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Abstract. The modular network SOM (mnSOM) proposed by authors
is an extension and generalization of a conventional SOM in which each
nodal unit is replaced by a module such as a neural network. It is ex-
pected that the mnSOM will extend the area of applications beyond that
of a conventional SOM. We set out to establish the theory and algorithm
of a mnSOM, and to apply it to several research topics, to create a fun-
damental technology that is generally usable only in expensive studies.
In this paper, the theory and the algorithm of the mnSOM are reported;
moreover, the results of applications of the mnSOM are presented.

1 Introduction

Kohonen’s self-organizing map (SOM) performs a topology-preserving transfor-
mation from a higher-dimensional vector space to a lower one, which is usually
two-dimensional, and generates a map that can display visually the similarity
between vectors [1]. In addition, the units in a SOM can interpolate the inter-
mediate vectors between the input vectors. Since a SOM has these features, it
has been applied in various fields such as in medical treatment, informational-
communication, control systems, and image and speech analysis. Despite that
the SOM has been used in these various areas, objects that the SOM deals with
are limited to vector data that are distributed in vector space. In the conven-
tional SOM, it is difficult to generate a map of objects such as a set of time-series
data or a set of manifolds. Therefore, it is necessary to propose a generalized
SOM that can generate a map corresponding to various object types. Further,
if it is possible to generate the intermediate objects self-organizationally by a
generalized SOM, then SOMs will become more powerful tools.

Kohonen has described necessity of the generalization of the SOM [2], and
proposed a self-organizing operator map (SOOM) as the generalization of the
SOM [2]. In the SOOM, each nodal unit in the SOM is replaced to a linear
operator such as an AR model in order to generate a map for dynamic signals.
In other words, the network structure of the SOOM is equal to a modular network
in which a module unit is composed of a linear operator. Kohonen tried to derive
a general principle of the SOM from the SOOM. However, we believe that it can’t
truly be described as a generalization of the SOM since it is written in respect
to theory limited to the SOOM, each module of which is a linear operator.



Recently, we proposed a modular network SOM (mnSOM) in which each
nodal unit in the conventional SOM is replaced by a module such as a neural
network [3]. The module of the mnSOM can be freely designed to correspond
to the objects that are performed topology-preserving transformation to a map.
For example, when the module of the mnSOM is composed of multi-layer percep-
trons (MLP), which represent a nonlinear function, then the mnSOM generates
a map in function space [4]. Moreover, when the module is designed as recurrent
neural network that represents a function of a dynamical system, then the map
generated by the mnSOM gives the interrelationships between the functions of
dynamical systems [5]. Therefore, it is considered that the mnSOM has the char-
acteristics of an extension and generalization of the SOM of Kohonen; moreover,
it is expected that the mnSOM will become a fundamental technology for neural
network models as well as expanding the fields to which an SOM as a generalized
SOM can be applied.

In our past studies, the theory and the algorithm of our mnSOM based on
the MLP module (MLP-mnSOM), the theoretical framework of which is sim-
ple, were established to prove that the mnSOM behaves as a generalized SOM.
Moreover, not only the MLP-mnSOM but also mnSOMs based on various kinds
of modules have been applied to a variety of research topics. As a result, it
has been proven that the characteristic of the maps of mnSOMs and SOMs are
equal. This suggests that our mnSOM is a generalization of an SOM. Further,
it has been noted that the mnSOM has characteristics of both supervised and
unsupervised learning; that is, the mnSOM performs not only supervised learn-
ing corresponding to the given target signals, but also unsupervised learning in
which intermediate objects are generated self-organizationally.

In this paper, the theory and the algorithm of the MLP-mnSOM are pre-
sented. Moreover, the characteristics of the maps in mnSOMs and SOMs, and
the results from various research areas with various variations of mnSOMs are
shown.

2 Theory and algorithm

2.1 Theory and framework

The mnSOM has the structure of a modular network, the modules of which
are arranged in a lattice (Fig.1(a)). In this paper, each module of an mnSOM,
called “MLP-mnSOM”, is composed of a multi-layer perceptron (MLP) that rep-
resents a nonlinear function. The MLP-mnSOM generates a map that presents
similarity-relationships between functions. In other words, the neighboring mod-
ules in a mnSOM acquire similar functions through training, while distant mod-
ules acquire different functions.

Fig.1(b) shows the framework of the MLP-mnSOM. Suppose that there are I
systems (static), in which input-output characteristics are defined with functions
fi(·) i = 1, ..., I and which have din inputs and dout outputs. In addition, suppose
that input-output vector datasets Di = {(xij ,yij)} j = 1, ..., J are observed
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Fig. 1. (a)The architecture of an MLP-mnSOM. (b)The framework of an MLP-
mnSOM.

from the systems, so that yij = fi(xij). Known information is only the input-
output vector datasets Di. The functions fi(·) of the systems are unknown.
While, the mnSOM is composed of M MLP modules, each of which has din

input-layer units, dhidden hidden-layer units and dout output-layer units. In these
conditions, the MLP-mnSOM simultaneously executes the following tasks .

(1) To identify function fi(·) from datasets Di i = 1, ...I
(2) To generate a map based on the similarity-measures between functions.

(1) means that the functions of the systems are expected from the learning of
the Best Matching Module (BMM). Here, a BMM means a module in which



output errors are minimized to the desired outputs of the dataset of a system.
(2) means that the i-th and the i′-th systems have similar characteristics; Thus,
two corresponding BMMs are near to each other by their positions in the lattice.
Here, the similarity-measure L2(g, f) between functions g(x) and f(x) is defined
as follows :

L2(g, f) =
∫
‖g(x− f(x)‖2p(x)dx. (1)

p(x) denotes the probability function of x. Moreover, the modules between the
BMMs of the i-th and the i′-th systems become “intermediate systems” by in-
terpolation. These two tasks are processed in parallel.

2.2 Algorithm

The algorithm for the mnSOM consists of four processes: (1)evaluative process,
(2)competitive process, (3)cooperative process, (4)adaptive process. In this paper,
the algorithm of the MLP-mnSOM is shown.

(1)evaluative process

The outputs of all modules are evaluated for each input-output data vector pair.
Suppose that an input data vector xij is picked up, then the output of the k-th
modules ỹk

ij is calculated for that input. This calculation process is repeated for
k = 1, ..., M using the same input xij . After evaluating all outputs for all inputs,
the errors of all modules for each data class are then evaluated. Now let Ek

i be
the error of the k-th module for the dataset from i-th system, i.e.,

Ek
i =

1
J

J∑

j=1

‖ỹk
ij − yij‖2 =

1
J

J∑

j=1

‖gk(xij)− fi(xij)‖2. (2)

If J is large enough, then the distance between the k-th module and the i-th
system in the function space is approximated by the error Ek

i as follows :

L2(gk, fi) =
∫
‖gk(x)− fi(x)‖2pi(x)dx ' Ek

i . (3)

In this paper it is assumed that {pi(x)} for i = 1, ..., I are approximately the
same as p(x), due to normalization of the data distribution for each class.

(2)competitive process

The module which reproduces {yij} best is defined as the BMM, i.e. the winner
module for the i-th system. Thus, let k∗i be the module number of the BMM for
the i-th system, then k∗i is defined as :

k∗i = arg min
k

Ek
i . (4)



(3)cooperative process

The learning rate of each module is calculated by using the neighborhood func-
tion. Usually, a BMM and its neighbor modules gain larger learning rates than
other modules. Let ψk

i (T ) denote the learning rate of the k-th module for the
i-th system at learning time T . Then ψk

i (T ) is given by :

ψk
i =

h(l(k, k∗i );T∑I
i′ h(l(k, k∗i′);T )

(5)

h(l;T ) = exp
[
− l2

2σ2(T )

]
. (6)

Here, l(k, k∗i ) expresses the distance between the k-th module and the BMM for
the i-th system in the map space, i.e. the distance on the lattice of the mnSOM.
h(l;T ) is a neighborhood function which shrinks with the calculation time T .
Moreover, σ2(T ) means the width of the neighborhood function h(l;T ) at the
calculation time T . The σ2(T ) is monotonously decreased at time T as:

σ2(T ) = σmin + (σmax − σmin) exp
[
−T

τ

]
(7)

σmax, σmin and τ are constants.

(4)adaptive process

All modules are trained by the backpropagation learning algorithm as:

∆wk = −η
I∑

i=1

ψk
i

∂Ek
i

∂wk
= −η

∂Ek

∂wk
. (8)

Here, wk denotes the weight vector of the k-th MLP module and Ek =
∑

i ψk
i Ek

i .
Note that Ek has a global minimum point at which gk(x) satisfies:

gk(x) =
I∑

i=1

ψk
i fi(x). (9)

Therefore, gk(x) is updated so as to converge to the interior division of {fi(x)}
with the weights {ψk

i }. During training MLPs, each input vector xij is presented
one by one as the input, and the corresponding output yij is presented as the
desired signal.

3 Computer simulation

This section presents the results of several simulations: the maps of a family of
cubic functions with MLP-mnSOM, and the results of various research topics
using various variations of mnSOM.



3.1 Maps of cubic functions with MLP-mnSOM

First, the MLP-mnSOM generated the maps corresponding to the datasets as ob-
served from the systems, in which the input-output characteristics were defined
by the cubic functions: y = ax3+bx2+cx. The simulations were made under two
different conditions. In the first case (simulation 1), there were a small number of
datasets (I = 6) with a large number of data samples(J = 200), whereas in the
second condition (simulation 2) there was a large number of datasets (I = 126)
with a small number of data samples(J = 8). Each dataset Di = {(xij , yij)} was
sampled randomly, with the probability density function of p(x) distributed uni-
formly between [−1,+1]. In addition, Gaussian white noise was added to {yij}
(standard deviation of noise σnoise = 0.04). Figs.2 and 3(a) show examples of
the datasets in simulations 1 and 2. It is easy to identify individual functions
from each of the datasets in Fig.2(a); whereas, in Fig.3(a) the identifying of
individual functions is difficult. However, it is considered that the interpolating
between datasets by the cooperative processes of the MLP-mnSOM facilitates
the identification of the true functions. The MLP module has three layers with
one input, and eight hidden and one output units. Other details are presented
in Table 1.

Figs.2 and 3 (b) show the results of simulations 1 and 2, respectively. The
curve depicted in each box represents the function acquired by the correspond-
ing module after training. The MLP-mnSOM generated similar maps in both
cases. The neighbor modules acquired similar function forms, and the modules
in the corner show opposite functions. The modules indicated by thick frames in
Fig.2 (b) are the BMMs of the given six datasets. All other functions acquired
by the rest of the modules were interpolated by the mnSOM in order to make
a continuous map. Also, in simulation 2 (Fig.3(b)), the mnSOM succeeded in
generating a map of cubic functions, despite there being only a small number of
data samples. These results from simulations 1 and 2 suggest that the identifi-
cation of functions was performed with not only with the supervised learning in
each module, but also with unsupervised learning.

Incidentally, it is important that the essences between the maps generated
by the mnSOM and the SOM are equal. If the essence of the map in the SOM is
lost by replacing each unit in the SOM with a module, then it can not be confi-
dently said that the mnSOM is the generalization of the SOM. To investigate the
essence of the map in the mnSOM, we considered a case in which an orthonor-
mal functional expansion is employed for vectorization. Thus, let {Pi(·)} be a set
of orthonormal functions. Then the function f(·) is transformed to a coefficient
vector a = (a0, ..., an), where f(x) = a1P1(x) + a2P2(x) + ... + anPn(x).

Terms higher than the n-th order are assumed to be negligible. Under this
condition, the distance Lf in the function space is identical to that in the coef-
ficient vector spaceLv as follows :

L2
f (fi, g

k) = (ai1 − bk1)2 + ... + (ain − bkn)2 = L2
v(ai, b

k). (10)

Here ai and bk denote the coefficient vectors of the given i-th function and the
k-th module of the mnSOM, respectively. In this situation, the mnSOM and



Table 1. Experimental conditions

Input layer 1 Map size K 100(10× 10)
Hidden layer 8 σ0 10.0
Output layer 1 σ∞ (simulation 1) 2.0
Learning rate η 0.05 σ∞ (simulation 2) 1.0

τ 300
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Fig. 2. (a) Training datasets sampled from the six cubic functions in simulation 1. (b)
Map of cubic functions generated by the MLP-mnSOM in simulation 1.

SOM should produce the same results since the learning algorithm is identical
for the two types, the SOM and the mnSOM. Therefore, the mnSOM and SOM
share the same essences of the map.

In simulation 1, six functions obtained the coefficient vectors {ai} = {(ai1, ai2, ai3)}
by orthogonal expansion (In this paper, Legendre expansions are used). The map
generated by a SOM for {ai} is shown in Fig.4 (a). The figure shows the position
of each reference vector in the coefficient vector space. The map generated by
the mnSOM is shown in Fig.4 (b). The figure shows the map of the coefficient
vectors bk = {(bk1, bk2, bk3)} of the Legendre polynomial corresponding to the
functions acquired with modules. The results in Fig.4(a) and (b) are roughly
equal. Since the accuracy of the function approximation in the MLP is low,
distortion is caused in the map (Fig.4(b)).

3.2 Applications of the mnSOM

In our past studies, we have applied the mnSOM to various research topics
(Fig.5). The designs of modules in the mnSOMs are different in individual appli-
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Fig. 3. (a) Example of training datasets in simulation 2. (b) Map of cubic functions
generated by the MLP-mnSOM in simulation 2.
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Fig. 4. Map of cubic functions plotted in the coefficient vector space of the Legendre
expansion. (a) Map generated by the SOM. (b)Map generated by the mnSOM.

cations; whereas, the architecture and the algorithm are same in all applications.
The results of these applications are described later.

Fig.5(a) shows “Map of weather in the Kyushu area of Japan” by the mnSOM
in which each module is composed of a neural network that predicts the dynamics
of weather. In this simulation, the mnSOM was merely given the weather datasets
of nine cities in the Kyushu area of Japan, despite that the mnSOM represented
the relationship of the geographic position of each city in Kyushu on the map.

Fig.5(b) shows “Map of damped oscillators”. In this simulation, each mod-
ule in the mnSOM is composed of the recurrent neural network that represents



a function of a dynamical system. The mnSOM is merely given the datasets
obtained from 9 damped oscillators, in which the individual input-output char-
acteristics are different. Each module of the mnSOM acquired the characteristics
of the 9 damped oscillators by training; moreover, the intermediate characteris-
tics between the 9 damped oscillators were also acquired.

Fig.5(c) shows “Map of periodical waveforms” generated by the mnSOM
based on a five layer autoassociative neural network module. This map is gen-
erated by giving several periodical waveforms to the mnSOM and training it on
them. As the result, a map on which waveforms and frequencies are divided was
generated.

Fig.5(d) shows “Map of 3D objects”. In this simulation, sets of 2-dimensional
images are merely given to the mnSOM. Despite that the mnSOM is not taught
the method for rebuilding the solid from 2-dimensional images, the mnSOM
generated a map of 3D objects.

4 Concluding remarks

We have presented the theory and the algorithm for our mnSOM. From the re-
sults, we proved that the characteristics of the maps of mnSOMs and SOMs are
equal. Therefore, it is considered that our mnSOM is the generalization of the
SOM of Kohonen. Additionally, it is expected that the mnSOM will become a
fundamental technology of neural network models, since the mnSOM has char-
acteristics of both supervised and unsupervised learning. The mnSOM can be
applied to various research fields in which it is too difficult to apply conventional
means. We expect to be able to use our mnSOM for extensive studies. A specific
theory for a generalized SOM is explained by Furukawa.
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