers. Some of the material in Chapter 2 can be found in 

    J. Hu, K. Kumamaru, and K. Inoue, "A Hybrid Quasi-ARMAX Modeling Scheme for Identifi-
    cation and Control of Nonlinear Systems", In Proc. of the 35th IEEE Conference on Decision 

    and Control (Kobe), 1996, pp.1413-1418. 

    J. Hu, K. Kumamaru, and K. Inoue, "A Guaranteed Nonlinear System Identification Using ARX 
    Networks", in Proc. of the 27th ISICE International Symposium on Stochastic Systems Theory 

    and Its Applications (Beppu), 1995, pp.7-12. 

    J. Hu and K. Kumamaru, "Identification of Nonlinear Systems Based on Adaptive Fuzzy Systems 
    Embedding Quasi-ARMAX Model", in Proc. of the 34th SICE Annual Conference (international 

    session), (Sapporo), 1995, pp.1211-1216. 

which are further arranged into a journal paper: 

    J. Hu, K. Kumamaru, and K. Inoue, "A Hybrid Quasi-ARMAX Modeling Scheme for Identi-
    fication of Nonlinear Systems ", to be submitted to Trans. of the Society of Instrument and 

    Control Engineers, 1996. 

The material in Chapter 3 appeared in 

    J. Hu, K. Kumamaru, and K. Inoue, "A Hybrid Robust Identification Using Genetic Algorithm 
     and Gradient Method", Trans. of the Society of Instrument and Control Engineers, Vol.32, 

    No.5, pp.714-721, 1996. 

The material in Chapter 4 can be found in 

     K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, "Statistical Methods for Robust Change 
    Detection in Dynamical Systems with Model Uncertainty", in Statistical Methods in Control and 

    Signal Processing, T. Katayama and S. Sugimoto, Eds., Mercel Dekker Inc., New York, USA, 
    1997 (to appear). 

     K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, "Robust Fault Detection Using Index 

    of Kullback Discrimination Information", in Proc. of the 13th IFAC World Congress (San 
    Francisco), Vol.N, 1996, pp.205-210. 

    K. Kumamaru, J. Hu, K. Inoue and H. Ono, "Fault Detection via KDI in Presence of Unmodeled 
    Uncertainty", in Proc. of the 26th ISICE International Symposium on Stochastic Systems Theory 

    and Its Applications (Osaka), 1994, pp.173-178. 

The material in Chapter 5 can be found in 

    K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, "A Method of Robust Fault Detection for 
    Dynamic Systems by Using Quasi-ARMAX Modeling", in Proc of the 11th IFAC Symposium on 
    System Identification (Kitakyushu), 1997, (to appear). 

    K. Kumamaru, J. Hu, K. Inoue and T. Soderstrom, "Fault Detection of Nonlinear Systems 
    by Using Hybrid Quasi-ARMAX Models", Submitted to IFAC Symposium on Fault Detection, 

    Supervision and Safety for Technical Processes (Kingston Upon Hull), 1997. 
Two journal papers based on Chapter 4 and Chapter 5 are under preparation 

    "Robust Fault Detection Using the Index of Kullback Discrimination Information" 
    "Fault Detection of Nonlinear Systems by Using Hybrid Quasi-ARMAX Models"
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The material in Chapter 6 has been presented in

J. Hu, K. Kumamaru, and K. Inoue, 
on A Hybrid Quasi-ARMAX Model" 
Systems Theory and Its Applications

which is extended into a journal paper 

     J. Hu, K. Kumamaru, and K. Inoue, 
    on Hybrid Quasi-ARMAX  Model", 

    Control and Information Engineers,

"Adaptive Control of Nonlinear 

, the 28th ISICE International 

(Kyoto), 1996.

"Adaptive Control o 

to be submitted to 

1996.

Stochastic Systems Based 

Symposium on Stochastic

f Nonlinear Stochastic Systems Based 
Trans. of the Institute of Systems,



iv

Acknowledge 

First I would like to thank my supervisor Professor Kousuke Kumamaru for giving me the opportunity 
to join his group, for guiding me around all the obstacles, for providing me valuable freedom of research 
throughout the course of my Ph.D. 

  I am grateful to Professor Kousuke  Kumamaru, Professor Masumi Ishikawa, Professor Fujio 
Ohkawa, and Professor Toshio Toyota who proofread all the thesis. Many thanks are for their valuable 
comments. 

  I am also very grateful to Associate Professor Katsuhiro Inoue for his discussion throughout my 
thesis research. 

  I would also like to thank all the staff and students in Kumamaru & Inoue laboratory, especially 
Makoto Maeda, Shingo Horinouchi for their efforts to keep the Workstation running and help me solve 
a lot of problems concerning the Workstation. 

  Finally, I would like to thank my parents, Zhu Xi and Gui Ying, my wife Lin Jing and my son 
Meng Qi for their love and support. This thesis is dedicated to them.



Contents

ABSTRACT ............................................ 

PREFACE ............................................. 

ACKNOWLEDGE .........................................

 ii 

iv

Glossary 

Notations ............................. 

 Operators and Functions..................... 

Abbreviations ...........................

1 Introduction 

  1.1 System Identification ............ 

      1.1.1 Black-Box Modeling ........ 

      1.1.2 Parameter Estimation ....... 

  1.2 Fault Detection of Dynamical Systems . . 

       1.2.1 Parameter estimation approach . . 

      1.2.2 Fault Detection of Nonlinear 

  1.3 Adaptive Control of Nonlinear Systems ........... 

  1.4 Thesis Outlines and Main Contributions .

.................

.................

linear Dynamical Systems . . 

Systems

...............

...............

...............

5 

5 

6 

6

7 

7 

7 

8 

9 

9 

9 

10 

10

2 Hybrid Quasi-Linear Black-Box Modeling and Identifil 
2.1 Introduction ......................... 
2.2 Hybrid Quasi-Linear Black-Box Modeling ........ 

   2.2.1 Hybrid Quasi-ARMAX Modeling ......... 
    2.2.2 Fuzzy Inference Based Multi-Modeling ...... 

   2.2.3 Determining pi Using Knowledge Information . 
2.3 Estimation of the Hybrid Models ............. 

    2.3.1 Model Estimation and Model Properties ..... 
  2.3.2 Estimation Algorithm ............... 

    2.3.3 Implementation of the Estimation Algorithm . . 
2.4 Intelligent Identification of the Hybrid Models ...... 

    2.4.1 Self-Optimization of Model Structure ...... 
    2.4.2 Identification via Multiresolution Approach . . . 

2.5 Experimental Studies .................... 
    2.5.1 Modeling A Hydraulic Robot Actuator ...... 

   2.5.2 Modeling A Boiler Plant .............. 
   2.5.3 Modeling A De-NOx Device ............ 

    2.5.4 Modeling A Mathematical System ........ 
2.6 Some Aspects of the Hybrid Models ........... 

    2.6.1 Relations with the Existing Linear and Nonlinear 
   2.6.2 Applications of the Hybrid Model ........ 

2.7 Conclusions .........................

Identification

Models ............

.................

13 

13 

14 

15 

18 

21 

23 

23 

25 

28 

29 

30 

31 

32 

32 

34 

36 

37 

39 

39 

41 

42

1



2 CONTENTS

3 A Hybrid Method Using Genetic Algorithm for Identification 
3.1 Introduction .......................................... 
3.2 Problem Description ..................................... 

 3.3 Optimization-Based Methods ................................ 
 3.4 Non-Standard Genetic Algorithm (NSGA) ......................... 

    3.4.1 Representation of the Solutions ........................... 

    3.4.2 Development and Fitness Evaluation ........................ 

   3.4.3 Crossover and Mutation ............................... 

  3.4.4 Reproduction ..................................... 

 3.5 Hybrid Identification Algorithm ............................... 

   3.5.1 Identification Algorithm ............................... 

     3.5.2 On-line Implementation of the Algorithm ..................... 

 3.6 Numerical Simulations .................................... 

 3.7 Discusions and Conclusions .................................

43 

43 

44 

45 

45 

46 

46 

47 

48 

48 

48 

49 

50 

52

4 KDI-Based Robust Fault Detection of Dynamic Systems 

4.1 Introduction .......................................... 

4.2 Robust Identificaiton ..................................... 

      4.2.1 Robust Identification with Soft Bound Error Description ............. 

      4.2.2 Robust Identification with Direct Error Description ............... 

4.3 KDI Analysis ......................................... 

    4.3.1 A Soft Bound Error Description Case ....................... 

    4.3.2 A Direct Error Description Case .......................... 

    4.3.3 Indexes for Evaluating Modeling Error ....................... 

 4.4 Fault Decision Scheme .................................... 

 4.5 Numerical Simulations .................................... 

   4.5.1 Implementation of the FDS ............................. 

 4.5.2 Example 1 ....................................... 

 4.5.3 Example 2 ....................................... 

 4.6 Discussions and Conclusions .................................

53 

53 

55 

55 

57 

60 

61 

63 

65 

66 

67 

67 

68 

70 

72

5 KDI-Based Fault Detection of Nonlinear Systems 
5.1 Introduction .......................................... 

 5.2 A Hybrid Quasi-ARMAX Modeling Scheme ........................ 
  5.2.1 Quasi-ARMAX Modeling .............................. 

   5.2.2 Hybrid Quasi-ARMAX Model ............................ 
    5.2.3 Estimation of the Hybrid Model .......................... 

 5.3 Fault Detection Using The Hybrid Model ......................... 
      5.3.1 Modeling for A Robust Fault Detection Like Scheme ............... 

      5.3.2 Modeling for A Multi-Model Based Fault Detection Scheme ........... 
 5.4 A Multi-Model Based Fault Detection Scheme ....................... 

   5.4.1 Local Linear ARMAX Models ............................ 
    5.4.2 Fault Detection Index (The KDI) .......................... 

 5.5 A Robust Fault Detection Like Scheme........................... 
      5.5.1 Descriptions of System Dynamics and Unmodeled Dynamics .......... 

    5.5.2 Fault Detection Indexes (The KDI) ......................... 
   5.5.3 Robust Fault Detection Scheme ........................... 

 5.6 Numerical Simulations .................................... 
 5.6.1 Example 1 ....................................... 

 5.6.2 Example 2 ....................................... 
 5.7 Discussions and Conclusions .................................

73 
73 

74 

74 

74 
75 

76 
76 

76 
77 

77 
78 

79 

80 
81 

81 

82 

82 
84 

85



CONTENTS 3

6 Adaptive Control Using Hybrid Quasi-ARMAX Models 
6.1 Introduction .......................... 
6.2 A Hybrid Quasi-ARMAX Modeling Scheme ........ 

  6.2.1 Quasi-ARMAX Modeling .............. 
   6.2.2 Hybrid Quasi-ARMAX Model for Control Design . 

   6.2.3 Estimation of the Hybrid Model .......... 
  6.2.4 Nonlinear Predictors ................. 

6.3 Adaptive Control of Nonlinear Systems .......... 
    6.3.1 STR Controller for Nonlinear Systems ....... 

   6.3.2 Synthesis of the Control Law ............ 
    6.3.3 Implementation of the Adaptive Algorithm  .. . . 

6.4 Numerical Simulations .................... 
    6.4.1 A System with Various Nonlinear Elements .. . . 

    6.4.2 A System with Indivisible Nonlinearity ....... 
    6.4.3 A System uncontrollable via Local Linearized Mode 

6.5 Discussions and Conclusions .................
Model .....

• 

• 

• 

• 

•

• 

• 

• 

• 

•

• 

• 

• 

•

• 

• 

• 

•

• 

• 

• 

• 

• 

•

87 

87 

88 

88 

89 
91 

92 

92 
92 

94 
95 

95 

95 
96 

97 

99

7 Conclusions 101

A

B

A Review of Black-Box Models 

A.1 Linear Black-Box Models ........... 
    A.1.1 General Linear SISO Black-Box Model 

   A.1.2 Several Special Cases.......... 
    A.1.3 Linear Structure and Simplicity .. . . 

A.2 Nonlinear Black-Box Models.......... 

   A.2.1 General Expression ........... 
    A.2.2 Several Nonlinear Black-Box Models 

   A.2.3 Model Flexibility ............

A Hierarchical Network 

B.1 ARX Network................. 
B.2 The Hierarchical Network and General Nonl

C Derivation of Recursive PEM Algorithm

D Fault Detection Scheme Using the KDI 

 D.1 Preliminaries ............... 

  D.2 Evaluation of the KDI .......... 
  D.3 Asymptotic Properties of the Criteria 

  D.4 Fault Detection via KDI: Restrictions

inear

E A Review of Robust Identification Methods 

 E.1 A Soft Bound Approach ........... 

 E.2 A Hard Bound Approach .......... 

     E.2.1 The Nominal Model ......... 

     E.2.2 Modeling Error Part ......... 

   E.2.3 Estimation ..............

Structure

103 

103 

103 
104 

105 

105 
105 

106 

107

      109 

...... 109 

...... 111

113

   117 
   117 

   118 

   120 

... 121

                           123 
....................... 123 

....................... 124 

....................... 124 

....................... 124 

....................... 125



4 CONTENTS



Glossary

Some notations may have different meaning locally.

Notations

 TT 

uN, UN 

7iN 

X2(d) 
y(t) 
u(t) 
e(t) 
e(t), v(t), vi 
cp(t) 
cp(t)

~e(t) 
(t) 

VN(9) 
B,cj,0,0e 
Be, ne j 

et 
B 

pi

Lai; 

m 

T 

1 

M

Ao 

A

transpose 

[u(1), ..., u(N)]T 
[yN,uN] 
X.2-distribution with d degrees of freedom 
output signal at time t 
input signal at time t 

prediction error at time t 
noise, system disturbance 
regression vector 
regression vector cp(t) whose element u(t — i) changed to 
q-1u(t — i) 
regression vector including past prediction errors as elements 
regression vector containing nonlinear regressors 
loss function 

parameter vectors 
parameter vector including the parameters of noise model 
parameter vector including the parameters describing unmodeled dynamics 
coefficient vector which is function of input-output variables 
estimate of 0 
scale and position parameter vector of the 'basis functions' in nonlinear nonpara-
metric model 
coordinate parameters of nonlinear nonparametric model 
coefficients consisting of constant parameters and nonlinear terms 
number of old output values in cp(t) 
number of old input values in co (t) 
number of old input and output values in cp(t), r = n + m 
number of old e(t) values in cpe(t) 
number of 'basis functions' in nonlinear nonparametric model, in particular for 
adaptive fuzzy systems, the number of rules 
dead zone in robust adaptive scheme 
forgetting factor in recursive algorithm 
weighting factor for control input in control law 
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6 Glossary

Operators and Functions

arg  min  f(x) 
dim(9) 
q-1 
Ex 

A 

II 
llq? (x) 
Ar (x) 
p(y(t + 1)~6,Y, Ut) 
G(q-1) 
AG(q-1) 
H(q-1)

minimizing argument of f (x) 
dimension of the vector 9 
the backward shift operator, q-1 f (t) = f (t — 1) 
Expected value of stochastic variable x 
minimum operator, 0.8 A 0.3 = 0.3 
Kronecker production 

production 
fuzzy membership function of fuzzy set Al 
`basis function' in the nonlinear nonparametric model 

likelihood function of model M{9} 
rational function in q-1 describing system dynamics 
unmodeled dynamics 
rational function in q-1 describing noise dynamics

Abbreviations

KDI 
NNM 
GA 
NSGA 
FDI 
SISO 

ARMAX 
ARX 
MA 
FDS 
STR 

LIP 
AFS 
RBFN 
NN 

WN 
PEM 
ELS 
ML 
RMS 
IIR 
FIR

Kullback discrimination information 
nonlinear nonparametric model 
Genetic Algorithm 
non-standard Genetic Algorithm 
fault detection and isolation 
single-input-single-output 

autoregressive moving average model structure with exogenous inputs 
autoregressive model structure with exogenous input 
moving average model structure 
fault detection system 
self-tuning regulator 

linear in the parameters 
adaptive fuzzy system 
radial basis function network 
neural network 

wavelet networks 

prediction error method 
extended least square method 
maximum likelihood method 
root mean square 
infinite impulse response model 
finite impulse response model



Chapter 1

Introduct ion

1.1 System Identification

A model describes reality in some way, and system identification is the theory of how mathematical 
models for dynamical systems are constructed from observed data. 

  Typically, a parameterized set of models, a model structure, is hypothesized and data is used to 
find the best model within this set according to some criterion. The choice of model structure is guided 
by prior knowledge or assumptions about the system which generates the data. It is customary to 
distinguish between three levels of prior knowledge, which have been color-coded as follows [92] 

  • White Box models: This is the case when a model is perfectly known; it has been possible to 

    construct it entirely from prior knowledge and physical insight. 

  • Grey Box models: This is the case when some physical insight is available, but several parameters 

     remain to be determined from observed data. It is useful to consider two subcases:

— Physical Modeling: A model structure can be built on physical grounds , which has a certain 
  number of parameters to be estimated from data. This could, e.g., be a state space model 
  of given order and structure. 

— Semi-physical modeling: Physical insight is used to suggest certain nonlinear combinations 

  of measured data signal. These new signals are then subjected to model structures of black 
  box character.

  • Black Box models: No physical insight is available or used, but the chosen model structure 

    belongs to families that are known to have good flexibility and have been "successful in the 

     past". 

  The terms of "white-box model", "grey-box model" and "black-box model" may not be so popular , 
but in system identification community, they have been frequently used recently, see e.g. [92, 46]. In 
this thesis, we also use the term "black-box model" based on the above definition.

1.1.1 Black-Box Modeling 

When little prior knowledge is available, it is common to use a black-box model. A black-box model is 
a standard flexible structure which can be used to approximate a large variety of different systems . In 
real applications it is impossible to obtain a model structure that is capable of describing the system 
exactly. Instead one tries to make reasonable assumptions about the system so that the hypothesized 
model structure is "close" to the true system. 

  One common assumption in system identification is that the unknown system is linear. This is 
never true in real applications, but often it is a good approximation. Linear system theory is very well 
developed and there exist many results which can be applied to the obtained linear models . Some 
typical linear black-box model structures are reviewed in Appendix A.1.
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8 Chapter 1. Introduction

  If the linear assumption is relaxed, one turns to nonlinear models. The nonlinear black-box situ-
ation is much more  difficult. The main reason for that is that nothing is excluded, and a very rich 

spectrum of possible model descriptions must be handled. In recent years, nonlinear modeling and 

identification have attracted much interest in control and system identification community. Many 
nonlinear models have been proposed in the literatures: 'classic' models derived from Volterra series 

or Winner series [8, 10], and nonlinear black-box models based on the nonlinear nonparametric models 
(NNMs) (neural networks, fuzzy models, wavelet, etc.) [92, 46]. Especially, the latter ones have gained 
increasing interest due to their ability to encompass truly nonlinear behaviors. Appendix A.2 gives a 
summary for those nonlinear black-box structures. 

  As pointed in Appendix A.2, a great deal of attention for the nonlinear black-box models is so far 
paid only to the flexibility of the model structures. The structural linearity and simplicity, which are 
important features of highly successful linear black-box models, have been ignored. That is, there is 
a gap between the existing linear and nonlinear black-box models. It is highly motivated to develop 
a black-box modeling scheme to fill the gap so as to extend the well developed linear system theory 
to nonlinear systems. A hybrid (linear-nonlinear) modeling scheme seems to be the best idea. In 
the literature, some authors have used a "linear model + neural network" type hybrid scheme for 
identification and control design of nonlinear system [44, 102, 34]. However as a hybrid black-box 
modeling scheme, linear structures and nonlinear structures should be combined in a more effective 
and efficient way. In this thesis, we will propose a hybrid quasi-linear black-box modeling scheme 
which is obtained by incorporating a group of certain NNMs into a linear structure. Particular effort 
will be made to find a better compromise to the trade-off between the model flexibility and the model 
simplicity using knowledge information efficiently. The obtained hybrid model is equipped with a 
linear structure, flexibility and simplicity, which enables us to do identification, system analysis and 
control design of nonlinear systems under the framework of linear system theory.

1.1.2 Parameter Estimation

Fitting a model within a given structure (parameter estimation) is in most cases a lesser problem. 
However, since model parameters are usually determined as the global minimum point of the loss 
function which is not guaranteed to be unimodal, an optimization-based algorithm has a potential 
risk to be stuck at a local minimum [94]. There is no easy solution to the multimodality problem [92]. 
A nice way to solve this problem so far is to search a good initial value where to start the iterations or 
to estimate the parameters directly using global search techniques such as random search and genetic 
algorithms [88, 90, 51]. However, all these techniques are rather time-consuming, and not so effective 
when the number of parameters to be estimated is large. 

  The best way for solving the problem, however, is to construct a model which is linear in the 

parameters to be estimated, since the criterion function becomes simple in such case and its multi-
modality appears only when a noise model is employed for system disturbance. In this thesis, the 

proposed hybrid quasi-linear black-box model has been constructed into a form that is linear in the 
parameters to be estimated, the feature of which is called as `model simplicity'. On the other hand, 
there are few publications dealing with the multimodal problem resulted from noise models. In some 
cases, the reliability of parameter estimation is very important. Therefore, it is crucial to develop an 
algorithm which may find global minimum reliably. Since in the case of multimodality resulted from 
noise model, the fitness is difficult, if not impossible, to calculate, the conventional genetic algorithms 

(GA) can not be employed. To solve this problem, we will propose a Non-Standard GA (NSGA) by 
introducing a new GA operator named as development inspired by the fact that living beings adapt 

themselves to their environment, and perform the operation by using an optimization-based method . 
The NSGA is very efficient in parameter estimation and can be used to solve the multimodal problem 

resulted from noise model. Then a hybrid identification algorithm is developed, in which the NSGA 

is used to search for a good initial value and the estimation is continued using an optimization-based 

method with the initial value.
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1.2 Fault Detection of Dynamical Systems

Due to the increasing complexity and riskiness of modern control system and the growing demands 
for quality, cost efficiency, availability, reliability and safety, the call for fault tolerance in automatic 
control systems is gaining more and more importance. One of the approaches to achieve fault tolerance 
is to provide fault accommodation, i.e. a reconfiguration of  the system when a fault has occurred. 
For the fault accommodation, one of the most important and difficult tasks is fault diagnosis. The 
purpose of fault diagnosis is to detect the faults of interest and their causes early enough so that a 
failing of overall system can be avoided, which consists of three tasks: fault detection, fault isolation 
and fault analysis. In this thesis, we concentrate on the first task, i.e., fault detection. 

  Depending on the method of residual generation, the methods of fault detection can be divided 
into three categories: signal-based, model-based and knowledge based. The model-based approach 
has received an increasing attention recently because of its portability. Many methods of model-based 
residual generation have been developed during the last two decades, see [19, 21, 41, 3]. They can 
be divided into three groups: parity space approach [13, 15, 97], observer-based approach [22, 84] 
and parameter estimation approach [4, 41]. Several researchers have pointed out that there are close 
relationships among the different approaches [20].

1.2.1 Parameter estimation approach

The parameter estimation approach is based on the assumption that the faults are reflected in the 

physical system parameters such as friction, mass, viscosity, capacitance, inductance, etc. The basic 
idea of the detection method is that the parameters of the actual process are repeatedly estimated on-

line using well known parameter estimation methods and the results are compared with the parameters 
of the reference model obtained initialy under fault-free conditions. Any substantial discrepancy 

indicates a change in the process and may be interpreted as a fault. Many researchers have made 

contributions to this approach, e.g. Isermann et al. [41], Rault et al. [87], Goodwin et al. [26] and 
Kumamaru et al. [61, 60]. 

  Since an exact mathematical modeling of the system is impossible in practice, the effects of mod-
eling uncertainties have to be taken into account with respect to which the residuals must be robust 
[20]. A typical scheme to the robust fault detection so far is proposed by Frank and Wunnenberg 
(1989) [22] and Patton and Kangethe (1989) [84] based on observer design approaches, in which the 
robustness is achieved by appropriately design the observers. In their approach, however, the distri-

bution matrices of fault should be known in the state-space representation. In this thesis, we will 

propose an input-output model-based robust fault detection scheme, which is obtained by extending 

the fault detection scheme using Kullback discrimination information (KDI) as an index for model 
discrimination [61] to the cases of unmodeled dynamics. The idea is to apply the KDI to discriminate 
the identified models with unmodeled dynamics and to consider the estimates of unmodeled dynamics 
in the the KDI analysis and thresholding decision for robustness realization.

1.2.2 Fault Detection of Nonlinear Dynamical Systems

When the system to be diagnosed is nonlinear, the thing becomes difficult. One of the main reasons 
is that it is available few nonlinear black-box models whose parameters have useful physical inter-

pretations that are important for fault analysis. Recently, neural networks based methods have been 

proposed for fault detection and isolation of nonlinear systems. Neural networks are typical used in 
two ways: (1) as classifiers; (2) as nonlinear black-box models [83, 96, 108, 95, 74]. Recently, Q. 
Zhang (1996) [118] proposed a method using nonlinear black-box models in fault detection and iso-
lation. In all these approaches, however, the information provided by model parameters can not be 
used. In this thesis, we will propose an alternative method for fault detection of nonlinear systems, in 
which the identified model parameters can be used in the fault analysis. Since the hybrid quasi-linear 
black-box modeling scheme proposed can be considered as a modeling approach based on global and 
local linear approximations of nonlinear systems, the model parameters have global or local physical 
interpretations. Based on these features, we will extend the KDI-based fault detection scheme to
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nonlinear systems by applying the KDI to discriminate the identified hybrid quasi-linear black-box 
models. Two strategies will be considered. One is a robust fault detection like approach, in which 

the hybrid quasi-linear black-box model is identified in such a way that the results give a best linear 

approximation of system and the estimates of error due to nonlinear undermodeling. The second is 
a multi-model based approach, in which the hybrid quasi-linear black-box model will be used as a 

multi-model consisting of several local linear model.

1.3 Adaptive Control of Nonlinear Systems

When the systems to be controlled contain unknown parameters, adaptive controller offers certain 
advantages over conventional controller. Adaptive control theory based on linear models has been 

developed into a considerable mature stage [26, 63]. However, in the case of black-box type nonlinear 
systems to be controlled, things become  difficult. The difficulty is that a linear black-box model can 
not provide enough accuracy, while a suitable nonlinear model is rather difficult to find. Recently, 
many authors suggested to use neural networks as a nonlinear black-box model for the adaptive control 
and proposed many approaches [40]. Generally, neural networks have been incorporated into adaptive 
control systems in two ways. One is to use neural networks as nonlinear models . Most of such 
schemes are working as indirect control [76, 75]. The second is to use neural networks as nonlinear 
compensators to compensate the system nonlinearity or the error due to nonlinear undermodeling 
[102, 34]. Loosely speaking, because of the nonlinearity in the parameters to be adjusted, the control 
systems incorporating neural networks usually have some drawbacks concerning the convergence rate 
and the noise sensitivity [39]. 
  On the other hand, since the adaptive control theory based on linear models is very well developed, 

it is highly motivated to develop a nonlinear black-box modeling scheme so that the existing adaptive 
control theory becomes applicable to general nonlinear systems. In this thesis, we will propose a 
hybrid quasi-ARMAX modeling scheme for such purpose. Particular efforts will be made to obtain 
a nonlinear black-box model which (1) has a similar form to linear ARMAX model; (2) is linear not 
only in the parameters to be adjusted but also in the one-step past input variable (u(t — 1)) that 
should be synthesized in a control system. We believe that this is a perspective approach for adaptive 

control of general nonlinear systems. To demonstrate such perspective, we will design a STR adaptive 
controller for general nonlinear stochastic system under the framework of linear stochastic control 

theory by using the hybrid quasi-ARMAX predictor structure, and apply the STR adaptive controller 

to a variety of nonlinear stochastic systems to test its effectiveness.

1.4 Thesis Outlines and Main Contributions

The thesis consists of seven chapters. Chapter 1 gives a background and an outline for whole thesis. 

Chapter 2 and Chapter 3 are devoted to system modeling and identification. Chapter 4, Chapter 5 
and Chapter 6 are dealing with applications for fault detection and control design. Finally, Chapter 

7 gives a summary for the whole thesis (Conclusions).

Chapter 2: Chapter 2 is devoted to developing a hybrid modeling scheme. A general nonlinear system 
is first expressed in a linear structure, then a group of nonlinear nonparametric models (NNMs) are 
incorporated into the linear structure, so that a hybrid quasi-linear black-box model structure is 
obtained. Estimations of the hybrid model using both knowledge information and observed data are 
discussed. Several real systems and simulated systems are used to test the proposed scheme. It is also 
point out that further investigation is needed to develop an algorithm for using knowledge information 
efficiently in the parameter estimation (intelligent identification). 

  The main achievement in Chapter 2 is that a new hybrid model structure is proposed, which 
incorporates a group of NNMs into a linear model structure. The new hybrid model structure is 
distinctive to other hybrid ones in the following issues.

• It is possible to provide better compromises to the trade-off between the model flexibility and
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the model simplicity and thus to obtain a model equipped with a linear structure, 

simplicity.

flexibility and

• The obtained model can be considered to be  an extension of linear models, which avoids aban-

 doning the properties of highly successful linear models as soon as a small amount of nonlinearity 

 introduced.

  • The parameters are divided into two groups, one of which is estimated from observed data, while 
   the other of which is determined using knowledge information. This may give an alternative 

   perspective for intelligent identification.

• It is easier to do identification, system analysis and control design for nonlinear systems with 

 the new model structure, since the techniques based on well developed linear system theory may 
 be applied.

Chapter 3: Chapter 3 discusses hybrid methods using Genetic Algorithms for global optimization. 
Particular compromises provided by traditional optimization-based methods and Genetic Algorithms 

(GAs) are addressed and illustrated by a particular application in the case of identifying a general 
system (linear, nonlinear, etc.) based on a linear ARMAX model. 
  The main contribution in Chapter 3 is introducing a new GA operator named as development, 
which is inspired by the purpose to solve multimodal problem resulted from noise models and the 
fact that living beings adapt themselves to their environment and is performed by optimization-based 
methods. The obtained Non-Standard GA (NSGA) is different with other hybrid GAs because it 
combines the reliability properties of the GAs with the accuracy of optimization-based method, while 
requiring a computation time only slightly higher than the latter. Furthermore, it is possible to solve 
the multimodal problem resulted from noise model, which it is known to be difficult to solve via 
conventional GAs.

Chapter 4: Chapter 4 concerns with the KDI-based robust fault detection of dynamic systems. 

We first point out that in the fault detection scheme based on the use of Kullback discrimination 

information (KDI) for model discrimination, there are two important assumptions: (1) The system to 
be diagnosed is linear; (2) The model parameterization is chosen adequately for the system, which are 
never true in real applications. Then we devote the rest of chapter to relaxing the assumption (2) by 
extending the scheme into robust ones. The robust fault detection is performed by applying the KDI 
to discriminate the identification linear model with unmodeled dynamics and considering the estimate 
of unmodeled dynamics in the KDI analysis and thresholding decision for robustness realization.

Chapter 5: Chapter 5 is devoted to relaxing the assumption (1) so far made in the KDI-based fault 
detection scheme, that is, extending the scheme to nonlinear systems. It is first shown that the hybrid 
quasi-ARMAX model can be transformed into a combined form of a linear ARMAX model and a 
multi-ARX-model consisting of several local linear ARX models. Next, the hybrid is applied to fault 
detection of nonlinear systems in two ways: robust fault detection like approach and multi-model 
based approach. 

  The main contribution in Chapter 4 and Chapter 5 is to relax the two important assumptions so far 
made in the KDI-based fault detection scheme, which are never true in real applications. In Chapter 4, 
the fault detection scheme is extended to the case of unmodeled dynamics. The contributions related 
to this extension are that

• it is first time to construct a robust fault 

 theory, that is, to build a fault detection 

 which is quantified in some forms.

detection system in a similar way to robust control 

system based on a model with unmodeled dynamics

• the KDI is analyzed with incorporating the description of unmodeled dynamics , by which it can 
 be evaluated in a feasible way. And several indexes for evaluating unmodeled dynamics are also 

 introduced.
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  • two fault decision schemes  are introduced for robustness realization so that the fault detection 

    is carried out on the basis of the KDI, the index of unmodeled dynamics and other information 

    about the systems. 

In Chapter 5, the fault detection scheme is extended to nonlinear systems. The contributions related 

to the extension are that

• a new model-based fault detection scheme is proposed for black-box type nonlinear systems. It 

 is distinctive in that the model is based global and local linear approximations of the system, so 

 that its parameters have physical interpretations which are useful in the followed fault analysis. 

• a two-step identification algorithm is suggested to identify the hybrid quasi-AR,MAX in such 

 a way that the results give a best linear approximation of the system and the estimate of the 

 error due to nonlinear undermodeling. Such identification scheme can also be considered as 
 an alternative approach for describing the error due to nonlinear undermodeling. It may have 

 potential applications in robust control.

• a multi-model based approach is proposed for KDI-based fault detection scheme, in which the 

 hybrid quasi-ARMAX model is used as a multi-ARMAX-model consisting of several local linear 

 ARMAX models. The approach is distinctive in that the KDI is not applied to discriminate the 
 identified model describing the system as a traditional way, instead it is applied to discriminate 

 the identified local linear models, of which the system model is composed.

Chapter 6: Chapter 6 concerns adaptive control of nonlinear systems. First, based on the basic idea of 

quasi-ARMAX modeling and the fact that the NNMs have universal approximation ability, a hybrid 
quasi-ARMAX predictor structure is proposed for adaptive control of general nonlinear stochastic 
systems. Next, based on the predictor structure, a robust STR nonlinear control is developed in a 
similar way to the linear stochastic control theory. Finally, a variety of nonlinear stochastic systems 
are used to test the developed robust nonlinear STR adaptive controller. 

  Chapter 6 offers two contributions. One is that we propose a hybrid quasi-ARMAX predictor 
structure for adaptive control of general nonlinear stochastic systems. It is distinctive in that 

  • the hybrid quasi-ARMAX predictor is linear in the parameters to be adjusted. 

  • the hybrid quasi-ARMAX predictor is linear in the one-step past input variable, so that a control 
    law can be derived directly. 

The second is that a robust nonlinear STR controller is developed under the framework of linear 
stochastic control theory. The controller has the following advantages compared with the controller 
based on Neural Networks:

• it has a simple structure, which is similar in form to the linear STR controller . In fact, it can 
 be considered as an extension of linear STR controller.

• it has better convergence properties, since the prediction model is linear in the parameters to 

 be adjusted.

• it is not so sensitive to noise, because it is a stochastic STR adaptive controller .
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2.1 Introduction

The key problem in system identification is to find a suitable model structure, within which a good 

model is to be found. According to the levels of prior knowledge used, there are  three types of models: 

white-box models, grey-box models and black-box models. When no physical insight is available or 
used, one has to choose black-box model structure which belongs to families that are known to have 

good flexibility and have been "successful in the past". 
  Under the assumption that the unknown system is linear, linear black-box models can be chosen 

for the system identification. The identification based on linear approximation has been extensively 
and successfully handled within some well known linear black-box structures [70, 69, 94]. If the linear 
assumption is relaxed, one has to use nonlinear black-box models. For nonlinear black-box modeling, 
the "classic" literature seems to have concentrated on global basis function expansions, such as Volterra 
expansions [10]. These have apparently had limited success. Recently, some authors have suggested 
the use of nonlinear structures based on neural networks (NN), wavelet networks (WN), radial basis 
function networks (RBFN), etc, and have achieved reasonable success, see [92, 46]. However, the 
latter ones have resulted in an abrupt abandonment of the highly successful linear black-box modeling 

methods, which have some useful properties, as soon as a small amount of nonlinearity is introduced. 

  From a user's point of view, a nonlinear black-box model is preferred to have the following prop-
erties:

• A linear structure. In order to take advantage of linear system theory that is very well 

 developed, a linear structure may be useful. Therefore, one would benefit by constructing a 
 nonlinear black-box model as an extension of linear model instead of abandoning the properties 

 of linear model totally.

• Flexibility. Since a nonlinear system can be nonlinear in so many ways, a nonlinear black-box 

  model structure, in general, must be feasible enough to deal with various nonlinear systems.

• Simplicity. A nonlinear black-box model usually offer a large amount of parameters. If the 

 model is constructed to be linear in the parameters, its estimation becomes simple. Furthermore, 

 if the model is constructed to be linear in the one-step past input, it is simple to derive a control 

 law based on the model.

Unfortunately, no existing nonlinear black-box models have those properties simultaneously. For those 
nonlinear black-box model structures, the three features appear to be conflicting ones. For example 
in the nonlinear black-box models described by (A.16) in Appendix A, if the scale and position 
parameter vectors P are determined a priori for simplicity, it is necessary to use a rather fine grid of 'basis functions' in order to get a sufficient approximation capability, which then typically would lead

13
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to many coordinate parameters  wi. Therefore, it is highly motivated to develop a modeling scheme 
in order to obtain a nonlinear model equipped with a linear structure, flexibility and simplicity. For 
this purpose, we have the following motivations: 

  • To find a better compromise to the trade-off between the conflicting properties, since some of 
    the properties, for instance flexibility and simplicity, usually appear to be conflicting ones. 

  • To divide the model parameters into two groups, and to determine one of which by using 
    knowledge information, since some of knowledge information are always available or can be 

    obtained via some ways in practice. 

It seems natural to consider the use of hybrid (linear-nonlinear) structure 1 for realizing these motiva-
tions. In the literature, some authors have employed a "linear model + neural network" type hybrid 
scheme for identification and control of nonlinear systems, in which neural network is simply used 
as a compensator to describe the error due to nonlinear undermodeling [44, 102, 34]. Such simple 
hybrid scheme does not, however, seem to have the properties of simplicity. In this chapter, we will 

propose a new hybrid model structure based on an effective combination of a linear structure and a 

group of certain nonlinear nonparametric models (NNMs) (neural networks, adaptive fuzzy systems, 
etc.). The basic idea of such hybrid modeling is first to increase the overall model flexibility by using 
a group of certain NNMs and then to restrict the flexibility in the higher order nonlinearity band 
to achieve the model simplicity. Note that by saying `nonlinearity band' we have used a concept of 
`nonlinearity spectrum''

, which may be not so strict. The model constructed using this idea will be 
favorable to the lower order nonlinearity band than the higher one, which may give a property that 
it is more robust to noise in the parameter estimation. Furthermore, the idea also accords with the 
motivation to obtain a nonlinear model by extending the linear model to nonlinear one without totally 
abandoning the properties of the linear model. 

   It is shown that a general nonlinear system can be expressed in a linear structure whose coefficients 
consist of constant parameters and nonlinear terms. The structure allows us to incorporate a group of 
certain NNMs into the linear structure by using them to represent the nonlinear terms. Since in the 
hybrid structure, what each NNM used to represent is only one nonlinear term of the coefficients, i.e., 
the role required for each NNM is reduced, the flexibility of individual NNM can be restricted to some 
extent. Therefore, the parameters specifying the 'basis functions' in the NNM can be appropriately 
determined by using knowledge information. The efficient use of various knowledge information will 

play a key role on the hybrid modeling. The model built in this way is named as hybrid quasi-linear 
black-box model, which has a linear structure, flexibility and simplicity. 

   This chapter is organized as follows: Section 2.2 proposes a hybrid quasi-linear black-box mod-
eling scheme by joining the linear and nonlinear black-box models together. Our discussions are 
concentrated on the linear structure of the proposed hybrid model, its flexibility for describing various 
nonlinear systems and its simplicity for parameter estimation. In Section 2.3, we discuss the esti-
mation of the hybrid model based on criterion optimization. In Section 2.4, we point out a possible 

perspective: intelligent identification of the hybrid model. Several numerical examples with real data 
and simulated data are given in Section 2.5, The relations between the proposed hybrid model and 
some existing models, and the possible applications are discussed in Section 2.6.

2.2 Hybrid Quasi-Linear Black-Box Modeling

In this section, we will propose a hybrid quasi-linear black-box modeling scheme . Without loss of 
generality, our discussions will be concentrated mainly on ARMAX model structure because of its 
popularity. The results can however be extended to general black-box model structure by considering 
the general regression vectors which are referred to Appendix A .1. 

1 By "hybrid structure" , we mean that the structure is obtained by combining the linear model structure in 'classic' 
literature with the nonlinear model structure in Al (artificial intelligent) literature . Therefore, the term "hybrid" means 
a combination of 'classic' approach and 'Al' approach . 2Let y(t) = g(sp(t)) be a nonlinear function . Performing Taylor expansion to g(4p(t)) around the region cp(t) = soo(t), 
we have y(t) = ao + al (p(t) — coo(t)) + li<p(t) — 5oo(t)la2 + .... Then the norms of coefficients a; (i = 0,1, 2, ...) form e `nonlinearity spectrum' .
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Nonlinear System 

 y(t)=g( ?CO )

y(t)=( +Aet)TcP(t) +v(t)

Embedded into 

the coefficients

Distributed

Fig ure 2.1 : A schematic description of quasi-ARX modeling.

2.2.1 Hybrid . Quasi-ARMAX Modeling 

  Let us consider SISO general nonlinear ARX (NARX) systems described by 

             S : y(t) = g((p(t)) + v(t)(2.1) 

co(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T (2.2) 

where y(t) is the output at time (t = 1, 2, ...), u(t) the input, w(t) the regression vector, v(t) the 
system disturbance, and g( • ) the unknown continuously differentiable nonlinear function. 

  In Appendix B, we have shown that a general NARX system (2.1) can be expressed in a hierarchical 
structure, e.g. ARX networks, provided that g( • ) is continuously differentiable. Based on this result, 
we can express the system (2.1) in a linear ARX structure, whose coefficients consist of constant 
parameters and nonlinear terms, see Fig. 2.1 where we call it quasi-ARX modeling in order to 
distinguish it to the NARX modeling 

                  y(t) = (pT(t)(e + A0t) + v(t)(2.3) 

where 
B = [ai ... an b1 ... brn]T •                                                            (2.4) AB

t = [oalt ••• LantAblt ••• Abrn,t]T) 

and where the index t in the nonlinear terms La;,t and AbZ,t denotes that they are functions of the 
regression vector co(t), instead of constants. We may call such treatment as "nonlinearity embedding" 
technique, which is actually not new. The techniques of embedding certain kind of nonlinear elements 
in the coefficients of a linear model are known to be effective in modeling some real processes [821. 
When a moving average (MA) noise model is employed for the system disturbance v(t), we have a a 
quasi-ARMAX model 

                    y(t) = (pT(t)(0 + A0t) + C(q-1)e(t)(2.5) 

where C(q-1) = 1 + clq-1 + ... + ciq—i (q-1: backward shift operator), and e(t) is white noise. 
  For the case where the g((p(t)) is a nonlinear system expressed in Kolmogorov-Gabor polynomial 

described by (B.2) of Appendix B, in which (p(t) is assumed to be [x; (t), i = 1, ..., r], the nonlinear 
terms La;,t and Ab;,t can be explicitly expressed as (B.6) and (B.7), respectively. However for general 
nonlinear systems, the nonlinear terms La;,t and Ab;,t may become very complicated functions. We
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therefore represent them using the NNMs described by (2.7) 
 Dai,t = fi (cP(t)) (i = 1, ..., n) (2.6) Abj,t = fj+n((P(t)) (j = 1, ..., m)Jl 

fi(cP(t)) _ E wipvf (Pi, (P(t))(2.7) 
j=1 

where Arf (pj, cp(t))'s are the 'basis functions', wij's are the coordinate parameters, and pi's are the 
scale and position parameter vectors. The JUf(•) is referred as ̀ basis functions', since the role they 
play in (2.7) is similar to that of a functional space basis. In some particular situations, they do 
constitute a functional basis. Typical examples are wavelet bases [46]. Without loss of generality, the 
NNMs used to realize fi(cp(t)) are assumed to have the same structure, so that the `basis function' 
is independent of the index i. A preferable candidate for the NNMs is adaptive fuzzy systems (AFS) 
[110], which can be explicitly expressed as 

E7=, wij (Ak=1 PAk (xk(t)))) 
       fi(~P(t)) =(2.8                             EM

1 (nk=1 1`Ak(xk(t))) 

where A is the minimum operator, M is the number of rules, xk(t) are the elements of w(t), and ttAJ 

is the membership function of fuzzy set A. The model described by (2.5)-(2.7) is named as hybrid 
quasi-ARMAX model. 

  It is well known that the NNMs are flexible enough to represent most reasonable systems in practice. 
It should be noted that there are a group of such certain NNMs in the hybrid quasi-ARMAX model. 
The hybrid quasi-ARMAX model becomes so flexible (complex) that it is impossible to estimate all 
of the parameters (ai, bi, ci, wij and pi) from observed data as usual. In order to make the problem 
feasible, we will appropriately determine the parameter vectors pi specifying the `basis functions' in 

the NNM by using knowledge information, and only estimate ai, bi, ci and wij from observed data. 

We will discuss these estimations in the next section. 
   The followings are some interpretations for the hybrid quasi-ARMAX model:

(1) Expression in Linear ARMAX Structure 
Introducing a coefficient vector et 

et = B + i9t(2.9) 

we have an expression of the hybrid quasi-ARMAX model given by 

                    M : y(t) = (pT (t)Ot + C(q-1)e(t).(2.10) 

From (2.10), we can see that the hybrid quasi-ARMAX model has a linear ARMAX structure. It can 
be shown that such a linear ARMAX structure is useful for control design and system analysis, see 

Chapter 4, 5 and 6.

(2) Expression in Combined Structure 
Using (2.6), (2.7) and (2.4) in (2.5) we can obtain another expression of the hybrid quasi-ARMAX 
model as 

M : y(t) = cpT (t)e + C(q-1)e(t) + E cpT (t)Stj .Nf (p j, cP(t)) (2.11) 
ARX 

where SZj = [w1j...w, j]T. The expression (2.11) shows that the hybrid quasi-ARMAX model is equiv-
alent to a model combining a linear ARMAX model and a multi-ARX-model. The multi-ARX-model 
consists of M local ARX models and its overall performance is obtained via an interpolation using 
the 'basis function' .N j (x). It also implies that
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 `p(c)

Figure 2.2: The hybrid quasi-ARMAX model shown as an associative memory networks. (the MA 
noise model has be omitted for clarity.)

  • the proposed model can be shown to be able to describe any  sufficiently smooth nonlinear 

    function in (2.1) on a compact interval arbitrarily well by merely increasing the value of M. 

• the proposed model is based on global and local linear approximations of system, which is 

    favorable to lower order nonlinearity band. This makes the robustness of model to noise increased 

    in the parameter estimation. 

From the expression (2.11), we can see that the hybrid scheme proposed here is different from the 
"linear model + neural network" type hybrid schemes appeared in the literature [44]. 

(3) Expression in Linear Regression Structure 
Since the hybrid quasi-ARMAX model has been constructed to be linear in the parameters to be 
estimated, it is easy to express it in a 'pseudo-linear' regression structure. Introduce a parameter 
vector O and a regression vector yo„ (t) defined as 

                      e = [9T, W11 ... WrM) Cl ... c!]T(2.12)

'PNL (t) = [VT (t), 'PT (t) ®CpTV
f (t), e(t — 1) ... e(t — 1)]T (2.13) 

where cpTf (t) = [Nf(p), y'(t)), j = 1, ..., M], and the symbol 0 denotes Kronecker production. Then 
we have the third expression of the hybrid quasi-ARMAX model given by 

                    M : y(t) = ipNL (t)0 + e(t)(2.14) 

The expression (2.14) shows that the proposed model is linear in the parameters, so that it is simple 
for parameter estimation. 
  From the expressions (2.10), (2.11) and (2.14), we can conclude that the hybrid quasi-ARMAX 
model is equipped with a linear ARMAX structure, flexibility and simplicity 3. These features make 

the proposed hybrid model very practicable. 

3It will be discussed in Chapter 6 about how to construct the hybrid quasi -ARMAX model to be linear in the one-step 

past input variable, which is typical useful for control design.
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Figure 2.3: Basic configuration of MISO fuzzy system

(4) Associative memory networks 
Form a network's point of view, the hybrid quasi-ARMAX model can also be seen as an associative 
memory networks, which consists of two hidden layers: the first layer (next to the input layer) with 
weights determined by a set of simplified NNMs; the second layer with weights simply taking the time 
delayed value of the system input and output, see Fig. 2.2. We could expect that such a specially 
structured associative memory network is more suitable for control design or system analysis than a 

general neural network. 
  Finally, if the regression vector  yp(t) is considered to be a general one as that of linear black-box 
model, referred to Appendix A, the hybrid quasi-ARMAX modeling scheme can be generalized as 
hybrid quasi-linear black-box modeling scheme.

2.2.2 Fuzzy Inference Based Multi-Modeling 

If we inspect the hybrid quasi-ARMAX model in the expression (2.10) from a viewpoint of linear 
approximation, we may find that in the hybrid quasi-ARMAX modeling, a nonlinear system is rep-
resented using local linear ARMAX models for each operating point. Furthermore, based on the 
expression (2.11), we know that it is equivalent to a hybrid model combining a linear ARMAX model 
and a multi-ARX-model consisting of several local linear ARX models with employing an interpo-
lation using the 'basis functions'. In this subsection, we will derive the multi-ARX-model from the 
viewpoint of an adaptive fuzzy modeling. It is shown that if the AFSs are used as the NNMs, the 
multi-ARX-model part is actually equivalent to a Sugeno-Takagi fuzzy system [99]. This result leads 
to a fuzzy inference based multi-modeling scheme for identification of nonlinear systems .

(1) Sugeno-Takagi Fuzzy System 

Generally, as shown in Fig. 2.3, the basic configuration of a fuzzy system includes four principal 
elements: fuzzification interface, knowledge base (fuzzy rule base and data base), fuzzy inference 
machine, and defuzzification interface [64]. Here we use a MISO fuzzy system: U C R'' —+ W C R, 
where U and W are compact. 

  The fuzzification interface is a mapping from the observed non-fuzzy input space U C R'' to 
fuzzy sets defined in U, where a fuzzy set defined in U is characterized by a membership function 

             . pA;U—>[0, 1], and is labeled by a linguistic termA;such as "small", "medium", "large", "very  A; 
large", etc. 

  The knowledge base contains rule base and data base which discretizes the universes of discourse 
and describes the membership functions pAi, j B, . The j-th linguistic rule has the form: 

                 jth : If x1 is Ai and, ... , xr is A. then y is Bi (2
.15) j=1, .., M



2.2. Hybrid Quasi-Linear Black-Box Modeling 19

uA i

A--, _

A iA
z

 A

 A uB2

A \

JAZi1U1
IA

A
uA
NjN ----

w

I !\
min

L
II U2 w

Fig

 xl

ure 2.4

 X2

ua

y

w
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For a Sugeno-Takagi fuzzy system, the consequent (y is B2) is represented as a function of the process 
state variables (x1, ..., xr), i.e., 

y = fj(xl...x,)(2.16) 

  The fuzzy inference machine is decision making logic which employs fuzzy rules from the knowledge 
base to determine fuzzy outputs of a fuzzy system corresponding to its fuzzified inputs. There are 
different kinds of fuzzy inference machines [65], here we use Mamdani's minimum operation rule. 

  In the fuzzification interface, the crisp inputs may be treated as fuzzy singletons. Then the firing 
strengths ai of the jth rule (2.15) may be expressed as 

                 = .AttA;(xi)(2.17)                                                i=1 

where A is the minimum operator. Based on Mamdani's minimum operation rule, the output of the 
jth rule defined as AB; is given by 

pa; (y) =  A pBa (y)(2.18) 

which implies that the membership function PB of the inferred consequence B is pointwise given by 

                   f~B (y) = ,Ul II• (y) =,U,(oA AB; (i))(2.19) 

Figure 2.4 shows the fuzzy reasoning diagrammatically. 
  The defuzzification interface defuzzifies the fuzzy outputs of the fuzzy inference machine and gen-

erates a non-fuzzy output which is the actual output of the whole fuzzy system. There are a lot of 
defuzzification strategies [65], here we use centroid defuzzification method which is the most commonly-
used method. 

                            fypB(Y)dy  y
c.o. = f 11

8(04(2.20) 
  In the case of Sugeno-Talcagi fuzzy system, µB (y) can be described as 

                       ai if y = f;(xi, ..., xr) j =1,...,M 
         AB(Y)__0 otherwise(2.21) 

Using (2.21) in (2.20), we can then express the defuzzified output explicitly 

                 EM (                                 j=1f91x1,..., xr)Air=1 PA3 i)) 
yC.O. = M(2.22) 

                                                                   r 

                            ~j=1Al=1 PAl (xi)
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Figure 2.5 : A linear approximation of the system in the region around yo(t) = X;.

(2) Fuzzy Inference Based Multi-Model 

Consider a general nonlinear system described by (2.1), whose operating region is assumed to be mostly 
located in X,nin < co(t) < Xmax. Based on multi-modeling approach, for a region near Xi (Xmin < 
Xi < Xmax ), the system can be approximated by using a linear black-box model 

y; (t) = cpT(t)SZ;(2.23) 

where SZ; = [aid ... ani b1, ... bm;]T is unknown parameter vector. If the region is chosen to be so 
small that the approximation can be achieved with an arbitrary accuracy, see Fig. 2.5. 

  Now introduce a Sugeno-Takagi fuzzy system with the following fuzzy rule base to represent the 

systems 

                  jth : If co(t) is Ai then y(t) = cpT(t)SZ; (2 .24) j=1, ..., M 

where Ai = [A'1 ... A; ] (r = n + m) is a vector with linguistic elements corresponding to Xi , and M 
is the number of rules. Obviously, if M is chosen large enough, the fuzzy system can approximate the 
sufficiently smooth continue nonlinear system with an arbitrary accuracy. Corresponding to the rule 
base (2.24), the fuzzy inference based multi-model can be expressed as 

E71 997' (t)Si (A:'=1 /~A' (xi(t)))  
         y(t) = ----------------------------------------------}- v(t)(2.25) 

                       Lij, (A Y=1 /tA. (xi(t))) 
where xi(t)'s are the elements of regression vector co(t). The fuzzy sets in the input space A; (hence 
their membership functions fig, j = 1,...,M; i = 1,...,11+m) will be determined by using knowledge 
information about system structure. For example, if we only know that the system operating region 
is mostly located in Xmin < yo(t) < Xmaz, the possible fuzzy sets may be chosen to be something 
shown in Fig. 2.6. If we introduce the notation 

ni 1 /LAi(Xi(t))  
f (T~;, (P (0) = M/(2.20k=1(^i-1/1'Ak(xi(t)))- 

(2.25) can be further expressed as 

                  y(t) = E tpT (t)1i Nf (p1, cp(t)) + v(t), I(2.27) 
;-1~i ARX 

which is the same as the multi-ARX-model part in (2.11).
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Figure 2.6: The fuzzy sets in the input space

  Moreover, if a MA noise model is employed for system disturbance v(t), we have 

M] 

             y(t) = E cpT(t)1j Nf (Pj, cp(t)) + > c;e(t — 1) -I- e(t) (2.28) 
                                 9=1            ARXi=1 

where e(t) is white noise. The (2.28) can be further expressed in a `pseudo-linear' regression form 

                  y(t) = E cpe (t)nej Nf(Pj, cp(t)) + e(t) (2.29) 
                                          j-1                                     ARMAX 

where cpe (t) and Bej denote the extended regression vector and parameter vector defined as 

cpe(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m) e(t — 1) ... e(t — 1)]T (2.30) 

                                           T 

            SZej = [a1j...a„j b1j...bmj~1c1] 

  We will call the model described by (2.29) a fuzzy inference based model, which can be used to 
identify various nonlinear systems. A distinctive feature of the fuzzy inference based model is that it 

is typically easy to perform the identification in a multiresolution way. Furthermore, fuzzy systems 
are known to have good flexibility for describing various nonlinear systems. Therefore, it implies that 

the hybrid quasi-ARMAX model is flexible enough to identify various nonlinear systems in practice.

2.2.3 Determining pi Using Knowledge Information 

As mentioned earlier, in order to achieve the model simplicity and the model flexibility simultaneously, 
in the hybrid black-box modeling, one first increases the overall flexibility of model by using a group of 
NNMs and then restricts the flexibility in the higher order nonlinearity band for the model simplicity. 
The latter is done by determining the scale and position parameter vectors p of the 'basis functions' in 
the NNMs using knowledge information. Since in a black-box modeling, the physical insight of system 
is assumed to be not available, the knowledge information are mainly obtained from the observed 
data and the prediction error during the estimation. Several kinds of knowledge information can be 
considered to be useful. They are: 

  • the information concerning the operating region of cp(t). This information can be obtained easily 
    from the observed data. 

  • the information about the structure of nonlinearity. This may sometime be obtained by trying 
    various linear black-box models to identify the system. 

  • the information concerning the relations among the elements in cp(t). This is always known when 
co(t) is chosen. 

  • the information about the size of prediction errors and their relations with the operating region 
    of cp(t). This may be obtained during the estimation. 

However, how to obtain and how to use those kinds of information are still under investigation. Here 
only some suggestions can be given.
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Figure 2.7: An example for determining  pi for AFS and RBFN.

(1) A Strategy for Determining pi 
How to determine the parameter vector pi for general NNMs is still an open problem to be solved, 
which depends on the kind of NNMs used. The following strategy is suitable for adaptive fuzzy 
systems (AFS), radial basis function networks (RBFN) and B-spline based models. 

  Suppose the NNM has r inputs, X = [xi, i = 1, ..., r] and the operating region is mostly located in 
Xmin < X < Xmax, Xmin = [xi min , t = 1, ..., r], Xmax = [xi max, t = 1,...,r]. X 0 [Xmin, Xmax] is 
allowable in practice. We first put nodes into the input hyperplane. As shown in Fig. 2.7, if the number 
of nodes corresponding to xi is denoted as ni, the total number of the nodes in the hyperplane will 
be M = mi n.i. Next, the parameter vectors pi are chosen so that the 'basis functions' Arf(p5,X) 
have appropriate shape and are put onto each node. Without using other knowledge information, the 

nodes will be uniformly assigned in the hyperplane. Figure 2.7 shows an example for determining pi 

for AFS and RBFN with r = 2 and M = 4 x 4. It should however be noticed that this strategy is 

suitable for AFS, RBFN and B-spline based model, but it may not be suitable for other NNMs such 
as neural networks and wavelet networks. Further research is needed for using neural networks and 

wavelet networks as NNMs in the hybrid quasi-ARMAX model.

(2) Several Hints for Reducing the Total Number of Nodes 

The prior knowledge concerning the operating region [Xmin, Xmax] is the least information required 
for determining the scale and position parameter vectors pi. However, when dim(X) is large, the total 
number of nodes (M) may be rather large. Therefore, further information should be used to reduce 
the number of nodes or to improve the node assignment. The following hints can be considered to 
reduce the total number of nodes M: 

  • Hint A: If the system is linear with respect to xi, ni may be chosen to be 1. 

  • Hint B: If no other useful information, nl and nn+i corresponding to y(t — 1) and u(t — 1) are 
    assigned with appropriate values, while all other ni's are set to 1, since y(t — 1) and u(t — 1) 

    include the information about other variables.

• Hint C: If the role of nodes can be replaced by employing interpolation of NNMs , those nodes 
 may be removed from the hyperplane.
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It should be pointed out here that user's experience will play an important role on using these simple 

hints efficiently. In order to make the modeling scheme less heuristically dependent, further investi-

gations are needed to develop an algorithm for incorporating knowledge information automatically.

2.3 Estimation of the Hybrid Models 

In the previous section, we discussed the hybrid quasi-linear black-box modeling scheme. Now let us 
have a summary on what steps are needed in order to find a hybrid quasi-linear black-box model.

(1) Select the regression vector  cp(t). This is equivalent to determining the order n and m. Since 
   the hybrid quasi-linear black-box model is basically an extension of linear black-box model to 

   the nonlinear cases, CC) (t) will be determined based on the results of identifying the system using 
   a linear black-box model. Therefore, many existing approaches for determining the order of 

   linear models such as Akaike criteria AIC and FPE can be applied. However, we do not limit 
   ourselves only to use the `optimal' order 4, the values n and m for w(t) should be chosen as 

   small as possible, so far as the performance of the linear model is not significantly worse.

(2) Select a scalar smother basis function' Alf. Theoretically, all the NNMs which can be 
   described by (2.7) can be used. However, the parameters pi specifying the nature of the 'basis 

   function' will be determined using knowledge information, so some of them (e.g. AFS, RBFN 
   and B-spline based model) are more feasible, while some others (e.g. NN and WN) are less 

   feasible. Based on author's experience and simulation results, the adaptive fuzzy systems (AFS) 
   seem to be preferred.

(3) Determine the parameter vectors pj. For general NNMs, this is still an open problem to 
   be solved, which depends on the kind of NNMs used. Section 2.2.3 describes a strategy for the 

   cases where AFS, RBFN or B-spline based model are used.

(4) Determine the order M. This is related with determining the parameter vectors pi. Section 
   2.2.3 gives several hints to reduce the order M. When the AFSs are used as the NNMs, the order 

   M denotes the number of rules in the AFS. Therefore, this is a problem similar to building an 
   adaptive fuzzy system using knowledge information and observed data. Many existing results for 
   fuzzy system design can be applied. An alternative perspective of determining M is Intelligent 

Identification. We will discuss the possibility later.

(5) Estimate model parameters 0. The Co denotes the unknown parameters to be 
which includes the ARMAX parameters (ai, i = 1, ..., n; bi, i = 1, ..., m; ci, i = 
the coordinate parameters of the NNMs (wi~, i = 1, ..., r, j = 1, ..., M). We will 
estimation problem in the rest of this section.

estimated, 
1, ..., I) and 
discuss the

2.3.1 Model Estimation and Model Properties 

The followings are some basic and general features that affect the model properties.

(1) Models and Model Estimation 

Consider our general hybrid quasi-linear black-box model

y(t) = g(yo(t), O) + e(t) (2.31)

where
  nm! 

g(co(t), O) =E ai,ty(t — i) -F E bi tu(t — i) + E cie(t — i) 
i=1i=1 i-r

  4Strictly speaking
, since there exists error of nonlinear undermodeling, the optimal order might not exist. 

cases, the Akaike criteria are only used as indicator of the error of nonlinear undermodeling.

(2.32)

In such
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 ai,t = ai + fi(co(t)) (i = 1,—, n)(2 .33) b
j t = bj +.fj+n(c'(t)) (j =1,—, in) 

                                                 M fi(cP(t)) = >WijNf (Pp, (P(t))(2.34) 
j-1 

(p(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T (2.35) 

0 = [a1 ... an b1 ... bin W11 ... WrM C1 ... Ci]T(2.36) 
Assume that we are given a finite set Ze of measured regressor-output part: 

Ze' = {(y(t), cp(t)), t = 1, ..., N}(2.37) 
We refer to Ze as the estimation data set, since the model parameter estimation will rely on it. 
  Now, a leading guideline for estimating O will be to minimize the error between the output of the 
model and the measured output using Ze 

N VN(O, Z") = N E ow) — g(40(t), 0)112 (2.38) 
t-1 

ON = arg moin { VN(O, Ze )}(2.39) 
which can be performed using existing well-known identification algorithms. 

(2) Model Quality 

Suppose that the actual data can be described by 

y(t) = go(v(t)) -1- e(t) (2.40) 
where go is some unknown 'true model' and e(t) is white noise. Then for the estimate of 0 based on 
Ze , ON, we want go(ya(t)) and g(ep(t),ON) to be 'close'. 

Measure of model quality 
  There are many possible measures for model quality . We here use the following one: 

                             1N V (e) 
=                      N,coE Ilgo(sv(t)) — g((o(t), 9)112 (2.41) 

t-1 

Based on this measure, the root mean square (RMS) error is introduced as 

1 N                 RMS error =NE II go(cP(t)) — g(0), ON)II2 (2.42) 
t-1 

Bias error and variance error  
  Under reasonable conditions [69, 25] 

ON —,0*(2 .43) 
where 

O* =argmiin{V(0)}(2 .44) 
With this definition of 0*, we can decompose the total error into tow part: bias error and varian

ce 
error 

EV(ON) = EII go(cP(t)) — g(cP(t), ON)II2 
             = EII go(w(t)) — geP(t), O*)II2 + EII g(cp(t), O*) — g(so(t), ON)II2 • 

                        bias errorvariance error 

                                                        (2.45) 
  In order to obtain a 'good' model, one should try to make both bias error and variance error sm

all.
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(3) Model Flexibility and Model Parameters 
Since as the number of data N tends to infinity, the variance  error vanishes, a model structure should 
be flexible enough in order to have bias error small. For such purpose, a nonlinear black-box usually 
offers a large number of parameters. However, the estimation of 0 is realized using finite data set in 
practice, so that there inevitably exists variance error which is proportional to the number of ̀ active' 
or `used' parameters [94, 92]

ElI9(cp(t), 0*) — 9(co(t), ON) II2 ^ Q2N (2.46)

where v2 = Ee2(t) and pe is the number of `active' or `used' parameters. Therefore, an attention 
should be paid to making the number of `active' or `used' parameter pe << (far smaller than) the 
number of 'offered' parameters dim(0).

Regularization  
  In the case (e.g. neural network) where the model parameters do not have physical interpretations, 

the effort has to be made in the estimation algorithm. The 'regularization' is one of the common and 
useful techniques [91]. In order to distinguish between more and less ̀ important' parameters, a penalty 
term is added to the criterion (2.38):

WN(O,ZN)=VN(ON,Ze)+5IJ0112 (2.47)

where 6 is a small number. Then the estimation of ON is done by minimizing (2.47) instead of (2.38). 
Intuitively, the idea is that a parameter that does not influence the first term of (2.47) very much will 
be kept close to zero by the second term, so that only the `important' parameters among the offered 
are used. However, the bias error may increase by introducing extra term 6110112 

Parameter localization 

  In the hybrid quasi-linear black-box modeling, the model structure flexibility is realized by employ-

ing a group of NNMs, which of course brings a large number of parameters into the model. However, 
all those parameters which are globally active will be determined using knowledge information, so 

that the parameters needed to be estimated are only locally active. For example, in the case where 

the 'basis functions' are chosen to be convex and compact, the parameter vector S2j = [w1 ••• wn+m,j] 
of 0 in (2.36) is only active in the operating region around jth node. We call this technique, which 
lets the parameters to be estimated be only locally active, a parameter localization. In such a case, for 
each operating point, the number of active parameters will be small, so that pe << dim(0) holds.

2.3.2 Estimation Algorithm

The estimation of 0 based on (2.39) is a well established problem, see e.g. [70, 94]. Especially, since 
the hybrid quasi-linear black-box model is linear in the parameters (LIP), it can be expressed in a 
'pseudo-linear' regression structure (2.14). The existing estimation techniques can be applied. 

  For clarity, we recall (2.14)

y(t) = T NL (t)O + e(t)

where cpTN L (t) is a regression vector consisting of both linear and nonlinear elements, given by

(2.48)

`oNL (t) = [ oT (t), coT(t) 0 CON (t), e(t — 1), ..., e(t — 1)] T (2.49)

and where

VNf (t) = [Nf (P),'p(t)), j = 1, ..., M] (2.50)
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(1) Least Squares Method 
 If  (2.48) does not include the noise model (e.g. 1 = 0), the O can be estimated efficiently and 

analytically by solving the normal equations. For an estimation data set Z', the optimal parameter 

estimate is 
      N—1N

/N ON = [>.NL(tL(t]>coNL(t)y(t) =RN-1 E1PNL(t)y(t) (2.51) 
t_1t_1t=1 

provided that the inverse of the d x d (d = dime) regression matrix RN exists. For numerical reasons 
this inverse is rarely formed, but instead the estimate is computed via approaches such as singular 
value decomposition (SVD), which is able to handle rank deficient regression matrices. The estimation 
algorithm (2.51) can easily be transformed into a recursive form. However, instead doing this we shall 
derive recursive algorithm for the case where (2.48) includes MA noise model.

(2) Recursive Estimation Algorithm 

If a noise model such as MA noise model is included, or the hybrid quasi-linear black-box models 
are employed for on-line applications such as adaptive control of nonlinear systems, the estimation 
should be performed in a recursive way. Based on the well developed recursive identification theory 
[70, 94], we will first introduce the prediction error method (PEM) generally, then apply it to the 
hybrid quasi-linear black-box models.

Recursive PEM algorithm  

  Consider the problem of estimation O by minimizing a criterion based on prediction error 

O(N) = arg min {VN(0)}

VN(0) =  Ee2(t,O) 
t-1 

e(t, O) '2' y(t) - y(tI e)•

(2.52)

(2.53)

(2.54)
A recursive algorithm for this problem can be given as follows, see Appendix C for the details of the 

derivation 

O(t) = O(t — 1) + L(t)e(t, O(t — 1))(2.55) 

                  P(t — 1)0(t,O(t — 1)))               L(t) = -------------------------------------------------(2 .56)
+/T (t, O(t — 1))P(t — 1)11)(t, e(t — 1)) 

P(t) = P(t—1)—P(t — 1)0(t,e(t — 1))*T (t,e(t — 1))P(t — 1)  
                        1 -1OT (t, O(t — 1))P(t — 1)/P(t,.0(t — 1))(2.57) 

where t/'(t,O(t)) is the negative derivative of s(t,O) with respect to O. 
  In order to apply the recursive algorithm..(2.55)-(2.57) to the hybrid quasi-linear black-box models, 

we should discuss how to determine the e(t, 0(t-1)) and -t&(t, 0(t-1)) for those models. The following 
two methods can be considered.

Extended Least Squares (ELS) Method

  Let us write (2.48) as 
                        e(t) = y(t) — (PNL(t)O 

If we have a sequence of estimates O(t) available, it seems natural to estimate e(t) 
according to 

t(t) = y(t) — yPNL(t)O(t) 

In this way, the E(t, O(t — 1)) and (t, O(t — 1)) can be determined as 

e(t, O(t — 1)) = y(t) — (PNL(t)O(t — 1)

(2.58) 
by F(t), computed

(2.59)

(2.60)
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               1,T (t, O(t - 1)) =-ae(t, e)1= wk(t)(2.61) 
           A_e(t_1) 

where TNL(t) is described by (2.49) whose elements e(t -  i) will be replaced by  e(t - i, O(t - i - 1)). 

Prediction Error Method (PEM)  
  According to the contents of 11,,L(t) in (2.49), (2.48) can be decomposed as 

                y(t) = cpT (t)9 + cpT (t) 0 ca (t)81 + C(q-1, 0)e(t) (2.62) 

where 

                    0 = [0T, 02i,  c1 ... cl]T(2.63) 

C(q-1, O) = 1 + co-1 + ... + ciq_1(2.64) 

and Of is the parameters associated with the cp(t) 0 cpg1(t) part of cONL (t), defined as 

                    Of = [Wll ••• WrM]T .(2.65) 

Then for (2.62), the prediction of y(t) can be computed recursively 

y(tIO) =C(q1, 0)[sT(t)o + vT (t) 0cP3v(t)                                  ,Of + (co-1,e) - 1)y(t)] (2.66) 
using data up to t - 1 with given 0, in which the initial conditions can be taken to zero. We can also 
evaluate the prediction error 

                    e(t, 0) ° y(t) - y(tI0)(2.67) 

according to the model parameter 0. 

  With (2.67), we can write (2.66) as 

C(q-1, 0)e(t, 0) = y(t) - coT (t)9 - COT (t) ®cpl/, (t)O/ (2.68) 

Oe(t, 0)00 can thus be computed as 

C(q-1 O) ae(a90) =-cpT(t)9(2.69) 

                 C(q_1, 0) ae(tt, 0) = -COT(t)9 +`PT (t) ®gr.', (t) (2.70) 

co-i, 0) aeotc'O) = -e(t — i, 0).(2.71) 
It therefore follows that e(t, (5(t - 1)) and Ili(t, O(t - 1)) are determined as 

e(t, (5(t - 1)) = y(t) - cp7N.L(tI0(t - 1))6(t - 1) (2.72) 

              'b(t, O(t — 1)) =1c0NL(tI0(t — 1)) (2.73) 
                           C(q-1, O(t —1)) 

where cpNL(tlO(t - 1)) is WNL(t) whose elements e(t - i) are replaced by e(t - i, O(t - 1)).
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(3) Local Minimum and Over-fitting 

Local minimum and over-fitting are two difficult problems associated with the identification of non-
linear black-box models. The reason is that a nonlinear black-box model usually offers a large number 
of parameters and is often nonlinear in those parameters. Using  ̀regularization' technique, several 
authors state that the over-fitting problem can be solved [91]. But it seems that there is so far no easy 
solution for local minimum problem [92], since a hybrid identification method using genetic algorithm 
does not seem to be very efficient when the number of parameters is large. 

  For the hybrid quasi-linear black-box models, local minimum and over-fitting do not seem to 

be problems. Since the models are linear in the parameters (LIP) to be estimated, local minimum 
problem appears only when a noise model is employed for the system disturbance. We will show that 
this problem can be solved using our proposed hybrid identification algorithm [38], see also Chapter 3. 
On the other hand, since the parameters in the hybrid quasi-linear black-box are only locally active, 
the over-fitting does not appear to be a big problem. In particular, when the identification is done via 
a multi-resolution approach, i.e., the identification is started with fewer parameters, while the number 
of parameter increases only when higher resolution (modeling accuracy) is required, the over-fitting 
problem vanishes.

2.3.3 Implementation of the Estimation Algorithm

In contrast to the case of linear system identification, when a recursive algorithm is implemented to 

identify nonlinear systems, the following two problems arise: (1) how to improve the convergence 
property; (2) how to estimate the separate noise model. We will show that these problems can be 
solved in the identification of the hybrid quasi-linear black-box models.

(1) Two-Step Estimation of Hybrid Quasi-Linear Black-Box Models

When the estimation is done using the optimization-based algorithm (2.55)-(2.57), a better initial 
value will improve the convergence property very much. This is particularly true when the number 

of parameters to be estimated is large and larger than that may be really needed. In the hybrid 

quasi-ARMAX model, the number of the parameter is dim{O} = n -1- m -1. 1 -}- (n -1- m) x M, which 
is much larger than that of a linear model. Moreover, 0 in the 0 is obviously not really needed in 
the sense of describing the system. Therefore, we will implement the estimation in the following two 
steps.

Step 1: Estimation of linear approximation  

  Assume the parameters associated with the nonlinear terms of coefficients in the hybrid quasi-
ARMAX model to be zero, i.e., O f = [w„i, v = 1, ..., r; j = 1, ..., M]T = 0 in (2.5). Then we 
have 

    nnn 

             y(t) _ E aiy(t — i) -F E biu(t — i) + E cie(t — i) -}- e(t) (2.74) 
                                i=i 

Indeed, (2.74) is nothing but a linear ARMAX model. Hence the estimate of the linear approximation 
can be used as an initial value for the estimation of the hybrid quasi-linear black-box model. The 
linear estimate can be considered as a nice initial value because of the following two reasons: (1) 
most processes in practice can be approximated with a linear model in a reasonable accuracy; (2) 
the constant parameters a., and bi are not independent of the parameters w„~, i.e., the roles of the 

parameters a and bi can be replaced by the parameters w,, (we call ai and bi as redundant parameters). 
  It is well known that the estimation of (2.74) can be realized using a recursive PEM algorithm 

[70, 94]. However, it should be noticed that the criterion function in this estimation is not always 
unimodal because of the noise model, so that there is a risk that the optimization-based algorithm is 
stuck at a local minimum. Moreover, the unmodeled dynamics resulted from the linear approximation 
will increase the risk [58]. On the other hand, it has been found experimentally that the parameters 
of noise model should be estimated in this linear approximation and be fixed in the next stage where 

the parameters of system model are estimated, because a noise model can not be well identified if



2.4. Intelligent Identification of the Hybrid Models 29

its parameters are estimated together with a large number of system model parameters. Therefore, 
a reliable identification algorithm is crucially needed to improve  the convergence in the estimation 
of linear approximation. In [38], we have proposed an hybrid identification algorithm based on an 
effective combination of genetic algorithm and an optimization-based method. Using that algorithm, 
ai, b;, and c; can be estimated reliably. We will discuss this problem further in Chapter 3.

Step 2: Estimation with using the initial value

  With the estimates of linear approximation (a1, b;, c;), we may now take ai = a1, bi =191, c; = c; 
and wo = 0 as initial values, and estimate a;, b;, c; and w„.i using the algorithm (2.55)-(2.57). 
However, it is found experimentally that fixing c; = c; in this step gives better identified noise model. 

  On the other hand, in some applications, a nonlinear system is preferred to be approximated using 
a linear model, and the error due to nonlinear undermodeling is treated as unmodeled dynamics or is 
modeled using a nonlinear compensator. One of the motivations for such identification is that many 
existing results can be applied to linear models, but rare for nonlinear models. For such applications, 
we just fix a; = a;, b; = bi, c; = c;, and only estimate wo using (2.55)-(2.57). Since in the hybrid 
quasi-ARMAX model, a; and b; are redundant parameters, i.e., they are not independent of wo, the 
estimation with a; = a;, b; = b;, c; = c; fixed can be approximately achieved at the global minimum 
of the criterion function. The estimation results will thus give an identified linear ARMAX model (a;, 
b; and c;) for the best linear approximation of the system and the estimate of modeling error due to 
nonlinear undermodeling described by Dai ,t(w„i) and Lb;,t(w„i).

(2) Estimation of the Noise Model
Generally, it is harder to obtain good noise models than system models, so that it is important to 
restrict the flexibility of the noise model. With assuming the model to be linear to the residuals, we 
simply add linear noise terms to our quasi-linear black-box models. For example, the hybrid quasi-
ARMAX model can be viewed as a hybrid quasi-ARX model with a linear MA noise term added to 
it. Such noise models are also considered in connection to nonlinear black-box models [89]. However, 
in [89], J. Sjoberg concluded based on his experiment results that the separate noise models did not 
improve the fit substantially, hence it was more important to model the nonlinearities than to model 
the noise dynamics. But from our experiment results, we do not agree to his conclusion. The problem 
arisen here is how to estimate the noise terms in a nonlinear model with a large number of parameters 
to be estimated. We found that it is difficult, if not impossible, to estimate the noise model and the 
system model by minimizing the same criterion function. In this section, a two-step approach is thus 
suggested for such estimation, in which the noise model is first identified by approximating the system 
with a corresponding linear model, then the estimate of the noise model is fixed when the system 
model is identified.

2.4 Intelligent Identification of the Hybrid Models

We believe that the hybrid quasi-linear black-box modeling to be distinctive not only in that it is 

equipped with a linear structure, flexibility and simplicity, but also in that it is able to incorporate 

various knowledge information during the modeling and the parameter estimation. In Section 2.2.3, 

we describe a strategy for determining the scale and position parameter vectors pj using knowledge 

information. In this section, we will discuss the possibility using knowledge information to optimize 

the model structure during the parameter estimation. 
  As mentioned earlier, in the quasi-linear black-box model, the parameters offered by the NNMs 

are locally active, and the overall performance of the model is obtained by employing interpolation. 

This localization and interpolation makes the following intelligent identification possible: 

 (1) If modeling error is large in the operating region near the jth node, the node density near the 
    jth node should be increased, which can be done on-line. 

 (2) The identification can be realized using a multiresolution approach, in which few nodes are 
    chosen at the beginning, the new nodes will then be added when higher resolution (modeling
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Figure 2.8 : Diagrammatic representation of optimizing a fuzzy system

accuracy) is required. The parameters associated with the latter added nodes can 
with better initial values using the knowledge obtained during the estimation.

be assigned

2.4.1 Self-Optimization of Model Structure 

When only the information concerning the operating region [Xm;n, Xm,ax] is used, the nodes will be 
uniformly assigned in the hyperplane. A preferable way to optimize the model structure is to reduce 
the total number of the nodes automatically during the parameter estimation. Two ways may be 
considered: (1) start the estimation algorithm with a low node density, and then add nodes only to 
where they are necessitated; (2) start the estimation algorithm with a rather high node density, and 
then remove the nodes which are not necessitated. If the contribution of a node can be obtained from 
the interpolation of its neighborhood, the node can be removed. We know that when adaptive fuzzy 
systems are used as the NNMs, the nodes corresponds to fuzzy rules. Therefore, the existing results 
for optimizing fuzzy systems using knowledge information and observed data can be applied to the 
above optimization. 

   However, how to implement those results in the estimation algorithm is a problem to be solved. 
We here discuss a simple case to show how a fuzzy system is optimized. Consider a nonlinear system 
whose input-output relation is shown in Fig. 2.8(a) with solid line. A fuzzy system with 4 rules is 
first using to represent the system. Based on the interpolation property of a fuzzy system, we can
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give its output shown with dashed line. We may find that after estimation the modeling error in the 
operating region between R3 and R4 is large. Then we add a rule R5 between the R3 and  R4 . The 

performance has been improved, see Fig. 2.8(b). However, it seems that higher modeling accuracy 
is needed in the operating region near the R5i so that another two rule R6 and R7 are added, Fig. 
2.8(c). On the other hand, the contribution of the R2 seems can be obtained from the interpolation 
of R1 and R3, so that it can be removed. In this way, we can build an optimized fuzzy system with 6 

rules, see Fig. 2.8(d).

2.4.2 Identification via Multiresolution Approach 

Crucial points for estimating a model with large number of parameters are to improve its convergence 

property, to prevent being stuck at a local minimum, and to avoid being over-fitted. Since the quasi-
linear black-box model is linear in the parameters, the local minimum does not seem to be a problem. 
It is well known that a better initial value can improve the convergence property very much. We have 
shown that the initial values of the parameters associated with the linear part of the model can be 

given by using the result of the linear approximation. We here will further show that the parameters 
associated with the nonlinear terms can be estimated in a multiresolution way, i.e., the estimation 
starts with few nodes for the NNMs, and the node density increases during the estimation . The initial 
values of the parameters associated with the newly added nodes can be obtained from the current
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     Figure 2.10: Real data: (a) the input u(t), (b) the output y(t).

estimates of the parameters associated with the neighbor nodes. In this way, all parameters associated 
with later added notes will have better initial values, the later the more close to their 'true' values. 

  Figure 2.9 shows an example of estimating an adaptive fuzzy system in a multiresolution way. 
The estimation starts with the adaptive fuzzy  system containing two parameters to be adapted, 
corresponding two rules. After estimating the two parameters for a while, rule R3 is added, which 

give the parameter w3 to be estimated. Using the interpolation property, the initial value for w3 can be 
given as w30 (Fig. 2.9(b)) which is calculated from WI and C^2. Then after estimation, the rules R4 and 
R5 are added. The initial values for w4 and w5 can be given as w40 and w50 which can be determined 
using wl, W2 and w3 (Fig. 2.9(c)). Finally, we have the result shown in Fig. 2.9(d). Obviously, the 
estimation carried out in such multiresolution way is expected to have better convergence property 
and the over-fitting problem will vanish. 

  It has been well-known in the literature that wavelet transform is very suitable for multiresolution 

analysis. How to use the wavelet transform as the NNMs in the quasi-linear black-box model seems 
to be an interesting topic for further research.

2.5 Experimental Studies 

In this section, we will apply the hybrid quasi-linear black-box model to identify a variety of real 
systems and simulated systems. We have argued that the proposed hybrid quasi-linear black-box has 

linear structure, flexibility and simplicity. The model simplicity is clearly shown in its estimation 
algorithm. The usefulness of the linear structure will be shown in Chapter 5 and 6 by applying it 

to fault detection and control design of nonlinear systems. We here will show its flexibility and its 

generalization ability by applying it to identify a variety of nonlinear systems and comparing the results 
with those using Neural Networks and Wavelet Networks which are known to have good flexibility . 
For such purposes, some of the systems chosen in this section are well known in the literature

, where th
ey have been used to test nonlinear black box models such as Neural Networks

, Wavelet Network 
and Hinging Hyperplanes. We can easily compare our results with those using nonlinear black -box 
models.

2.5.1 Modeling A Hydraulic Robot Actuator 

The position of a robot arm is controlled by a hydraulic actuator . The oil pressure in the actuator is 
controlled by the size of the valve opening through which the oil flows into the actuator. The position 
of the robot arm is then a function of the oil pressure. Let us denote by u(t) and y(t) the position 
of the valve and the oil pressure at time t, respectively. A sample of 1024 pairs of {y(t), u(t)} was
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Figure 2.11: Simulation of identified models on validation 

pressure and the dashed line the simulated model output.

data. The solid line shows the true oil

registereds. We divide it into two equal parts for estimating and for validating our model, respectively. 
The estimation data are depicted in Fig. 2.10 (left). and the validation data in Fig.2.10 (right). 

(1) Using a linear model 

Following the principle of 'try simple things first', we try to use a linear ARX model to identify the 

system. A reasonable modeling result has obtained with n = 3 and m = 2, that is, the regression 

vector cp(t) = [y(t — 1) y(t — 2) y(t — 3) u(t — 1) u(t — 2)]T. Figure 2.11 (left-upper) shows the result 
of a simulation with the obtained linear model on validation data, which gives a root mean square 

(RMS) error of 1.0160. The result is not very impressive. 

(2) Using neural network and wavelet network models 

The problem of modeling the hydraulic robot actuator has been discussed comprehensively by Sweden 
and France groups. J. Sjoberg modeled the system using network network models [90, 89], Q. Zhang 

  5The data were taken from public ftp domain . We gratefully acknowledge Linkoping University for providing the 

data.
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using wavelet network models [7], and P. Pucar using hinging hyperplane models [861. 
  For the sake of easy comparison, similar simulations have been carried out using Matlab Neural 

Network toolbox and the package of Zhang (1993) [116]. First, a NARX model based on an one-hidden-
layer sigmoid neural network with 10 hidden units, 5 input units and one output unit is considered. 
This gives a model with 71 parameters. The identified neural network NARX model is simulated on 
the validation data. The result is shown in Fig. 2.11 (left-middle), which gives a RMS error of 0.617. 
Our result is a little worse than the one obtained by J.  Sjoberg, see Fig. 9 in [92], where the RMS 
error is 0.467. The reason we think is that we have over-trained the model. J. Sjoberg et al. have 
developed an algorithm using regularization to solve the over-training problem [91]. Then, another 
NARX model based on a wavelet network [117] is considered to model the hydraulic actuator in a 
similar way, with the same regressors. The wavelet function used is 0((p) = (d — (pTcp)e—'PT `O/2, with 
d = dilly. Since this identification is realized using the package of Zhang, we obtained the same result 
as the one obtained by Q. Zhang, see Fig. 10 in [92]. The result of the identified wavelet network 
model simulated on the validation data is shown in Fig. 2.11 (left-lower), which gives a RMS error of 
0.5285. 

  In [92], Sjoberg et al. reported that they have also identified the hydraulic robot actuator using 
several other nonlinear black-box models with various nonlinear structures. The best model they 

obtained simulated on the validation data gives a RMS error of 0.328, referred to [92] for details.

(3) Using hybrid quasi-ARMAX models 

Now we will use the hybrid quasi-ARMAX model described by (2.5) to identify the hydraulic robot 
actuator. For easy comparison, we do not consider the noise model first, i.e., n = 3, m = 2, 1 = 0 are 

chosen for the regression vector. From the estimation data shown in Fig. 2.10, we choose Xm;n=[-4 
-4 -4 -2 -2] and Xmax=[4 4 4 2 2]. Since no other useful information available, we choose ni = n4 = 
4, n2 = n3 = n5 = 1 using Hint B, which gives M = 16. The model obtained thus has 85 parameters 

to be estimated. After estimating the model using the estimation data for 2048 steps, the simulation 

of the model on the validation data is shown in Fig. 2.11 (right-upper), which gives a RMS error of 
0.5445. Comparing this result with those using neural networks and wavelet networks, we can see 
that the hybrid quasi-ARMAX model has obtained a compatible result. 

  In [89], J. Sjoberg reported that for this example, the separate noise models did not improve the fit 
substantially. Since a noise model has to be identified from the residual system model, it is difficult to 
identify it if the system model is nonlinear in the parameters to be estimated. As mentioned earlier, 
the hybrid quasi-ARMAX model is linear in the parameters and includes a MA noise model naturally, 
so that the noise model can be identified easily. Next, we use a hybrid quasi-ARMAX model with 
a = 3, m = 2, 1 = 1 and M = 16 to identify the system in a similar way. Figure 2.11 (right-lower) 
shows the simulation of the model on the validation data. The RMS error is 0.1360, which is better 
than the best results in [89]. We think that the main reason for the superior performance of the 
proposed model is that it has better property in dealing with correlated noise.

2.5.2 Modeling A Boiler Plant 

As shown in Fig. 2.12, the water level in the boiler drum (Drum level) is controlled by the water flows 
into the drum, and the pressure (Drum pressure) is controlled by the heater which is controlled by 
the fuel flows into the heater. The stream output (Stream flow) is kept as constant. Therefore, this i
s a two-input-two-output system, in which the drum pressure yi(t) and the drum level y2(t) are a 
function of the fuel flow ui(t) and the water flow u2(t), while the fluctuation of the stream flow can 
be treated as system disturbance.

(1) The data 

450 pairs of {ul(t), u2(t), yi(t), 
data. For the estimation data, 

(PRBS) with amplitudes [-5%, 
2.13.

y2 (t) } were registered as estimation data, and 290 pairs as validation 
the system was excited by adding pseudo-random binary sequences 

+5%] to the ui(t), u2(t). The estimation data are depicted in Fig.
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Figure 2.12  : A boiler plant.
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(2) Using linear ARMAX models 

Let us divide the two-input-two-output system into two two-input-one-output systems. Then use two 
ARMAX models to identify the systems. The two-input-one-output ARMAX model is described as 

             (1 + a1q-1 + ... + an4—n)y(t) = (b114-1 + ... + blml q—m1)u1(t) 
                                      + (b214-1 + ... + b2m2 q—m2 )u2 (t) 

                                   + (1 + clq-1 + ... + ciq-1)e(t) (2.75) 

Various ARMAX models have been tried. Reasonable results have obtained by using ARMAX models 
with n = m1 = m2 = 2, 1 = 1 for the drum pressure yl (t) part, and n = 3, m1 = m2 = 2, 1 = 1 for 
the drum level y2(t) part. The results of the identified models simulated on the validation are shown 
in Fig. 2.14 (left). The RMS errors for the drum pressure is 0.0480 and for the drum level 3.2528.

(3) Using hybrid quasi-ARMAX models 

Now we use the hybrid quasi-ARMAX models 
hybrid quasi-ARMAX model described in (2.5) 

           (1 + a1,tq + ... + an,t4—n)y(t)

to identify the systems. We first modify 
to a two-input-one-output one 

_ (b11,t4-1 + ••• + b1,m,,t4—n"),al(t)

the SISO
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Figure 2.14: Simulation of the identified models on validation 

measurements and the dashed line the simulated model outputs.

data. The solid line shows the true

+  (621,tq-1 + ... + b2m2,tq—m2)u2(t) 
+ (1 + ciq-1 + ••• + c,q-1)e(t) (2.76)

where

where ftt (i = 1,...,n + m1 +  m2)arerealizedu 
  Based on the results of linear 

m2 = 2, 1 = 1 is chosen for the drum pressure 

drum level y2 (t) part. For determining 
55] are chosen for the case of modeling 
Xmax=[30 30 30 85 85 55 55] for modeling the dr 
using Hint B n1 = n3 = n5 = 3, 
chosen for the two cases, respect 
for both cases. After performing the estimation f 
on the validation data are shown 
pressure and 1.6072 for the drulr level. We can 
by using the hybrid quasi-ARMAX models.

_nt,t = ai + fi,t i = 1,...,n 
b1,t = b1, + f;+n,t j = 1, ..., m1(2.77) 
b2k,t = b2k + ,fk+n+mi,t k = 1, .•., m2 

 z) are realized sing the NNMs. 
approximation, the hybrid quasi-ARMAX models with n = m1 = 

drum pressure WO part, with n = 3, m1 = m2 = 2, 1 = 1 for the 
mining pj, 41.1 -1.1 20 20 6 6] and Xmax=[1.1 1.1 85 85 55 
odeling the m pressure, while Xmin430 -30 -30 20 20 6 6] and 
modeling the um level. Since no other useful information available, 

landni=n4=n6=3, n2=n3=n5=n7=lare 
ively. Next, using Hint C to remove some nodes, we obtain M = 18 
the estimation or 4500 steps, the simulations of the identified models 
in Fig. 2.14 (right), which give the RMS errors 0.0332 for the drum 
level. We can see that the model performances have been improved

2.5.3 Modeling A De-NOx Device 

As shown in Fig. 2.15, in the de-NOx device, NH3 is used to de-oxidize the NOx, so that the output of 
NOx to the open air can be reduced. Let us denote by u1(t), u2(t) and y(t) the NOx in, the NH3 flow 
and the NOx out at time t, respectively. A sample of 2000 pairs of {u1(t), u2(t), y(t)} was registered 
as estimation data, and 4500 pairs as validation data . The estimation data are depicted in Fig. 2.16
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  We first use a two-input-one-output linear ARMAX model with n = m1 = m2 = 2, 1 = 1 and the 
two-input-one-output hybrid quasi-ARMAX model (2.76) with n = m1 = m2 = 2, 1 = 1, M = 16 to 
identify the system, respectively. For the hybrid quasi-ARMAX model, we choose X,,,;,,=[16 16 150 
150 17 17] and Xmax=[40 40 250 250 33 33] based on the estimation data shown in Fig. 2.16. Since 
changing m1 in the identifications using linear ARMAX models did not affect the modeling accuracy, 

we may consider that the system is linear with respect to u1 (t — i). Then based on Hints A and B, 
n1 = n5 = 4, n2 = n3 = n4 = n6 = 1 is chosen, which gives M = 16. After estimating the models for 

4000 steps, the simulations of the identified models on the validation data are shown in Fig. 2.17(a) 
and (b), in which the RMS errors for the linear ARMAX model is 2.0232 and for the hybrid quasi-
ARMAX model 1.0289. We can see that the hybrid quasi-ARMAX model has better performance, but 
do not improve the fit substantially. Next we increase the orders of the linear ARMAX model with 
n = 5, m1 = 2, m2 = 5, 1 = 1. The result is shown in Fig. 2.17(c), which give a RMS error of 0.2464. 
The result shows that the de-NOx device does not contain nonlinearity. However, the results obtained 
this modeling shows that the NNMs employed in the hybrid quasi-ARMAX model can represent not 

only nonlinear behaviors of dynamic systems but also the high order linear behaviors.

2.5.4 Modeling A Mathematical System 

We have modeled three real processes successfully. However in practice, 
the nonlinearity of a real process, so that the above three real processes 
nonlinearity. Here, we borrow a mathematical system from [76], which 
nonlinearity. The system is governed by

it is very difficult to excite 

do not seem to have strong 
contains rather high order

y(t) = f[y(t - 1), y(t - 2), y(t - 3), u(t - 1), u(t - 2)] (2.78)
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measurements and the dashed line the simulated model outputs.
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where 
xix2x3x5(x3 — 1) + x4                         f[xl,x2,x3,x4,x5] =

+x+x3 

Estimation data are sampled when system is excited using random input uniformly distributed in the 
interval [-1, 1], while validation data are sampled from system using an input u(t) = sin(27rt/250) for 
t < 500 and u(t) = 0.8 sin(2irt/250) + 0.2 sin(2irt/25) for t > 500. 

  First, an ARMAX model with n = 3, m = 2, 1 = 0 is used to identify the system. The simulation 
of ARX model on the validation data is shown in Fig. 2.18(a), which gives a RMS error of 0.0866. The 
result is not very impressive, which is not surprising since the system contains high order nonlinearity. 
Next, a four-layer neural network of M5,20,10,1, which contains 341 parameters to be estimated, is 
used to identify the system. Similar to K.S. Narendra in [76], we trained the model for 100,000 steps 
using Matlab Neural Network toolbox. The simulation of the model on the validation data is shown 
in Fig. 2.18(b). The RMS error is 0.0678, which is compatible to the result shown in [76], but it is 
not very impressive too. The reason we think is that the identification algorithm has been stuck at 

a local minimum. Finally, we use the hybrid quasi-ARMAX model with n = 3, m = 2 , 1 = 0 to 
identify the system. X,„;n=[-1 -1 -1 -1 -1] and Xmax=[1 1 1 1 1] are chosen based on the information 
obtained from the estimation data. Since the system is linear with respect to u(t — i), we choose 
ni = n.2 = n3 = 3, n4 = n5 = 1 using Hint A. M = 18 is then obtained by removing some nodes using 

Hint C. We thus obtain a model with 95 parameters to be estimated. After estimating the model for 

5000 steps, the simulation of the model on the validation data is shown in Fig. 2.18(c). The RMS 
error is as small as 0.0270. We can see that the hybrid quasi-ARMAX model represents the system 
very well. We think that the reason for the better performance of the proposed model is that our 

estimator could find the global minimum. 

  Now we use the fuzzy inference based multi-model (2.27) to identify the system. Such identification 
is equivalent to identifying the hybrid quasi-ARMAX model discussed above with ai = 0 and bi = 0 

fixed. The identification has been done using the multi-models with 1 rule, 3 rules, 9 rules and 18 rules
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Figure 2.18: Simulation of the identified models on validation data. The solid line shows the true 

measurements and the dashed line the simulated model outputs.

respectively. The simulations of the identified models on the validation data are shown in Fig. 2.19, 

which give the RMS errors of 0.0866, 0.0748, 0.0700 and 0.0288, respectively. The results obtained in 
this identification shows that it is possible to identify a system in a multiresolution way.

2.6 Some Aspects of the Hybrid Models 

We have shown that the hybrid quasi-ARMAX model has a linear ARMAX structure, flexibility and 

simplicity. In this section, we will discuss its relations with some existing linear and nonlinear models 
and its possible applications.

2.6.1 Relations with the Existing Linear and Nonlinear Models 

In order to understand the hybrid quasi-ARMAX model well, we will compare it with various existing 
linear and nonlinear models and find out their relations.

(1) Relations with linear ARMAX model 

As described by (2.79), a linear ARMAX model has an ARMAX structure with constant coefficients 

     nm 

            y(t) =  E  aiy(t — i) + E biu(t — i) + E cie(t — i) + e(t). (2.79) 
         i=1i=1 i=1 

Therefore, a hybrid quasi-ARMAX model can be considered to be a generalized ARMAX model 
that has an ARMAX structure with coefficients which are functions of input-output variables. From 

a viewpoint of local linearization, we may consider the hybrid quasi-ARMAX model as a scheme to 

realize local linearization for all operation points. Furthermore, the scheme may also be closely related 

with variable structure techniques for identification and control.
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Figure 2.19: Simulation of the fuzzy inference based multi-models on validation data. The solid line 
shows the true measurements and the dashed line the simulated model outputs.

(2) Relations with modeling scheme based on interpolation theory 
A practical modeling scheme for nonlinear systems is based on interpolation theory [45, 119]. In such 
scheme, the operating region is first divided into several parts. Then rather simple (for instance, 
linear) models are employed as local models to approximate the system in each part of operating 
region (multi-model approach). The total performance of the modeling is finally obtained based on 
interpolation theory. 
  On the other hand, from the expression (2.11), we know that the hybrid quasi-ARMAX model is 
equivalent to a hybrid model combining a linear ARMAX model and a multi-ARX-model consisting 
of several local linear ARX models with employing interpolation using the `basis functions' in the 

NNM. In the multi-ARX-model part, the operating region is divided into M parts and M local ARX 

models has been employed for those parts. Therefore, the hybrid quasi-ARMAX model combines the 

properties of the modeling scheme based on interpolation theory.

(3) Relations with semi-physical model 

Semi-physical modeling is one of approaches using grey-box type models, in which physical insight is 
used to suggest certain nonlinear combinations of measured data signal. These new signals are then 
subjected to model structures of black box character [68, 67]. For example, 

         y(t) = OTvsp(t)(2.80) 
          0T = [01 82 83 94](2 .81) 

wsp(t) _[y(t — 1) y(t — 2) u2(t — 1) u2(t — 2)]T (2.82) 

where the regression vector (2.82) is assumed to be suggested using physical insight. The basic idea 
of semi-physical modeling is to construct a desired predictor of (2.80), where the elements of w(t) can 
be linear as well as nonlinear. As stated in [67], a drawback of the semi-physical modeling procedure 
is the computational complexity which requires both symbolic and numerical computations .
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  Obviously, our objective to achieve the model simplicity in the hybrid quasi-ARMAX modeling is 
the same as that of semi-physical modeling. By comparing our third expression (2.14) of the hybrid 
quasi-ARMAX model with the semi-physical model (2.80), we may find that the hybrid quasi-ARMAX 
modeling scheme is a special type of semi-physical modeling approach. The regression vector  co„  (t) in 
our case is determined using knowledge information by employing nonlinear nonparametric modeling, 
e.g., adaptive fuzzy modeling, 

CoNL, (t) _ [ pT (t), (pT (t) 0 cpT i (t)]T (2.83)

where (pr (t) = [Nf(pf, yp(t)), j = 1, ..., M]. We may expect that less knowledge information and less 
computational complexity are required in our case.

(4) Relations with nonlinear nonparametric models (NNMs) 

A hybrid quasi-ARMAX model consists of a group of certain NNMs. As shown in Fig 2.2, it can be 
seen as a specially constructed associative memory networks, which consists of two hidden layers: the 
first layer (next to the input layer) with weights determined by a set of simplified NNMs. The second 
layer with weights simply taking the time delayed value of the system input and output. As will 
be shown in the followed chapters, it is more suitable for control design and system analysis than a 
traditional neural network. Therefore, the hybrid quasi-ARMAX model may be considered as a NNM 
which is specially constructed by introducing better compromises to the trade-off among structural 
linearity, flexibility and simplicity.

2.6.2 Applications of the Hybrid Model

The hybrid quasi-linear black-box models have been shown to have several distinctive features: struc-
tural linearity, flexibility and simplicity. In this section, we discuss several possible application exam-

ples briefly, some of which will be further discussed in Chapter 4, Chapter 5 and Chapter 6.

'Simulation' or 'Prediction' Applications

In the experimental studies of Section 2.5, we have already shown that the proposed models are 

suitable for such applications. After identifying the models using estimation data, we simulated the 
model on validation data to test the model's qualities. We have shown that the proposed models have 

nice 'simulation' and 'prediction' ability.

Adaptive Control of Nonlinear Systems

Taking the advantage of its flexibility, we may use the hybrid quasi-linear black-box models to re-

place neural networks in most existing neural networks based control systems. Because the proposed 
models are linear in the parameters to be adjusted, we may expect the control systems to have better 
convergence and stability properties. Furthermore, we can construct the hybrid model is linear not 
only in the parameters to be adjusted but also in the one-step past input variable. Then the control 
design of nonlinear systems can be done under the framework of linear control theory based on the 
linear properties. For example, the well known STR controller may be extended to nonlinear cases. 
We will discuss this application in Chapter 6.

System Analysis of Nonlinear Systems

From the expression (2.11), we know that the parameters in the hybrid quasi-ARMAX model have 
useful physical interpretations. Using appropriate estimation approach, the estimate of the parameter 
B may be used as the best linear approximation of the system. And by appropriately selecting the 
'basis functions' in NNM

, the parameters Stj describes a local linear approximation in the region 
around the jth node. These information is obviously useful for system analysis.
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Robust Fault Detection and Control

Among the parameters of the hybrid quasi-ARMAX model,  a;, b; and c; are related to the linear 
property of model, while w„i's stand for the nonlinear property. If we identify the model in such a 
way that the results give an interpretation that a1, b; and c; describes a linear ARMAX model for the 
best linear approximation of the system, while the Aa;t(c2)„J) and Ab;t(w„i) describes the error due 
to nonlinear undermodeling. The hybrid quasi-ARMAX model has potential application to robust 
fault detection and robust control for systems with nonlinearity. Fault detection of nonlinear systems 

using the hybrid quasi-ARMAX model will be discussed in Chapter 5.

2.7 Conclusions

In the toolbox for system identification techniques, one should have black-box models for nonlinear 
dynamical systems available. It is true that it is preferred to use physical insight to build up the 
nonlinear effects in a model, since this typically can be done using fewer parameters. However, such 
insight is not always available, and if linear approximative models are not good enough, there is no 
other choice than to turn to black box structures. 

  This topic is not at all new. The "classical” literature on the subject seems to have concentrated 
on global basis function expansions, such as Volterra expansions. These have apparently had limited 
success. The topic was really revived by the onslaught of neural network applications. Recently, some 
authors have suggested to use the nonlinear black-box models based on nonlinear structures such as 
neural networks or wavelet networks etc., see [92, 46]. However, the latter ones have resulted in an 
abrupt abandonment of the the highly successful linear black-box modeling methods as soon as a 
small amount of nonlinearity is introduced. 

  In this chapter, we have introduced a hybrid (linear-nonlinear) model structure. The hybrid 
modeling scheme can be considered as an approach to construct a model structure which is between 
a linear black-box model structure and a certain nonlinear black-box model structure. By finding a 
better compromise to the trade-off between the model flexibility and the model simplicity, we have 
obtained a hybrid model equipped with a linear structure, flexibility and simplicity. It is easier to do 
nonlinear system identification with the new model structure, since it has better convergence properties 
and better properties for dealing with correlated noise. The effectiveness has been confirmed through 
numerical simulations. In the following chapters, it will be shown that the hybrid models are useful 
in several applications (fault detection, control design, etc.). 

  One of the distinctive features of the new model structure is that both observed data and knowledge 
information can be used in the parameter estimation. We have suggested some strategies and hints 
for incorporating knowledge information. In order to make the hybrid modeling scheme less heuristi-
cally dependent, further investigations are however needed to develop an algorithm for incorporating 
knowledge information in the modeling or during the parameter estimation.
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3.1 Introduction

In many model-based approaches, it is an essential problem to build up a good model. System 

identification has been known as such a technique. When model structure is determined, the main 
task of the identification is to estimate model parameters, which is usually determined as the global 

minimum point of the loss function that is not guaranteed to be unimodal. There have been proposed 

many identification algorithms, most of which are optimization-based methods [94, 26, 70]. However, 
it should be noticed that there is a potential risk that an optimization-based algorithm is stuck at a 
local minimum, which may result in a poorly identified model. Such a risk will further increase in the 
presence of unmodeled dynamics [54]. 

  On the other hand, in the hybrid quasi-linear black-box modeling and identification approach 
(see Chapter 2), one usually benefits by implementing the identification in a hierarchical way, i.e., 
the system is first identified by using a corresponding linear model and the estimate of the linear 

approximation is then used as prior knowledge  in the second stage identification. This is true because of 

the following two reasons: (1) the parameters of the hybrid quasi-linear black-box model corresponding 
to the linear part are not all independent of the parameters of nonlinear part. This allows to model the 

linear characteristics first and thus improve the convergence property; (2) it is found experimentally 
that a better noise model can be obtained in the first stage than in the second stage [36, 37]. There 
inevitably exists large unmodeled dynamics in the first identification stage. It therefore is crucial to 
develop a system identification algorithm which may find global minimum reliably. 

  There is no easy solution to the multimodality problem. It is usually well used effort to spend 
some time to come up with a good initial value where to start the iterations [92]. This however is not 
a realistic option in such cases where little prior knowledge is available. A better option is usually to 
search for a good initial value or to estimate the parameters directly using global searching techniques 
such as random search and genetic algorithm [88, 90, 51]. However, since the searchings based on 
these techniques are rather time-consuming, it is difficult to implement the techniques in the practical 
identification algorithms. In this chapter, an efficient system identification algorithm, which may find 
"global minimum" 1 of multimodal loss function reliably, is developed on the basis of an effective 
combination of a Genetic Algorithm (GA) and an optimization-based method. 

  GA is a probabilistic search algorithm based on a simple mechanics which models on genetic 
processes occurring in nature [24, 14]. Recently, GA has attracted much interest in system control 
and identification community [51, 114, 100], because it has high ability for global optimization. It 
is well known that GA is rather time-consuming algorithm, some work should therefore be done to 

improve its efficiency. There have been proposed several hybrid GAs by combining GA with certain

1In this paper
, the term "global minimum" is used in the sense of engineering. This means that "global minimum" 

includes the allowable points around the true global minimum.
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local searching method  such as optimization-based method or simulated annealing [47, 73]. However, 
few of these hybrid GAs can be applied efficiently to system identification. In this chapter, we propose 
a Non-Standard GA (NSGA) which is suitable for system identification. In the NSGA, a new GA 
operator named as development is introduced to improve its convergence property, which is inspired 
by the fact that living begins adapt themselves to their environment and may be performed by using 
an optimization-based method. In this way, the NSGA evolves not only in a probabilistic manner 
(e.g. crossover, mutation) but also in a non-probabilistic manner (e.g. development). Combining this 
NSGA with optimization-based method, we call perform a hybrid identification, in which a nice initial 
value is first searched using the NSGA and then the identification is continued by an optimization-
based method. The hybrid identification algorithm constructed in this way combines the reliability 
properties of the GAs with the accuracy of optimization-based method, while requiring a computation 
time only slightly higher than the latter. Furthermore, it is possible to estimate the parameters of 
noise model, which is difficult for the existing hybrid GA approaches. 

  The chapter is organized as follows: Section 3.2 describes the problem to be solved. Section 3.3 
discusses briefly the optimization-based approaches, in which prediction error method (PEM) is used 
as an example. In Section 3.4, we propose an Non-Standard GA by introducing a new GA operator 
named as development. The hybrid identification algorithm is described in Section 3.5. Several 
numerical simulations are carried out to test the effectiveness of the proposed algorithm in Section 
3.6. Finally, Section 3.7 is devoted to discussions and conclusions.

3.2 Problem Description 

Let us consider the problem of estimating a model for a dynamic system on the basis of the observation 

of an N point input-output data sequence ZN = [{ut},{yt}]. For simplicity we assume that the 
observed data ZN is generated by a SISO system. The system is considered to be a general one, 
which may be linear or nonlinear, time-invariant or time-variant and even with time-delay. 

  When identifying the system, we assume that the parametric model is a linear time-invariant 
ARMAX model 

A(q-1, B)y(t) = B(q-1, 0)u(t) + C(q-1, 0)e(t)(3.1) 

with 
A(q-1, B) = 1 + alq-1 + ... + anq-n 
B(q-1, B) = big-1 + ... + bmq-m(3 .2) 

                                9) = 1 + cl q-1 + ... + c~q-^ 

where 0 = [al ... an b1 ... bm c1 .., ci]T is parameter vector 2, y(t) is the output at time t (t = 1, 2, ...), 
u(t) the input and e(t) the white noise with zero mean. 

  In order to estimate the model parameter 0, let us introduce a regression vector 

(P(t, 0) = [-y(t - 1) ... - y(t - n) 

E(t - 1, B)]T(3.3)

Then we can rewrite (3.1) into the linear regression from 

                         y(t) = ya(t, 0)T 6 + e(t). 

E(t, B) in cp(t, B) denotes prediction error defined by 

E(t, 6) = y(t) - (t, B) = y(t) - cp(t, B)T B 

  For this identification problem, most numerical schemes select 0 = 

VN(e) =  E Ily(t) - co(t,B)Toil 
t-1

B so that

(3.4)

(3.5)

(3.6)

21n this chapter
, the notation 0 denotes in Chapter 2 for simplicity.
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is minimized for some norm  II *11, that is 

B = arg min {VN(0)} . (3.7)

A typical choice is a quadratic norm

VN (B) = —ATE I y(t) -~P(t, 9)7'912.  
                                               c=1 

However, it should be noted that the loss function (3.8) is multimodal 
model C(q-1)e(t) in (3.1).

(3.8)

because there exists a noise

3.3 Optimization-Based Methods 

An optimization-based numerical search is the most commonly-used method to estimate the model 
parameters B. Without loss of generality, we will use Prediction Error Method (PEM) in our discussion. 
It is well known that minimizing (3.8) with respect to B can be carried out by a recursive PEM 
algorithm [70] 

9(t) = 9(t — 1) -}- L(t)r(t, 9(t — 1))(3.9) 

                    L(t) =P(t — 1)0(t,(t — 1))(3.10) 
                          1 + r(t)0(t, 9(t - 1)) 

                    P(t) = P(t — 1) — L(t)r(t)(3.11) 

where r(t) = i/,T (t, 9(t - 1))P(t - 1) and (t, 9(t — 1)) is defined by 

                    C86(t,e)1T v(t,e(t-1))  aBC 9 t — 1)) 
a—a(t-1) 

  The derivation of the algorithm can be found in Section 2.5 of Chapter 2. It should be point 
out that because the loss function is not unimodal, the algorithm (3.9)-(3.11) has a potential risk 
to get caught at a local minimum. The risk has been found to be increased when the modeling 
contains unmodeled dynamics. In order to find the global minimum reliably, we shall develop a 
hybrid identification algorithm by combining GA with the PEM, in which an NSGA is introduced to 
search for a better initial value.

3.4 Non-Standard Genetic Algorithm (NSGA) 

Genetic Algorithms, which model on the genetic processes occurring in nature, are adaptive methods 
that may be used to solve search and optimization problem [5]. They work with a population of 
individuals (also known as chromosome), which represent possible solutions to a given problem. Each 
individual is assigned a fitness score according to how good a solution to the problem it is. The 
highly fit individuals are given opportunities to reproduce, by cross breeding with individuals in 
the population. The least fit of the members of the population are less likely to get selected for 
reproduction, and so die out. Over several generations, individuals tend to be identity and the 
algorithm is converged. 

  Figure 3.1 shows the principle of the random search via crossover and mutation in a conventional 
GA. The search based on this kind of "probabilistic" searching rules has been demonstrated to be 
effective for solving the multimodality problem. However, since individual developmental process is 
disallowed in a conventional GA because of premature problem, its convergence speed is rather low. 
Furthermore, the conventional GA can not be applied to solve the multimodal problems resulted from 
noise models because the fitness is difficult, if not impossible, to calculate. In order to solve this 
problem and to improve the convergence properties of GA, some improvements should be made for
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Figure 3.1: Crossover and mutation in a conventional GA

the GA. Considering the peculiarity of system identification, and the fact that living beings adapt 
themselves to their environment, we introduce a limited development to improve the convergence 

property of GA and also to make it possible to calculate the fitness of individual. The improvement 
will be realized by introducing a new GA operator named as individual development or development 

and performing it by the optimization-based method. That is, before the fitness is evaluated, each 

individual is allowed to develop itself via optimal rule with a limited degree. We will name the 
hybrid GA introduced in this way as Non-Standard GA (NSGA). The NSGA evolves in a manner of 
"probabilistic optimal probabilistic optimal = ...", which combines the advantages of both 
GA and optimization-based method. It provides a better compromise to the trade-off among the 
reliability, accuracy and computation time. 
  Figure 3.2 show the scheme and the structure of the Non-Standard Genetic Algorithm (NSGA). 

There two difference between the NSGA and a conventional GA. One is that the NSGA contains a new 
operator called development which is based on optimal rule. The second is that the NSGA employs a 
real coded GA, in which the chromosome vector is a vector of floating point numbers instead string 
of bits. We will discuss the NSGA follows in details.

3.4.1 Representation of the Solutions 

To solve a problem with GA, potential solutions have first to be encoded as chromosome. Generally, 
chromosome has been string of bits, but also other alphabets can be used [33]. For an ARMAX 
model described by (3.1), it would seem particularly natural to represent the genes directly as real 
parameters. Then a chromosome vector is a vector of floating point numbers. This is known as Real 
Coded GA. 

ct                                 = (ai, ..., an, bi, ..., bm, ci, ..., ci)(3.12)

3.4.2 Development and Fitness Evaluation 

In a genetic algorithm, selection is done based on the fitness of individual . A fitness function should 
be chosen that the fitness of an individual indicates the "goodness" of the individual which represents 
a solution to the problem. In the case of the PEM, the fitness function could simply be the inversio n 
of the variance of prediction error or the loss function (3.8). 

  Generally, there is no individual developmental process in a conventional GA. In our NSGA, we 
have introduced a limited development via optimal rule to each individual. This can improve the 
convergence of the GA. The degree of the development should be chosen carefully according to each 
problem to be solved in order to keep the reliability.
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  In the NSGA, fitness evaluation and development are done in one function described as (3.13). By 
giving the old individual (old_indi), the degree of development (m) and input-output data Zi°, the 
function will return developed individual (new_indi) and the fitness (f it). 

[fit, new_indi] = RPEM(Zm, old_indi, m)(3.13) 

where RPEM is the recursive PEM described by (3.9)-(3.11), and the fitness is calculated by inverting 
the variance of the variance of prediction error 

       _1              fat ------------------------------+
,l-n~;m1E2(t,9(t-1))(3.14) 

where )3 is an appropriate constant, which is introduced to change the shape of fitness function.

3.4.3 Crossover and Mutation 

In the case of Real Coded GA, each of the randomly chosen positions is naturally located between two 
genes. Usually, two strategies, Simple Crossover and Max-Min-Arithmetical Crossover can be used 
[33]. 
   Suppose two chromosomes of Ca = (ci, •••, ck, ...cH) and C6 = (el, ..., ek, ...CH) to be crossed. For 
Simple Crossover, two offsprings will be obtained: 

Ca+1 = (C1) ..•, Ck-1, Ck, ...CH) 
      t+1(3.15)                                       C

6= (C1, •••, Ck-1 a Ck, --CH) 

where the crossover point (between k — 1 and k) is determined randomly. And for Max-Min-
Arithmetical Crossover, four offsprings will be generated: 

Cl+l =aCa+(1—a)C6 
             CZ+1 = act + (1 — a)Ca(3 .16) 

C3+1 = (min{cl, cl }, •••, min{cH, cH}) 
C4+1 = (max{cl, cl }, ..., max{cH, EH}) 

where a E [0,1] is a random value.
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  Crossover is not usually applied to all pairs of individuals selected for mating. A random choice is 
made, where the likelihood of crossover being applied is typically between 0.6 and 1.0. 

  Unlike in a standard GA, the mutation in a Real Coded GA is applied to each child individually. 

It randomly alters each gene with a small probability. A non-uniform stage can be used  [33]. 
  Suppose chromosome Ct = (c1, ..., Ck, ...CH) is selected to be mutated, the result chromosome will 

be Ct+1= (cl i ..., Ck, ...Cq ), with

    JCkL(t,Cmax— Ck) if r = 0 
 _ Ck1

1 Ck — A(t,Ck — Cmin) if r = 1
(3.17)

where r is a randomly generated binary digit, ck E [Cmin, Cmax], and the function 0(t, y) returns a 
value in the range [0, y] such that the probability of z(t, y) being close to 0 increases as t increases. 
This property causes that the operator makes a uniform search into the initial space when t is small, 

and very locally at later stages.

3.4.4 Reproduction 

During the reproductive phase of the GA, the individuals of the next generation should be selected 
based on the rule of natural selection: The highly fit individuals are given opportunities to reproduce, 
by cross breeding with individuals in the population, while the least fit of the individuals are less likely 
to get selected for reproduction, and so die out. 

  Usually reproduction is carried out as a two-stage process. It starts with the current popula-
tion. Selection is applied to the current population to create an intermediate population. Then the 
next population is created from the intermediate population. Following two strategies can be chosen. 

  In one strategy, the individuals of intermediate population are generated from selected parents 
which give their offsprings proportional to their fitness. Then pairs of individuals are chosen randomly 
as parents for mating by crossover and give their offsprings to form the next population. 

  In the other strategy, intermediate population is generated by including the individuals of current 

population and their offsprings generated by applying Max-Min-Arithmetical crossover. The fitness of 
each individual of the intermediate population is evaluated. Then good individuals of the intermediate 

population are chosen to form the next population. This method is known as truncation(or extinctive) 
selection.

3.5 Hybrid Identification Algorithm

A hybrid identification algorithm based on GA and optimization-based method can usually be de-
scribed as a two-stage process, in which a better initial value is first searched using GA, and then the 
identification is continued by optimization-based method. We here will follow this idea to construct 
a hybrid identification algorithm. The NSGA discussed in the previous section is used for searching a 
better initial value. Such a hybrid identification algorithm can be shown in Fig. 3.3 (left).

3.5.1 Identification Algorithm

The hybrid i dentification algorithm can be summarized in the following steps:

• Step 1: Initialize parameters of the NSGA 

 Specify population size, crossover probability, mutation probability , development step and max-
 imum generation with appropriate values.

• Step 2: Generate the first generation 

 If there is no a priori knowledge, individuals in the first generation are usually given to be 

  random values.

• Step 3: Search with the optimal rule and evaluate the fitness 

 Develop each individual with limited degree based on optimal rule (3.9)-(3.11) and evaluate the 
 fitness of each individual via (3.14).
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      On-line implementation 

identification algorithm

  • Step 4: Search with the probabilistic rules 

    Apply crossover operator (3.15) or (3.16) and mutation operator (3.17) to individuals of popu-
    latioti and then reproduce offsprings. 

  • Step 5: Reproduce and select new generation based on the fitness 

  • Step 6: Determine whether the algorithm is converged or maximum generation is reached. If 

     the answer is 'no', go to step 3 otherwise go to next step. 

  • Step 7: Identify model parameters 

    Average individuals  in the final generation to obtain a nice initial value and then continue the 

    identification using (3.9)-(3.11) 

3.5.2 On-line Implementation of the Algorithm 

The algorithm will be implemented on-line. Figure 3.3 (right) shows an example of such implemen-
tation. For the case where the specifications of the NSGA are that population = 15, development 

step = 30, actual generations = 6, the computation time for the NSGA is approximately equivalent to 

that of a 2700-step PEM algorithm. Since with the initial value searched by the NSGA, the number 

of the identification step in the second stage by PEM is usually far smaller than that of a PEM with 

random initial value, the computation time for the hybrid identification algorithm is not increased 

significantly.
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3.6 Numerical Simulations

In this section, some numerical simulations are carried out to demonstrate the effectiveness of the 
proposed hybrid identification algorithm. Since we mainly want to show the reliability of the hybrid 
identification to find global minimum, the simulations will be carried out as Monte Carlo tests. The 
reliability will be compared with the conventional optimization-based method (prediction error method 
(PEM)) which has risk to be stuck at a local minimum. 

  In  each simulation, first, 2000 input-output data sets are sampled from the system; Then Monte 
Carlo tests with 300 trials are conducted by using both the proposed hybrid method and the PEM, 
in which the initial values of each trial are given randomly. Considering the fact that the value 
of a2 = EN 1 e(t)2/N becomes larger when an algorithm is stuck at a local minimum, we show 
the results in histogram of Q2. It should be noticed that the reliability of the proposed approach is 
demonstrated by the concentrated histograms of prediction errors obtained via Monte Carlo test, while 

the distributed histograms of prediction error obtained via Monte Carlo test of PEM with random 

initial value are mainly used to show the multimodality of loss function. 
  In these simulations, when PEM is used, the identification begins with a randomly given initial 

value and continues for 2000 steps; When the proposed hybrid method is used, a better initial value 

is searched using the NSGA, where the parameters of the NSGA used are population= 15, crossover 

probability=0.8, mutation probability=0.1, development step=30, maximum generation=10. Then the 
identification is continued using the PEM for 500 steps. 

  Example 1: Consider a second order SISO system described by

G(s)= ko

s(To s + 1) + ko (3.18)

where To = 0.74, ko = 3. After being sampled with a period of 0.25sec, the discrete-time system is 
corrupted by a non-white noise sequence {v(t)}:

v(t) = e(t) + cle(t — 1) + c2e(t — 2) (3.19)

where c1 = —1.2, c2 = 0.5, and e(t) E N(0, 0.1) is white Gaussian noise. The input of the test is 
pseudo-random binary sequence (PRBS). 

  When the system is identified, a second order ARMAX models described by (3.1) is used as model, 
where n = m = I = 2. Since there exists a noise model in (3.1), the loss function is multimodal hence 
there is a risk that an optimization-based method such as the PEM is stuck at a local minimum . 
Figure 3.4 (left-upper) shows the results of Monte Carlo tests in histogram, where x-axis denotes 13-2 
and y-axis denotes numbers(probabilities), (a) is the result using proposed method and (b) is the 
result using the PEM. 

  Example 2: In this example, we consider a discrete-time SISO system governed by

y(t) = (1.5 — 0.01y(t — 1))y(t — 1) — 0.7y(t — 2) 
    + 0.1u(t — 1) + 0.1u(t — 2) + v(t) (3.20)

where v(t) is a non-white noise described by (3.19) and u(t) is a PRBS. 
  The model used to identified this system is the same as that of example 1. The results of Monte 

Carlo tests are shown in figure 3.4 (left-lower) where (a) is the result using proposed method and 
(b) is the result using the PEM. Since in this example, the nonlinearity of system caused unmodeled 
dynamics, it seems that the probability of an optimization-based method being stuck at local minima 
was increased. However, our proposed method did not get caught in all the trials. 

  In the Example 1 and Example 2, we have shown that the proposed algorithm is very efficient, 
which can find the "global minimum" reliably (see concentrated histograms Fig. 3.4 (left) (a) ) using 
short data sequence (500) and reasonable computing time (about 3200 steps of PEM) in multimodality 
problems (see distributed histograms Fig. 3.4 (left) (b)). On the other hand, the proposed method is 
basically an optimization-based method (PEM), while only the initial value is searched by the NSGA. 
In next example, we will compare it with those using initial values given in different ways .
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  Example 3: a third order SISO system governed by (3.21) is considered as true system, in which 
a time delay of 0.25sec is added to increase the unmodeled dynamics. 

ke—TS 
G(s) = 

s(Tos+WTI s + 1) + k(3.21) 

where k = 2.5, To = 0.1, Tl = 0.5, T = 0.25sec. 

  The sampling period and the noise sequence for the discrete-time system and the identification 

model used are the same as those of example 1. 

  In the Monte Carlo tests, each of trials is carried out by PEM with 2000 steps using an initial 

value (a) searched by using the NSGA; (b) given randomly; (c) a; and b1 searched by LS while c; given 
randomly. 

  Figure 3.4 (right) shows the results of Monte Carlo tests. We can see that the proposed method can 
achieve "global minimum" reliably, while other two methods can not. This example again confirms 

the effectiveness of the proposed method. 

  Table 3.1 shows mean values of the identified parameters and their standard variations in the 

Monte Carlo tests of example 3. We can see that using the proposed method, the standard variations 
of identified model parameters are very small.
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Table 3.1: Mean values and Standard variations
PEM with

 random initial value

PEM with LS estimation

as initial value
the proposed

method

Mean

Value

Standard

Variation

Mean

Value

Standard

Variation

Mean

Value

Standard

Variation

at -1.3163 0.4-444 -1.4972 0.1451 -1.5544 0.00003

2 0.6123 0.3360 0.7585 0.1086 0.7707 0.00001

bt -0 .0919 0.0864 -0 .1008 0.0444 -0 .0777 0.00004

b2 0.2126 0.1072 0.2325 0.0585 0.2638 0.00002

ci -0 .6442 0.7078 -0.9871 0.3365 -1.2410 0.00026

C2 0.3438 0.1669 0.4082 0.1512 0.5082 0.00027

3.7 Discusions and Conclusions

It has been shown that when the loss function is not unimodal, there is a potential risk that an 
optimization-based identification algorithm is stuck at a local minimum. The risk has been found to 
be increased in the case of presence of unmodeled dynamics. This usually results in a poorly identified 
model. It therefore is crucial to develop an identification algorithm which may find global minimum 
reliably. 
  Many GA based hybrid methods have been proposed to solve the local minimum problems. From 
the viewpoint of system identification, there are two problems in the existing hybrid GAs: (1) few 
of them can be applied  efficiently to system identification; (2) they usually can not solve the local 
minimum problems resulted from noise models. In this chapter, we have first proposed a Non-Standard 
GA by introducing a new GA operator named as development which is performed by an optimization-
based method. The NSGA is typically suitable for system identification. By using the NSGA to 
search a better initial value for an optimization-based algorithm, we have then developed a hybrid 
identification algorithm. The effectiveness of the algorithm has been confirmed through numerical 
simulations. The proposed hybrid methods combines the reliability of GAs with the accuracy of 
optimization-based methods, while requiring a computation time only slightly higher than the latter . 
Furthermore, it can be used to solve the local minimum problem resulted from noise model. 

  In our current research, we have applied the hybrid identification algorithm to fault detection and 
nonlinear system identification [54, 36], and found it very effective and useful. We thus believe that 
the reliably identification algorithm will find wide applications in the practical cases. 

  It is known in the literature that a GA-based identification method can be applied not only to 
solve multimodality problem, but also to increase the robustness against disturbance. In our future 
research, we will investigate the robustness against disturbance. Furthermore, investigations are also 
needed to improve the efficiency and the effectiveness when the algorithm is applied to the case where 
there are a rather large number of parameters to be estimated.



 Chapt  er 4

KDI-Based Robust Fault

Detection of Dynamic Systems

4.1 Introduction

Model-based fault detection approach has received an increasing attention recently [20, 41] because 
of that it is portable and the model parameters provide useful information for fault analysis. One 
of the model-based methods is based on parameter estimation. The parameter estimation approach 
is based on the assumption that the faults are reflected in the physical system parameters such as 
friction, mass, viscosity, capacitance, inductance, etc. The basic idea of the detection method is that 
the parameters of the actual process are repeatedly estimated on-line using well known parameter 
estimation methods and the results are compared with the parameters of the reference model obtained 
initially under fault-free conditions. Any substantial discrepancy indicates a change in the process 
and may be interpreted as a fault [41, 87, 26, 61]. A typical parameter estimation approach is the 
KDI-based fault detection scheme proposed by K. Kumamaru and coworkers [61, 60], which use 
Kullback discrimination information as an index for model discrimination. In Appendix D, we give a 
detail review of the KDI-based fault detection scheme and point out that there were two important 
assumptions in the scheme, one of which is that there is no unmodeled dynamics in the modeling. 
However, in practical applications, model uncertainties are inevitable for the following reasons: 1) the 
system of interest is usually unknown to some extent. An exact mathematical modeling of the system 
is impossible; 2) a low complex (for instance, low order, linear) model is often used for convenience, 
since a high order or nonlinear model may make fault analysis difficult. Therefore, it is crucial and 
highly motivated to relax the assumption, i.e., to extend the scheme to the case where there exists 
model uncertainty. 

  Recently, it attracts much interest in the challenging problem to increase the robustness of a 
model-based fault detection and isolation (FDI) methods with respect to model uncertainties, see e.g. 
[20, 107]. The robust FDI methods proposed so far are mainly realized by the following way: first 
assume that the fault and the model uncertainty are mutually independent extra input signals of the 
system, then develop a residual generation scheme which is sensitive to fault but insensitive to the 
model uncertainty. A typical such scheme is proposed by Frank and Wunnenberg (1989) [22], Patton 
and Kangethe (1989) [84] based on observer design approaches, in which the robustness is achieved 
by appropriately design the observers. The most attracting feature of their approaches is that under 
certain ideal conditions, a full decoupling can be reached, which achieves invariance between different 
fault effects or between the effects of faults and of unknown inputs (i.e. disturbance, uncertainty, 
...) independent of the fault modes. In their approaches, however, the distribution matrices of fault 
and unknown inputs should be known in the state-space representation. This is sometimes infeasible, 
especially in the case where an input-output model has to be used. 

  In this chapter, we propose a robust input-output model-based fault detection scheme using robust 

identification techniques, which is obtained by extending the KDI-based fault detection scheme to the

53
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Figure 4.1: Robust fault detection by using decision making scheme
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Figure 4.2: The basic structure of KDI-based robust fault detection system

case where there exists model uncertainty [55]. It is reasonable to assume that in parameter estimation 
the effects of modeling error and of system fault are different, because obviously the former may have 
random properties. Based on this assumption, if we can derive an index for evaluating unmodeled 
dynamics, a robust fault detection can be achieved by developing a decision making scheme so that 
the fault detection is carried out on the basis of the index of KDI, the index of unmodeled dynamics 
and other information (variance of disturbance, etc.), see Fig. 4.1 

  It follows that the basic structure of KDI-based robust fault detection system (FDS) can be shown 
in Fig. 4.2. It contains three principal parts:

(1) Robust Identification

In this stage, a robust identification is carried out so that the monitored system is described by an 
identified mathematical model and the modeling error is quantified and given as some forms . In the 
next section, we will suggest two robust identification methods for this purpose .

(2) Calculation of the KDI

The identified model will be compared with the reference model obtained initially under fault -free 
conditions. This model discrimination is executed via the KDI . The KDI, a sensitive fault detection 
index, is analyzed so that its evaluation for finite but fairly large data sets can be done in a feasibl

e 
way, in which the descriptions of unmodeled dynamics are incorporated . Furthermore, several indexes 
for evaluating the unmodeled dynamics are also derived based on the results o f the KDI analysis

. We 
will discuss these in Section 4.3.
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(3) Fault Decision Scheme 
Substantial discrepancy of the identified models indicates a change in the system of interest which 

may be interpreted as a fault. However, the index of the KDI is sensitive to the modeling error. In 
order to realize the robustness, fault decision making schemes are developed so that the fault detection 

can be carried out on the basis of the KDI, the indexes of unmodeled dynamics and other information 

about the system. We will discuss this issue in Section 4.4. 

  This chapter is organized as follows: Section 4.2 suggests two robust identification methods based 
on or modified from the existing robust identification methods. In Section 4.3, we analyze the KDI into 

a feasible form, in which the description of unmodeled dynamics is incorporated. Furthermore, several 

indexes for evaluating unmodeled dynamics are introduced. In Section 4.4, fault detection making 

schemes are developed for realization of robustness on the basis of the KDI, the indexes of unmodeled 
dynamics and other information about the system. Several numerical simulations are carried out to 

test the effectiveness of the proposed robust fault detection schemes in Section 4.5. Finally, Section 

4.6 is devoted to discussions and conclusions.

4.2 Robust Identificaiton

In the literature, `robust identification' basically means the identification for robust control design. 

Since in robust control system the robustness is considered in the sense of stability, it is required 
that the modeling error is characterized as a quantity with a suitable 'bound'. On the other hand, 
it seems that there rarely exist publications discussing robust identification for system analysis such 

as fault detection. In this chapter, we will develop a robust fault detection scheme based on robust 

identification methods. Since in a fault detection system, the robustness is considered in the sense of 
detecting accuracy, the size of the modeling error will play a more important role than the 'bound'. 

Because of this difference, the results of existing robust identification for control design may not be 

able to be applied directly to the robust fault detection design. Hence some modifications are needed. 
  In Appendix E, we briefly review the existing robust identification methods with emphasis on 

Goodwin's stochastic embedding (soft bound) approach [25] and Wahlberg's hard bound approach 
[105]. Considering the particularity of KDI-based fault detection scheme, we will suggest two ro-
bust identification methods for fault detection design based on or modified from the existing robust 
identification methods.

4.2.1 Robust Identification with Soft Bound Error Description 

In the stochastic embedding approach, modeling error is characterized as a random quantity with soft 
bound. The stochastic property of the unmodeled dynamics can easily be incorporated into the KDI. 
We here will employ the stochastic embedding approach to realize a robust identification for fault 
detection. 
  Consider a discrete-time linear SISO ARMAX system described by: 

S : Ao(q-1)y(t) = Bo(q-1)u(t) +Co(q-1)e(t)(4 .1)                          e(t) E N(0, ag) 

where Ao(q-1), Bo(q-1) and Co(q-1) are scalar polynomials in the backward shift operator q-1 with 
appropriate orders. And assume that Ao, Bo and Co are described by 

Ao (q-1) = A(q-1, B) + AA(q-1) 
Bo(q-1) = B(q-1,0) +Bo(q-1)(4.2) 
Co (q-1) = C(q-1, e) 

where AA(q-1) and Bo(q-1) denote unmodeled dynamics. The A(q-1, B), B(q-1, B) and C(q-1, ~) 
are scalar polynomials in the backward shift operator q-1 with the orders n, m and 1, respectively. 

A(q-1, 0) = 1 + alq-1 + ... + anq-n 
B(q-1, 0) = blq-1 + ... + bn,q-m(4.3) 
C(q-1, 0 = 1 + cl q-1 + ... + ciq-1.
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  Now according to the basic idea of Goodwin's Stochastic Embedding Approach [25], a stochastic 
prior model may be introduced in order to define the distribution of unmodeled dynamics. 

 LM 
AA(q-1) =  >  rlalq—i Bo(q-1) = 716i4-`(4.4) 

         i=1i=1 

7/ = [71a1... 7/aL 7/61 ... 7/6M]T E N(0, CO) (4.5) 

where 7/ai (i = 1, ..., L) and j61 (i = 1, ..., M) are assumed to be mutually independent. 

(1) Parametric Model 

It follows from above assumptions that the parametric model is given by 

A4(0,0 : A(q-1, B)y(t) = B(q-1, B)u(t) + w(t)(4.6) 

                      w(t) = 0(t)71 +C(q-1,.)e(t)(4.7) 

where 
B = [a1 ... an bi ... b,,,]T(4 .8) = [diag{C,1} 02 c1 ... cl]T 

             z/i(t) = [-y(t - 1) ... - y(t - L) u(t - 1) ... u(t - M)]. 

Introduce the following notations 

G07-1,0) = B(q-1, B)/A(q-1, B)(4.9) 

AG(q-1)u(t) = 0(t)1/A(q-1, B)(4.10) 

H(q-1, 0) = C(q-1,-1, 9).(4.11) 
Then the model (4.6) and (4.7) can be expressed as 

               y(t) = G(q-1, 9)u(t) + AG(q-1)u(t) + H(q-1, 0)e(t)(4.12) 

where 0 = [0T ~T]T 

(2) Estimation of B and e 
Since the term w(t) in (4.6) is a Gaussian correlated noise, it may be treated as an MA noise process. 
In this way, the vector B can be estimated by using the prediction error method (PEM), while the 
vector 1; can be estimated by applying the maximum likelihood (ML) method in (4.7) with the data 
6)(0 calculated from B. 

  In order to identify C,), let us introduce the following parameterization similar to [25]: 

E{7/ai} = cEa(A )iE{7)6i} = ab(Ab)'• (4.13) 

The parameter a thus becomes 

    CT                        = [aa, Au/ ab, Ab,O2 , Cl, ... , Cl] (4.14) 

Now introduce a vector defined by 

                     W = [6.(1) w(2) ... w(N)]T(4 .15) 

Then the corresponding likelihood function p(Wle) is subject to N(0, E) because of the assumptions 
of (4.1) and (4.5). The estimation of a can be obtained by maximizing the log-likelihood function 
1(n) 

                  = arg Max{/(WIe)}(4 .16)
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where 

 l(WK) = —2logdetE —2WTE-1W+const(4.17) 
with 

E = TCoxYT + E{VVT } 
              V = [v1 v2 ... UN]T(4.18) 

                        = [,b(1)T 0(2)T ... z/i(N)T]T 

and vt = C(q-1, e)e(t). 
  When optimization-based methods such as PEM and ML are used, the parameter estimates are 

determined as the global optimal point of criterion function. However, there is a potential risk that an 

optimization based method is stuck at a local optimum when the criterion function is not unimodal 

[94]. Moreover, the risk has been found to increase in the presence of unmodeled dynamics [54]. 
This problem can be solved by using our proposed hybrid identification method which consists of an 
effective combination of a genetic algorithm (GA) and an optimization-based method. The hybrid 
identification is executed by the optimization-based method using a nice initial value searched by a 
Non-Standard GA (NSGA). The NSGA evolves not only in probabilistic manner (e.g. crossover and 
mutation) but also in non-probabilistic manner (e.g. development), see Chapter 3 or [38] for more 
details.

4.2.2 Robust Identification with Direct Error Description 

In the case of system analysis using black-box model, a comparatively simple model is occasionally 
used for convenience. For example, a linear ARMAX model is used to deal with a system containing 
nonlinearity. Two reasons may be considered for the use of simplification: (1) it is easy to realize a 
repeated estimation on-line for a simple model; (2) the parameters in a simple model may contain 
more physical interpretation for fault analysis. The unmodeled dynamics resulted from such a simple 
model will contain some characteristics, which can no longer be described by the stationary stochastic 
process model. This fact motivates us to develop an alternative approach for describing the unmodeled 
dynamics. 
  Let us first make a comparison for Goodwin's soft bound approach (SBA) and Wahlberg's hard 
bound approach (HBA). For a model given by 

                 y(t) = G(q-1, O)u(t) + LG(q-1, C)u(t) + v(t), (4.19)

their difference can be described as

 G(q-1,  B) OG(q-1, e) v(t)
SBA G(q-1, B) stochastic description stochastic description 

HBA G(q-1, B) deterministic description deterministic description

  Another one which is closely related with Wahlberg's hard bound approach is the model reduction 

approach proposed by E.W. Bai in  [2]. In Bai's approach, the order of the estimate model is first 
set to be high enough so we can assume that the estimate is close to the true plant. Then by model 

reduction, a low-order approximation of the estimate is obtained. The difference between the estimate 
model and its low-order approximation may be considered as an estimate of uncertainty. In order to 

apply these two approaches to robust fault detection, the following modifications are required: 

  • A stochastic description for the disturbance v(t) should be assumed in favor of the KDI-based 
    fault detection scheme.

  • Usually, B and 1; are estimated by optimizing the same criterion function. In favor of repeatedly 
    estimating 0 on-line for parameter estimation based fault detection, B and should be estimated 
    by optimizing separate criterion functions. In order to make such estimation possible, B is 

    required to be a redundant parameter vector 1. For this purpose, hierarchical models will be 
     constructed. 

'Redundant parameter vector Let B and 6 be two parameter vectors of the model M{0,6}. The vector B is said to 
be a redundant parameter vector if for any given 0, 6 and 00, there exists a 6' that M{0,0 = M{Bo, e'} holds.
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(1) Hierarchical ARMAX Modeling 

Let us consider a system described by (4.1). Assume that  Ao(q-1), Bo(q-1) and Co(q-1) are described 
by 

Ao(q-1) = A(q-1,0) + At(q-1) 
Bo(q-1) = B(q-1, 0) + Bp(q-1)(4.20) 
Co (q-1) = C(q-1, 0) + CA (q-1) 

where Ap(q-1), B6,(q-1) and Cp(q-1) denote modeling uncertainty. The A(q-1,0), B(q-1,0) and 
C(q-1, 0) are scalar polynomials in the backward shift operator q-1 with the order n, m and 1, 
respective 

A(q-1, 0) = 1 + a1q-1 +...+  anq-n 
B(q-1, 0) = b1 q-1 + ... + bmq-m(4.21) 
C(q-1, 0) = 1 + co-1 + ... + caq-~• 

  In the stochastic embedding approach, the modeling uncertainty is described by using stationary 
stochastic process model. Following the idea of hard bound approach, we describe the modeling 
uncertainty using deterministic model, e.g., ARMAX model with order nd, and and l 

AA(q-1, e) = 1 + 6.1q-1 + ... + bandq-nd 
BA(q-1, ) = 6b,q-1 + +bbmdq-n,d(4.22) 
CA (q-1, S) = 1 + b,, q-1 + ... + bcr q-1 

Here the order (nd, md) will be chosen large enough to describe the modeling uncertainty so well that 
the error can be taken account into the noise model. And n < nd and m < and will be chosen so that 
the model of system dynamics is of low order. 

   Introduce parameter vectors 0 and i; defined as 

0 = [a1 ... an b1 ... bm c1 ... cj]T 
                  e (4.23)                                 S = [6a, ... band bb, ••• bbmd bci ... bcir. 

Then it is easy to show that the vector 0 is a redundant parameter vector for the model M{9, l; }. 
Furthermore, introducing the following notations 

           G = B(q-1, 0)/A(q-1, 0) H = (C(q-1, B) + Cp(q-1, o)/A(q-1, 0) (4.24) 

                   ~GeAp(q-1, ~)y(t)+Bp(q-1,c)u(t)(4.25) A(
q-1, 0)u(t) 

we have parameterized model of the form 

.M{0, t } : y(t) = Gu(t) + 6,Gtu(t) + He(t)(4.26) 

   Since 0 is a redundant parameter vector of .A410,}, we may assume that 0 is parameter vector of 
a simple model M{8} 

Ms{0} : A(q-1, 0)y(t) = B(q-1, 0)u(t) + C(q-1, 0)e(t). (4.27) 

Then M8{0, e} and M{0} form a hierarchical model. We will call the robust identification based on 
the hierarchical modeling as a direct description approach. 

  Figure 4.3 shows another interpretation of the direct description approach. The system is repre-

sented by a complex model ,M{0,} with desired accuracy and the complex model includes a simple 
model M3{0} as its submodel. The simple model M5{0} embedded in the complex model .A4{0,0 
will be identified such that its parameter vector 0 describes the main charal;teristics of the system. 
In this way, the KDI-based robust fault detection can be applied to the simple model, in which the 

unmodeled dynamics is directly estimated as the difference of the complex model and the simple model .
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Figure 4.3:
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(2) Hierarchical Hybrid Quasi-ARMAX Modeling 

Let us consider a system described by 

                S : Ao(q-1, t)y(t) = Bo(4-1, t)u(t) + Co(4-1)e(t)(4
.28)                             e(t) E N(0, o-2) 

where y(t) is the output at time t (t = 1, 2, ...), u(t) the input and e(t) the white Gaussian noise. 
Ao(q-1, t), Bo(q-1,t) and Co(q-1) are scalar polynomial functions in the backward shift operator q-1 
with appropriate orders. The index t in Ao(q-1, t) and Bo(q-1, t) means that the coefficients of the 
polynomial functions may be functions of input-output variables, corresponding to the case where the 
system contains nonlinearity. When identifying the system, we assume that the Ao(q-1, t), Bo(q-1, t) 
and Co(q-1) are parameterized as 

Ao(4-1, t) = A(4-1, 0) + AMC', t, f ) 
Bo (4-1, t) = B(4-1, 0) + Bo(4-1, t, f)(4.29) 
Co(r1) = C(4-1, 0) + Co(4-1, e) 

where AA(q-1, t, e), Bp(q-1, t, e) and Co(q-1, C) denote modeling errors resulted from system un-
certainty (including nonlinearity), and A(q-1, 0), B(q-1, 0), C(q-1, 0) are scalar polynomial functions 
described by (4.21). Since the modeling errors may be resulted from system nonlinearity, we will 
introduce a group of certain NNMs to describe them based on the basic idea of hybrid quasi-ARMAX 
modeling approach (see Chapter 2). We then further assume that Ap (q-1, t, ~), BA(q-1, t, and 
Co(q-1, e) are scalar polynomials in q-1 with the same orders as A(q-1, 0), B(q-1, 0), C(q-1, 0), 
respectively 
                        Ao(4-1, t, C

CC) =fl,t4+...+fn,tq-n                        Bo(4-1 , t,S)= f(n+1),t4-1 + ••• + f(n+m),t4-m(4.30) 
CA (4-1) e) = &1q1 + ... + t5 q-t 

where 8,;'s are constant parameters, while fi,t's are nonlinear functions of input-output variables. 
Now according to the idea of hybrid quasi-ARMAX modeling [37], fi,t will be realized using certain 
NNMs described by 

                fi,t = E wrf(pj,'P(t)) (i = 1, ...,r; r = n + m) (4.31) 
j=1
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where Nf(x) is the 'basis function', w, •'s are the coordinate parameters to be estimated, pi's are 
the scale and position parameter vector to be determined using knowledge information, and w(t) = 
[y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T is the regression vector. 

  Introduce parameter vectors 0 and C defined as

B
C = [al ... a, b1 ... b,n c1 ... c,]T  = ken ... Wnl ••• Wrl ••• (4),.M 6c, ••• bq]T•

Then it can be shown that the vector B is a redundant parameter 

Furthermore, introducing the following notations 

           G = B(q-1, 9)/A(q-1, 0) H = (C(q-1, 9) + Cp(q-1,

AGt =

(4.32)

vector of the model .M{9, Cl.

t, ~))/A(q-1, 9)

—Ap(q-1, t, C)y(t) + Bp(q-1, t, C)u(t)

(4.33)

A(q-1, 0)u(t) (4.34)

we may have a model of the form

A4{0,0 y(t) = Gu(t) + /Gtu(t) + He(t)(4.35) 

  Note that (4.12) and (4.26) or (4.35) are similar in the forms. However, AG(q-1) in (4.12) is a 
rational function in the backward shift operator q-1, while LGt in (4.26) or (4.35) is only a function in 
time t. This means that the former describes the unmodeled dynamics in the sense of model structure, 

while the latter describes the modeling error in the sense of model output.

(2) Estimation of 9 and 

The B and C are two parameter vectors of the complex model A4{9,~}. As discussed above, the 
identification should be done such that the estimates 0, t have the interpretation that 0 describes the 
linear ARMAX model, while C describes the unmodeled dynamics. 

  Note the fact that the vector B is a redundant parameter vector of the complex model .M{9, f }, 
that is, for any given 0, £ and 00, there exists a C' that .M{8, C} - M{90, C'} holds. Therefore, the 
identification can be implemented in the following two steps. 

  Step 1: Estimation of 9 
  Let l; = 0, then the models (4.26) and (4.35) become 

A(q-1, 0)y(t) = B(q-1, 0)u(t) + C(q-1, 9)e(t).(4.36) 

which is the same as A4{0}. The estimate 9 can thus be obtained by matching this linear ARMAX 
model to the input-output data of system. 

  Step 2: Estimation of 
  Set B = B as constant, and use t; = 0 as initial value. The vector 1: is estimated by applying 

prediction error method (PEM) to the model (4.26) or (4.35). 
  Although the models (4.26), (4.35) and (4.36) are linear in the parameters to be estimated, the cri-teria in the identifications are not always unimodal because there exists MA noise model C(q-1 , 0)e(t). A h

ybrid identification method using genetic algorithm [38] may be employed, if necessary, to prevent the estimations to be stuck at local minima.

4.3 KDI Analysis

As summarized in Appendix D, Kumamaru and his coworkers have developed a fault detection scheme b
ased on the use of KDI for model discrimination [93, 61, 60]. However, the scheme was developed only for linear model without model uncertainty. In this section, we will generalize the scheme to the 

models containing model uncertainties. 
  Assume that the data from system are available from two distinct time intervals I l and 12, see Fig. 4.4, in which N; (i = 1, 2) denotes the number of data points in the interval I; , while X; denotes the
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 PI) 12(x 2)Time 

----------------------tl,   NiN2

Fig ure 4.4: Two distinct time intervals

experimental condition. We estimate the unknown parameter vectors specifying the model and the 
error description, {e, }, using the data obtained from the two distinct intervals Il and I2i and denote 
the estimates by {8 , l} and {92,4'2} respectively. The KDI is then used to detect the distortion of 
identified models A4.161,  M{91,1} and M {92, 4.2 }. 
  Applying the KDI to the likelihood functions of identified models, 

P(Yk+1I ei,~, Uk) (i = 1, 2), we 

JgecCIk+l[1,2] =P(Yk+11B1,41,Uk) log P(Yk+l!Oi,sl,Uk)ark+1(4.37) P(Yk+1 le2 , b2, Uk) 

where Uk = [u(1) u(2) ... u(k)1T and Yk+i = [y(1) y(2) ... y(k + 1)]T are the input-output data sets 
from the interval Il. 

  Based on the Bayesian rule 

P(Yk+I I ei, t'i, Uk) = P(y(k + 1)1ö2, 4*i, Yk, Uk)P(Yk lei; 4.i, Uk), (4.38) 

we can express (4.37) as 
4+1[1, 2] = Elk 4-1-1 + Ik[1, 2](4.39) 

where 

E1kJk+1 = J P(YkIB1 4.1 Uk)Jk+1dYk(4.40) 

         4+1 = fr((k  +141,4'1,17k,   Uk)1og                                  p(y(k + 1)I Bi,1, Y , Uk) dy(k + 1)(4 .41) 
P(y(k + 1)1°274-2)17k, Uk) 

  Assume that the likelihood functions p(Yk+i l ei, Si, Uk) are Gaussian distributed. Then the (4.40) 
can be further developed into an explicit form, by which the KDI can be evaluated in a feasible way 
for finite but fairly large data set [61]. However the developed algorithms will be different depending 
on the modeling error descriptions. 

4.3.1 A Soft Bound Error Description Case 

For simplicity, introduce the notations 

G'i ̂ ' Gi(q-1, Oi), Hi ̂ ' Hi(4—1 Oi), Qi,k ̂ ' /b(k)/A(4-1, ei) i = 1,2 (4.42) 

Then we can transform the model (4.12) into the form 

H; ly(k) = H; IGiu(k) + Hi 1Qi,k~i e(k)(4.43) 

Considering that both 71 and e(k) are Gaussian stochastic process, we assume that 

vi,k =II H +' e(k)(4.44) 

and since n and e(k) are assumed to be independent, we get the prediction error ti(k) given by 

ti(k) = E {v,,k} 
                1T T 1 2                         = E {H; Qi,krliryli Qi,kHi } + &i 
IIi 1Qi,k~TJQ klli 1+&2(4.45)
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and the one-step prediction  mt,k = y(k + ll k) given by 

mt,k = (1 — Hti 1)y(k + 1) + H; 1G;u(k + 1). 

It therefore follows that the likelihood functions of the identified models in this case is given as 

P(y(k + 1)lB , 4j, Yk, Uk) E N(Tn,,k, Ei(k + 1)), i = 1, 2 

Now using (4.47) in (4.41), we can get 

Jk+i =  (ti (k+ 1)/E2(k + 1) — 1)

(4.46) 

(4.47)

                —2log (E1(k + 1)/E2(k + 1)) +—2— mz,k42(k+1) (4.48) 
  Assume then that the system in the time interval I1 is under normal mode. Hence the model 

A4161,1} describes the system, that is 

y(k + 1) = G1u(k + 1) + Ql,k+lrli + Hie(k + 1)(4.49) 

Further assume that the system operates in open loop. Then u(k + 1), ij; and e(k+ 1) can be assumed 
to be mutually independent. 

  Now using (4.49) in (4.46), we will have 

              Elk llml,k — m2,kllEZ(k+1) 
         = Elk 11.H 1(Gi - G2)u(k + 1) + (V1-/-1 - 1)e(k + 1) 

                                F (H-1 — H1)IIz                                                   1Q1,k+lr/1EZ(k+1) 

        = IIH2 1(G1 — G2)u(k + 1)IIE2(k+i) + Elk II(H2 1H1 — 1)e(k + 1)IIEZ(k+1) 
                              +Elk II(Hz 1 — H1 1)Q1,k+1711IIEZ(k+1) (4.50) 

With (4.50), we can thus express (4.40) as 

E1kJk+1 =2 (ti (k+ 1)/E2(k + 1) — 1) — 2log (E1(k + 1)/E2(k + 1)) 
                 +-2-111121(G1—G2)u(k+1)IIE2(k+1) 

1 n _                 +2Elk II(Hz1H1— 1)e(k + 1)IIEZ(k+1) 
1 +Elk 11(11 ;1 — Hi 1)Q1,k+1111IIEz(k+1)(4.51) 

( Summary ): For finite but fairly large data sets N1, the KDI can therefore be calculated as 
N1-14 

IN, [1, 2] = E E;kJk+1 + Io[l, 2] = E I[1, 2] (4.52) 
k=0j=1 

where I0[1, 2] is neglected and /Z)[1, 2]'s are given as: 

      IN, [1, 2] =21(E1(k+1)/Ez(k + 1) — 1) —21log (t 1(k + 1)/E2(k+1)) (4.53) 

    J(2 [1,2]=2NE1IIHZ1(G1r-G2)u(k+1)IIE2(k+1)(4.54) 
k=0
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 N1-1 

4,)[1,2] =   > Elk II(H2 1H1 — 1)e(k + 1)II12(k+1)(4.55) 
k=0 

N1-1 

II11) [1,2] = E E1k II (Ha 1 — Hi 1)Q1,k+l711IIE,(k+1)(4.56) 
k=o 

Here (4.55) and (4.56) can be further expressed as: 

1 N1-11           INi[1,2]=E {'I +1)2-i 
k=0 

(H2 1(z)H1(z) — 1) vl (Hi — l) dz (4.57) 

N1-1 I[1,2]=E {_l(k+1)1 

                                                        J (H2 1(z) — Hl (z))Q1,k+1°711Qi k+1(H2 1(z-1) — Hi 1(z-1))dz (4.58) 
  Note that the extra term (4.58) is induced from unmodeled dynamics and is related mainly to the 

difference between H1 and H2. Moreover, in this case the unmodeled dynamics affects all terms in 
(4.53)-(4.58). 

4.3.2 A Direct Error Description Case 

Similar to the soft bound error description case, let us first convert the model (4.26) into the form 

Hi 1 y(k) = Hi 1Giu(k) + Hi lLGi,ku(k) + e(k)(4.59) 

where 

Gi ^ G(4-1, Bi) H, ^ H(4-1, Bi)(4 .60) AG
i,k ̂  AGk/ 9 = Bi _ i = 1,2 

From (4.59), we have the one-step prediction mi,k = y(k + ll k) given as 

mi,k = (1 — 11271)Y (k + 1) + Ha 1Giu(k + 1) + H; 1LlGi,k+lu(k + 1) (4.61) 

The likelihood function in this case is 

p(y(k Yk, Uk) E N(mi,k, o ), i = 1, 2. (4.62) 

Then using (4.62) in (4.41), we get 

Jk+1 =  M/& — 1) — log(4142)) + 2 IIm1,k — m2,klI 2 (4.63) 

Assume 
y(k + 1) = G1u(k + 1) + OG1,k+lu(k + 1) + H1e(k + 1)(4.64) 

Then using (4.64) in (4.61) and noting that u(k) and e(k) are independent, we can approximately 
have 

                Elk IIm1,k — m2,kIIQ2 

II/C1(G1 — G2)u(k + 1)11 + Elk II(H2 1H1 — 1)e(k + 1)112z1 
+H2 1(2G1 — 2G2 + LG1 k+1 — LG2,k+1)u(k + 1) 

H2 1(LG1,k+1 — OG2,k+1)u(k + 1)/4(4.65)
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In the derivation of (4.65), for simplicity the terms  AG;,k+l (i = 1, 2) are treated to be constant with 
respect to the operation of Elk. Hence (4.40) can be expressed as 

E1kJk+1 = 2 (01/61 — 1) —10g(61/4)) 

+2IIH21(G1 — G2)u(k + 1)IIc; 

+2Elk II(HZ 1H1 — 1)e(k + 1)IIs, 

                      + 2HZ1(2G1 — 2G2+IGl,k+l— AG2,k+1)u(k+1) 
H1(AGl,k+1 — IG2,k+1)u(k + 1)/4 (4.66) 

( Summary ): Similar to (4.52), the KDI can be evaluated as 

4 IN, [1, 2] = >I[1,2](4.67) 
j=1 

where Ii~;l [1, 2]'s are given as 

./(11)[1,2] = 21 [(&i /&2 — 1) — log(&i /&z )](4.68) 
N, -1 

IN21 [1, 2] = 2 E IIH2 1(Gl — G2)u(k + 1)IIvZ z(4.69) 
k=0 

N,-1 

IZ[1, 2] =  E Elk 11(11.2-1 — 1)e(k + 1)IIe4(4.70) 
k=0 

N1-1

           IN1 [1, 2] = E 11-2-1(2G1 — 262 +OVI,k+l— 0CT2,k+1)u(k + 1) 2 
k=0 

                              H21(AGl,k+1 — AG2,k+1)u(k + 1)/4. 

The equation (4.70) can be further expressed as 

       IN,[1,2]2l{27ri (H2 1(z)H1(z) — 1)vl(Hi(z-1)H21(z-1) — 1)dz 
  We notice that the first three terms (4.68)-(4.71) are the same as (D.10)-(D.12) of 
Furthermore, the contribution of the unmodeled dynamics AGi,k+i gives a new term 
does not affect the other terms. We may therefore use the first three terms as fault de1 
in the thresholding approach and use the fourth term for evaluating the effect of the 
on the KDI.                            2

}

(4.71)

(4.72)
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4.3.3 Indexes for Evaluating Modeling Error 

As shown in Fig. 4.1, in order to achieve a robust fault detection by using a decision making scheme, 
indexes for evaluating modeling error are very important. We here will introduce several such indexes 
based on the results of the KDI analysis.

 (1)-Indexes of unmodeled dynamics 
Let us first take a look at the results of the KDI analysis in a soft bound error description case. From 
(4.45), we can see that the prediction error ti(k) includes two parts. Besides the contribution of 
disturbance el, it contains a part contributed from unmodeled dynamics 

AEi(k) = H= 1Qi,kO ,QTkHs 1(4.73) 
This extra part is a function of input-output variables. We introduce the following index for unmodeled 

dynamics by averaging the term AEi(k) over the time interval Ii, from which {Bi, ;} is estimated 

                                                                                       N. 

ICn[i] =1i±i(k) =1E (1111 Qt,kO,iiQTkII 1)• (4.74) Nik =1Nik=1 

From the expressions of Hi and Q1,k, we know that this index only depends on the unmodeled dynamics 
and is not related with di. 

  Next we inspect the results of the KDI analysis in the direct error description case, and introduce 
two indexes of unmodeled dynamics. The first one is based on the fourth term of the KDI, (4.71). Since 
the unmodeled dynamics OGi,k is rather sensitive to the noise realization, 411[1, 2] is too sensitive to 
noise when it is directly used as an index of unmodeled dynamics. In orderto derive a less sensitive 
index, we consider the case where the fault detection is implemented on-line. The KDIs (4.67)-(4.71) 
are calculated on-line for each estimated 92(t) and 2(t), namely we compute IN, [1, 2 : t], IN)[1, 2 : t],
4? [1, 2 : t], INi [1, 2 : t], INl [1, 2 : t] at time t. Then the mean value of I[1,2 
window of length W can be used as an index of the unmodeled dynamics 

                 Ioc(t) =WE IN1[1, 2 : 7] 
j=t—w 

  Since in the direct error description approach, 
It is reasonable to use it as an index of unmodeled 

past input-output of system, we introduce this second index for unmodeled dynamil 
value of IzGk(02(t), b2 (t))I; k = 0, ..., Nl — 
Il. 

N1-1 

                   .[(2)(t)=E IAGk(B2(t))ts2(t))I 
                                  N1 k

_0

t] in a moving

(4.75)

noach, the unmodeled dynamics AGi is dentified directly. 
modeled dynamics. Because the AGt is a function of the 

                                  this second index for unmodeled s using the mean 

1 calculated from the input-output data sets in the internal

(4.76)

(2) Interpretations of the indexes 
The three indexes for unmodeled dynamics have different interpretation: 

  • lc, denotes the contribution of modeling error on the prediction error. Since in the soft bound 
    approach, the modeling error is treated in the same way as the disturbance, the effect of unmod-

    eled dynamics can be evaluated by its contribution to the prediction error. The index depends 
    on the unmodeled dynamics only and is not related with B. 

  • IoG expresses the effect of unmodeled dynamics on the KDI. Since the fault detection is realized 
    based on the KDI, this index of unmodeled dynamics is very useful. It depends on both the 

    unmodeled dynamics and the difference of the estimates Bi (i = 1, 2). 

  • a describes the size of unmodeled dynamics directly.
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 IN"[t  2]----------binary 
                   transform I.o

 Ic, and other prior information

Figure 4.5: An example of robust fault detection scheme

4.4 Fault Decision Scheme

In the ideal case where no unmodeled dynamics exists, the fault detection can be executed by apply-
ing the thresholding approach to the KDI, see (D.17). In the presence of unmodeled dynamics, the 
identified model parameters may change depending on the noise realization, resulting in a fluctuation 
of the calculated KDI. When the unmodeled dynamics and the noise are large, the fluctuation might 
be so large that the method of simply applying the thresholding approach to the KDI becomes infea-
sible. Therefore, in order to realize a robust fault detection, robust decision making schemes should 
be developed so that the indexes of the KDI and the indexes of unmodeled dynamics can be used 
effectively.

Scheme 1 

It should be noticed that the identified model parameters have different sensitivity to the noise. For 
example, it is found that the fluctuations of a, are typically not so large as those of b,. On the 

other hand, the KDI consists of four different terms, each of which has its particular relationship with 
the model parameters. Therefore, if a scheme can be developed to use the information of the four 

KDI terms and the index of unmodeled dynamics effectively, it is possible to achieve a robust fault 
detection. As a choice for such scheme, Neural Network approach can be considered. However, only 

a simple logic is used here as an example to show the possibility. 

  Considering that Inhl [1, 2], which expresses the difference between the prediction errors, is not 
related directly to the system failure, we only use /Z)[1, 2] (j = 2, 3,4) to develop the robust decision 
making scheme. Introduce a binary transform function as followings 

                       _1 when_TM > h•          f=7(4)[1,20 0 when In, < hj(4.77) 
                                 j = 2, 3, 4 

where 1m 's (j = 2, 3,4) are thresholds which may be determined by using the index of unmodeled 
dynamics Ic and other prior information (variance of disturbance, etc.) (see Fig. 4.5), which is 
though still an open problem to be solved. Then the fault detection index IFD can be obtained by 
applying a logic to the fi's 

IFD = D(.fi, i = 2,3, 4)(4.78) 
where D may simply be a majority voting rule.

Scheme 2 

Let us consider the case where the fault detection is implemented on-line. The KDI IN, [1, 2 : t] will be 
calculated for each identified 02(t) and (t). Then a robust decision making scheme may be obtained 
based on statistical test of IN, [1, 2 : t]. Because the fourth term 4, [1,2 : t] is is rather sensitive to 
noise realization, we will construct the fault detection index by averaging the sum of first three terms 

of the KDI 

IN, [1, 2 : t] = —1 (INi [1, 2 : i] + In21 [1, 2 : i] + /g [1,2 : Z]) (4.79) 
i=t-c
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Figure 4.6: Implementation of the FDS in a batch way

and execute fault detection by the following thresholding approach

IN, [1, 2 : t] = j fault                  I no fault (4.80)

In order to realize robustness of the fault detection, the window G and the threshold 71 may be 

appropriately determined based on the evaluated indexes of unmodeled dynamics and by considering 

other information about the system such as variance of disturbance &2. For instance, when the 

calculations IoG(t) and IoG(t) indicate that the modeling error is rather large, G shall be chosen 
larger while i be taken to be smaller. This however is an intuitive strategy for the determination of 

G and ?. Further investigation should be done in order to realize robustness in the model-based fault 

detection using the evaluation of modeling error.

Fault Decision

It should be pointed out that the decisions made by (D.17), (4.78) or (4.80) are only for system 
parameter changes. Strictly speaking, all system parameter changes do not mean the occurrence of a 
fault. For example in an adaptive control system, some parameter variations can appear naturally. It 
therefore is important to make fault decision after a system change has been detected. 

  Usually, fault decision can be realized based on relationships between model parameter 0 and 
physical parameter 2, 0 = 1(2). However, the function f(.) is usually unknown and may be so 
complex that it is impossible to express P = f-1(0)  using an explicit function. To solve this problem, 
some knowledge-based approaches have been proposed, in which f-1(.) is described using Fuzzy 
Inference or Neural Network approach, see e.g. [59, 58].

4.5 Numerical Simulations

In this section, we will carry out several numerical simulations to demonstrate the effectiveness of the 
methods discussed in the previous sections.

4.5.1 Implementation of the FDS 

Figure 4.6 and 4.7 show the implementations of the fault detection system (FDS) for a batch fault 
detection and an on-line fault detection, respectively. All of the methods discussed in the previous 
sections except the soft bound approach can be easily implemented in an on-line way. However, when 
a soft bound approach is used, the identification can only be implemented in a limited on-line way,
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Figure 4.7: Implementation of the FDS in an on-line way

i.e, for each estimated B, the vector is estimated using a batch identification method, because only 
a batch algorithm is so far available for the estimation of the soft bound of the unmodeled dynamics. 
Since when the orders of a model is determined for time-invariant system, the unmodeled dynamics 
does not change via time, it does need to be estimated repeatedly on-line. Therefore in the robust fault 
detection using parameter estimation, the system model are repeatedly estimated on-line in practice. 
But in the simulations, we will estimate the unmodeled dynamics for each estimate B. 

  The data from the system are available from two distinct intervals Il and I2. It is assumed that 
the system is under normal mode in the interval Il, and is to be monitored in the interval I2. Now 
from Il the unknown parameter vector {6, e} is estimated as {Oi, and from I2 it is estimated as 
{02(t), (t)}. If a fault occurs in the interval I2, the effect will be reflected as a difference between 
the identified models A401, -0 and .A4 02(0, 2(t)}. The discrimination of two identified models is 
performed via the KDI and the robust fault detection will be realized using the fault decision schemes.

4.5.2 Example 1 

In practical application, an identification is realized using finite data sets. The noise in the data will 
cause a variation between two identified models. When there exists no unmodeled dynamics, the 
variation is usually very small. In the case of presence of unmodeled dynamics, the identification 
becomes sensitive to noise realization. As the unmodeled dynamics increases, the variation may 
become so large that a model discrimination based FDS may become infeasible. The first example is 
designed to show how unmodeled dynamics affects KDI-based FDS. 

  The third order SISO system described by (4.81) is considered as a true system 

ke—T9
)                     G(s) =s(Tos+1)(Tis + 1)+k(4.81 

where k = 2.5, To = 0.1, T1 = 0.5. After being sampled with a period of 0.25, the system is corrupted 
by a white Gaussian noise sequence e(t) E N(0, o). The input of the system is PRBS (pseudo-random 
binary sequence). 

  We will apply the KDI-based robust FDS with soft bound error description to this example. The 
model used to identify the system is therefore described by (4.6) and (4.7) where the degrees of 
polynomials A, B, and C are chosen to be n = 2, m = 2 and 1 = 0, respectively. 

  We will implement this example in a batch way. The number of data sets in the interval Il is 
N1 = 1000, while N3 x N2 = 200 x 1000 in the interval I2. The interval I2 is divided into Ns equal 

parts labeled by 12j, (j = 1, ..., N3), see Fig. 4.6. The fault mode due to physical parameter jump 
change, in which the physical parameters changed from their normal value to k = 0.5, To = 0.05, and 

T1 = 0.2, is assumed to occur in the 100th part of the interval Il.
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The results of case 1 (a) the second term of KDI for vo = 
= 1.00; (c) the output of the robust decision making scheme

0.01 ; (b) the second term of

  By using the methods described in Section 4.3.2, from Il and I25 the unknown parameter vector 

{0,0 can be estimated as {Oi, l} and {92(j),6(j)} respectively. The terms of the KDI, In,'i[1,2 : j], 
(i = 1, ..., 4; j = 1, ..., 200) and the KDI, IN, [1, 2j] can be calculated by using (4.52)-(4.58). Finally, 
the fault detection index IFD can calculated by using (4.77) and (4.78). 

  [Case 1, T = 0]: This is a case where the unmodeled dynamics is small. The simulations are carried 
out for various value of noise variance vo ranging from 0.01 to 1.00. The simulation results of this case 
are shown in Fig. 4.8. For simplicity, we only show IFD and the second term of KDI which expresses 
the difference between system models G1 and G2. 

  Figure 4.8(a) and (b) show the outputs of the second term of KDI, it [1,2 : j] for 01, = 0.01 and 
vo = 1.0 respectively. We can see that the fluctuation of the KDI increases as the noise increases. 
the fluctuation of the KDI might become so large that the thresholding approach becomes infeasible. 
Figure 4.8(c) shows the output of the robust decision making scheme IFD calculated by using (4.77) 
and (4.78) where h2, h3, and h4 were determined based on the index of unmodeled dynamics lc, and 
other prior information such as the variance of the noise. In this case, h2 = 2.5, h3 = 10, and h4 = 0.5 

were chosen for ao = 1.0. We can see that the decision making scheme responds the system fault 
correctly. 

  For as = 0.01, the estimates of the parameters 0, e and Ic>, from the interval I1 were

01

4.1

= [a1, az, b1, b2] 

[-1.5103, 0.7428, 0.0659, 0.1433] 
= [aa1 Aa1a'61 Ab10-21 
= [0.0094, 0.1475, 0.0134, 0.0115, 0.0121] 
= 0.0013.

  [Case 2, T = 0.25]: This is a case where there exists rather large unmodeled dynamics since a time 
delay T = 0.25 was added to the system. The variance of the noise vo simulated in this case varied 
from 0.001 to 0.5. The simulation results are shown in the Fig. 4.9, where h2 = 0.5, h3 = 10, and 

h4 = 0.5 were chosen for o = 0.50. We can see that the output of the KDI is more sensitive to the 

noise in this case. However, the decision making scheme responded the system failure correctly again.
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  For 4, 0.01, the estimated parameters B, and Ic>, from the interval Il in this case were 

                     61 = [a1, a2, bi, b2] 
= [-1.5868, 0.8166, —0.0049, 0.0644] 

ttz 

= [0.1379, 0.3498, 0.0092, 0.1358, 0.0121] 
                     Icnl = 0.0341. 

  Note that in this case, Icn, increased obviously, which indicates that there exists larger unmodeled 
dynamics. This simulation result shows that Ic s defined as (4.74) is a nice index for evaluating 
unmodeled dynamics. 

  Two phenomena are obvious based on the results of this example. (1) The fluctuation of the KDI 
increases as the unmodeled dynamics increases (compare Fig. 4.8(a)(b) with Fig. 4.8(a)(b)). (2) The 
fluctuation increases as the variance of the noise increases (compare (a) and (b) in Fig. 4.8 or Fig. 
4.9). Both of them obscure the performance of the KDI-based FDS. 

4.5.3 Example 2 

The example 1 also shows the KDI-based robust fault detection scheme with soft bound error descrip-
tion is effective. However, there are still two open problems to be solved. One is that an on-line 
algorithm is not so far available for the estimation of soft bound. The second is the existing batch 
algorithm is rather time-consuming. 

  The following example is designed to test the KDI-based robust fault detection schemes with direct 
description of modeling error. 
  The system considered is described by (4.81), where the parameters k, To and T1 are given the 

same values as those in the example 1. After being sampled with a period of 0 .25, the system is 

corrupted by a correlated noise sequence {vt} 

vt = (1 — 1.2q-1 -l- 0.5q-2)e(t)(4 .82) 

where e(t) E N(0, 0.50) is white Gaussian noise.



4.5. Numerical Simulations 71

 100 

 60 

  60 

  40 

   20

80

Q_60 
 40 

El 20

 0 20 40  60 80 100 120 140 160 180 200 
(a)

 0 20 4060  60 100 120 140 160 160 200 
(b)

Figure 4.10: The results of example 2 when r = 0: (a) the sum of the first three terms of KDI; (b) 
the fault detection index IN[1,t].
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Figure 4.11: The results of example 2 when T = 0.25: (a) the sum of the first three terms of KDI; (b) 
the fault detection index IN[1,t].

  For identification, we use the model described by (4.26), where nd = 5, and = 5, 1 = 2 are chosen 
for andn=2, m=2, 1=2 for O.

  The simulation is implemented on-line, see Fig. 4.7. The interval Il contains 500 data sets, from 
which (91, el } is estimated, while the interval 12 contains 700 data sets, from which {02(0, C2 (t)} (t = 
0, ..., 200) is estimated on-line. The initial values {02(0), e2 (0) } for the on-line estimation are obtained 
from the first 500 data sets. The fault mode which is the same as that of example 1 is assumed to 
occur at t = 100. During the estimation, 0 is updated for one step when one pair of new data observed, 
while l; is updated for 50 steps, for which the past data are also used.

  Two simulations were done with T = 0 and T = 0.25 respectively, in which the output of KDI, 

IN1[1,2 : t] is calculated from (4.67)-(4.71). The output of fault detection index IN[1, t] is calculated 
from (4.79) with G = 5 for the case of T = 0 and G = 10 for T = 0.25. And the indexes of unmodeled 
dynamics IoG(t) anda(t)are calculated from (4.75) with W = 60 and (4.76), respectively. Figure 
4.10 and 4.11 show the results of /N1[1, 2 : t] and 'Ni [1, 2 : t] for the cases of T = 0 and T = 0.25. 
Figure 4.12 shows IoG(t) and IoG(t) of the two cases. The indexes for unmodeled dynamics may 
change when system parameter changes, so we do not show the values after the fault occurred. We 

can see that in the case where T = 0.25 the unmodeled dynamics is larger.
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4.6 Discussions and Conclusions

Since an exact mathematical model is impossible in practice, it is a challenging problem to increase the 
robustness of a model-based fault detection method with respect to the model uncertainty. Typically, 
the KDI-based fault detection scheme was based on the assumption that the model parameterization 
is chosen adequately for the system. In order to make the scheme practicable, it is crucial to relax the 
assumption, i.e., to extend the scheme to the case where there is model uncertainty. In this chapter, 
we have realized such an extension by using robust identification techniques and fault decision scheme. 

  In the literature, the term `robust identification' mainly means identification for robust control. 
There rarely exists publications discussing robust identification method for system analysis. In this 
chapter, we suggest two robust identification methods for fault detection by following the basic ideas 
of existing approaches. One is based on Goodwin's stochastic embedding approach, in which the 
unmodeled dynamics is characterized as a random quantity with soft bound. The second is modified 
from the hard bound error description approaches, in which the unmodeled dynamics is partly described 
directly by a deterministic model and partly taken account into the noise. 

  Two analyses have been made for the KDI. First, the KDI is analyzed into an explicit form with 
incorporating the soft bound error description. The analyzed KDI consists of four terms, each of which, 
however, contains the effect of the modeling error. Second, with incorporating the direct description 
of modeling error, the KDI is also analyzed into an explicit form consisting of four terms. In the 
second case, the first three terms are the same as that of ideal case, while the modeling error is 
only affected the fourth terms. Furthermore, three indexes for evaluating the size or the effects of 
unmodeled dynamics have been introduced based on the results of the KDI analysis. 

  Finally, two fault decision scheme have been developed for robustness realization, in which the 
fault detection is done on the basis of the index of KDI, the index of unmodeled dynamics and 
other information. The effectiveness of the proposed schemes has been confirmed through numerical 
simulations. 
  On the other hand, there are still several problems needed to solve in the future research . First, 

we have obtained an extra term in the KDI analysis. Theoretical analysis on the new term is needed 
in order to use the term efficiently. Second, Theoretical and experimental researches are needed to 
find out what information the individual KDI term may provide and how to use it in fault detection 
and fault analysis. Finally, further investigations are needed to find an more efficient algorithm for 
thresholding decision based on the evaluation of unmodeled dynamics.



Chapter 5

KDI-Based Fault Detection of

Nonlinear Systems

5.1 Introduction

Most faults in dynamical systems can be represented as unexpected variations in system operation 

modes which are caused by changes in the system configuration parameters. Based on this assumption, 
Kumamaru and his coworker [61] have proposed a fault detection scheme using Kullback discrimination 
information (KDI) as the index for model discrimination. Two important assumption have so far been 
made in the scheme: (1) The system to be diagnosed is linear; (2) The model  parameterization is 
chosen adequately for the system. These assumptions are never true in real applications. Therefore 
it is crucial and highly motivated to relax these assumptions. In Chapter 4, the assumption (2) has 
been relaxed by extending the fault detection scheme to a robust one, see also [55], in which the 
KDI is applied to discriminate the identified linear ARMAX model with model uncertainty, and the 
description of unmodeled dynamics is considered in the KDI analysis and the thresholding decision 
for robustness realization. The unmodeled dynamics has been characterized as a random quantity 
with soft bound, on the basis of Goodwin's stochastic embedding approach [25]. In this chapter, we 
will discuss how to relax the assumption (1), that is, how to extend the scheme to nonlinear systems. 
  For nonlinear systems, a linear mathematical model may not be accurate enough for model-based 

fault detection methods. Nonlinear models are required. Recently, many authors have suggested to 

use neural networks [83, 96, 106, 95, 74]. Neural networks are typically used in the two following ways 
in fault detection (system monitoring):

• Use neural networks as classifier, i.e., train neural networks to classify the 

 healthy mode and faulty modes.
observed data into

• Use neural networks as nonlinear black-box models of the monitored systems, i.e., train neural 

 networks with data observed in different working modes and apply model based methods to the 

 trained neural networks models.

These two approaches both require the availability of large amount of observed data of the monitored 
system, in the healthy mode and in all the possible faulty modes. However, it is rarely feasible to get 
sufficient data of all the possible faulty modes in real applications. 

  In this chapter, we will propose an alternative approach based on the global and local linear 
approximations of the monitored system. In order to describe general nonlinear systems by an input-
output type model, we first propose a hybrid quasi-ARMAX model, which has a linear ARMAX 
structure with coefficients consisting of constant parameters and nonlinear terms of input-output 
variables. The nonlinear terms are represented using a group of certain nonlinear nonparametric 
models (NNMs). If all the NNMs used in the hybrid model have the same structure, it can be 
shown that the model constructed is equivalent to a hybrid model combining a linear ARMAX model 
and a multi-ARX-model. The multi-ARX-model consists of several local ARX models and its overall

73
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performance is obtained via an interpolation using the  ̀basis functions' in the NNM [37]. Furthermore, 
the model can be identified in such a way that its ARMAX model part gives a best linear approximation 
of the system, and the multi-ARX-model part gives the estimate of modeling error due to nonlinear 
undermodeling. With this feature, a robust fault detection scheme can be applied to the model for 
dealing with nonlinear systems [56]. However, in the case where the system properties of interest can 
not be described by a linear model, the robust fault detection like approach become infeasible. To 
solve this problem, we will use the hybrid quasi-ARMAX model as a multi-ARMAX-model consisting 
several local ARMAX models and realize the fault detection by applying the KDI to discriminate each 
identified local linear ARMAX model. 

  The chapter is organized as follows: Section 5.2 proposes a hybrid quasi-ARMAX modeling and 
identification scheme for general nonlinear systems. In Section 5.3, we show that the hybrid quasi-
ARMAX model can be applied to fault detection in two ways: a robust fault detection like approach 
and a multi-model based approach. Section 5.4 discusses the details of the multi-model based fault 
detection scheme using the KDI to discriminate the identified local linear models. The detail of the 
robust fault detection like scheme is discussed in Section 5.5. Numerical simulations are carried out 
in Section 5.6. Finally, Section 5.7 is devoted to discussions and conclusions.

5.2 A Hybrid Quasi-ARMAX Modeling Scheme 

In this section, we propose a hybrid quasi-ARMAX modeling scheme for identification of nonlinear 

systems.

5.2.1 Quasi-ARMAX Modeling 

As the object to be diagnosed, let us consider a SISO general nonlinear ARX system described by 

        S : y(t) = g(cp(t)) + v(t)(5.1) 
        v(t) E N(0, 4)(5.2) 

yo(t) = [y(t - 1) ... y(t - n) u(t - 1) ... u(t - m)]T (5.3) 

where y(t) is the output at time (t = 1, 2, ...), u(t) the input, yo(t) the regression vector, v(t) the 
system disturbance, and g( • ) the unknown continuously differentiable nonlinear function. 

  Based on the idea of quasi-ARMAX modeling [37], we use a quasi-ARMAX model described by 
(5.4) to identify the system 

                   M : y(t) = cpT(t)(9 + AOt) + C(q-1)e(t)(5.4) 
                 e(t) E N(0, u2)(5.5) 

where e(t) is white Gaussian noise, and B, ABt, C(q-1) are defined as

B = [a1 ... an b1 ... bm]T 
AOt = [Aa1 t ...can t Ab1,t ••• Abm t]T 
C(q-1) = 1 + c1q-1 + ... + 

and where at, bi and ci are the constant parameters, while Dai,t and tibi ,t are non 
ep(t), and q-1 is backward shift operator, for instance, q-1u(t) = u(t - 1).

(5.6)

linear functions of

5.2.2 Hybrid  Quasi-ARMAX Model 

For a certain type, for instance I{olmogorov-Gabor type (B.2), of nonlinear system, the nonlinear 
terms Dai,t and Abi,t can be expressed in explicit forms (B.6) and (B.7). However, for general 
nonlinear systems, these nonlinear terms may become rather complicated functions of cp(t), and can 
not expressed in explicit forms. We will therefore represent them by using the NNMs as follows: 

Aai,t = fi(co(t)) (i = 1, ..., n) 
Objt = fj+n(Co(t))( .7= 1,...,m)(5.7)
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 fi(cP(t))  _ EWij'Nf (pi, co(t))(5.8) 
j=1 

where A/1 (pi, cp(t))'s are the 'basis functions', wij's are the coordinate parameters, and pi's are the 
scale and position parameter vectors. Without loss of generality, the NNMs used to realize fi((p(t)) 
are assumed to have the same structure, so that the 'basis function' is' independent of the index i. 
A. preferable candidate for the NNMs is adaptive fuzzy systems (AFS) [110], which can be explicitly 
expressed as 

                              wij(Ak-1Ai(xk(t))) 
fi(co(t)) =Mk(5.9)                              ~

j=1(Ak=1 PA-1, (Xk(t))) 
                                                    where A is the minimum operator, M is the number of rules, xk(t)'s are the elements of cp(t), and µAk 

is the membership function of fuzzy set Aik. The model described by (5.4)-(5.8) is named as hybrid 
quasi-ARMAX model.

5.2.3 Estimation of the Hybrid Model 

It is well known that the NNMs are flexible enough to represent most reasonable systems in practice. 
It should be noted that there are a group of such certain NNMs in the hybrid quasi-ARMAX model. 
The hybrid quasi-ARMAX model becomes so flexible (complex) that it is impossible to estimate all 
the parameters (ai, bi, ci, wij and pi) from observed data as usually done in a conventional system 
identification. In order to make the problem feasible, we will appropriately determine the parameter 
vectors pi specifying the 'basis functions' in the NNM by using knowledge information, and only 
estimate ai, bi, ci and wij from observed data.

(1) Determining pi and M Using Knowledge Information 

The efficient use of knowledge information for determining the parameter vector pi and the order M 
plays a key role in the hybrid quasi-ARMAX modeling [37]. We, however, have to leave the discussion 
in the separate chapter, referred to Chapter 2, see also (J Hu et al., 1996) [37]. The follows are some 

points: 

  • The least prior knowledge required for determining pi is the information concerning operating 
    region of ep(t) = [xi; i = 1, ..., r]T . That is, [Xmin, Xmaz] should be known for the statement 

    that the operating region is mostly located in Xmin < cp(t) < Xmax. 

  • For the case where AFSs described by (5.9) are used,if the number of fuzzy sets for variable xi 
    is denotes as ni, then the number of rules is M = n,,"ni. When dim(cp(t)) is large, 1vi will be 

    rather large. Therefore, knowledge information obtained from observed data or the prediction 

    error during the parameter estimation should be used to choose ni (i = 1, ..., r) as small as 
    possible, and to remove some rules by employing interpolation.

(2) Estimation of ai, bi, ci and wij 
Introduce a parameter vector 0 and a regression vector c NL (t) defined as 

                      = [OT, W11 ••• WrM, ci ... cj]T(5.10) 

cPNL (t) = [(PT (t), tpT (t) 0 cpN, (t), e(t — 1) ... e(t —1)]T(5.11) 
where WT.Ari (t) = [Aff(pj, cp(t), j = 1, ..., M]. Then we can express the hybrid quasi-ARMAX model in 
a `pseudo-linear' regression structure 

                    M : y(t) = cP2;,L(t)0 + e(t).(5.12) 

It is well known that the estimation of 0 for (5.12) can be performed by using an Extended Least 
Square (ELS) recursive identification algorithm [70, 94].
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5.3 Fault Detection Using The Hybrid Model 

In this section, we will show that the hybrid quasi-ARMAX model is typically suitable for fault 
detection of nonlinear systems. 

5.3.1 Modeling for A Robust Fault Detection Like Scheme 

Using (5.8) and (5.7) in (5.4), we can get an alternative expression of the hybrid model 

 .(Be,1l)  : y(t) = we (t)B, + e(t) +> cvT (t)11j Nf(pj, v(t)) (5.13) 
ARMAXj-1 ARX 

where 

'pe(t) = [(pT (t), e(t — 1) ... e(t — 1)]T 
Be = [al ... an bl ... b,n Cl ... C(]T (5.14)                         si

j=[Wlj...wr7]T 
                      _ [stj 

From (5.13), we notice that the hybrid quasi-ARMAX model can be considered as a hybrid model 
combining a linear ARMAX model with a multi-ARX-model. 

   For the case where the system properties of interest can be described by a linear model, the hybrid 
model (5.13) can be used for a best linear approximation of the system by the ARMAX term, and 
used for the estimation of resulting unmodeled dynamics by the multi-ARX term. Such a model 
matching can be realized by a hierarchical implementation of recursive identification. Then the fault 
detection can be performed using a robust fault detection like approach, in which the KDI is applied to 
discriminate the model distortion due to parameter changes and the estimate of unmodeled dynamics 
is used in the KDI analysis and thresholding decision for robustness realization [56]. 

5.3.2 Modeling for A Multi-Model Based Fault Detection Scheme 

In the robust fault detection like scheme, fault detection is based on a global linear approximation 
(B) with unmodeling dynamics. However, when the system has strong nonlinearity, a global linear 
approximation can not model the main characteristics of the system. That implies that the local 
parameters Stj in (5.13) may contain more useful information for fault detection than the global 
parameter B. Now let us remove a;, b; from (5.13). We can then write (5.13) in the form 

M{sie} : y(t) = E (pT(t)li n/f(p, w(t)) + C(4-1)e(t) 
                     j=l ~R 

                      = E (yoe (t)liej + e(t)) Al" f(pj, yv(t)) (5.15) 
=1 

ARMAX 

where Arf(pj, (p (0) is assumed to be normalized, i.e., EM i Af(pj, w(t)) = 1, and the parameter 
vectors ftej are defined by 

Stej = [W1j ••• Wn w(n+1)j ••• Wrj Cl ... ci]T (5_16) 
11e = [1h ••• oeM]T •(5 .17) 

  When Nf(pj, cp(t))'s are chosen to be convex and compact, the identified model (5.15) can be 
considered to be a multi-ARMAX-model consisting of M identified local linear ARMAX models 

                     M{Stej} : zj(t) = cpT (t)Slej + e(t) (5.18) 
.1 = 1, ..., M
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Figure 5.1: KDI-based fault detection using multi-model

where  zj(t) stands for the output variable corresponding to the local model and ¢j(t) is defined by 
tkj(t) = [zj(t — 1) ... zj(t — n) u(t — 1) ... u(t — m) e(t — 1) ... e(t — 1)]T. The identified local ARMAX 
models denote local linear approximations of the system. The overall performance of the multi-model 
is obtained via an interpolation using the 'basis function' Nf(x). We can thus consider that the 
estimates of the local parameter vectors Slj contains useful information for fault detection. In the 
next section, we will propose a multi-model based fault detection scheme by applying the KDI to 
discriminate each identified local model (5.18) instead the multi-model (5.15).

5.4 A Multi-Model Based Fault Detection Scheme

  Let us first consider a rather general case where the system properties of interest may not be 

described by a linear model. We will introduce a multi-model based fault detection scheme. The basic 
idea of a multi-model based fault detection can be summarized as the follows: a multi-model consisting 

of several local linear models with employing interpolation is used to identify the nonlinear system to 

be diagnosed. The identified multi-model can be interpreted as several identified local linear models. 

Then fault detection is performed using the KDI as index to discriminate the identified local linear 

models. Figure 5.1 shows an example of multi-model based fault detection scheme using the KDI as 
index for model discrimination, in which the multi-model consists of M (= 3) local linear models. As 
shown in Fig. 5.1, the system operating region is divided into three parts: co(t) < X1, X1 < (p(t) < X2 
and cp(t) > X2. In each local region, the system is represented by using a linear model. The global 
performance of the system is described by the three local linear models with employing interpolation. 
Next, fault detection is performed by using the KDI as index to discriminate each identified local 

model. The average of the KDI indexes for the three identified local linear models is used as fault 
detection index for the nonlinear system.

5.4.1 Local Linear ARMAX Models

In order to apply the KDI-based fault detection scheme, let us rewrite the local models (5.18) 
the ARMAX form

into

A(q-1,Oej)zj(t) = B(q—laOej)u(t) +C(q—l,hej)e(t) 
e(t) E N(0, &2) j = 1, ..., M (5.19)

where zj(t) is the output variable of the j-th local model 
the white Gaussian noise. A(g-1, (2ej), B(q-1, Stej), C(q-1,

at time t (t = 1,2,..), u(t) the input, e(t) 
(2ej) are scalar polynomial function in q-1
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Figure 5.2: Data from two disjunct time intervals

with the orders n., rn, 1, respectively 

A(9-1, ftej) = 1 - W1j4-1 - •.• - Wnj~-n 
B(9-1,(lej) = W(n+1)j9-1 + +6-)rjQ—m(5.20) 
C'(7-1,fte7) = 1+Clq-1 +...+CIQ-t• 

If we introduce the following notations 

G(q-1,flej) = B(4-1, lej)/A(4-1, lej)(5 .21) 
                      H(9-1, ftej) _ C(4-1, flej)/A(q-1, gej) 

(5.19) can be rewritten in the output error form 

M{lej} : zj(t) = G(7-1,Ie7)u(t)+H(Q-1,fle7)e(t)(5.22) 
j=1,...,M 

5.4.2 Fault Detection Index (The KDI) 

The KDI, a distortion measure of two probability density functions, has been developed as an effective 

index to detect the fault in linear dynamic systems, see e.g. [61, 55]. 
   Assume that data from the system are available from two disjunct time intervals I1 and I2i see 

Fig.5.2, and the system is identified by using the model described by (5.15). Using a prediction error 
method, we can estimate the unknown parameter vectors {Ii j } using the data obtained from the two 
disjunct time intervals I1 and 72i and denote the estimates by Ali} and {Ste2j} Ole and S22e for 
(5.15)), respectively. It should be noted that so far the KDI has been applied to discriminate the 
identified models M{521e} and M{522} based on the assumption that the corresponding likelihood 
functions obey Gaussian distribution. However, in our case such assumption can no longer be used 
for the model (5.15), since the model is really nonlinear one. Therefore, we will apply the model 
discrimination via the KDI to each identified local linear ARMAX model M{Stej} described by (5.18), 
(5.19) or (5.23). Thus the distortion of identified local linear models M{52e1j} and M{SZe2j} is 
discriminated by using the KDI. 

   Applying the KDI to the likelihood functions of the identified local linear models, p(Z(n,i]Slei j, UN, -1) 
(i = 1, 2; j = 1, ..., M), we have: 

(j)p(Z(N1labelj,UN1-1)(j)           IN, [1,2](j)= JP(Zlieli,uNl_1)1og  (j)dZN I(5.23)                                          p(ZNlIfte2j, UN,-l)) 
where UN,_1 = [u(1) u(2) ... u(N1 - 1)]T is the system input sequence which was used in the interval 
h, while 4) = [z1(1) zj(2) ... zj(N1)]T is the output sequence variable corresponding to identified 
local model. Due to the assumption on Gaussian distributed disturbance in (5.19), the likelihood 
functions of local linear models obey Gaussian distribution. Therefore, by applying Bayes' rule, (5.23) 
can be analyzed into an explicit form, by which the KDI can be evaluated in a feasible way for finite 
but fairly large data set [61]. 

   The result of such an analysis is: 

3 

+ /;:,), [1, 2)(j)IN,  4 [1,2](j)(5.24) 
i-1
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Figure 5.3: A nonlinear system whose main characteristics can be approximated using a linear model

 j=1,...,M 

where /0 [1, 2] (j) is an initial value which might be neglected and other components are given as: 

IN; [1, 2](j) = 21[(di1dz— 1) — log(61/4)](5.25) 

Ni —12 

Ij [1, 2](j) = 2E IIH2-1 (GY) — G(2i))u.(k + 1)11.(5.26) 

          I(33[1,2](j) =21{22ri((Hu)(z))-1H1i)(z) - 1) 
.o. (Hli)(z-1)(H2j)(z-1))-1 — 1) dzz(5.27) 

G(j) = G(q-1,feij), Hgj)(z) = H(z,Cieij)(5.28) 
= 1,2. 

Then the index for fault detection is introduced as 

                  IFD = M INl [1, 2] (j)(5.29) 
j=1 

and the fault detection can be executed by the thresholding approach 

J fault(5 .30)                             IFD
no fault 

where the threshold 71 should be appropriately determined under a specification of decision accuracy. 

5.5 A Robust Fault Detection Like Scheme 

  In this section, we will constrain our discussion to a comparatively simple case where the system 
properties of interest can be described by using a linear model. That is, as shown in Fig. 5.3, the 
system fault can be reflected by the parameter changes of the linear model (a rotation of the y(t) (p(t) 
curve). For such a case, the KDI-based robust fault detection scheme can be applied on the basis of 
a linear model with model uncertainty, in which the error due to nonlinear undermodeling is treated 

as unmodeled dynamics.
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5.5.1 Descriptions of System Dynamics and Unmodeled Dynamics 

In order to apply the KDI-based fault detection scheme, let us rewrite the model (5.13) the ARMAX 
form 

 .M{Be,  l;  } : A(q-1, t, Be, ~)y(t) = B(q-1, t, Be, e)u(t) + C(q-1, 9e, C)e(t) (5.31) 
         e(t) E N(0, o-2)(5.32) 

where A(q-1, t, Be, 0, B(q-1, t, Bej l;) and C(q-1, Be,1;) are scalar polynomial function in q-1 with the 
orders n, m and 1, respectively. 

A(q-1, t, Be, E) = 1 - a1 tq-1 - ... - an tq-n 
B(q-1, t, Be, E) = 61,0-1 + ... + 6n,,tq-m (5.33) 
C(q-1, Be, 0 = 1 + + ... + ctq-1• 

where ai t and 60 are coefficients containing two parts: constant parameters and nonlinear terms, 
while the constant parameters ci are assumed to be divided into two parts 

                                     ai,t = ai + fi,t 
                   bi,t = bi + f i+n,t(5.34) 

                                    = ci + bC, 

Here ai, bi, ci are constant parameters (without confusion, the notation ci has been assumed to have 
slightly different meanings) and fi ,t (i = 1, ...n + m) are the nonlinear terms which are represented 
by a group of NNMs (neural networks, adaptive fuzzy systems, etc.) described by (5.8). Then the 
parameters to be estimated for the hybrid quasi-ARMAX model are defined as follows: 

Be = [al ... an bl ... bm c1 ... ci]T 
                  T(5.35)                                      = [con... Wnl...W,.l...WrM45c1 ••• bejl • 

   Note that it is easily to show that the parameter Be defined in (5.35) is a redundant parameter 
vector of .A410, C1, which enable us to realize the identification in a hierarchical way. Now if we 
introduce the following notations 

               G = B(q-1, Be)/A(q-1, Be) H = C(q-1, Be, 0/A(q-1, Be)(5.36) 

~Gt --A°(q-1,t,~)y(t) + Bo(q-1,t,~)u(t)(5.37) A(
q-1, Be)u(t) 

   where 

A0-1,00 = 1 + al q-1 + ... + anq-n 
B(q-1, Be) = b1q-1 +...+  bmq—m(

5.38) Ao(q-1, t, C) =fl,tq-1+...+ f n,tq—n 
Bo(q-1, t, E) = f(1+n),tq-1 + ... + f(m+n),tq—m, 

                                                                                                                                                                                                                                                                                                          • then (5.31) can be rewritten as 

JVt{Be, : y(t) = Gu(t) + LGtu(t) + He(t)(5 .39) 

where G describes system dynamics, while L\Gt denotes unmodeled dynamics. The identification of 
the model (5.39) can be realized in the following two steps: 

  (1) Fix l; = 0 and match (5.39) to system. Then we can obtain the estimate Be. 
  (2) Fix Be = Be and match (5.39) to system. Then we can obtain the estimate E.
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5.5.2 Fault Detection Indexes (The KDI) 
Assume that the data from system are available from two distinct time intervals I1 and 12, see 

Fig.5.2. We estimate the unknown parameter vectors specifying the model and the error description, 

{Be,}, using the data obtained from the two distinct intervals I1 and I2, and denote the estimates by 
feel) 4'0 and 0.2,4'2} respectively. The KDI is then used to detect the distortion of identified models 
MfOel,Sl} and M{Be2,b2}. 

  Applying the KDI to the likelihood functions of identified models, p(YN, Ieei, S,, UN, _1) (1 = 1, 2), 
we get 

IN, [1, 2]=JP(YN,(Be1,S1                                , UN, -1) logP(YN,I Be1,CC1,UNi-1)dYN1(5.40) P(YN,IBe2,S2, UN, -1) 
where UN,_1 = [u(1) u(2) ... u(N1 - 1)]T and YN, = [y(1) y(2) ... y(N1)]T are the input-output 
data sets from the interval I. Strictly speaking, the likelihood functions p(YN, IBei, i, UN, -1) do not 
obey Gaussian distribution, since the (5.39) is a nonlinear model. Let us consider that the effect of 
/ Gt is not so large, and assume that the likelihood functions p(YN, I Bei, ei, UN, _1) obey Gaussian 
distribution. Then, by applying Bayes' rule, (5.40) can be approximately analyzed into an explicit 
form, by which the KDI can be evaluated in a feasible way for finite but fairly large data set, see 
[61, 56]. 

  The result of such an analysis is (see Chapter 4 for the details of the derivation): 

4 IN, [1, 2] = Iu[l, 2] + ~ IN, [1, 2](5.41) 
i=1 

j= 1, .., M 

where Io[l, 2](j) is an initial value which might be neglected and IN'! [1, 2] (i = 1,..., 3) have the same 
forms as Ini [1, 2](j) (i = 1, ..., 3) described by (5.25)-(5.27), while I(p,41 [1, 2] is given by 

lN1-1           IN, [1, 2] = 2E H2-1(2G1 - 2G2 + AG1,k+1 - LG2,k+1)u(k + 1) 
k=0 

•H2 1(AGl,k+). - LG2,k+1)u(k+ 1)/4(5.42) 
which is the term induced from unmodeled dynamics. And the notations Gi and /Gi ,k are defined as 

Gi G(q-1, 9ei)(5.43) 

AGi,k OGk/ Be = Bei, S = t = 1, 2. (5.44) 

5.5.3 Robust Fault Detection Scheme 

In the ideal case where no unmodeled dynamics exists, the fault detection can be executed by ap-
plying the thresholding approach to the KDI. In the presence of unmodeled dynamics, the identified 
model parameters may change depending on the noise realization, and this causes a fluctuation of the 
calculated KDI. When the modeling error and the noise are large, the fluctuation might be so large 
that the thresholding approach to the KDI becomes infeasible. Therefore, robust decision making 
scheme should be developed so as to use the indexes of the KDI and the indexes for the modeling 
error effectively. 

  Many approaches may be considered to build the robust decision making scheme. As an example, 
we will realize a robust decision making based on statistical test on the KDI. Let us consider the 
case where the fault detection is implemented on-line. The KDI IN, [1, 2 : t] will be calculated for the 
estimates Be2(t) and 2(t). The fault detection index can be constructed by averaging the sum of the 
first three terms of the KDI 

         IN, [1, 2 : t]1  (411)[1, 2 : i + /g)[1, 2 : i + 4,)[1, 2 : i (5.45) 
i=t-G
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u(t)

v(t)

 (in z(t)
tanh( $ z(l) )

. y(t)
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•

Figure 5.4: Nonlinear system for Example 1

Table 5.1: The  G, ij and the indexes for the modeling error for Example 1

/3

Mean Value Mean Value Window 

of IoG(t) of IoG(t) Width G
Threshold

0.5 

1.0 

2.5

0.4388 

2.7142 

4.3372

0.0207 

0.1312 

0.2316

2 

5 

15

8 

4 

3

and execute fault detection by the following thresholding approach

IN1 [1, 2 : t] r fault                   I no fault (5.46)

In order to realize robustness of the fault detection, the window G and the threshold 71 may be 
appropriately determined based on the evaluated indexes for the modeling error and by considering 

other information about the system such as variance of disturbance 6-2. Two indexes of unmodeled 
dynamics may be introduced. One is based the fourth term of the KDI, which is introduced as

     1t IoG(t) =W EIN1 [1, 2 : j]. 
j=t-

(5.47)

The second one is the mean value of I ~Gk(Be2(t), 2 (t))I; k = 0, ..., N1— 1 calculated from the input-
output data sets in the internal Il

                Nl -1 

IoG(t) = ILGk(ee2(t), .2(t))1. 
l k-0

(5.48)

5.6 Numerical Simulations

We will carry out some numerical simulations to examine the fault detection schemes discussed in the 

previous sections.

5.6.1 Example 1

Let us consider a nonlinear system shown in Fig. 5.4, which consists of a second order linear system 

and a nonlinear element tanh(x). Obviously, when x is small, the nonlinearity resulted from tanli(x) 
is weak (r —* 0, tanh(x) —> x) and when x is large, the nonlinearity is strong. Therefore in Fig. 5.4, 
/3 can be considered as a parameter for adjusting the system nonlinearity. In the normal mode, the 
parameters wR and c of the damped oscillator are chosen to be 2 and 0.32, respectively. After being 
sampled with a period of 0.25, the system is corrupted by a white noise sequence v(t) E N(0,0.01), 
and the input of system u(t) is PRBS (pseudo-random binary sequence). 

  The model described by (5.31) is used to identify the system, in which the model order are chosen 
to be 71 = 2, m = 2, 1 = 0. Moreover, M = 16 is obtained with choosing X,nin=[-1 -1 -1 -1], Xmax=[1
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Figure 5.5: The results of Example 1:(a) the sum of the first three terms of KDI; (b) the fault 
detection index IN, [1, 2t]; (c) the index for the modeling error I2G (t); (d) the index for the modeling 
error IoG(t).

1 1 1] and n1 = n2 = 4, n3 = n4 = 1. In the simulation, the input-output data are available from two 
intervals Il and I2. The interval Il contains 500 data sets, from which {Bl  ~1 } is estimated, while 
the interval I2 contains 700 data sets, from which {002 (t), S2 (t)} (t = 0, ..., 200) is estimated on-line. 
The initial values 0,2(0), 4'2(0)1 for the on-line estimation are obtained from the first 500 data sets. 
The fault is assumed to be a jump change, S = 0.32 —i 0.6 at t = 100. 

  Three cases are considered, in which /3 = 0.5, 1.0, 2.5. When /3 is large, the modeling error is 
expected to be large because the system nonlinearity increases. For each case, the output of KDI 
N,11,2 : t] is calculated from (5.41)-(5.42). The output of fault detection index IN, [1, 2 : t] is 

calculated from (5.45). And the indexes for the modeling error IIG(t) and IoG(t) are calculated from 
(5.47) with W = 60 and (5.48), respectively. 

  Table 5.1 shows the values of indexes calculated from the estimate of the modeling error and the 
values of G and n chosen in the simulations. We can see that IoG(t) and I2G(t) increase as /3 increases. 
And when /(1)AGand IoG(t) increase, we confirmed that G should be chosen larger while /I be taken 
to be smaller. 

  Figure 5.5 shows the results of /3 = 1.0: (a) the sum of the first three terms of KDI; (b) the output 
of fault detection index IN, [1, 2 : t]; (c) the index for the modeling error I2G (t); (d) the index for the 
modeling error I(L(t). From Fig.5.5(b), we can see that the fault was detected definitely. 
  On the other hand, in Fig. 5.5 we used the sum of the first three terms of KDI as index fault 

detection. However, in the three terms, each has its particular relationship with the model parameters 

and will provides certain information which may be useful for fault detection and fault analysis. Next, 

let us see the outputs of the four KDI terms shown in Fig. 5.6. We may find that

• the first term, which denotes the difference the prediction errors of two identified models, seems 

 do not contain useful information for fault detection. However, in the case where an identification
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    algorithm can not tracing the system parameter change quickly enough, the first will give some 
     useful information. 

  • the second and third terms contain useful information for fault detection. They obviously 
    contain different information from each other, which may be useful for fault analysis or for 

    realizing robust fault detection. 

  • the fourth term contains useful information for evaluating the effect of unmdoeled dynamics 

However, further investigations are needed to find out how to use the information provided from the 
individual KDI terms. 

5.6.2 Example 2 

Let us consider a nonlinear function described by (5.49) as the true system 

            y(t) = f[y(t — 1), y(t — 2), y(k — t), u(t — 1), u(t — 2)] -I- e(t) (5.49) 

where

ftt                         f[xllx21x31x41x51 =x1x2x3x5(x3 — 1)x4 
                                                +' 

                                 1 + a(x2 + x3) 
and e(t) E N(0, 0.01) is white Gaussian noise. 

  When identifying the system, we use the multi-ARMAX-model described by (5.15) as a model, 
where n = 3, m. = 2, 1 = 0 are chosen for each local ARMAX models. And choosing Xmin=[-1 -1 
-1 -1 -1], Xmax=[1 1 1 1 1], n1 = n2 = n3 = 3, n4 = n5 = 1 and removing some of the rules, we 
obtained M = 18. In the simulation, the interval I1 contains N1 (= 5000) data sets, from which 
11e1 j i j = 1, ..., M are obtained. The interval I2 is divided into N. (= 100) parts, each of which 
contains N2 (= 5000) data sets. From each part, we can obtain Ste2j, and calculate the distortion of
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Figure 5.7: The result of setting M = 1, which implies that the robust fault detection like approach 

can not be applied to this example
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Figure 5.8: The results using the multi-model approach: (a) a changed from 1.0 to 1.2; (b) a changed 
from 1.0 to 2.0

the model M{SZeli} and M0e2j} by using (5.24)-(5.29). The failure mode is assumed to be that a 
changes from its normal value 1.0 to 1.2, which occurs in the 50th part of the interval 12. 

  First, we carried out a simulation by approximating the system using a linear ARMAX model, i.e, 

setting M = 1. Figure 5.7 shows the output of fault detection index 'FD, which was calculated by 
using (5.24)-(5.29). We can see that for such a nonlinear system, a global linear ARMAX model can 
not describe the properties of interest. This implies that a robust fault detection like approach may 
become infeasible, since the robust fault detection is mainly based on a best linear approximation of 
system and the estimate of the error due to nonlinear undermodeling is used in the KDI analysis and 
thresholding decision. Next, we use the multi-model based approach with M = 18. Figure 5.8 shows 
the output of IFD. We can see that the detection of the failure becomes possible. Figure 5.8(b) shows 
the result when a is changed from 1.0 to 2.0.

5.7 Discussions and Conclusions

We have discussed fault detection of nonlinear systems based on the use of KDI for model discrimina-

tion. A hybrid quasi-ARMAX model has been proposed to describe general nonlinear systems in the 

input-output type. The hybrid quasi-ARMAX model has been transformed into a form combining a 

linear ARMAX model with a multi-ARX-model. This enable us to apply the hybrid quasi-ARMAX 

model to fault detection of nonlinear systems in two ways. For the case where the system properties of 

interest can be described by a linear ARMAX model, a robust fault detection like approach has been 

proposed, in which the hybrid quasi-ARMAX model is identified in such a way that the result gives 
a best linear approximation of the system and the estimate of error due to nonlinear undermodeling. 

For other cases, a multi-model based approach has been proposed, in which the hybrid quasi-ARMAX 

model is used as a multi-ARMAX-model consisting of several local linear ARMAX models, and the
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fault detection is performed by  applying the KDI to discriminate the identified local AR,MAX models. 
Based on the discussions and the simulations in this chapter, we can conclude: 

 (1) The hybrid quasi-ARMAX model is very suitable for fault detection and fault analysis of non-
     linear systems. 

 (2) With the hybrid quasi-AR,MAX model, we can extend the KDI-based fault detection scheme to 
     nonlinear systems.



 Chapter 6

Adaptive Control Using Hybrid 

Quasi-ARMAX Models

6.1 Introduction

When the systems to be controlled contain unknown parameters, adaptive controllers offer certain 

advantages over conventional controller. In the past three decades, adaptive control theory has been 

developed into a considerable mature stage [26, 63]. However, these major advances have only been 
made in adaptive control of linear time-invariant systems with unknown parameters [76]. Since most 
processes in real world are nonlinear to some extent, a crucial point of adaptive controller is its ability 
to deal with nonlinear systems. 

  Recently, neural networks have attracted much interest in system control community because of its 
ability to learn any nonlinear mapping. Many approaches have been proposed to construct a nonlinear 
control system by using neural networks [40]. Generally, neural networks have been incorporated into 
adaptive control systems in two ways. One is to use neural networks as nonlinear models . Most of such 
schemes are working as indirect control [76, 75]. The second is to use neural networks as nonlinear 
compensators to compensate the system nonlinearity or the error due to nonlinear undermodeling 

[102, 34]. In the latter schemes, since the control systems are mainly based on linear models, the 
convergence properties have been improved greatly. Loosely speaking, because of the nonlinearity 
in the parameters to be adjusted, the control systems incorporating neural networks usually have 
some drawbacks concerning the convergence rate and the noise sensitivity [39]. When stochastic 
systems are considered, the best known stochastic adaptive controller is the self-tuning regulator 

(STR) proposed by Astrom and Wittenmark (1973) [1]. The self-tuning regulator combines the least-
squares procedure for parameter estimation with an one-step-ahead (minimum variance) certainty 
equivalence controller. The STR adaptive controller is well known to have some advantages such 
as quick convergence and insensitivity to noise. But it also suffers some difficulties. For example, 
it is not so good in the robustness to unmodeled dynamics [39]. Recent researches show that by 
introducing some robust adaptive schemes such as dead zone, the STR adaptive controller is guaranteed 
to be robust to unmodeled dynamics [81, 18]. However, its tracing accuracy strongly depends on 
the performance of the prediction model. Therefore, when the system to be controlled contains 
nonlinearity, a nonlinear prediction model is required. 

  A difficulty with general nonlinear stochastic systems is that it may be difficult to determine an 
optimal predictor for the system output [26]. To get around this difficulty, one so far has to use physical 
insight, heuristics, informed guesswork, and so on, to come up with a predictor structure in practice. 
In this chapter, we will propose a hybrid quasi-ARMAX prediction model for adaptive control of 
general nonlinear stochastic systems. It is shown that a general nonlinear system can be expressed 
in a linear ARMAX structure whose coefficients consist of constant parameters and nonlinear terms. 
Then the nonlinear terms are represented by using a group of nonlinear nonparametric models (NNMs) 
(neural networks, adaptive fuzzy systems, etc.). Based on the fact that the NNMs have universal

87
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Fig ure 6.1 : A schematic description of quasi-ARMAX model ing

approximation ability, a modeling scheme is developed by using knowledge information efficiently so 
that the obtained hybrid quasi-ARMAX prediction model is linear not only in the parameters to be 
adjusted but also in the one-step past input variable, so that a control law can be derived directly 
from the predictor. Based on the hybrid quasi-ARMAX predictor structure, a robust STR adaptive 
controller for general nonlinear stochastic systems can be designed in a similar way to the linear 
stochastic control theory. 

  The chapter is organized as follows: Section 6.2 proposes a hybrid quasi-ARMAX modeling scheme, 
with which a nonlinear predictor can be designed. In Section 6.3, we design a robust STR adaptive 
controller for general nonlinear stochastic systems in a similar way to the linear stochastic control the-
ory. In Section 6.4, the proposed controller is applied to a variety of nonlinear systems to demonstrate 
its effectiveness. Finally, Section 6.5 is devoted to discussions and conclusions.

6.2 A Hybrid Quasi-ARMAX Modeling Scheme 

In this section, we will propose a hybrid quasi-ARMAX modeling scheme for control design. The 

hybrid quasi-ARMAX model has been discussed extensively in Chapter 2. We here will discuss how 
to build such hybrid model easily applied to control design.

6.2.1 Quasi-ARMAX Modeling 

Let us consider a SISO general nonlinear ARX system described by 

             S : y(t) = g(tP(t)) + v(t)(6.1) 

w(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T (6.2) 

where y(t) is the output at time t (t = 1, 2, ...), u(t) the input, yo(t) the regression vector, v(t) the 
system disturbance, and g( • ) the unknown continuously differentiable nonlinear function. 
  Based on the idea of quasi-ARMAX modeling shown in Fig.6.1, we use a quasi-ARMAX model 
described by (6.3) to identify the system 

                 M : y(t) = (PT(t)(9 + zot) + C(4-1)e(t)(6.3)
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= [al ... an b1 ... b,,,]T 
ABt = [Aa1 t Lb1 t ••• Abm,t]T 
C(q-1) = 1+ clq-1 } ... + ci4—t 

and where ai, bi and ci are the constant parameters, while Aai t and i 
v(t), and q-1 is backward shift operator, for instance, q—lu(t) = u(t -

 .If the nonlinear system is assumed to be the type of Kolmogrov-G: 

         rr r
//                 y(t) = E aixi(t) -l'EE aiixi(t)xj(t) 

                      i=1i=1 j=1 

r r r 

+ aiiixi(t)xj (t)xi(t) -f 
                                       i=1 j=1 1=1

in which the elements of [xi(t) i = 1, .., r]

Then using (6.6) in

where 6,a0

(6.4)

 Aai  t and Abi,i are nonlinear functions of 
u(t) = u(t — 1), and e(t) is white noise. 
olmogrov-Gabor polynomial [17] of order r

are assumed to be the past input-outputs of system

xi(t)= y(t —i), 
xj+n(t) = u(t — j); 

(r=n m)

(6.5), we can get

and / bi ,t

y(t)

1, ., 

1, ... m

nm 

= E(ai + /ai ,t)y(t — i) + E(bi 
i=1i=1

can be explicitly expressed as

Dai,t = > aijy(t — j) ~-
  j=1

1 

2
j=n+1

 

}  Lb;,t)u(t — i)

a, u(t — j -1- n)

(6.5)

(6.6)

(6.7)

(6.8)

In (6.7), a; and b

Ab;,t = E a;,ju(t - j } n) 
j=n+1 

; stand for a; in (6.5).

1n 

2—
(6.9)

6.2.2 Hybrid Quasi-ARMAX Model for Control Design 

For general nonlinear systems, Aa; ,t and Ab;,t may become very complicated, and can not be expressed 
in explicit forms. We will therefore represent them using the NNMs. Generally speaking, the nonlinear 
terms Aa; ,t, Ab;,t are functions of the regression vector cp(t) which includes the one-step past input 
u(t — 1) as its element. This implies that the input vector of the NNMs is cp(t). However, when the 
model is applied to control design, the element u(t — 1) is preferred to be removed from the input 
vector of the NNMs so as to construct the model to be linear in the one-step past input u(t — 1) in 
favorable to deriving a control law directly from the hybrid quasi-ARMAX predictor. Based on the 
fact that the NNMs have universal approximation ability, we are able to remove u(t — 1) from the 
input vector of the NNMs. It follows that the hybrid quasi-ARMAX model for control design will 
be introduced by representing the nonlinear terms Ani,t, /b;,t using NNMs whose input vector is 
cp(t) = [y(t - 1) ... y(t - n) u(t - 2) ... u(t - m - 1))F instead of (p(t). 

  Considering the fact that the inputs {u(t)} t = 1, 2, ... are not independent sequences in a controlled 
system since they are synthesized, let us assume that the variable u(t - 1) in the expressions of Aa;,t 
and Ob1,t can be approximated by the following equation' 

u(t - 1) = p (y(t - 1) ... y(t - n) u(t - 2) ... u(t - m - 1)) (6.10) 
  'Strictly speaking, the equation should be u(t) = p(y(t) ... y(t — n — 1) u(t — 1) ... u(t — m) r(t)), where r(t) is the 

extra input used to drive the controlled system. For simplicity, we here omit the extra input r(t).
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y(k-1)

Figure 6.2: 

model has

The  hybrid quasi-ARMAX model 
be omitted for simplicity.)

shown as an associative memory networks. (MA noise

provided that p(•) is a sufficiently smooth arbitrary function. Then we can get

Aai,t 

Abj ,t

= An.ieP(t)) 
Abj (Y3(t))

(i = 1, 
(j=1, ,)) } (6.11)

Now we represent the functions Aai((P(t)) and Abj(cp(t))using the NNMs described by (6.13)

Lai(cp(t) = fi(sv(t)) 
AbjG (t)) = fj+n(kt)) 

MO)) = E wijArf (Pj, CP(t)) (i = 1, ..., r) 
                                      j-1 

where Aff(x) is the 'basis function', wij's the coordinate 
parameters of AIj(x). Without loss of generality, the NNMs used to realize fi(•) ar 
the same structure, so that the 'basis functions' is independent of i. A preferable 
NNMs is adaptive fuzzy systems (AFS) [110], which can be expressed explicitly as

(6.12)

(6.13)

rclinate parameters and pi's the scale and position 

                                    the NNMs used to realize fi(•) are assumed to have 
                                     is independent of i. A preferable candidate for the

fiP(t)) =
Lij=1 Wij (nk-1 1tA1(xk(t)))

rM   j
=1 (A L1 PA,(x0(t))) (6.14)

where A is the minimum operator, M is the number of rules, .xk(t)'s are the elements of Co(t), and pit; 
is the membership function of fuzzy set A. The model described by (6.3), (6.4) and (6.11)-(6.13) is 
named as hybrid quasi-ARMAX model, by which one can do control design easily . Furthermore, the 

proposed hybrid model can be considered as an associative memory networks which consists of two 

hidden layers: the first layer (next to the input layer) with weights determined by a set of simplified 
nonlinear nonparametric models; the second layer with weights simply taking the time delayed values 
of the system's input and output, see Fig. 6.2. Such a specially constructed network may be expected 
to be more suitable for control design. 
  On the other hand, from (6.3), (6.4) and (6.11)-(6.13) we can get another expression of the hybrid 
quasi-ARMAX model

y(t)
               M 

 cpT(t) + (q_1)e(t)+E,T~;Aff(pj, 
    ARMAXj-1ARX

gt)) (6.15)
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where 12i = [wlj ... w,.j]T - (6.15) shows that the hybrid quasi-ARMAX model is equivalent to a 
hybrid model combining a linear ARMAX model and a multi-ARX-model . The multi-ARX-model 
consists of M local ARX models and its overall performance is obtained via an interpolation using the 
'basis functions' N

f(x). It also implies that the proposed model can be shown to be able to describe 
any sufficiently smooth nonlinear function in (6.1) on a compact interval arbitrarily well by merely 
increasing the value of M (the number of ARX models in the multi-model). If we have 0 = 0 fixed, 
the (6.15) becomes 

               y(t) = E COT WI Nf (p , COW) + C(q-')e(t) 
j=1~ ARX 

= E (Pe (t)clej Nf (p~, CO) (6.16) 
j=1 ARMAX 

where Nf(pj, cp(t)) is assumed to be normalized, i.e., E 314._, Nf(pj,Cp(t)) = 1, and 
11ej = [Wlj ... Wrj Cl ... c,]T 

           CPe(t) _ [y(t — 1)...y(t — n) u(t — 1)...u(t — m) e(t — 1)...e(t —1)]T.(6.17)

6.2.3 Estimation of the Hybrid Model 

It is well known that the NNMs are flexible enough to represent most reasonable systems in practice. 
It should be noted that there are a group of such certain NNMs in the hybrid quasi-ARMAX model. 
The hybrid quasi-ARMAX model becomes so flexible (complex) that it is impossible to estimate all 
of the parameters (ai, bi, ci, Wi j and pi) from observed data as usual. In order to make the problem 
feasible, we will appropriately determine the parameter vectors pj specifying the 'basis functions' in 

the NNM by using knowledge information, and only estimate ai, bi, ci and wij from observed data.

(1) Determining pj and M Using Knowledge Information 

The efficient use of knowledge information for determining the parameter vector p and the order M 
plays a key role in the hybrid quasi-ARMAX modeling [37], see Chapter 2 for detail. The follows are 
some points: 

  • The least prior knowledge required for determining pj is the information concerning operating 
    region of CO (t) = [xi; i = 1, ..., r]T . That is, [Xm;,,, Xmax] should be known for the statement 
    that the operating region is mostly located in Xmi, < CO(t) < Xmax• 

  • For the case where AFSs described by (6.14) are used, if the number of fuzzy sets for variable x; 
    is denotes as ni, then the number of rules is M = U _1 ni. When dimP(t)) is large, M will be 

    rather large. Therefore, knowledge information obtained from observed data or the prediction 

    error during the estimation should be used to choose ni (i = 1, ..., r) as small as possible, and 
    to remove some rules by employing interpolation.

(2) Estimation of ai, bi, ci and wij 

Introduce a parameter vector 0 and a regression vector c,o L (t) defined as 

e =[9T, Wll .•• W,.M, c1 .•• Ci]T(6.18) 

CPNL (t) _ [CPT (t), CPT (t) 0 co f (t), e(t - 1) ... e(t - 1)]T(6.19) 
where c f (t) = [Nf(pj, cp(t)), j = 1, ..., M], and the symbol 0 denotes Kronecker production. Then 
we can express the hybrid quasi-ARMAX model in a linear regression structure 

                   A4:  y(t) =TNL (t)O + e(t). (6.20) 

It is well known that the estimation of 0 for (6.20) can be realized by using an Extended Least Square 
(ELS) recursive identification algorithm [70, 94].
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6.2.4 Nonlinear Predictors 

We have shown that a sufficiently smooth general nonlinear stochastic systems can be described by the 
hybrid quasi-ARMAX models (6.3) or (6.16). If we use these hybrid models as nonlinear predictors

 (t) = C(
4-1)

 COT  +E  E  COT  (t)Oj  Nf  (p),  gt)) + (60-1) - 1)y(t) 
      j=1  ARX

(6.21)

 or

y(t) = C(
4-1)

 M 

 EcoT  (tA  Al  f  (p1, lG(t)) + (C(9-1) - 1)y(t) 
j=1A`vX

(6.22)

a control law can be derived directly from these predictors because the predictors are linear not only 
in the parameters to be adjusted but also in the one-step past input variable. Based on these features, 
we will design a STR controller for general nonlinear systems under the framework of linear stochastic 
control theory.

6.3 Adaptive Control of Nonlinear Systems 

A difficulty with general nonlinear stochastic systems is that it may be difficult to determine an 
optimal predictor for the system output [26]. The hybrid quasi-ARMAX models discussed in the 

previous section can however be used as such optimal predictor to get around the difficulty.

6.3.1 STR Controller for Nonlinear Systems 

Suppose that the general nonlinear stochastic systems to be controlled is governed by (6.1). The system 
is further assumed to be able to be modeled by using the hybrid quasi-ARMAX model described by 

(6.3)-(6.13), which is rewritten as 

 A(q-1,  t)y(t) = q-1B(q-1, t)u(t) + C(q-1)e(t)(6.23) 

where y(t) is the output at time t (t = 1, 2, ...), u(t) the input and e(t) the white noise. A(q-1, t), 
B(q-1, t) and C(q-1) are scalar polynomials in backward shift operator q-1 

A(q-1, t) = 1 + al tq-1 + ..• + an tq—n 
B(q-1, t) = bo,t + bl,t4 + ... + b,n_1,tq—mF1 (6.24) 
C(q-1) = 1 + cl q-1 + ... + ciq-t. 

where a;,t, b;,t are the coefficients consisting of constant parameters (ai, b1) and nonlinear terms 
Ab; t). Moreover, bo,t # 0 is assumed. The index t in the coefficients denote that the 

coefficients are functions of Co(t). 
  In order to derive a control law for the system to be controlled described by (6.23), we consider 

the following one-step ahead cost function: 

              J(t + 1) = EL1(y(t + 1) - y*`(t + 1))2+2u(t)2I(6.25) 
where y*(t+1) is a given reference output and a is a weighting factor for the control input. We notice 
the following two points: (1) the hybrid quasi-ARMAX model described by (6.23) has a similar form 
as that of linear ARMAX model; (2) the coefficients in the polynomials A(q-1, t+1) and B(q-1, t+1) 
are functions of Cp(t + 1) which does not include u(t) as its element. The second point implies that 
in the differentiation with respect to u(t), the coefficients can be considered as constants for any
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given time t. Therefore, in a similar way to the linear stochastic control theory  [26], the controller 
minimizing (6.25) with respect to u(t) can be given by 

              u(t) _/la,t+1  {q [Qo,t+1 - #(q-1,t + 1)] u(t - 1) Qo,t+1 + a 
                     +y*(t + 1) + [C(q-1) - 1] y°(t + 1/t) 

-a(q-1 , k + 1)y(t)}(6.26) 

where a(q-1, t) and ,0(q-1, t) are the polynomials in q-1 given by 

                                               1 

                      a(4~t)=a0 ,2+ al,t4 + ... + an-1,t4 
         = 007-1,0(6.27) 

                   130-1,0 = #0,t +#1,0-1.  + ... + /jm-1,tQ-'n+1 
F(4-1, t)B(q-1, t) (6.28) 

The polynomials G(q-1, t) and F(q-1, t) are uniquely determined from 

C(4-1) = A(4-1, t)F'(4-1, t) + q--100-470 (6.29) 

where 
F(4-1, t) = 1(6 30) 
0(4-1,t) = 9o,t + 91,t4-1+...+9n-1,t4-n+1. 

On the other hand, y°(t + 1/t) in (6.26) denotes the optimal one-step ahead prediction of y(t + 1), 
which is written by 

C(4-1)y°(t + 1/t) = a(4-1, t)y(t) + Q(q, t)u(t) (6.31) 

Introduce a coefficient vector Ot, and a regression vector cpc(t) defined by 

et = [ao,t ai,t ••• an-1,t Po,t Q1,t ••• /jm-1,t cl ••• ct]T(6.32)

(Mt) = [y(t) ... y(t - n + 1) u(t) ... u(t - m + 1) 
-y°(t/t - 1) ... - y°(t -1+  l/t - 1)]T(6.33) 

Then (6.31) can be rewritten into the form 

y° (t + 1/t) = cpT (t)Ot.(6.34) 

We will here call (6.34) a nonlinear predictor. In this way, the Ot is a coefficient vector, whose elements 
stand for functions of~p(t) and the parameters of the nonlinear predictor as well as the regulator. It 
means that the components a; t and ,Q;t are not constant parameters but functions ofcp(t). We will 
therefore use the hybrid quasi-ARMAX modeling scheme to construct the nonlinear predictor. 

(1) Hybrid Quasi-ARMAX Predictor 

Based on the idea of quasi-ARMAX modeling, we divide the components a; t and /i;,t into two parts: 
constant parameters a;, ,Q; and nonlinear terms Aa; t, Apo, we have 

a;,t = a; + Aat,t Q;,t = /3 + AQ;,t•(6.35) 

Now introduce a group of certain NNMs with the form described by (6.13) (without confusion, we 
here use the same notations for the NNMs) to represent the nonlinear terms 

Aa;-1,t = f1(Co(t)) (i = 1, ..., n)(6 .36) AQ
J-Lt = .6+4(0)  (j = 1, ..., m).
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Then the controller parameter vector  O, to be adjusted are the ARMAX parameters {ai, (i = 
0, ..., n. — 1), 0i, (i = 0, ..., m, - 1), ci, (i = 1, .., l)} and the parameters of the NNMs, {wij, (i = 
l...r, j=1 ... M)}, 

                  = [ao...an-1 No.../3m-1 w11...wrM C1...C1]T •(6.37) 

The nonlinear predictor can thus be rewritten as 

y° (t + 1/t) = cONLC MO(6.38) 

where 
cPNLC (t) = [cPT (t), (pT (t) 0 p,T„f (t), —y°(t/t — 1) ... — y° (t - 1 + 1/t - 1)]T(6.39) 

with cpTV, (t) = [Alf (pj, Co(t)), j = 1, ..., M]. 

(2) Multi-Model Based Predictor 

Next, we use a multi-model based predictor structure. The hybrid quasi-ARMAX model described by 
(6.16) is actually a multi-model consisting of several local linear ARMAX models. Introduce Slcj as 

sic; = [aoj ...a(n_1)j Qoj ... fl(m-1)j c1 ... ci]T.(6.40) 

Then the nonlinear predictor (6.34) can expressed as 

                  y°(t + 1/t) = E cp, (t)S2°j Nf(pj, (p(t))(6.41) 
j=1 ARMAXJ 

(6.41) can be further expressed as the linear regression structure (6.38), where O, and cpNLC(t) will 
be given as 

O° _ [{aoj •••0(n_1)j 130j ••• 19(m-1)j} (j = 1,..., M), c1 ••• ci]T (6.42) 

7NLC (t) = [(PRO 0 co ArT (t), -y°(t/t - 1) ... - y° (t - 1 + 1/t - l)]T (6.43) 

From the expression (6.41), we can see that the multi-model based predictor is easy to be implemented 
in a multiresolution way, i.e., the number of ARMAX models can be increased on-line when a higher 
tracking accuracy is required. 

6.3.2 Synthesis of the Control Law 

The adaptive control law (6.26) based on direct approach can be synthesized by the following way. 
  Firstly, the parameter estimation of Oc is performed under the criterion 

O° = arg men E[y(t + 1) - y° (t 1/t)]2.(6 .44) 

It is well known that the following recursive least squares algorithm can be used for on-line estimation 
of Oc (.o is forgetting factor) 

(Mt) = O°(t - 1) -I- L(t)e'(t)(6 .45) 
                 P(t - 1)0(t — 1)

()     L(t)6.46              =ao+----------------------------OT (t - 1)P(t - 1)0(t - 1) 

                P(t) = ao[P(t - 1) - L(t)OT (t — 1)P(t - 1)](6.47) 
where 

0(t) _ (aYo(t+l/t))T = ~PNLC(t)(6.48)
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 Ei(t)  =

 Y(t) 
and where cp„ic(t — 1) is (PN„ (t - 1) whose elements y°(t - It - i - 1)'s are replaced by Y(t - i). In 
the algorithm, the dead zone 6 in (6.49) will 
the dead zone is introduced to make the algorithm robust to unmodeled dynamics, which has been 
known to be very effective [50, 102]. 

  Secondly, the adaptive control law (6.26) is synthesized based on Certainty Equivalence Principle 
by replacing et and y°(t + 1/t) with the current calculation Ot and the adaptive prediction y(t + 1), 
respectively.

' E(t)- 6 if e(t) > 
0 if IE(t)I < b(6.49) 
e(t) + b if e(t) < -6 

e(t) = y(t) - y(t)(6.50) 

vill be assigned with appropriate positive value. Note that 
algorithm robust to unmodeled dynamics, which has been

6.3.3 Implementation of the Adaptive Algorithm 

It should be noticed that the parameters ai and Qi denote the linear part of the predictor, with which 
the predictor can gives a reasonable performance in many cases. Furthermore, the ai and Qi are 
redundant parameters, by which we mean that the ai and /3i are not independent of wij, i.e., the role 
they play can be replaced by that of Therefore, the convergence property can be improved if the 
adaptive algorithm is implemented in the following two stages: 

  (1) Fix = 0 and adjust ai, /32, ci for appropriate steps (For the case where a multi-model 
based predictor is used, set M = 1). This stage accounts for that the nonlinear systems is controlled 
using a linear robust adaptive controller. 

  (2) Continue the adaptive algorithm with adjusting all parameters (ai, bi, c2, wii).

6.4 Numerical Simulations

In this section, we will apply the proposed nonlinear controller to a variety of nonlinear systems to 
test the effectiveness. In the literature of nonlinear adaptive control incorporating neural networks, 
system disturbances are rarely considered in the numerical simulations [76, 102, 34]. However, system 
disturbances are inevitable in practice. In our simulations, we will assume that the systems to be 
controlled have disturbances.

6.4.1 A System with Various Nonlinear Elements 

Example 1: The unknown system to be controlled is shown in Fig. 6.3, in which the 
system is described by 

                                 1_0.7q-1 - 0.68q-2                           G(4)1 - 1.72q-1 + 0.74q-2 

while the nonlinear element is a backlash with width=4 and height=4. Namely

z(t) = u(t) - 0.5 x width 
u(t)-1- 0.5 x width

if u(t) 
if u(t)

z(t)ifIz z(t) = sign(z(t)) x height/2 if ~z 

And the system disturbance is assumed to be white noise, 

  The desired output of system is assumed to be

where r(k)

y* (t) =

sin(2irt/25).

-0.2y '(t - 1) + 0.63y

> u(t -1) 
u(t -1)

(t) < 0.5 x height 
(t) > 0.5 x height. 
v(t) E N(0,0.001)

`(t - 2) + r(t - 1) + 0.8r(t - 2)

linear part of

(6.52)

(6.53)

(6.54)

(6.55)
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 r UNKNOWN NONLINEAR SYSTEM 
 I

 1
 u(r)

1,

z(t)

-

I

14 , j/' uO)

        noise 

      v(t)

z(t)  0.79-1-0.689-2

1-1.729-1+0.749-2
-J y(t)

 Backlash 

Figure 6.3: Unknown nonlinear system for Example 1

  The hybrid quasi-ARMAX predictor with n = m = 2, 1 = 1 is used for the controller. From 
the results obtained by a linear robust STR controller (fixing wii = 0), we choose Xmin=[-4 -4 -4 
-4] and Xrnax=[4 4 4 4]. Assuming that no other useful information available, using Hint B 2 we 
choose n1 = n3 = 4, n2 = n4 = 1 for ep(t), which gives M = 16. The prediction model then has 
69 parameters to be adjusted. We further choose weighting factor a = 0.001 for the control law, and 
forgetting factor Ao = 0.995, dead zone 6 = 0.1 for the robust adaptive algorithm. 

  First, fix wii = 0 and adjust ai, (ii, ci for 600 steps. This accounts for controlling the system using 
a linear robust controller. Figure 6.4(a) shows the result. The control performance is not impressive. 
Then adjust all parameters from the 601st step. Figure 6.4(b) shows the results of first 100 steps 
when all parameters are adjusted. At beginning the tracing error is rather large, but as the controller 
is adapted, the tracing error is getting smaller. Figure 6.4(c) shows the result of 3901 to 4000 steps. 
We can see that after being adapted for appropriate steps the proposed nonlinear robust adaptive 
controller has better performance than the linear one. 

   Next, we will use the multi-model based predictor to control the system. In the simulation, the 
number of local ARMAX model (M) is first chosen rather small, and then increases on-line to achieve 
higher tracking accuracy. For simplicity, we also use the knowledge information that the system is 

linear with respect to y(t — i) and choose n1 = n2 = n4 = 1, n3 = M. In the first 600 steps, M was 
set to 1, then M was changed to 7 at 601st step, and then M was changed to 13 at the 4001st step, 
finally M was changed to 25 at the 6001st step. The results of M = 1, 7, 13, 25 are shown in Fig. 
6.5(a)(b)(c)(d), respectively. We can see that when M = 7 the controlled system could not trace the 
desired output well, while M = 13 or larger, the controlled system could follow the desired output 
well. 
   Example 2: The unknown system considered is the same as that of Example 1 except that the 
nonlinear element is a dead zone with width=4, see Fig. 6.6. 

   The controller used for this example is the same as Example 1. Since the unmodeled dynamics 
may be smaller, the dead zone 6 is chosen to be 0.01. 

   Figure 6.7 shows the simulation results. The proposed nonlinear robust STR controller has better 
performance.

6.4.2 A System with Indivisible Nonlinearity 

Example 3: In this example, the following nonlinear system treated in [76] is considered 
indivisible nonlinearity

             y(t) = f[y(t — 1), y(t — 2), y(t — 3), u(t — 1), u(t — 2)] + v(t) 

where the disturbance v(t) E N(0, 0.001) is white noise, and 

x1x2x3x5(x3 — 1) + X4  f [
xl, x2, x3, x4, x5] = 1

+xz+x3

, which contains 

      (6.56)

2Referred to Section 2.2.3 in Chapter 2 for the detail about the Hint A,B,C.
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Results (a) (b) and (c) for 
esired output y*(t) (dashed-1

Example 1: 
ines); (Lower

(Upper diagram) Controlled output y(t) (solid 
diagram) Control input u(t).

The desired output is assumed to be 

y*(t) = 0.4493y*(t — 1) + 0.57r(t — 1) (6.57) 

where r(t) = sin(2irt/25). 
  The hybrid quasi-ARMAX predictor with n = 3, m = 2, 1 = 1 is used for the controller, which 
gives the best regression vector for (6.56). X6i„=[-1 -1 -1 -2 -2] and X,„az=[1 1 1 3 3] are chosen using 
the information obtained from the linear robust controller. Since the system is linear with respect to 
u(t — i), we choose nl = n2 = n3 = 3, n4 = ns = 1 for Co(t) using Hint A. Then we obtain M = 18 by 
removing some nodes based on Hint C. The prediction model then has 96 parameters to be adjusted. 
We further choose weighting factor A = 0.001 for the control law, and forgetting factor A0 = 0.995, 
dead zone 6 = 0.002 for the robust adaptive algorithm. 

  Figure 6.8 shows the simulation results of linear robust STR control and the proposed nonlinear 
robust STR control. We can see that again the proposed nonlinear controller has better performance.

6.4.3 A System uncontrollable via Local Linearized 

Example 4: The nonlinear system is described by 

                 y(k)=1 +(y (t — 1) + u3(t — 1) + v(t),

Model

(6.58)
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Example 1 using multi-model based predictor: (Upper diagram) Controlled 
and desired output y*(t) (dashed-lines); (Lower diagram) Control input u(t).

which can not be controlled via local linearized model because i 
y(t) = y(t — 1) will hold. This will make it difficult to control the 
disturbance v(t) E N(0, 0.001) is white noise. 

  The desired output in this example is assumed to be

f (6.58) is linearized at 
system near u = y = 0.

u = y = 0, 

The system

y* (t) = 0.6y
*(t — 1) + r(t — 1) (6.59)

where r(t) = sin(27rt/25) + sin(2irt/10). 

The hybrid quasi-ARMAX predictor with n = m = 2, 1 = 2 is used for the controller. Using the 
information obtained from the result of linear control, we choose Xmin=[-4 -4 -2 -2] and X,,,,,=j4 4 
2 2]. Since no further useful information available, we choose n1 = n3 = 5, n2 = n,l = 1, which gives 
M = 25. The predictor obtained thus contains 106 parameters to be adjusted. We further choose 
weighting factor A = 0.001 for the control law, and forgetting factor ap = 0.995, dead zone S = 0.3 for 
the robust adaptive algorithm. 

  Figure 6.9 shows the simulation ,;esults of linear robust STR control and ,the proposed nonlinear 
robust STR control. The system is rather difficult to control. The proposed nonlinear controller 
performs quite well.
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6.5 Discussions and Conclusions

In this chapter, we have proposed a hybrid quasi-ARMAX modeling scheme for control design. The 
scheme has the following distinctive features: 

  • The obtained hybrid quasi-ARMAX prediction model has a similar structure as a linear ARMAX 

     model.

  • The model is linear not only in the parameters to be adjusted but also in the one-step past input 
    (u(t —1)) so that a control law can be derived directly from the hybrid quasi-ARMAX predictor. 

These features makes it possible to do control design of nonlinear systems under the framework of 
linear control theory. As an example, we have developed a STR adaptive control for general nonlinear 
stochastic systems based on the linear stochastic control theory [26]. The effectiveness of the proposed 
controller has been examined by applying it to a variety of nonlinear stochastic systems. 

  In the literature, there are many publications concerning with the use of neural networks for 
adaptive control of nonlinear systems. The control systems based on neural networks are usually rather 
complicated, sensitive to noise, and the convergence properties are not satisfying because the neural 
networks are usually large and nonlinear in the parameters to be adjusted. Some authors suggests to 
use neural networks only as nonlinear compensators, which makes the convergence properties improved 
greatly [102, 34]. Compared with those existing controllers for general nonlinear systems, the STR 
controller proposed in this chapter has the following advantages: 

  • It has a simple structure, which is similar in form to the linear STR controller. In fact, it can 

    be considered as an extension of linear STR controller.
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• It has better convergence properties, 
 adjusted.

since the prediction mode 1 is linear in the parameter to be

• It is not so sensitive to noise, because it is a stochastic STR adaptive controller . 

Therefore, the controller will be useful in real applications. 

  On the other hand, a robust adaptive scheme using dead zone has been employed to improve the 

robustness and the stability of the controller. G. Feng (1995) [18] has shown that an adaptive controller 
based on linear model using such a robust adaptive scheme can be guaranteed to have global stability 

and convergence and to be robust to unmodeled dynamics . However, a proof of global stability and 
convergence for an adaptive controller based on nonlinear black-box models is not so far available . 
We are on investigating this problem concerned with our approach .



Chapter 7

Conclusions

In this final chapter, we will give a summary for whole thesis. 
  Linear system theory (the theory of system identification, system analysis and control design 

based on linear models) are very well developed. There exist many results which can be applied 
to an obtained linear models. The main theme of this thesis has been to develop a hybrid black-
box modeling scheme so that the obtained nonlinear black-box models contain not only the  linearity 

properties which are useful for applications, but also have good flexibility which is needed to deal 
with various nonlinear systems. Investigations have made to do identification, system analysis and 
control design of nonlinear systems under the framework of linear system theory, on the basis of the 
new model structure. The main work of the thesis has been described in Chapter 2, 3, 4, 5 and 6. 

  In Chapter 2, a hybrid quasi-linear black-box modeling scheme has been proposed, in which a 
group of certain NNMs are incorporated into a linear structure. Main efforts have been made to find 
better compromises to the trade-off between model flexibility and model simplicity. The aim is to 
obtain a nonlinear black-box model equipped with a linear structure, flexibility and simplicity. It has 
been shown that in the case of using the hybrid model for 'prediction' or 'simulation' of nonlinear 
systems, it has the following distinctive feature: 

  • It has a compatible flexibility to the existing nonlinear black-box models based on neural net-
    works or wavelet networks etc. 

  • It has better properties for dealing with correlated system disturbance (noise). 

  • The estimator for its parameter estimation could find global minimum more reliably by using 
    our proposed hybrid identification method. 

The work in this chapter also shows that 

 (1) the gap between the existing linear and nonlinear black-box models can be filled by developing 
    a hybrid modeling scheme, in which knowledge information is used efficiently; 

 (2) with the new hybrid model structure, the techniques based on well developed linear system 
    theory could be extended to nonlinear systems. 

  In Chapter 3, a hybrid identification method using genetic algorithms has been proposed based 
on using a Non-Standard GA (NSGA) for searching a good initial value. The NSGA is proposed by 
introducing a new GA operator named as development inspired by the fact that living beings adapt 

themselves to their environment. The hybrid identification method is typically suitable for solving 

multimodal problems resulted from noise models. It combines the reliability properties of the GAs 

with the accuracy of optimization-based method, while requiring a computation time only slightly 

higher than the latter. The proposed hybrid identification method is significant, since 

 (1) it provides a better compromise to the trade-off among the accuracy, reliability and convergent 
    rate in an identification algorithm;
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 (2) it gives a solution to the multimodality problem resulted from noise model. 

  The fault. detection scheme based on the use of Kullback discrimination information for model 
discrimination is known to be very effective for fault detection, but it was so far based on two important 
assumptions which are never in real applications. In Chapter 4 and 5, the assumptions has been relaxed 
so that the fault detection scheme is extended to the case of  umnodeled dynamics and the case of 
nonlinear systems. In Chapter 4, a KDI-based robust fault detection scheme has proposed. Two robust 
identification methods have been suggested for robust fault detection. The KDI have been analyzed 
into a feasible form consisting of four meaningful terms. Fault decision schemes have been developed 
for robustness realization. In Chapter 5, two approaches, a robust fault detection like approach and a 
multi-model based approach, have been proposed for fault detection of nonlinear systems on the basis 
of the hybrid quasi-linear black-box model. The work in these two chapters shows that

(1) the two assumptions so far made in the KDI-based fault detection scheme can be relaxed, so 
   that the fault detection scheme becomes more practicable;

(2) it is possible to extend the existing system analysis approach to nonlinear systems with the 
   proposed hybrid quasi-linear black-box model structure.

  In Chapter 6, the hybrid quasi-ARMAX modeling scheme has been further modified so that it 
is favorable to control design. Our efforts have been made to construct the hybrid model in such 
way that it is linear not only in the parameters to be adjusted but also in the one-step past input 
variable (u(t — 1)) which should be synthesized in a control system. It is distinctive that with the 

hybrid quasi-ARMAX model structure, one could do control design of nonlinear systems under the 
framework of linear control theory. As an example, a STR adaptive controller has been designed for 

general nonlinear stochastic systems under the framework of linear stochastic control theory. The 
effectiveness of the controller has been confirmed through numerical simulations.

Topics for further research 

This thesis has reached its goal and it also motivates several topics for further research. 
  In hybrid quasi-linear black-box modeling scheme, the ability to incorporate knowledge informa-

tion plays key role for obtaining the better properties. However in this thesis, we could only give some 
suggestions for how to use knowledge information. In order to made the modeling method less heuris-
tically dependent, an algorithm should be developed to incorporate knowledge information effectively 
and efficiently. This gives an alternative perspective for intelligent identification. 

  In KDI-based robust fault detection scheme, the KDI has been analyzed into a feasible form 
consisting of four meaningful terms. What information these individual terms can provide and how 
to use the information in the fault detection and fault analysis are needed to be further investigated 
theoretically and experimentally. 

  In adaptive control of nonlinear systems, we have only shown that it is possible to do control 
design of general nonlinear systems under framework of linear control theory. The application of the 
hybrid quasi-ARMAX model to control design is just at its beginning stage. We believe that it is a 

perspective method. Further research may be directed toward the investigations of the tracing ability, 
convergence properties, global stability of control system, etc.



 Append ix A

A Review of Black-Box Models

In this appendix, we will give a review for black-box models and highlight their distinctive features. 
In black-box models, no physical insight is available or used, but the chosen model structure belongs 

to families that are known to have good flexibility and have been "successful in the past". In the 

literature, there are linear black-box models and nonlinear black-box models.

A.1 Linear Black-Box Models

Linear system theory is very well developed and there exist many results which can be applied to the 

obtained linear model. Let us first review the linear black-box models and highlight their distinctive 

features. When extending the linear black-box models to the nonlinear ones, we will try to retain 

those features.

A.1.1 General Linear SISO Black-Box Model 

The general form of a linear SISO black-box model can be described by (A.1) [94] 

                     y(t) = G(q-1, B)u(t) + H(q-1, B)e(t)(A .1)                               Ee(t)e(s) = 0-26t,s 

where y(t) is the output at time t, u(t) is the input, e(t) is a sequence of independent and identically 
distributed (iid) random variable referred to as white noise, G(q-1, B) and H(q-1, 0) are rational 
functions in the backward shift operator q-1, for example, q-lu(t) = u(t - 1). 

  A general parameterization for (A.1) can be given as 

              y(t) =B(q-1,9) u(t)+ C(q-1,0) e(t)(A.2)                    A(q-, B)F(q-1,0)u(t) 0)D(q-1, B) 

where 
A(q-1, e) = 1+ al q-1 + ••• + anq-n 
B(q-1,0) = big-1 + ... + bmq-m 
C(q-1, 0) = 1 + clq-1 + ••• + ciq-1(A.3) 
D(q-1, B) = 1 + dlq-1 + ••• + dndq-nd 
F(q-1,0) = 1+,flq-1 +...+ 

Using 'pseudo-linear' regression form [70], we can express (A.2) as 

                    y(t) = coe (t)Be + e(t)(A.4)

where 

Be = [al ... an b1 ... bm cl ... c( di ... dnd .fl ... 

and the regression vector y,e(t) consists of several components given by

fnj]T (A.5)
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 1) y(t - i),  i = 1, ..., n (associated with the A-polynomial) 

 2) u(t - i),  i = 1, ..., m (associated with the B-polynomial) 

 3) e(t - i) = y(t - i) - y(t - i), i = 1, ..., 1. Prediction errors (associated with the C-polynomial) 

 4) s„(t - i) = y(t - i) - y„ (t - i), i = 1, ..., nd. Simulation errors (associated with the D-polynomial) 

 5) 9„(t - i) = A(q-1, B)y(t - i), i = 1, ..., n f. Simulated outputs from past u only (associated with 
    the F-polynomial) 

  On the other hand, a linear state-space model 

                   x(t + 1) = Ax(t) + Bu(t)(A .6) 
                        y(t) = Cx(t) + Du(t) 

can also he described as a pseudo-linear regression form [89]. The states are introduced as virtual 
outputs generated only to obtain the regressors. Define 

Y(t) = 
L                x(t1)1(A.7) 

Then (A.6) can be written asJ 
                       1,(t) _ EC D1rYR(t - 1) 1(A.8) l A B u(t) J 

where YR(t - 1) is the last components of Y(t - 1) corresponding to x(t). A state-space model can, 
hence, also be described as a special model structure with a certain choice of the listed regressors. The 

virtual outputs are constructed only to be used as regressors. This implies that it might be possible 

to obtain a more efficient model with a smaller number of regressors by using a state-space model.

A.1.2 Several Special Cases 

Several special cases of (A.2) have been so successful in past applications that they have been given 
own names. 

  (1) FIR model 
A=C=D=F=1 

                    y(t) = B(q-1, 60u(t) + e(t)(A.9) 

  (2) ARX model 
C=D=F=1 

A(q-1, 0)y(t) = B(q-1, 0)u(t) + e(t)(A.10) 

  (3) Output-Error (OE) model 
A=C=D=1 

                y(t) = F(q_1,0)u(t) + e(t)(A.11) 
  (4) ARMAX model 

D=F=1 

AN-179)y(t) = B(q-1, 0)u(t) + C(q-1, 0)e(t)(A.12) 

  (5) Box-Jenkins (BJ) model 
A=1 

11(t) =B(q-1, B)u(t) +C(q-1, B)e(t)(A.13) F(q-0)u(t) 
, B) 

In addition to the model structures above, there are AR model and ARMA model for time series 
modeling which also can be considered as the special cases of (A.2).
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A.1.3 Linear Structure and Simplicity 

The distinctive features of a linear black-box model are certainly associated with the term of  'linear', 
which includes two concepts: 

  (1) Linear Structure 
  The first concept concerns the way in which y(t) depends on past data. A linear black-box model 

can be expressed in linear regression form y(t) = cpTe (t)Be. Especially, the regression vector cpe(t) 
depends on the measured data in a linear fashion, which allows one to build a control law easily from 
the identified model. Moreover, the parameter B in the linear structure usually has useful physical 

interpretations. 

  (2) Linear in the Parameters (LIP) 
  The second concept concerns models that are linear in the parameters Be to be estimated (some-

times abbreviated to LIP [94]), so that y(t) depends linearly on Be. The unknown parameters Be is 
usually estimated by optimizing a performance criterion such as loss function. When the model is LIP, 
the performance criterion function will be simple with respect to Be, so that the estimation becomes 
simple.

A.2 Nonlinear Black-Box Models

When a linear black-box model is used to identify an unknown system, the unknown system is usually 
assumed to be linear. Since this is never true in real applications, a nonlinear black-box model may 

sometimes be needed to achieve enough accuracy. This section will give a brief summary for the 

nonlinear black-box models.

A.2.1 General Expression 

A nonlinear black-box structure for a dynamics system is a model structure that is prepared to 
describe virtually any nonlinear dynamics. There has been considerable recent interest in this area 
with structures based on neural networks [90, 76], radial basis function networks [12, 98, 77, 27], wavelet 
networks [117], hinging hyperplanes [9], as well as wavelet transform based methods [101, 7, 16], and 
models based on fuzzy sets and fuzzy rules [112, 109]. It has been pointed out that these nonlinear 
structures can be seen as a concatenation of a mapping from observed data to a regression vector cp(t) 
and a nonlinear mapping g(•) from the regressor space to the output space [92, 46.], namely, 

                      y(t) = g (cp(t), 9) + v(t)(A.14) 

where g(•) is some nonlinear function parameterized by 9, cp(t) is the regression vector with the same 
components as those in the linear case, typically yo(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T for 
ARX case, and v(t) is an additive disturbance term. 

  For the nonlinear mapping g(.), it is natural to think of the parameterized function family as 
function expansions: 

                      g (cp(t), 9) = E wigi (co(t))(A.15) 

where gi is referred as basis functions, since the role they play in (A.15) is similar to that of a functional 
space basis. In some particular situations, they do constitute a functional basis. Typical examples 
are wavelet bases [46]. 

  A lot of choices can be considered for the basis function gi. However, most well known nonlinear 
black-box model structures are composed of gi obtained by parameterizing a single `mother basis 
function' that we generically denote by Nf(x). In this way, a nonlinear black-box model can be 
expressed generally as 

                    y(t) = E wiAff (pi, cp(t)) + v(t)(A.16) 

where wi's are coordinate parameters and pi's are scale and position parameter vectors specifying the 
`basis functions' .
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Figure A.1: One of the simplest adaptive fuzzy systems

A.2.2 Several Nonlinear Black-Box Models 

We will discuss several well known nonlinear black-box models.

(1) Adaptive Fuzzy System (AFS) 

Fuzzy system usually consists of four principal elements: fuzzification interface, knowledge base (fuzzy 
rule and data base), fuzzy inference machine and defuzzification interface [64, 65]. Recent studies show 
that fuzzy system can be developed into an adaptive way [99, 43, 108]. Figure A.1 shows one of the 
simplest adaptive fuzzy systems, which can be explicitly expressed as (A.17), see [110, 111] for details. 

                         Em-=1 w7 (A:==1IIAj. (si(t)))  
         y(t) = ------------------------------+v(t)(A.17)                         E7=1 (Az_1 itA. (Xi (t))) 

where r = dim(yp(t)), A is the minimum operator, M is the number of rules, xi's are the elements of 
ep(t), and ILA; is the membership function of fuzzy set A;, which may, for example, be given as

NJ, (xi (t))) = a= ezp
 1  x, -4  
2 7;z (A.18)

where  a;, -; and al together with w; are adjustable parameters.

(2) Radial Basis Function Networks (RBFN) 

Hartman et al. (1990)[30] has shown that the radial basis function network is capable of approximating 
arbitrarily well any continuous function defined on a convex, compact set. For MISO system (see Fig. 
A.2), it can be described as 

y(t) _ E h (c j, cr2, (P(t)) + v(t) (A.19) 
i-i 

where M is the number of radial basis function and h is the radial basis function , for instance, 

h (ci, v2, (,(t)) = exp {—II (P(t) — ci Ilox }(A .20) 

where w~, ci and o2 are adjustable parameters.
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Figure A.2: A MISO radial basis function network
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Figure A.3: A single hidden layer neural network

(3) Neural Networks (NN) 

Many researches have been done in using Neural Networks as a nonlinear black-box model for identi-
fying nonlinear dynamic systems [11, 113, 23, 31, 66]. For a single hidden layer neural network shown 
in Fig. A.3, it can be expressed as

y(t) _ E wi o-(131(p(t) +  + v(t) 
i—i

(A.21)

where o(.) is the sigmoid function, for example

a(x) =
1 — e—x

1 + e—x
(A.22)

and M is the number of neurons, (wj, f3j, Pei) are adjustable parameters. 
  There are still many other well-known nonlinear black-box models such as `wavelet network', 
'B-splines based model', `hinging hyperplanes based model', and so on, see [92, 46] for com-

prehensive discussions.

A.2.3 Model Flexibility 

We can see that the nonlinear black-box structures summarized above are basically well-known artifi-
cial intelligent (AI) techniques which have achieved great success in many areas such as neural network 
in Pattern Recognition, wavelet transform in Multiresolution Analysis and fuzzy system in Modeling
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Heuristic Systems. These approaches have powerful function approximation abilities. Several authors 
have shown that neural networks, fuzzy systems and radial basis function networks can approximate 
any continuous functions with an arbitrary accuracy [35, 111,  30]. Because these techniques also have 
the ability to encompass truly nonlinear behaviors of dynamic systems, they have attracted much 
interest in system identification community. Recently, some researchers describe these approaches 
in a common framework, i.e, the nonlinear black-box structures [92, 46]. Obviously, these nonlinear 
black-box structures are all flexible enough to identify most reasonable systems in practice. 

  It should however be pointed out that a great deal of attention for the nonlinear black-box models 
is so far paid only to the flexibility of the model structures. Those nonlinear models abandon the 

properties of highly successful linear black-box models.



Appendix B

A Hierarchical Network

In the literature, classical models for representing nonlinear systems usually have structures corre-
sponding to the orders of system nonlinearity. One typical example is the Volterra Series (SISO) 

 [10] 
                 co 0000 

              y(t) =n•ICn(vi,...,Tn)x(t —Tl)...x(t — Tn)dTl .... dry,(B.1) 
             n=000 

where x(t) is the input, y(t) is the output, and 1Cn(71i...,Tn) is the nth-order Volterra kennel. Ob-
viously, the term associated with the lst-order Volterra kennel K (T1) corresponding to linear part, 
while the nth-order Volterra kennel ICn (T1, ..., Tn) to the nth-order nonlinearity. Another example is 
the general Kolmogorov-Gabor polynomial (MISO) [17, 85]

     rr rr r r 

    y(t) =yo+aixi(t)+EEaiixi(t)xj(t)+EEEa;jixi(t)xj(t)xi(t)+...(B.2) 
i=ii=i j=1i=1 j=1 1=1 

where xi (t), (i = 1, ..., r) are inputs and y(t) is output. We can see that the terms associated with ay 
corresponding to linear part, associated with aij corresponding to the 2nd-order nonlinearity and so 

on. 

  We will show that such representations of nonlinear systems can be developed into a hierarchical 
structure, i.e, hierarchical network, in which the parameters are grouped into layers corresponding to 

the orders of system nonlinearity. This hierarchical structure will provide us a theoretical foundation 

for developing the hybrid quasi-linear black-box model.

B.1 ARX Network

Let us consider SISO nonlinear discrete-time systems which can be described by the general Kolmogorov-

Gabor polynomial (B.2), in which the elements [xi(t) i = 1, .., r] are assumed to be the past input-
outputs of system, 

xi(t) = y(t — i) (i = 1, ..., n) 
xj+n(t) = u(k —j) (j = 1,...,m)(B.3) 

(r=n+m) 

Using (B.3) in (B.2), we can get 

m 

                  y(t) = yo + E di,ty(t — i) + E bi tu(t — i)(B.4) 
i=1i=1

where

ai ,t = ai + Lao bi ,t = bi + Lbi,t (B.5)
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 Da;,t = E aijy(t — .7) + 2 E a; ju(t — j + n) + ... (B.6) 
j=1j=n+1 

Ob;,t= E a;ju(t—j+n)+2~aijy(t—j)+...(B.7) 
          j=n+1j=1 

In (B.5), a; and b; stand for a; in (B.2). 
  (B.4) shows that a general nonlinear system may be expressed in a linear ARX structure, in which 

the system nonlinearity is distributed and embedded into the coefficients. On the other hand, the 
nonlinear terms of the coefficients, 6.a; t and Ab; t, are nonlinear functions of input-output variables. 
Hence, each of them again can be expressed in a a linear ARX structure, in which each coefficient 
consists of a constant parameter and a nonlinear term. Obviously, this procedure can be continued 
for the nonlinear terms. As the result, a general nonlinear system can be converted into a form which 
consists of a network structure of ARXs. We call it ARX Network. 
  To simplify the discussion, we introduce a regression vector co(t) and parameter vector O; 

cp(t) = [y(t — 1) ... y(t — n) u(t — 1) ... u(t — m)]T (B.8)

Then (B.4) can be

eo = 

01 = 
~Ol ,t

written as

Representing LO1,t in a 1

Yo 

[al

y(t)

inear

...an b1 

[Lal,t ... Da,z,t ..• Obm,t]T

= e cp(t) + 6•01:icp(t) + eo + v(t).

ARX structure, we have

T pp(t)=  02  w(t) ®,p(t) + ooz ep(t) ®(p(t)

(B.9)

(B.10)

(B.11)

where the symbol ® denotes Kronecker production and

OZ = [a1,1 ••• an ,1 
...a1n+m •••

b1,1 ••• bm,i 

ann+mb1n+m...bmn+TnJ7T 

.

(B.12)

Continuing th is procedure, (B.10)

y(t)

can be represented as

 w(t)  ®(p(t) 
i-1

 +Oo +v(t) (B.13)

where i = 1, 2, .... Figure B.1 shows (B.13) in a network. 
  As shown in Fig B.1, (B.13) represents a nonlinear system into a hierarchical form, in which e0 

and Ol represent linear part, e2 the second order nonlinear part, 03 the third order nonlinear part 
and so on. It should however be noticed that the number of parameters in Oi increases exponentially 
as i increases, i.e, dim(e2) = (n + m)i. Therefore in practice, as a model the ARX Network can only 
be applied to the systems without too high order nonlinearity. But, the significance of ARX Network 
modeling is that it provides a framework to express a nonlinear system in a linear structure, in which 
the system nonlinearity is distributed and embedded the layered coefficients. By representing the 
nonlinear terms of coefficients corresponding to higher order nonlinearity using the NNMs such as 
adaptive fuzzy systems, a hybrid modeling can be realized. 

  As an example, let us suppose to represent the higher order nonlinearity of system, say the order 
higher than 2, by using a set of adaptive fuzzy systems. Introduce a vector .F

where f„(t), (v = 1, .., r)

 = [fi (t)

are realized by using ad

AOi tw(t)

f2(t) ... fr(t)]

aptive fuzzy systems and let'

= Oi w(t) 0(,(t) + Ftco(t)

(B.14)

(B.15)
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Figure B.1
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fuzzy sets in the input space

Then (B.10) can be written as 

             y(t) = of co(t) + 02 gt) ®(p(t) + .7-60(t) + o + v(t) (B.16) 

We call (B.16) as a Hybrid ARX Network, which can be used to identify systems with higher order 
nonlinearity. 

  The adaptive fuzzy systems used to realize f„((p(t)) are given by 

                            Lau; (A;I /AA, (xi(t)))  
       fu((p(t))(B.17) 

Ei.i (A 1 PA (xi(t))) 
which is similar in form to (A.17). Note here that the fuzzy membership function is the input 
space, IA;, are determined a priori. For example, if the system operating region is mostly located in 
Xmin < (p(t) < Xmax, the possible fuzzy sets may be something like Fig. B.2. 

B.2 The Hierarchical Network and General Nonlinear Struc-

     ture 

Based on the framework stated in [92, 46], a general nonlinear ARX structure can be seen as a 
concatenation of a mapping from observed data to a regression vector (p(t) and a nonlinear mapping 
g(.) from the regressor space to the output space 

                     y(t) = g ((P(t)) + v(t).(B.18)
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Now let us perform Taylor expansion to g  (cp(t)) around the region w(t) = 0 

              y(t) = g(0) + g' (0)('(t) + Tz(p(t)gl (o)cp(t) + ... + v(t) (B.19) 

where the prime denotes differentiation with respect to co(t). If g(•) is assumed to be a continuously 
differentiable function, a model can be obtained from the expression (B.19). Introducing vectors 0; 
and appropriately arranging their elements 

00 - g(0), 01 - g'(0), 02 - g"(0), ...(B.20) 

(B.19) can be written as 

y(t) = 00 + 0i cp(t) + 0z'P(t) 0 4o(t) + ... + v(t)

        T      D
i  w(t)0  ...  0  40(t) 

i-1.

 +eo+v(t) (B.21)

which is the same as (B.13). 
  Note the elements of c(t) are discrete-time variables, but in the Taylor expansion we treated them 

as they were continuous variable. Therefor the treatment above is not strict. From which we however 
can know some insight about the hierarchical network.



Append  ix  C

Derivation 

Algorithm

of Recursive PEM

Consider the problem of estimation 0 by minimizing a criterion based on prediction error 

O(N) = arg in {VN(0)} 

N VN (0) = 2 LI E2 (t, 0) 
t=1 

E(t, 0) y(t) — y(tI0) 

We will here derive a recursive algorithm for this problem based on the derivation in [70]. 
  Let 9(t-1) be our estimate at time t-1. We wish to obtain a 0(t) that (approximately) 

Vt(0). By mean of a Taylor expansion of Vg(0)  around 0(t — 1) we obtain 

Vt(0) = Vt(O(t — 1)) + Vt(O(t — 1))[0 — O(t — 1)] 

                  +2[0-O(t -1)]TVt'(O(t - 1))[0 - O(t - 1)] 
+o(I0 - O(t - 1)12) 

where the prime denotes differentiation with respect to 0, and o(x) denotes a function 
o(x)/Ixl --> 0 as IxI —, 0. Minimization of this expression with respect to 0 gives 

O(t) = O(t — 1) — [Vt"(O(t — 1))]-1 V'[O(t — 1)]T + o(IO — O(t — 1)1) 

If we denote the negative derivative of e(t, 0) with respect to 0 by 

                   0(t, co, [_aE(t,0)]T                           a0J 

We have 

[Vl (0)]T = — E '(k, O)E(k, 0) = [V' 1(0)]T — Y&(t, 0)e(t, 0), 
k=1 

and, by differentiating once more, 

Vt"(0) = Vt 1(0) + IP(t, 0)0T (t, 0) + E"(t, 0)E(t, B), 

where a"(t, 0) is the second-derivative matrix of e(t, 0) with respect to 0. 
  In order to evaluate (C.5) a number of approximations have to introduced. 
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(C.1)

(C.2)

(C.3)

minimizes

such

(C.4) 

that

(C.5)

(C.6)

(C.7)

(C.8)
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  • first we assume that the next estimate O(t) is to be found in a small neighborhood of  O(t - 1). 
This should be a reasonable approximation if t is large. That assumption leads to the following two 

approximations: 

   Neglect o(16(t) - O(t - 1)1) in (C.5)(C.9) 
and take 

Vi"(O(t)) = V"(O(t - 1))(C.10) 

  • Then we assume that O(t - 1) is indeed the optimal estimate a time t - 1, so that 

V'_1(O(t - 1)) = 0.(C.11) 

  • Finally we set 

          c',1_/(6(t - 1)) = 0.(C.12) 

The rationale for the approximation (C.12) is as follows. Close to the true value 9o, {e(t, O)} will be 
almost white noise, so that we may approximately consider e(t, CO to be of zero mean and independent 
of what happened up to time t - 1. In particular, it would then be independent of en (t, 0). The 
expected value of the left-hand side of (C.12) then is indeed close to zero, so that the last term of 
(C.8) makes an order of magnitude less contribution to VI" than the second term. 

  With the assumption (C.12) and (C.10) inserted into (C.8) we can approximately evaluate the 
second-derivative matrix. Let this approximation be denoted by R(t). Then we have 

R(t) = R(t - 1) + ip(t, O(t - 1))0T (t, O(t - 1))(C.13) 

Using this expression for Vi"(O(t - 1) and the approximation R(t) for V"(O(t - 1)) in (C.5) together 
with the assumption (C.9), we have 

O(t) = O(t - 1) + /1-1(t)0(t, O(t - 1))e(t, O(t - 1)) (C.14) 

   The algorithm (C.14) is not, however, well suited for computation as it stands, since a matrix has 
to be inverted in each time step. It is more nature to introduce 

                P(t) = R-'(t)(C.15) 

and update P(t) directly, instead of using (C.13). This is accomplished by the so-called matrix 
inversion lemma as follows:

LEMMA Let A, B, C, and D be matrices of compatible dimensions, so that the product 
BCD and the sum A+ BCD exist. Then 

[A + BCD]-1 = A-1 — A-1B[DA-1B + C-1]-1DA-1(C.16) 

{Proof} Multiply the right-hand side of (C.16) by A + BCD for the right. This gives 

I + A-1BCD - A-1B[DA-1B + C-11-1D - A-1B[DA-1B + C-1]DA-1BCD 
     = IA-1B[DA-1 B + C-1]-1 {[DA-1B • C-1]CD - D - DA-1BCD} 

     = I + A-1B[DA-1B + C-1-1101= I 

which proves (C.16).

Applying (C.16) and (C.15) to (C.13) with A = R(t-1), B = z/i(t, O(t-1)), C = 1, D = 1/iT (t, 
gives 

    P(t) = {P-1(t - 1) +(t, O(t - 1))/iT (t, O(t - 1))] 1 
        = P(t - 1) - P(t - 1)0(t, O(t - 1)) [ipT (t, O(t — 1))P(t - 1)0(t, (5(t - 1))] 1 

,'T(t ,O(t - 1))P(t - 1) 

P(t-1)_P(t - 1)1p(t, O(t - 1))'T (t,O(t — 1))P(t - 1)  
1 + bT(t, O(t — 1))P(t - 1)0(t, O(t - 1)) •

O(t-1)

(C.17)
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From (C.17) we also find that 

 P(t)/p(t, O(t)) = P(t — 1)0(t, O(t)) 
 P(t — 1)0 (t , O(t — 1))0T (t, O(t — 1))P(t — 1)0(t, O(t — 1))

1 + (t, O(t — 1))P(t — 1)0(t, O(t — 1)) 
P(t — 1) , O(t))

                1 + OT (t, O(t — 1))P(t — 1)0(t, O(t — 1)) 

The recursive PEM algorithm can thus be finally expressed as 

O(t) = O(t — 1) + L(t)e(t, O(t — 1)) 

             L(t) = P(t — 1)0(t,O(t — 1)) 
1 + i/,' (t, (-)(t — 1))P(t — 1)0 (t, U(t — 1))

P(t) = P(t—1)—P(t — 1)0(t, O(t — 1))0T (t,O(t — 1))P(t — 1)
1 + z'1 (t, U(t - 1))13(t - 1)0(t, 0(t - 1))

(C.18)

(C.19)

(C.20)

(C.21)
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Appendix D

Fault Detection Scheme Using the

KDI

The  Kullback discrimination information (KDI) is basically a measure to compare two probability 
density functions p1(x) and p2(x). It is given by

I[1, 2] = JPi(x)1ogPdx  > 0(D.1) 
                              p2() 

where equality holds if and only if p1(x) = p2(x) [52]. The value I[1, 2] hence can be used as a 
measure of how much p1(x) deviates from p2(x). Moreover, a symmetric form of such a measure can 
be introduced by considering J[1, 2] = /11,2] + I[2, 1]. 
  Recently, Kumammaru and co-workers have developed a KDI-based fault detection scheme based 

on the use of KDI for model discrimination, see [93, 61, 60]. In this appendix, we first present a 
summary for the KDI-based fault detection scheme, then point out several restrictions of the scheme 
for practical applications.

D.1 Preliminaries

Consider a discrete-time linear SISO system described by:

S : y(t) = Go(q-1)u(t) + Ho(q-1)e(t) 
       e(t) E N(0, vo) (D.2)

where y(t) is the output at time t (t = 1, 2, ...), u(t) the input and e(t) the white 
Go(q-1), Ho(q-1) are scalar rational functions in the backward shift operator q-1. 
generality, we will assume that Go(q-1) and Ho(q-1) meet the following conditions: 

  • Go(q-1), Ho(q-1) are causal 
  • G0(0) = 0, Ho(0) = 1 

  • Go (q-1), Ho(q-1) are asymptotically stable. 
When identifying the system, we assume that the parametric models of the form 

M(B) : y(t) = G(q-1, 0)u(t) + H(q-1, 9)e(t) 
                          e(t) E N(0, v2)

Gaussian noise. 

Without loss of

(D.3)

are used, where 0 and o-2 denote unknown parameters. We further assume that for any value of B the 

filters G(q-1,0) and H(q-1,0) fulfill the assumptions stated above for Go(q-1) and Ho(q-1)• 
  Assume then that data from the system are available from two distinct time intervals I1 and 12, 

see Fig. D.1, in which Ni (i = 1, 2) denotes the number of data points in the interval Ii, while Xi 
denotes the experimental condition (e.g. the input characteristics like the spectral density 4:D„(w)).

117
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 I  l(X 1) 12(  2)
Time

i I  )) I I 

Ni NT 2

Figure D.1: Two distinct time intervals

Now perform the identification and denote the estimates of the unknown parameter vector B using 
the data obtained from these two intervals by di and 02, respectively. 

  We now consider the problem to decide whether or not 

61 = 62(D.4) 

reflecting the uncertainties in the data. This problem may be given two different interpretations: 

 (1) Fault Detection. In a system described by an input-output model, a system fault caused by 
the changes in system configuration parameters will results in changes of model parameters. 

    Based on this assumption, if two identified models are significantly different, a decision can be 
    made that a fault has occurred. 

 (2) Model Validation. If the model parameterization is chosen adequately for the system then 
    we expect the obtained models (and hence also the two parameter vectors el and 02) to be 

    reasonably equal. If M is not sufficiently rich to describe the system then the models might 
    differ more. 

  We here only consider fault detection problem. Let us assume that the model parameterization 
does be chosen adequately for the system, that is, there is no unmodeled dynamics in the modeling. 
For such an ideal case, the distortion of M(01) and M(92) implies a change of system parameters 
which may be caused by a system failure. The discrimination of the identified models .M(01) and 
.M0.2) can be executed via the KDI. 

  Applying the KDI to the likelihood functions of the identified models, p(YN1 lei, UN1 _1) (i = 1, 2), 
we thus have: 

                                           p(YN1I B1,UN1-1)  IN, [1, 2] = JP(YNIIO1,UN1_1)log dYN1(D.5) 
p(YN1I92) UN1-1)) 

where YN, and UN, denote the data collections up to N1 taken from the first interval Il defined by: 

YN, = [y(1) y(2) ... y(Ni)]T, UN, = [n(1) u(2) .•. u(N1)]T • (D.6) 

The index in (D.5) hence indicates how well the model using B2 describes the data in the interval I . 
In other words the criteria IN,[1, 2] is an index for discriminating the models ,M(B1) and .M(02) via 
the difference in the corresponding likelihood functions, see Fig . D.2.

D.2 Evaluation of the KDI 

Obviously, evaluating (D.5) directly based on the Gaussian distribution of the likelihood functions 
requires a great computational labour due to large matrix operations for a finite but fairly large data 
sets. In order to solve this problem, an algorithm has been derived so that the KID can be evaluated 
in a feasible way. The derivation steps are as follows, see Siiderstrom and Kumamaru (1985) [93] for 
details: 

  • Apply Bayes' rule 

P(Yk+l l Bi, Uk) = p(y(k + 1)IBi, Yk, Uk)p(Ykl Bi, Uk)(D.7)
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Model discrimination using the KDI

  • Due to the assumption on Gaussian distributed disturbance we have 

p(y(k + 1) 1B;, Yk, Uk) = N(mk;, o)(D.8) 

    Here the conditional mean mk; is equal to one-step ahead prediction of y(k + 1). 
  • Use of straightforward manipulation with the model equations, which are assumed to 

    describe the data. 
The result of such a derivation is: 

3 
IN, [1, 2] = Io [1, 2] + E Ig) [1, 2](D.9) 

i=1 

where /0[1,2] is an initial value which might be neglected and other components are given as: 

                IN~[l,2]=21[(di /&2—1)—log(&i /&z )](D.10) 

N, —1 

IN21 [1, 2] = 2 E p-12-1(G1_ G2)u(k + 1)11a2 2(D.11) 
k=0 

                        2      IN1[1, 2]21 {j_                    ri (HZ 1(z)H1(z) — 1) & (H1(z1)H2 1(z-1) — 1) dz (D.12) 

G; = G(q-1, O;), Hi(z) = H(z, O;) i = 1, 2(D.13) 

These different terms have the following meanings: The first term (D.10) expresses the deviation of &2 
from &1. The second term (D.11) shows the difference between G1 and G2. Note that the difference 
in the deterministic output Gu(t) is filtered with H2-1. In this way we relate the difference to the 
prediction error instead of the output. The last term (D.12) describes the difference between the noise 
filters H1 and H2. All of these terms become zero when B1 = O2 and otherwise positive from the 
property of the KDI construction. In particular the case G1 = G2 is the only case when the second 
term becomes zero if the input is persistently exciting the system. Therefore, the following criteria 
for fault detection can be introduced based on the KDI: 

W a2 = N1 [(&i /&2 — 1) — log(& /61)](D.14) 

NI —1 

                W° = E(Hz 1(G1 - G2)u(k + 1))2 /&22(D.15) 
k=0 

                       2 

We&2N1 (H2 1(z)H1(z) — 1) &i (H1(z-1)H2 1(z-1) — 1) dz (D.16)
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All criteria W can be used as indexes fault detection by the thresholding approach 

W                 {fault 'D.17                lno fault() 
where the threshold n should be appropriately determined under a specification of decision accuracy, 

e.g. a significance level for a false alarm rate, in which the statistical properties of 'Ni provide useful 
information.

D.3 Asymptotic Properties of the Criteria 

Assume that a prediction error method (PEM) [70, 94] is used for parameter estimation. Then we 
take estimated parameter vector as: 

Ni                 = arg minNe(t, 0;)2(D.18) 

where 

E(t, 0;) = y(t) — — 1, Oi) 
Hy(t) — Ht 1G;u(t)(D.19) 

The asymptotic parameter vector O; are given by 

                      = arg min {EE(t, 0;)2 }(D.20) 
e, 

0; does not depend on i when the system is included in the model structure. It is occasionally denoted 
by 0* in such a case and called as the true parameter vector. The prediction error E(t,0*) becomes 
identical to the white noise sequence e(t) of the true system, see (D.2). The estimates have the 
following asymptotic Gaussian distributions [94]: 

0*) dis N(0, Pi)(D.21) 

P; = [E0T (00.0-2 co] —1(D .22) 
where 1/i(t) denotes the gradient of the prediction error with respect to the parameter vector: 

                (t) = aEaeB)I(D.23) 
                                                                       e--e- 

Note that the expectation in (D.22) is to be carried out for the experimental condition X;. Thus the 
covariance matrix P; will depend on X;. 

  In the ideal case where the system is stationary and the model structure is sufficiently rich to 
describe the system, the estimated parameter vector 01 and O2 are close to each other, but not identical 
since the time intervals I1 and 12 are finite and there will always be some random fluctuations. It can 
be shown that all criteria of KDI are approximately expressed by: 

W/N, _ (B1 — 02)T Q((91 — 02)(D .24,) 
where the weighting matrix Q depends on the criteria and the model structure. By using the Taylor 
expansion, the Q matrices are given as follows [93]: 

                     znu2,1„.2Q(W )i'~ = 
2~oaB~°a0(D.25) 

             {H1= E(41)aG(a4;10)u(t)]~0 2[Ho1(41) aG(a0~1~ 0) u(t),B_e•(D.26)
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      =60 211H-1(z)8H(z, 9)a2 8H(z, 0)H_1(z_1)lJdz Q(We)
27riJ°09;° 89;°B _B• z (D.27)

Since 91 and 92 are independent, from (D.21) we have

 N1(B1 — 1/2) = N1(B1 — 9`) — V N2•N1(B2 — 9`)d`~N(0, P) (D.28)

with 
                P = P1+ (N1/N2)P2(D.29) 

If in the special case the experimental conditions are equal (X1 = X2), we have P1= P2 and hence

P=Pi(1+N1/N2) (D.30)

  By inspection of (D.24) and (D.28), it can be shown that the asymptotic distribution of the criteria 
will be a X2-distributed if the matrices Q and P satisfy Q = P-1. The results are summarized as 
follows, see [93, 60] for details: 

  Assume that the model structure includes the true system and that the system is stationary in both 
intervals I1 and I2 with the same experimental condition (X1 = X2). If the model parameterization 
is such that (D.3) can be written as: 

                  M : y(t) = G(q-1, 9u)u(t) + H(q-1 , Be)e(t) 
                 e(t) E N(0,o2)(D.31) 

where 9u and Be with dimensions du = dim(9u), de = dim(9e) do not have any common parameters, 
then as N1 and N2 tend to infinity we have

W°2 distX2(1) (D.32)

W°/(1 + N1/N2) d-4X2(du)(D.33) 

We/(1 + Ni/N2)d—_' X2 (de).(D.34) 

These asymptotic results can conveniently be used for a reasonable selection of the threshold value in 

the fault detection application.

D.4 Fault Detection via KDI: Restrictions

As shown earlier, the criteria W derived from the KDI, are indexes corresponding to weighted norm 

of (01 — 02), see (D.24), in which the weighting matrix Q reflects the model structure and statistical 
properties of the disturbance. They therefore are appropriate indexes for fault detection, see [62, 59, 
53, 57, 58]. However, as far as the fault detection is carried out by a simple thresholding approach 
like (D.17), there are several restrictions for the practical applications. 

  The KDI-based fault detection is based on two important assumptions: (1) The system to be 
diagnosed is linear; (2) the model parameterization is chosen adequately for the system, which are 
never true in real applications. In the KDI-based fault detection scheme, the identified model is 
discriminated via the difference in the corresponding likelihood functions by using the KDI. The 
algorithm for evaluating the KDI in a feasible way was derived based on the assumption of Gaussian 
distribution for the likelihood functions. For a general nonlinear model, the likelihood function may 
no longer be assumed to be Gaussian distributed and results in the KDI-based fault detection scheme 
infeasible. Therefore, the assumption (1) is necessary. On the other hand, When the model structure 
does not include the system (S 0 M), that is, there is unmodeled dynamics in the modeling, the 
difference between the models identified from two intervals will become large so that the fault detection 
based on (D.17) might become infeasible. That follows the assumption (2).
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Appendix  E

A Review of Robust Ident  i ficat ion

Methods

The research dealing with the problem of quantifying the errors in estimated models for dynamic 

systems is a large field. Many approaches have been proposed, see e.g.  [78, 79, 80]. Some of the typical 
approaches are related to the well-known titles of ̀ estimation in Hc„' [32, 29, 28, 42, 120], 'worst-case 
estimation' [105, 48, 115], ̀estimation in /I' [71, 49] and ̀ stochastic embedding of undermodeling' [25]. 
Broadly classifying these approaches according to the forms for describing model uncertainty, we may 
however group them into two kinds: a soft bound approach which characterizes modeling error as a 
random quantity with soft bound, and a hard bound approach which describes modeling error as a 
deterministic quantity with hard bound.

E.1 A Soft Bound Approach

The soft bound error description is so called 'stochastic embedding approach' proposed by Goodwin 
and his coworkers [25]. The basic idea can be summarized as follows. 

  Consider the problem of estimating a model for a dynamic system on the basis of the observation of 
an N point input-output data sequence ZN = [{u(t)}, {y(t)}] where the observed data Z°° is assumed 
to be generated by the system S according to

S: y(t) = Go(q-1)u(t) + H(q-1)e(t)

Here Go(q-1) and H(q-1) are rational transfer functions in the backward shift operator q-1. 
  To obtain an estimate for the on-average characteristics of the total error, assume that the 
transfer function Go(e-.2') is a stochastic process indexed by variable co. And further assume 
for the given choice of model set Mp, and for some value 00, it can be decomposed as

(E.1)

true 

that,

Go(e--1") = 
   with

G(e-)",00) -F GA (e-"") 
E {Go(e-2")} = G(e-3",0o). (E.2)

It follows that Go(e-3") is a zero mean stochastic process

E {GA(e-'")} = 0 (E.3)

where E{.} means averaging over different realizations of the undermodeling. 
  In the stochastic embedding paradigm, {vt = H(q-le(t)} and Gt, are assumed to be independent. 

And moreover, both vt and GA are assumed to be associated with the probability density functions 

(pdf) f„(vt, y) and f p(G6,, 0) respectively, where y and i3 are real parameter vector to be estimated 
from the data. Examples for the pdfs fv(vt, y) and f p(GA, a) are:

vi a (E.4)
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and 

                G6,(q-1) = Egkq-k(E.5) 
 k=1 

with 
                     rl  = [91 712 ... qk] N(0, C,7)(E .6) E {q} = aak 

E.2 A Hard Bound Approach 

In a hard bound approach, the modeling error is described as 

IGo(e-in - G(e-~", B)I < r(e-j").(E.7) 
Several methods have been proposed to identify the error bound r(e-j"), see e.g. [48, 105]. Here we 
only summarize the method discussed in [105]. 

  The true system is assumed to be given by an IIR model 

                   y(t) = > gku(t - k) + v(t)(E.8) 
k=1 

where the transfer function 

Go(q-1) = E gkq-k(E.9) 
k=1 

is assumed to be stable (q-1 is delay operator). Moreover, the noise v(t) is assumed to be bounded. 
   Similar to the stochastic embedding approach, the following assumption concerning the true system 
is made: 

  The stable transfer function Go(q-1) can be divided into a simple and dominating low-order 
parametric parametric part G(q-1, Bo), and a more complex part LG(q-1). Thus 

Go(4-1) = G(q-1, Bo) + LG(q-1)(E.10) 

E.2.1 The Nominal Model 

The nominal model is assumed to be linear in the parameter vector B 

G(4-1,8) = ~bkBk(q-1), B = [b1 ... bm]T(E.11) 
k=1 

where {Bk(q-1)} is given set of linear filters. Many models can be put into this framework. For 
example, the choice Bk(q-1) = q—k gives a well-known FIR model. By instead taking 

                         1vl-a2r1-
a1_ 

k-1 

            Bk(q)= 
q-aq-a, -1 < a < 1(E.12) 

we obtain the Laguerre model set [103, 104]. Here the Laguerre parameter a should be taken dose to 
the dominating pole of the system to be modeled. 

E.2.2 Modeling Error Part 

The modeling error term AG(q-1) will be modeled as 

AG(q-1) = D(q-1)L(q-1)(E.13)
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where  D(q-1) is a fixed and known "shaping" filter and 

A(q-1) = E bkq—k 
k=1 

is a general stable transfer function. 

, (Summary ): A general stable linear system will be modeled as 

G(r1) = G(9,-1,0)4_ D(q-1)A(q-1) 

A(q-1) = Ebkq—k 
k=1 

where G(q-1,0) is a given parametric model and D(q-1) is a fixed filter. 
the m x 1 parameter vector 0, together with the infinite sequence {5k}.

The

(E.14)

(E.15)

unknown quantities are

E.2.3 Estimation 

The input-output relation corresponding to (E.15) can be written as 

                      y(t) = co(t)T 0 + vt 
vt = v(t) + w(t) + z(t)

(E.16)

where 

0= [0T 61 ... dn]T (E.17) tp(t) = [B1(q—)u(t) ... Bm(q1)u(t) D(41)u(t — 1) ... D(q-1)u(t — n)]T 

and the unknown input vt consists of three terms: v(t) represents the noise contribution, w(t) contains 
the transient effects from unknown initial conditions of the system, and z(t) denotes the truncation 
error of 0(q-1). Then this estimation can be realized using set membership identification method 
[6, 721 based on a priori information about the bound of the unknown input vt, see [105] for details.
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