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Abstract  

The hybrid vortex method, in which the vortex particle method was combined with 

the vortex sheet method, was extended to flows around a three-dimensional complex 

geometry boundary at high Reynolds number of 6(10 )O . The computing domain was 

decomposed into an interior domain of vortex blobs and a thin numerical boundary 

layer of vortex sheets. The core radii of shedding blobs were related to the size of the 

vortex sheets. As the result of numerical experiments on the flow over a ship propeller, 

the hybrid vortex method was found to be acceptable for simulations of unsteady 

separated flows around a solid body at high Reynolds number, since the computed 

results showed reasonable agreement with the measured data. 
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1. INTRODUCTION 

 

In the past three decades vortex methods have been discovered to be suitable for the 

computation of high-resolution simulation of unsteady and incompressible flows with a 

viscous boundary [1-4]. They are grid-free and thus eliminate the task of volumetric 

meshing of complex three-dimensional (3D) domains. This advantage is even more 

pronounced in situations where moving boundaries are encountered. Vortex methods are 

also self-adaptive, and hence are capable of concentrating computational elements 

dynamically in the regions where significant velocity gradients evolve. 

Vortex methods have succeeded in simulations of two-dimensional (2D) bounded or 

unbounded flows. However, the conventional vortex methods display a few difficulties 

in simulations of 3D flows. The biggest difficulty lies in the enormous computational 

cost of evaluating the N  computational particles interactions with a large number of 

particles in 3D simulations. Although this cost can be reduced by the fast multipole 

algorithms developed in the past two decades, it is impractical to simulate high 

Reynolds number ( Re ) flows with a large number of particles and without the help of 

advanced computers. In the study of the flow over a sphere at a low Re by Ploumhans et 

al. [3], the nascent vorticity at each boundary element was diffused from this element 

directly to the adjacent vortex blobs. The number of vortex blobs increases up to 

616,000, 1,225,000, and 2,300,000 at Re 300= , 500 , and 1000  respectively, since 
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the size of vortex blobs should be less than tν∆  to enforce convergence. Here, ν is 

kinematic viscosity, and ∆t is time interval. The total run time would be approximately 

230 hours on 64 processors of an HP V-Class system. The number of blobs increases 

rapidly with increasing Re and that makes the method impossible for simulations of 

high Re flow computations. The major purpose of this paper is to report on the efficient 

suppression of the increasing number of vortex blobs by increasing the size of the 

vortex blobs, and finally to reduce the computational cost in 3D engineering 

applications. 

The idea of hybrid vortex methods derives from the random vortex sheet method by 

Chorin [5]. He did not employ the circular blobs in the conventional vortex methods, 

but adopted linear segment sheets to approximate the 2D boundary layer. The motion of 

sheets in the boundary layer was described by the Prandtl approximation of the 

Navier-Stokes equations. In the so-called hybrid vortex method the computational field 

is decomposed into an interior domain where the conventional vortex particle method is 

applied, and a thin user-specified numerical boundary layer where the random vortex 

method is used, as suggested by Chorin. It differs from the conventional vortex particle 

method where the total vorticity field is represented by a set of blobs carrying 

circulations. Nakanishi and Kamemoto [6, 7] applied the hybrid vortex method to the 

flow over a sphere at Re 1000= . The 288 boundary elements used in their study, were 

much smaller than the 81,920 by Ploumhans et al. [3]. Thus the number of blobs 

shedding from the boundary could be decreased rapidly. Turkiyyah et al. [8] succeeded 
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in predicting wind-induced pressures on 2D buildings using this method. Gharakhani et 

al. [9] extended this method to simulate the low Re flows in a simple 3D domain by 

employing the rectangular sheets in the numerical boundary layer. In these applications 

vortex blobs are shed not from the solid boundaries directly [3], but from the numerical 

boundary layer through the normal random walk. Once a sheet traverses the numerical 

boundary layer, it is converted into a vortex blob with a core equal to the diffusion 

displacement in the direction normal to the boundaries. Although these applications can 

give reasonable results by using blobs fewer than those in Ploumhans et al., the number 

of vortex blobs will still become more than a few million with increasing Re. Such a 

large number is unacceptable from the viewpoint of engineering applications. The 

reason for this large number is that the size of vortex blobs is of the order of the 

numerical boundary layer thickness, which becomes very small at high Re. 

The goal of the present study is to improve the hybrid vortex method to simulate the 

high Re engineering-type flows. The presented method differs from the ones introduced 

in the references above on two points. First, the core radii of shedding blobs are related 

to the size of vortex sheets or the boundary elements, in terms of the relationship 

between the core radii of the blobs and the numerical boundary layer thickness. The 

shedding vortex blobs increase in size in the wake, and thus the number of blobs 

becomes smaller than those in the other vortex methods. Consequently, the hybrid 

vortex method can be applied to high Re flows in engineering applications. Second, the 

hybrid vortex method has succeeded in simulations of 3D flows around simple 
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geometries where the shape of vortex sheets is a simple 2D plane [6, 7, 9]. In this study, 

the flow over a highly skewed ship propeller of a complex 3D curved surface was 

computed [10], where the body-fitted coordinate (BFC) system was used for the 

transformation from the physical space to the computational one. Circular sheets were 

used with respect to the BFC system to fit the complex boundary instead of rectangular 

sheets. 

The following section presents the basic equations and numerical formulation for 

hybrid vortex method. Section 3 reviews the fast multipole method used to reduce the 

run-cost. Section 4 illustrates the performance of the method with several numerical 

examples. 

 

2. NUMERICAL FORMULATION 

 

  In this section the governing equations for the hybrid vortex method and its numerical 

formulation for simulations of high Re flows around 3D complex boundary are 

presented. 

For a 3D viscous and incompressible flow within a wall-bounded domain with 

boundary surfaces S , the governing equations may be written in the vorticity transport 

form of the Navier-Stokes equations 

 

i �( ) i i( ) � i2u u
t
ω ω ω ν ω∂

+ ⋅∇ = ⋅∇ + ∇
∂

                                 (1) 
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� 0u∇ ⋅ =                                                      (2) 

i �uω = ∇×                                                     (3) 

� � �( , ) Su x t u=      for  �x S∈                                     (4) 

 

where �x , �u , iω  and � Su  denote the position, velocity, vorticity and the velocity on 

the boundary surfaces S , respectively. 

In the hybrid vortex method, the solution of the above N-S equations will be obtained 

by decomposing the computational field into an interior domain away from the solid 

walls and a thin numerical boundary layer adjacent to the solid walls (Fig.1). The vortex 

particle method is used in the interior domain for the solution of Equations (1) to (3) 

with a no-penetration boundary condition. On the other hand Prandtl approximation of 

the boundary layer is used to resolve the same equations with a no-slip boundary 

condition. 

 

2.1  Interior Domain and Vortex Blobs 

 

Flow in the interior domain will be computed using the grid-free vortex particle 

method whose details are given in references [1] and [3]. 

The flow field in the interior domain is bounded by the numerical boundary layer 

shown in Fig.1. The no-penetration condition is set at the edge of the layer so that no 

fluid can pass through the interface between the interior domain and numerical 
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boundary layer. The normal component of velocity ( , , )u v w∞ ∞ ∞  is zero at the edge of 

the layer, 0w∞ = , so that the no-penetration condition may be satisfied (Fig.1). In order 

to generate a potential flow that cancels the normal component of the velocity induced 

by the vortex blobs and the incident flow, the boundary sources are distributed for all 

elements m  on the body and satisfy a Neumann boundary condition. 

 

� � i �
3

1 1 0
2 4

n
mn m mm nS

mn

x n dS W n
x
σσ

π
+ + =∫ i i                            (5) 

 

where σ  is the boundary source, �n  is normal direction and iW  is velocity induced 

by the vortex blobs and the incident flow. 

In the interior domain, position � ix  and circulation i iα  of blob i  are updated at 

each time interval. The position � ix  is governed by the following equation 

 

� �i
i

d x u
dt

=                                                      (6) 

 

where the velocity � iu  of each blob consists of three parts, induced by the other blobs, 

the boundary source in Equation (5) and the incident flow. The circulation change due to 

3D stretch can be expressed by 

 

i � iTi
i i

strech

d u
dt
α α = ∇  i                                          (7a) 
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which offers the advantage of conserving the total circulation. The circulation change 

due to viscous diffusion is based on the technique of particle strength exchange (PSE) [1, 

3]. In the PSE algorithm the evolution equation for the blob circulation becomes 

 

i i i( ) � �( )2 i

i
j i i ji j

jiPSE

d V V x x
dt δ
α ν α α ψ

δ
= − −∑                          (7b) 

 

where iδ  and iV  are the core radius and the volume of the i th blob respectively, and 

iδψ  is the cutoff function. 

In order to improve the accuracy of time integration, the second-order Adams- 

Bashforth scheme is used for equations (6) and (7). 

 

� � � �1 13 1( )
2 2

k k k k
i i i ix x t u u

+ −
= + −+                                       (8) 

i i i i 1
1 3 1( )

2 2

k k
k k i i
i i

stretch PSE

d dt
dt dt
α αα α

−
+

+

= + −+                            (9) 

 

The attractive advantage of vortex methods is that the pressure can be dependently 

computed from the vorticity and velocity field, when needed, by solving a Poisson 

equation with Neumann boundary conditions [11, 12]. After the vorticity and velocity 

field are determined in the above procedures, the unsteady pressure field may be 

obtained from the following equation (10), where B  is the Bernoulli function, the 
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coefficient β  is 1 for �x  inside the flow field, 0.5 for �x  on a smooth boundary and 0 

for �x  outside the flow field. If the flow Re is sufficiently high, the convection term is 

considered much larger than the viscous diffusion term, and thus the second term in the 

right hand side of equation (10) may be neglected in the computation. 
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2.2 Boundary Domain and Vortex Sheets 

 

In the boundary domain, vortex blobs do not provide good approximations of the 

vorticity because the flow has a big velocity gradient in the normal direction that is not 

well captured by the symmetric blob representation. A thin user-specified “numerical 

boundary layer” is assumed, where Prandtl approximations are utilized. Approximation 

of vorticity in the numerical boundary layer consists of the segments parallel to the 

boundary. These segments are called vortex sheets [5]. 

 

2.2.1 No-slip boundary condition and sheets generation 
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To impose the no-slip condition along the solid boundaries, the boundaries are 

divided into 2D segments of width h . 

Initially, there is no vorticity in the field and a potential flow is imposed on the 

geometry such that the normal flux through the solid boundaries may be zero. This in 

turn induces a slip velocity ( ),u v∞ ∞  on the edge of the boundary layer or on the body 

surface (the thin boundary layer thickness, b , can be omitted when computing the slip 

velocity). It differs from the prescribed boundary condition ( ),b bu v  (Fig.1). Such a 

velocity jump across the wall is expressed by “surface vorticity sheet” � �( , )x tγ  centered 

at the boundary element with an area equivalent to the boundary element and strength 

equal to the slip velocity. The boundary element is called the “mother boundary 

element” for a nascent sheet. 

 

� �( , ) ( , , ) ( ( ), ( ),0)x y z b bx t v v u uγ γ γ γ ∞ ∞= = − − −                       (11) 

 

In a simple 3D domain, the solid wall can be carpeted by a set of rectangular 

elements [9]. However, the boundary surface in a complex 3D domain has to be 

discretised into a set of trapeziums. If a nascent sheet inherits the shape of its mother 

boundary element, it is difficult to calculate the overlap coefficient between two sheets. 

In this study 2D circular sheets with the same area as their mother boundary elements 

were used instead of the rectangular sheets. Consequently, all sheets are similar, though 
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they hold different areas. 

 

2.2.2 Sheet evolution 

 

Once the vortex sheet is generated on the solid wall, its evolution is approximated 

within the numerical boundary layer by the Prandtl equations [13, 14]. 

 

i �( ) i
i2

2

1
Re

u
t z
ω ωω∂ ∂

+ ⋅∇ =
∂ ∂

                                     (12a) 

� 0u∇ ⋅ =                                                   (12b) 

i ( , , ) ( , ,0)x y z
v u
z z

ω ω ω ω ∂ ∂
= ≅ −

∂ ∂
                                (12c) 

�( , , 0, ) (0,0,0)u x y z t= =                                       (12d) 

�( , , , ) ( , ,0)u x y z b t u v∞ ∞= =                                     (12e) 

 

Here all variables are defined with respect to the local coordinates system ( ), ,x y z , in 

which the xy  plane is tangential to the body surface, z  is assigned to be normal to 

the body surface and to point into the flow interior, and 0z =  represents the wall 

surface (Fig.1). Vorticity stretch is assumed to be negligible within the boundary layer. 

For a given sheet distribution within the layer, the velocity components �( , , )u u v w  in 

the local coordinates system can be approximated by the following equations evolved 

from equation (12) [5, 9] 
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� � � � �
1

1( , ) ( , , , ) ( , ) ( , ) ( , ) ( )
2

TN

i i ji i j i i j iy y
j
j i

u x t u x y b t x t x t x y H z zγ γ ϕ∞
=
≠

= − − −∑    (13a) 

� � � � �
1

1( , ) ( , , , ) ( , ) ( , ) ( , ) ( )
2

TN

i i ji i j i i j ix x
j
j i

v x t v x y b t x t x t x y H z zγ γ ϕ∞
=
≠

= − − −∑     (13b) 

�( , ) 0iw x t =                                                 (13c) 

for 1, 2,..., Ti N=  

 

where H  is the Heaviside step function, TN  is the total number of vortex sheets and 

( , )j i ix yϕ  is the overlap coefficient which denotes the area iA  of sheet i  covered by 

sheet j  

 

( , ) i j
j i i

i

A A
x y

A
ϕ =

∩
 

 

In equation (13) the assumption of �( , ) 0iw x t =  is valid for high Re flows. The 

normal component w  is much smaller than the tangential components ( , )u v  and the 

normal viscous diffusion in a sufficiently high Re flow. In this case the convection of 

sheets in the boundary layer can be regarded as 2D motion parallel to the boundary 

surface, and the normal displacement is induced only by viscous diffusion. With 

decrease in Re, however, the normal component becomes large and cannot be neglected. 

In order to describe the convection motion of vortex sheets around complicated 

geometry, the body-fitted coordinate (BFC) system is adopted to transform the 3D body 
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surface into a 2D plane ( ),ξ η  in the computational space. The transformation from the 

local coordinate velocity components ( ), ,u v w  to the contravariant velocity ( , )U V  is 

given by 

 

x y zU u v wξ ξ ξ= + +                                           (14a) 

x y zV u v wη η η= + +                                           (14b) 

 

where, subscripts denote differential. 

The grid-free tile solution within the numerical boundary layer for the sheet i  

located at ( , )i iξ η  is governed by the following equation. 

 

1k k
i i iU tξ ξ+ = + ∆                                             (15a) 

1k k
i i iV tη η+ = + ∆                                             (15b) 

 

Then the position � ix  in the local coordinate system ( ), ,x y z  is transformed from the 

BFC system ( ),ξ η . 

 

1 1 1( , )k k k
i i ix x ξ η+ + +=                                           (16a) 

1 1 1( , )k k k
i i iy y ξ η+ + +=                                           (16b) 

* 1 1( , )k k
i i iz z ξ η+ +=                                            (16c) 

1 * ( )k
i i iz z tς+ = + ∆                                            (16d) 



 14

 

where a random variable ς  is drawn from a Gaussian distribution with mean 0  and 

variance 2 tν∆ . The asterisk pertains only to the z  direction, implying that viscous 

diffusion is in the direction normal to the wall. 

 

2.3  Vorticity shedding and numerical procedure 

 

2.3.1 Vorticity shedding from the numerical boundary layer 

 

Vortex sheets carry concentrations of vorticity and the velocity field is determined by 

their locations and concentrations. At each time step, they are diffused in the direction 

normal to the boundary as equation (16d) and convected in the direction tangential to 

the boundary as equations (15) and (16a-c). Once a sheet (sheet 1 in Figure 2) traverses 

the numerical boundary layer in the direction normal to the boundary, it is converted 

into a spherical vortex blob with a volumetric vorticity vector equal to that of the sheet. 

Furthermore, any sheets (sheet 2 in Figure 2) that jump below the wall are reflected 

back into the field [15]. 

The mode of vortex shedding from the boundary to the wake is assumed to be 

dependent only on viscous diffusion. A vortex sheet (sheet 3 in Figure 2) will not be 

converted into a blob when it is convected and shed from a discontinuous corner of the 

body surface. It will then be replaced by a new sheet created at the next time step. 
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Vortex blobs shedding from the numerical boundary layer are convected by the vortex 

particle method described in Section 2.1. A blob will be ignored when it enters into the 

numerical boundary layer from the interior domain. As a result of the motion of blobs 

and sheets, a net slip velocity is induced on the solid boundaries, which is canceled by 

generating new sheets there. 

 

2.3.2 The determination of the size of shedding blobs 

 

In vortex methods the overlapping of vortex blobs shown in Figure 1 is a critical 

factor for the accuracy in the computation of both diffusion and velocity [1], The 

overlapping requirement imposes that the size of blobs surrounding each blob should 

exceed the inter-blob spacing. Then the number of blobs shedding from the boundary 

can be decreased with increasing the size of blobs. 

There is no criterion for determining the size of blobs shedding from the boundary 

layer. As we have seen above, Ploumhans’s method for determination of blob core is 

impractical for simulations of high Re flows without the help of advanced computers. 

Kamemoto [7] enlarged the core radius of blobs to be of the order of the boundary layer 

thickness and somewhat suppressed the increasing number of blobs with increasing Re. 

But it is still impractical for simulations of high Re flows because the boundary layer 

thickness is very small, and hence the number of blobs is huge. 

The core radius of blobs in the wake could be enlarged further because the wake has a 
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smaller vorticity gradient than the domain adjacent to the boundary surface where sheets 

can provide better approximation than blobs. In other words, there would be no 

necessity to use rather small size of blobs outside the numerical boundary layer. 

In this paper the core radius in the wake is related to the size of sheet, since 

circulation carried by a spherical vortex blob is equal to the one carried by a sheet, 

i � ( )A hα γ=  (where h  and A  are the size and area of a sheet respectively) and also 

equal to the volumetric integral of vorticity vector itself, i i 0 ( )Vα ω δ=  (where i 0ω  and 

V  are the averaged vorticity vector and volume of a blob). Considering the 

computational cost and accuracy, we take the core radius as half the length of sheet. A 

convergent result can be obtained as long as the size of sheet (or the size of boundary 

elements) is sufficiently small. 

However, this determination of blob core would be improper for low Re flow because 

of the lower computational accuracy. The size of blobs should be of the order of tν∆  

suggested by Ploumhans, or of the order of the boundary layer thickness suggested by 

Kamemoto for low Re flows where the number of blobs is not huge. 

 

2.3.3 Numerical procedure 

 

The simulation procedure consists of the following steps: 

1) Compute boundary sources satisfying the no-penetration condition on the 

boundary. 
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2) Compute the velocity field in the interior domain due to blobs and sources. 

3) Compute the tangential velocity at the edge of boundary layer due to blobs and 

sources. 

4) Compute the velocity of each sheet in the boundary layer. 

5) Compute the net slip velocities on the solid walls and create new sheets to satisfy 

the no-slip condition. 

6) Update the position of blobs and sheets. 

7) Examine the positions of blobs and sheets, omit blobs entering into the boundary 

layer and execute the transition from sheet to blob. 

8) Compute the pressure field. 

9) Iterate from step 1 until the calculation has converged. 

The computational parameters, including the numerical boundary layer thickness b , 

the maximum sheet strength MSS , the size of boundary elements (or vortex sheets) h  

and the radii of blobs δ  are important factors for the convergence of computation: 

Fishelov [14] suggested that the numerical boundary layer thickness should be several 

times the standard deviation of the random walks of the vortex sheets; 

( )1.0 3.0 2 Reb t= × ∆∼ , so that the probability of any vortex sheets moving outside 

the boundary layer is very small in one walk. Therefore newly created vortex sheets will 

stay near the mother boundary elements for a number of time steps before they move 

into the interior flow and become vortex blobs. The MSS  can be determined so that 

the degree of refinement of the velocity in the normal direction must be of the same 
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order as the degree of refinement in the tangential direction. MSS  also determines the 

maximum tangential velocity of sheets in the boundary layer, maxu . The size of 

boundary element should be chosen so that the geometry is faithfully reproduced and 

sheets move downstream at no more than one element per time step, maxt u h∆ ⋅ ≤ . The 

radii of blobs satisfy 2
hδ = . 

 

3. FAST MULTIPOLE METHOD (FMM) 

 

A fundamental issue of N-body problems is the ability to evaluate all 2N  pairwise 

interactions in large ensembles of particles, i.e., expressions of the form 

 

� �
i � � �( )

� � 3

( )1( )
4

j j i j
i i

j i j

x x x
u x

x x

α

π

× −
=

−
∑  

 

for the velocity field �u  induced by the vorticity field iα  in vortex methods. 

In the past two decades the fast multipole method (FMM) has been developed as a 

technique to reduce the computational cost and memory requirements in solving N-body 

problems. The FMM was initially introduced by Rokhlin [16] as a fast solution method 

for integral equations, and then was applied to N-body problems by Greengard [17]. A 

new version of FMM introduced by Greengard [18] accelerates this kind evaluation 

dramatically from 2( )O N  to ( log )O N N . Cheng [19] developed Greengard’s FMM 
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to an adaptive scheme based on an adaptive data structures. 

In this study we have reduced the run-time and have run up to 200,000 vortex blobs 

on a Dell8250 workstation using Cheng’s FMM. 

 

4. NUMERICAL RESULTS 

 

4.1  Flow over a cube 

 

  The validity of the present method was checked for the flow over a stationary cube, 

whose drag coefficient at fully turbulent flows ( 4 610 Re 10≤ ≤ ) is 1.05 [20]. Here the 

drag coefficient DC  is defined as: 

 

  
2 21

2

d
D

p

FC
V aρ

=  

 

where ρ , pV , a , and dF  denote the density, the uniform velocity, the cube side, and 

the drag force on the cube, respectively. This flow was chosen because; (1) the 

convection evolution of sheets is 2D plane motion in the numerical boundary layer, (2) 

it is not necessary to impose the BFC system, (3) the boundary surface can be discreted 

into uniform elements, (4) the overlap between two sheets can be calculated exactly. 

Calculation was done for 5Re 10= . The non-dimensional time step defined as 

pt VT a
∆ ⋅

∆ = , was taken as 0.05T∆ = . The numerical boundary layer thickness was 
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set to 0.01a  ( 3 2 Ret≈ ⋅ ∆ ). Each side of the cube was uniformly discretized into 100 

square elements so that vortex sheets may move downstream at no more than one 

element per time step. The total number of vortex blobs was up to 40,000 . Using 

Cheng’s FMM the run-time was about 50 hours on a Dell8250 computer with a CPU 

clock rate of 3.06 GHz and RAM of 1 GB. 

Figure 3 shows the time histories of the calculated drag coefficient. The drag force is 

calculated by integrating the pressure on the surface of the cube. The calculated 

time-averaged drag coefficient is about 0.92, which shows reasonable agreement with 

the measured one. This indicates that the hybrid vortex method is valid for simulations 

of unsteady separated wake behind a solid body in high Re flow. 

Figure 4 shows the effect of the core radius of the blobs on the number of blobs and 

the computational cost for uniform flow over a cube. Figure 5 shows the effect of the 

core radius of the blobs on the solution of the drag coefficient. Here, computations were 

done under conditions of 5Re 10= , 0.05T∆ =  and the same boundary discretizations. 

The number of blobs as well as the computation time increases remarkably with 

decreasing blob size, as these figures show. Once the size of the blobs is chosen to be 

small enough, the solution of the drag coefficient becomes independent on the size of 

the blobs. Although the smaller core radius gives a relatively accurate result, it leads to 

an increase in the number of vortex blobs and the computational cost. Obviously, it is 

not practical to apply huge number of blobs in engineering applications because of the 

expensive computational cost. Based on the balance of the computational cost and 
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accuracy, the core radius was taken as half the size of sheet (or the size of the boundary 

element) in the present study. 

 

4.2  Flow over a sphere 

 

  The validity of the present method was also checked for the flow over a stationary 

sphere. The goal was to assess the accuracy of the modeling approach in predicting 

quantities such as the pressure distributions around the sphere and the drag forces. 

Additionally, the present method can capture the separation line automatically. The 

separation line cannot be predicted in advance, whereas the virtual separation lines can 

be set at the corners for the flow over a cube. 

The calculation was computed for 5Re 10=  and 54.35 10× , above and below the 

critical Re. The non-dimensional time step was defined as pt VT a
∆ ⋅

∆ = , where a  

denotes the diameter of sphere, and it was taken as 0.01T∆ = . The numerical boundary 

layer thickness was set to 0.01a . The surface of sphere was discretized into 1,206 

elements. The total numbers of vortex blobs were up to 78,000  and 96,000. Using 

Cheng’s FMM the run-times were about 110 and 150 hours on a Dell8250 computer 

with a CPU clock rate of 3.06 GHz and RAM of 1 GB. 

The flow over a sphere is a benchmark for bluff-body flows with many numerical and 

experimental data. The most well known feature of the flow over a sphere is the 

occurrence of the drag crisis around a critical Re of 5107.3 ×  [21]. At Re higher than 
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the critical one, the drag coefficient drops from values near 0.4-0.5 prior to the drag 

crisis to around 0.07-0.09 within a small range of Re. Figure 6 compares the calculated 

drag coefficients by the present method with the measured ones from Schlichting [22]. 

The present method predicts this sudden drop in the drag force. The calculated time- 

averaged drag coefficient, 0.44, agrees with the measured one, 0.42, for the subcritical 

state of 5Re 10=  in which the physical boundary layer is laminar. On the other hand, 

the agreement between the calculated drag coefficient, 0.12, and the measured one, 0.09, 

is somewhat less satisfactory for the supercritical state of 5Re 4.35 10= ×  in which the 

physical boundary layer becomes turbulent. Figure 7 shows the surface pressure 

distributions for the subcritical and the supercritical states. The calculated pressure 

coefficient at the upstream stagnation point does not go to 1.0 because the pressure 

distribution over a boundary element is assumed to be uniform in this study, and the 

pressure is taken to be the average over the boundary element centered at the stagnation 

point. Calculated Cp shows the difference from the measured one at the downstream 

side for the supercritical case. This is because the energizing action of the outer flow is 

much greater on the turbulent boundary layer than in the laminar case [22]. Because of 

the turbulent mixing motion, more vortex blobs are taken into the numerical boundary 

layer near the downstream side of the sphere. It may be improper to eliminate these 

vortex blobs rudely, since they contribute to the total vorticity field. More attention 

should be paid to the vortex blobs near the downstream side when the physical 

boundary layer becomes turbulent. 
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The fact that calculated results for the flow over a sphere as well as a cube show 

reasonable agreement with measured ones indicates that the present method is suitable 

for unsteady separated flows around a solid body at high Re. However, further 

improvement may be necessary for the separation of the turbulent boundary layer. 

 

4.3  Flow over a ship propeller 

 

The present hybrid vortex method was applied to a highly skewed ship propeller [10] 

in a uniform flow (Fig.8). This flow field is charactered by high Re and a complex 

geometry boundary. The determination of the core radius of vortex blobs by this study is 

expected for the simulation of this engineering-type flow at high Re. The employment 

of BFC can accurately track the evolution of vortex sheets in the complex boundary 

layer. Moreover, the unsteady wake and the propeller performance are often associated 

with the vortices shed from the leading edge and the trailing edge of the blade. The 

present method should be applicable as long as the problems related with the unsteady 

flow separation are concerned. 

The specifications of the model propeller and measured data are provided by 

Nagasaki R & D Center, Mitsubishi Heavy Industries LTD, as shown in Tables 1 and 2. 

Here,  

Forward coefficient     
2

pV
J

n D
=

⋅
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Thrust coefficient      2 4
2

h
T

TK
n Dρ

=
⋅ ⋅

 

Torque coefficient     2 5
2

Q
QK

n Dρ
=

⋅ ⋅
 

Efficiency           
2

T
p

Q

J Ke
Kπ

⋅
=  

Where ρ  denotes density, n , 2D , pV , hT  and Q  denote the rotational speed, the 

diameter, the forward speed, the thrust, and the torque of the propeller, respectively. The 

hT  and Q  can be calculated by integrating the pressure on the propeller surface. 

The Re based on the propeller diameter, 2D , and the circumferential velocity, 2nDπ , 

was set to be 62.36 10× . The non-dimensional time step defined as 360T t n∆ = ⋅ ∆ ⋅ , 

which denotes propeller rotation angle per step, was taken as 1.08T∆ = . The surface of 

each blade was modeled with about 600 elements so that the body surface can be well 

reproduced and vortex sheets may move downstream no more than one element per 

time step. The numerical boundary layer thickness at 6Re 2.36 10= ×  and 1.08T∆ =  

is about 1%  of the square root of the boundary element area according to Fishelov 

[14]. However, it was set to be a tenth of the square root of the boundary element area, 

because the suggested thickness is too thin. 

Using Cheng’s FMM, computation was made up to 52 10×  vortex blobs. The 

run-time was about 230 hours on a Dell8250 computer with a CPU clock rate of 3.06 

GHz and RAM of 1 GB. Figure 9 shows the time histories of the total number of vortex 

blobs at 0.60J = , 0.70  and 0.80 . In all computed cases the total number of blobs 

reaches a plateau after the propeller runs about 5 revolutions. Figure 10 shows the 
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instantaneous distribution of vortex blobs shed from a blade when the computation 

converged ( 0.75J = , 12T = ). It can be seen that vortex blobs shed mostly from the 

propeller tip and mid of the suction side. 

Figure 11 shows the time variation in the thrust coefficient and the torque coefficient 

at 0.75J = . The other cases also become steady after the propeller runs about 4 

revolutions. 

Table 2 and Figures 12 to 14 show the comparison of the calculated time-averaged 

thrust coefficient, torque coefficient and efficiency with the measured ones. There exists 

the best efficiency point where the calculated TK  and QK  show the minimal 

differences from the measured ones. Calculated and measured TK  as well as QK  

show bigger differences at smaller and larger forward coefficient. Those are thought to 

be due to more violent turbulent behavior which is difficult to describe in the present 

calculation. 

Figure 15 shows the time-averaged pressure distributions on the suction (SS) and 

pressure surface (PS) of the propeller for 0.60J = , 0.70  and 0.80 . Pressure 

coefficients in this figure are normalized by the circumferential velocity of the 

propeller: 

 

( )2
2

1
2

p
p pC

nDρ π

∞−
=  

 

There is a visible low pressure region near the tip along the leading edge of the propeller, 
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where attention should be paid for the problem of cavitation. 

 

5. CONCLUSIONS 

 

  The hybrid vortex method has been extended to the 3D bounded flows with complex 

geometry boundaries at high Reynolds number. The numerical boundary layer on the 

body surface is expressed by a series of circular sheets. The core radius of blobs 

shedding from the boundary layer is determined by our original method as half the 

length of sheet or boundary element. Numerical experiments were conducted on the 

flows over a cube, a sphere and a ship propeller. Calculated results were compared with 

the corresponding measured ones, and the following conclusions were derived: 

  (1) The numerical boundary layer is valid for large velocity gradients in the boundary 

regions. 

  (2) Using the blob core radii related to the boundary elements, the number of vortex 

blobs can be reduced in number when compared with the conventional vortex particle 

method. 

(3) As its application to the flow over a cube as well as a sphere showed, the hybrid 

vortex method is a computational method applicable to unsteady separated wake behind 

a solid body in high Re flow. However, it should be improved to simulate the separation 

of the turbulent boundary layer. With a decrease in Reynolds number, the determination 

of the blob core dimension can be problematic. Additionally, the assumption of the 
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normal component of sheet velocity, and the omission of the viscous term in equation 

(10), are no longer valid. 

(4) By imposing the BFC system and circular sheet, the hybrid vortex method is 

effective to simulate the flow around complex geometry as the numerical results of the 

flow over a highly skewed ship propeller show. 
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