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Abstract

The minimum distance of an error correcting code is the most important parameter
for evaluating its error correcting ability. The BCH bound, Hartmann-Tzeng bound, Roos
bound and Shift bound are the most popular lower bounds for the minimum distance of
cyclic codes. It is interesting to find relations between the well-known bounds. The Feng-
Rao designed minimum distance and the Feng-Rao decoding were originally introduced
into algebraic geometry codes. They have been extended to the case of general linear
codes over a finite field by Miura. And recently the definition of the Feng-Rao designed
minimum distance of linear codes has been slightly generalized by Matsumoto. According
to the definition by Miura the value of the Feng-Rao designed minimum distance for a
linear code C over a finite field Fy depends on the choice of the ordered basis of F',
a vector space consisting of all the n-tuples over F, used for defining the code C. In
practical applications of the Feng-Rao decoding algorithm, it is important to find such an
optimum ordered basis for a given linear code.

This dissertation contains the discussion about unknown relation between Roos bound
and Shift bound from numerical experiments. It is shown that the Feng-Rao designed
minimum distance of binary linear codes can not take an odd value except one, if we
use Miura’s definition. Matsumoto gave a generalization of Miura's definition with three
ordered bases. We have Miura’s definition if three ordered bases are same in Matsumoto’s
definition. Our numerical experiments suggest us conjectures, that Matsumoto’s general-
ization is not so effective for binary linear codes compared with Miura’s definition. Other
results of this dissertation are investigations for nonbinary cyclic codes and binary cyclic
codes. The Type I ordered basis B, was introduced as a very natural candidate neces-
sary for computing dpg. The ordered basis B, is Type I if its subset B consists n — k
row vectors of the permutation of the usual parity check matrix defined by parity check
polynomial of cyclic codes. It was shown that the choice of an ordered basis with Type I
is worst in many cases of nonbinary cyclic codes, since the Feng-Rao designed minimum
distance is equal to 1 if the check polynomial has a coefficient neither equal to 0 nor 1. It
is also shown that in case of binary (n, k) cyclic codes C with k = 1,2, and n — 1, there
exists an ordered basis with Type I such that the Feng-Rao designed minimum distance

is equal to n — 1, 2(3 — 1), and 2, respectively.
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Chapter 1

Introduction

1.1 Background

The minimum distance of an error correcting code is the most important parameter for
evaluating its error correcting ability. For a cyclic code C, Bose-Chaudhuri-Hocquenghem
(BCH) bound [1, 2, 6], Hartmann-Tzeng(HT) bound [5], Roos bound [10], the Shift bound
by van Lint, Wilson and van Eupen [11] are well-known lower bounds for the minimum
distance. It is known that the relation between BCH bound, HT bound and Roos bound,
and the relation between HT bound and Shift bound. However it is not known the relation
between Roos bound and Shift bound.

A good decoding algorithm for error-correcting codes has a large designed minimum
distance d*, since the algorithm can correct |(d* — 1)/2] or fewer random errors. In case
of algebraic geometry codes, a subclass of linear codes, the Feng-Rao decoding algorithm
[3] is known as the best one and has a large designed minimum distance called the Feng-
Rao designed minimum distance dpg. The Feng-Rao designed minimum distance and
the Feng-Rao decoding algorithm were generalized by Miura [8] to the more general case
of linear codes over Fy, a finite field with order g, together with the definition of dpg.
According to the definition by Miura the value of drg for an (n, k) linear code C over Fy
depends on the choice of the ordered basis By, of F', a vector space consisting of all the
n-tuples over Fj, used for defining the code C. In practical applications of the Feng- Rao
decoding algorithm, it is important to find such an optimum ordered basis B, for a given
(n, k) linear code C as dpr(C, By,) takes the maximum value dpg(C).

Miura’s definition of the Feng-Rao designed minimum distance dpg for an (n, k) linear

code C over a finite field F, of order ¢ depends on the choice of an ordered basis B, =
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{b1,b3,-- -, by} of the vector space Fy* with dimension n over Fy. It is interesting to find
such an optimum ordered basis B, as dpg is maximum, since the Feng-Rao decoding
algorithm can correct up to | (dpr(C, B,) — 1)/2] errors. It is shown that some properties
of the Feng-Rao designed minimum distance drp by Miura for binary linear codes and
cyclic codes [13, 19, 15).

Recently the definition of drg of linear codes has been slightly generalized by Mat-
sumoto (7], which uses three ordered bases U, = {u1,us, -, un}, Vo = {v1,02,- -+, vn}
and By, = {by, by, -, b,} of F instead of one in case of Miura’s definition, i.e., By is used
for defining the linear code, and U, V,, are used for computing a syndrome matrix in Mat-
sumoto’s definition. Hence Miura’s definition is included by assumption U, = V,, = B, in

Matsumoto’s definition.

1.2 In This Dissertation

The minimum distance of an error correcting code is the most important parameter for
evaluating its error correcting ability. In case of algebraic geometry codes, a subclass of
linear codes, the Feng-Rao decoding algorithm is known as the best one and has a large
the Feng-Rao designed minimum distance. This dissertation deals with some properties
of the Feng-Rao designed minimum distance by Miura and Matsumoto of binary linear
codes and cyclic codes.

Chapter 2 describes briefly construction of the communication system. The linear
codes are mostly studied, because they are easier to describe, encode, and decode than
nonlinear codes. The cyclic codes include the family of BCH codes are important subclass
of linear codes. The properties of linear codes and cyclic codes are presented in Chapter
2.

In Chapter 3, the relation between well-known designed minimum distance of cyclic
codes, such as Bose-Chaudhuri-Hocquenghem bound, Hartmann-Tzeng bound, Roos bound
and Shift bound are presented. The unknown relation between Roos bound and Shift
bound are shown from numerical experiments. This chapter deals with many examples
and tables of binary cyclic codes of n < 31 and ternary cyclic codes of n < 26.

Chapter 4 is mainly concerned with introductions to the Feng-Rao designed minimum
distance and the Feng-Rao decoding of linear codes. The fundamental iterative algorithm
and its extension, which are effective algorithms for decoding linear codes up to the de-

signed minimum distance drg, are introduced. Miura’s definition of dpg is described,
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and some properties are listed. Moreover the Feng-Rao decoding method is introduced for
linear codes.

Chapter 5 deals with the Feng-Rao designed minimum distance drpg of binary linear
codes. For an (n,k) linear code over a finite field Fy, Miura’s definition of dpr denoted
by drgr(C, B,) depends on the choice of an ordered basis B, = {b1, by, --,b,} of the
vector space Fit with dimension n over Fy, and the ordering of n vectors by, ba, -+ -, b, has
meaning. It is interesting to find such an optimum ordered basis B, as drr is maximum,
since the Feng-Rao decoding can correct up to |(dpr(C, B,)—1)/2] errors. In this chapter
drr(C, By,) of binary linear codes can not take an odd value except one if we use Miura’s
definition of dpg(C, B;) is proved.

In Chapter 6, Matsumoto’s definition of dpg for linear codes is considered. The def-
inition of drgr of linear codes has been slightly generalized by Matsumoto denoted by
dpg, that uses three ordered bases U, = {uy,ug, -, un}, Voo = {v1,v2,--,vn} and
Bn = {b1,by,---,bs} of Fy instead of one ordered basis in case of Miura’s definition,
i.e., B, is used for defining the linear code, and U,,V,, are used for computing a syn-
drome matrix in Matsumoto’s definition and Miura’s definition is included by assumption
U, =V, = B,,. In this chapter we give conjectures that Matsumoto’s generalization is not
so effective for binary linear codes compared with Miura’s definition from some properties
and some numerical examples of Matsumoto’s JFR.

Chapter 7 deals with the Feng-Rao designed minimum distance of cyclic codes.. The
"Type I" ordered basis B,, is defined, that corresponds to the well-known form of the
parity check matrix of an (n, k) cyclic code expressed by its parity check polynomial,
i.e., we use a natural choice of B, a subset of B, as (n — k) vectors {by,b2,---,b, &},
which consists of a permutation of vectors corresponding to the coefficient of the check
polynomial and its (n — k — 1) consecutive right cyclic shifts. The possible values of dpg
of an (n, k) cyclic code are investigated when the Type I ordered basis B, is used. For
nonbinary cyclic codes dpr(C, By,) < 1is proved, if B, is Type I and the check polynomial
h(z) has a coeflicient # 0,1. Moreover this chapter shows that, for binary cyclic codes,
drr(C, By) =n—1 for k = 1 (repetition code), drr(C, B,) > 2(5 — 1) for k =2 if B, is
Type I, and dpg(C, B,) = 2 for k = n — 1 (parity code), respectively.

Finally conclusions and future works are listed in Chapter 8.



Chapter 2

Preparations

2.1 Introduction

Codes were invented to correct errors on noisy communication channels. Suppose there is
a telegraph wire from one place to the other place down, which 0’s and 1’s can be sent.
Usually when a 0 is sent it is received as a 0, or when a 1 is sent it is received as a 1,
but occasionally a 0 will be received as a 1, or a 1 as a 0. Let’s say that on the average
p symbols will be in error, i.e.for each symbol there is an error probability p that the
channel will make a mistake. This is called a binary symmetric channel (Fig. 2.1).

1 1
1p
SEND RECEIVE

Figure 2.1: The Binary Symmetric Channel

There are a lot of important messages to be sent down this wire, and they must be
sent as quickly and reliably as possible. The messages are already written as a string of
0’s and 1's perhaps they are being produced by a computer.

We are going to encode these messages to give them some protection against errors on
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the channel. A block of message symbols u = (uy,ug,--,ux) where u; = 0 or 1 will be
encoded into a codeword * = (x1,®2,+++,Zn) Where z; = 0 or 1, n > k (Fig.2.1); these

codewords form a code.

CHANNEL
MESSAGE ENCODER () DECODER. [—* USER
MESSAGE CODEWORD RECEIVED ESTIMATE
W1, U, Uk Ty, T2,y Tn VECTOR OF MESSAGE
y=m+e
ERROR
21,€2,'"",en

Figure 2.2: The Communication System

In the method of encoding we are about to describe produces what is called a linear

code. The first part of the codeword consists of the message itself:
Tl = U1,T2 = U2, ", Tk = Uk,
followed by n — k check symbols

Tr41:Tk42,"" " 3 &n-

Suppose the message u = (uy,usg,---,ux) where u; = 0 or 1 is encoded into the
codeword ® = (x1, 2, -, Zn), which is then sent through the channel. Because of channel
noise, the received vector ¥y = (y1,¥2," -+, yn) may be different from x. Let’s define the
error vector '

ezy_m:(el-:eZa"',en)-

Then e; = 0 with probability 1 — p (and the i-th symbol is correct), and e; = 1 with
probability p (and the i-th symbol is wrong). So we describe the action of the channel by .
saying it distorts the codeword = by adding the error vector e to it.

The decoder must decide from o which message u or which codeword x was transmit-
ted. Of course it’s enough if the decoder find e, for then * = y — e. Now the decoder
can never be certain what e was. His strategy therefore will be to choose the most likely
error vector e, given y was received. Provided the codewords are all equally likely, this
strategy is optimum in the sense that it minimizes the probability of the decoder making

a mistake, and is called mazimum likelihood decoding.
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In the next section the linear codes will be stated. And in the last section cyclic codes

will be explained.

2.2 Linear Code

Among all types of block codes, linear codes are mostly studied. Because of their algebraic
structure, they are easier to describe, encode, and decode than nonlinear codes.

Let Fy denote the linear space of all n-tuples over a finite field Fy. A code C with
code length n over Fy is a subset of Fj’. If C is a k dimensional subspace of Fg', then C
will be called an (n, k) linear code over F;. We usually write the vectors in FJ' as words
& = (z1, T2, -, Tn) over the alphabet Fy and call a vector in C' a codeword. The field F»
is very special in coding theory, and codes over F; are called binary codes. Codes over Fj
are called ternary codes. The two most common ways to present a linear code are by a
generator matrix and by a parity check matrix.

A generator matriz for a linear code C is any k x n matrix G whose rows form a basis
for C. For any set of k independent rows of a generator matrix G, the corresponding set
of coordinates forms an information set for C.

Recall that the ordinary inner product of vectors v = (uj,u»,---,u,) and v =

(v1,V2,++,Up) in ik
{u v)= i U;V;
i=1
The dual of C is the (n,n — k) linear code C* defined by
Ct={veF]|(u-v)=0forall uecC}
An (n — k) x n generator matrix H of C* is called a parity check matriz for C. So
C={zecF}|zH" =0}.

The Hamming distance d(x,y) between two vectors z, y € F7 is defined to be the

number of coordinates in which  and y differ, i.e.,

where A means the cardinality of set A. Distance is a metric on the linear space F?. The

manimum distance of a code C is the smallest distance between distinct codewords and it
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is important in determining its error correcting capabilities. The Hamming weight wt(xz)
of a vector & € F* is the number of its nonzero coordinates. Clearly, d(z,y) = wt(z—y).
Thus if C is a linear code, the minimum distance d is the same as the minimum weight of
a nonzero codeword for all codewords except zero codeword. If the minimum distance d
of an (n,k) code is known, then we refer to the code as an (n, k, d) code.

If the minimum distance of C is d, there exist two distinct codewords such that the
spheres of radius ¢ + 1 about them are not disjoint, then the packing radius ¢ so that the
spheres about the codewords are pairwise disjoint, equals [(d —1)/2]. The packing radius
t of a code is characterized by the property that nearest neighbor decoding always decodes
correctly a received vector in which ¢, or fewer errors have occurred but will not always
decode correctly a received vector in which ¢+ 1 errors have occurred. Thus C is a t-error
correcting code but not a (t+ 1)-error correcting code. One way to find a closest codeword
to a received vector ¥ is to examine all codewords until one is found with distance ¢ or less
from y. But obviously this is a realistic decoding algorithm only for codes with a small
number of vectors. General decoding algorithm are discussed in Section 4.4.

The minimum distance d is a simple measure of the goodness of a code. For a given
length and number of codewords (equivalently, dimension in the case of linear codes), a
fundamental problem in coding theory is to determine a code with the largest d.

2.3 Cyclic Code

Cyclic codes are mostly studied of all codes, since they are easy to encode, and include
the important family of BCH codes.

A linear code C of length n over Fy is cyclic if the vector (¢,_1¢o - -cp—2) obtained
from codeword ¢ = (cgcy « - - €p—2¢n—1) in C' by the cyclic shift of coordinates 7 +— i 41 is
also in C. Cyclic codes and certain codes related to them are some of the most useful codes
known. In particular the Golay codes and the binary Hamming codes can be represented
as cyclic codes.

There is a bijective correspondence between the vectors
c=(cpc1 - Cn—1)
in F7 and the polynomials

e(z)=co+eaz+ - +cp1z”"
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in Fy[z] of degree at most n — 1. We allow ourselves the latitude of using the vector
notation ¢ and the polynomial notation ¢(z) interchangeably. The fact that a cyclic code
C is invariant under a cyclic shift implies that if ¢(zx) is in C' then so is zc(z) provided we
multiply modulo z™ — 1. This suggests that the proper context for studying cyclic codes
is the subset of the residue class ring

R, = Fyfa)/(z" 1),

Under the correspondence of vectors with polynomial as given above, cyclic codes corre-
spond bijectively to the ideals of R,,.

To distinguish the ideals (g(x)) of Fy[z] from those of R,, we use the notation {(g(z))
for the ideal of R, generated by g(z), where g(z) is called a generator polynomial of the
ideal. Let C be a nonzero cyclic code in R,,. There exists a polynomial g(z) € C with the

following properties.

1 . g(z) is the unique monic polynomial of minimum degree in C.

2. C=(g(z))
3 .g(z)| (=" -1).
Let k = n — deg(g(z)), and let g(x) = S "7 gix’ where g, k41 =+ = gn_1 = 0. Then
4 . the dimension of C is k and {g(z), zg(z),---,z*'g(z)} is a basis for C, i.e.,
[90 91 92 g 0 0 -+ 0
0 go 91 - Gn—k—1 In—k 0 0
@ = 0 0 g0 *** 9n—k—2 Gn—k-1 gnk -+ O
0o 0 0 .- "
[ g(x)
B zg(z)
| 25 1g(2)

is a generator matrix for C.

Let C be a cyclic code with generator polynomial g(z). Then,

k
h(z) = (2" —1)/g(z) = }_hiz', (hx #0),
=0
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is called the check polynomial of C. Let

hi hp_y -+ hg 0 0 --- 0
0 he -+~ hy ho O +«+ 0
0 0 hy - ho

using an obvious notation. If z € C then £HT = 0. Since

" k = deg(h(z)) = n — deg(g(z)) = dim(C),

and the rows of H are obviously linearly independent, the condition zHT = 0 is also

sufficient for « to be in the code. Thus H is a parity check matrix for C.



Chapter 3

Designed Minimum Distances of
Cyclic Codes |

3.1 Introduction

It is surveyed various bounds on the minimum distance of cyclic codes in this chapter. For
a cyclic code C the Bose-Chaudhuri-Hocquenghem bound dgcy(C) (1, 2, 6], Hartmann-
Tzeng bound dyr(C) [5], Roos bound dg(C) [10], the Shift bound ds(C) by van Lint,
Wilson and van Eupen [11] are well-known lower bounds for the minimum distance . It
is known that dpcu(C) < dur(C) < dr(C) and dyr(C) < dg(C). However the relation
between dr(C) and dg(C) dose not be known. In this chapter we will discuss this relation
with some examples by author’s computing program.

In this chapter, firstly it is referred to the definition of BCH bound dpcg(C), Hartmann-
Tzeng bound dgr(C), Roos bound dr(C) and the Shift bound dg(C) for a cyclic code
. Secondly the relations between designed minimum distances will be discussed from

numerical experiments.

3.2 Well-Known Designed Minimum Distances

Some lower bounds will be introduced on the minimum distance of cyclic codes in this
section. A finite filed is denoted by F' and the multiplicative group of non-zero elements
is denoted by F*. The finite filed with g elements is denoted by Fj,.

A cyclic code C of length n over F; will be identified with the corresponding ideal in
the ring Fy[z]/(z™ — 1). This ideal C is generated by a polynomial g(x) which divides

10
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z" — 1. The true minimum distance of C is denoted by d. If a is a primitive nth root of
unity in an extension field Fym of F,, then g(x) is a product of polynomials m;(z), where

m;(z) denotes the minimal polynomial for o* over F,. The following set
R={ilg(e’) =0,0<i<n-1}

is called defining set of C with g(z).
A well-known lower bound for the minimum distance of cyclic codes is the so-called
Bose-Chaudhuri-Hocquenghem (BCH) bound [6].

Definition 3.2.1 (BCH bound) Let the largest § < n such that {i,i+1,---,i+6—2} C R
for some i, then dpcu(C) = 4.

The BCH bound was generalized by Hartmann and Tzeng {5]. Their result which we
call the HT bound, was slightly modified by Roos [10].

Definition 3.2.2 (HT bound) Let the largest number 8 + s, such that there ezist i, a
and s with the property that ged(a,n) =1 and {i + j + ka|l < j < §,0 < k < s} CR, then
dyr(C) =48 + s.

Definition 3.2.3 (Roos bound) Letb andn be two positive integers such that ged(b,n) =
1. IfAC R,B = {i1b,igb,---,i:b} where0 <i; <--- <@gy <m, and iy —i;+1 < t+dg—2,
then the true minimum distance of C is d(C) > t+da — 1. The Roos bound dg(C) is the
largest number t + da — 1 such that there exist defining sets A and B, where A+ B C R,
and d 4 is minimum distance of C(A) over Fyn, where C(A) is defined by defining set A.

Let g(z) be the generator polynomial of cyclic code C, the check polynomial h(z) =
(z™ — 1)/g(z) consists of the produce of irreducible polynomial h(z), ho(z), -, hy(z).
The Shift bound [12] of cyclic codes C' is recursively defined as following.

Definition 3.2.4 (Shift bound)

1. In case of u =1 (h(z) is irreducible polynomial):

Let R be defining set of C and {r1,r2,---,rw} C R, for w sequences ai,as,-- -, ay,

forw=1,2,---,n, the largest number i such that
{ai + r1,ai + ro,---,ai + i1} CR, ai+7m; &R, (3.1)

we have dg(C) = w+ 1.
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2. In case of u> 1:

Let ho(z)|h(z), ho(z) # h(z), the cyclic code Cy with generator polynomial go(x) =
g(x)ho(z) is true subcode of C, we write Cy < C. Let

ds(C) = mingy<cds(Co).

For {ri,ra, -, 7w} CRw+1<dg(C) andi=1,2,---,w, (3.1) is hold, for the
largest number w such that there exist the sequences ay,as, -, ay, we have dsg(C) =
w+ 1.

3.3 Relations Between Designed Minimum Distances from
Numerical Experiments

It follows directly from the definitions that the HT bound is a generalization of the BCH
bound and the Roos bound is a generalization of the HT bound, so we have dgcy <
dur < dg.

A set of integers is denoted by Z, and the integers modulo by n is denoted by Z,.

Theorem 3.3.1 The following inequalities hold
ds(C) = dgr(C) > dpcu(C).

Proof The last inequality is obvious. Let J = {i +j + ka|l < j < §,0< k < s} bea
subset of Z,, and J C R # Z,. Then thereisa d > dsuchthati+j e Rforalll <j <4
and i +8& ¢ R. The set {i +j + ka|l < j <,k € Z,} is equal to Z,, since ged(a,n) < 4.
So there exist s > s and j such that i +j+ka€ Rforall1<j<dand0<k<s, and
1<j <6,i+j +(8 +1)a¢R Letw=258+5.

Let iz =(k—1)aforall 1 <k <s +1,and i =& —8 —s —1+k for all k such that
§ +2<k<d+s.Letjy=i+lforal1<I<d—1,andlet jy=i+j + (I —&+1)a for
all I such that d <! < J§+s . Then one easily checks that ix +j; € Rfor all k+1 < w, and
ik + w1 =i+j +(s +1)ag¢Rforall 1 <k<s +1,and ix+ w1 =i+6 ¢ R
forall s +2 <k <d+ 5. So we have a set which is independent with respect to R and
has sizew =d0+38 > 8 +s.

From the definition of Shift bound, we have ds(C) > § + s for all defining sets R which
contain J and are not equal to Z,. Therefore ds(C) > dgr(C). ]
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The Roos bound is a generalization of the HT bound, so dg(C) > duyr(C). The next
we discuss about the relation between dg and dg from numerical experiments that use the

computing program of Roos bound and Shift bound by author.

Explanation of Coﬁputing Program
It is introduced the method for computing program of Roos bound and Shift bound

as follows.

1. For the Computing Program of Roos Bound

Let R be defining set, and A+ B C R. We choice the set A is the subset of R, which
the largest continuous elements, such that d4 = dpor(C). From A+ B C R, we
decide the set B. Let b for 0 < 7 < n, we choice the elements that belong to set
B by the order of i, where b € {0,1,---,n — 1}, ged(b,n) = 1. We choice B that
satisfies i; — 43 + 1 <t +d4 ~ 2, and compute dg(C) =t +dg — 1.

2. For the Computing Program of Shift Bound

It is made out computing program that search all sequences satisfying the condition

of definition.

In many cases of binary codes of length at most 62, the Shift bound is equal to the
true minimum distance [12]|. In about 95% of all ternary codes of length at most 40, the

Shift bound is equal to the true minimum distance [11].

3.3.1 For Binary Cyclic Codes of n < 31
In case of dg(C) < ds(C) we can find dg(C) = dpcu(C) or dg(C) = dyr(C).

Example 3.3.1 Let n = 21,R = {0,1,2,3,4,6,7,8,11,12, 14,16}, we have dpcu(C) =
dur(C) = dg(C) =6, and ds = 8. The minimum distance of this cyclic code is 8.

Example 3.3.2 Let n = 31,R = {1,2,4,7,8,14,16,19,25,28}, we have dgcy(C) =
3,dyT(C) = dgr(C) =4 and ds = 5. The minimum distance of this cyclic code is 5.

In case of dg = dg, we have dBCH(C) = dR(C) = ds(C') or dHT(C) = dR(C) = ds(C)
in many cases. We show the example which is not so, i.e.,in case of dpep(C) < dyr(C) <
dgr(C) = ds(C).
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Example 3.3.3 Let n = 21,R = {1,2,3,4,6,7,8,9,11,12,14,15,16,18}. We have
dpcu(C) = 5,dgr(C) = 6. Let A{1,2},b = 4,B = {11,12,13,14,16,17}, we have
dr(C) = 8,ds(C) = 8. The minimum distance of this cyclic code is 8.

For the binary cyclic codes of n < 31, about 25% is dg(C) < dg(C), about 75% is
dr(C) = dg(C), and there is no case of dg(C') > dg(C). Therefore we have dr(C) < dg(C)
for binary cyclic codes of n < 31.

3.3.2 For Ternary Cyclic Codes of n < 26

All ternary cyclic codes of n < 26 are dg(C) < dg(C). There are two examples with
dr(C) > ds(C). One of the example is in [11], and the other one is found by author.

Example 3.3.4 [11] For n = 26, R = {0,13,14,16,17,22,23,25}, let A = {13,14},b =
3,B =1{0,1,3,4}, we have dg = 6 and ds = 5. The minimum distance of this cyclic code
5 6.

Example 3.3.5 For n = 26,R = {0,5,8,13, 14, 15,16, 17,19, 20, 22,23, 24, 25}, let A =
{13,14,15},6 = 9,B = {0,1,3,4,6,7}, we have dg = 9 and ds = 8. The minimum

distance of this cyclic code is 9.

For the ternary cyclic codes of n < 26, about 32% is dr(C) < ds(C), about 67% is
dr(C) = ds(C), and there are two examples with dg(C) > dg(C).

Explanation of Tables

It is computed all binary cyclic codes of n < 31, and all ternary cyclic codes of n < 26
by author’s computing program. In many cases we have dr(C) = dg(C), then the tables
only give the case of dr(C) < ds(C). And the tables give the code length n, dimension
k, Roos bound dg(C), Shift bound dg(C), and the set G such that g(z) = [[;cq mi(z), in
other words, R = {c!|i € G} is a defining set.

3.4 Conclusion

It is surveyed various bounds on the minimum distance of cyclic codes. For cyclic codes the

BCH bound dpcu(C), HT bound dg7(C), Roos bound dr(C) and the Shift bound ds(C)
for the minimum distance are well-known. It is known that dpcu(C) < dur(C) < dr(C)
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and dur(C) < ds(C). But the relation between dg(C) and dg(C) is not known. It is
discussed with some examples in this chapter.

For all binary cyclic codes of n < 31, about 25% is dr(C) < dg(C), about 75% is
dr(C) = dg(C), and there is no case of dg(C) > ds(C). Therefore we have dr(C) < ds(C)
for binary cyclic codes of n < 31.

For all ternary cyclic codes of n < 26, about 32% is dg(C) < ds(C), about 67% is
dr(C) = ds(C), and there are two examples with dg(C) > dg(C).

Table 3.1: Binary Cyclic Codes of n < 31

NO. n | k | dg(C) | ds(C) | G

1 15 3 4 0,3,7
3 3 4 0,7,9
3 21 9 5 6 1,30
1 6 8 0,1,3,7
5 6 7 8 1,3,5
6 23 12 5 6 1

7 11 6 7 0,1
8 4 5 15
9 21 1 5 1%
10 4 5 3,7
11 31 4 5 311
12 20 5 6 0,1,5
13 4 6 0,1,7
11 16 6 T 1,5,7
15 15 6 7 0,157
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Table 3.2: Ternary Cyclic Codes of n < 26

I NO. i) k | dr(C) ds(C) G
1 5 6 0,1,2
2 13 6 5 6 0,1,7
3 5 6 0,2,7
4 4 5 0,1,10
5 16 9 4 5 1,2,8
6 4 5 0,2,5
7 7 5 6 1,248
8 15 3 4 0,1
9 3 4 0,11
10 13 3 4 0,1,5
11 3 4 1,5,10
12 20 10 5 6 0,1,4,10
13 5 6 0,1,2,10
14 9 5 6 1,4,5,10
15 5 6 0,1,2,5
16 8 5 8 0,1,2,5,10
17 5 8 0,1,4,5,10
18 16 3 4 0,1
19 3 4 2,11
20 22 15 3 4 0,1,11
21 3 4 0,2,11
22 7 7 8 1,24
23 6 9 10 1,2411
24 22 5 9 10 0,1,2,4,11
25 9 10 0,1,2,7,11
26 23 12 5 6 1
27 11 6 74 0,1
28 19 3 4 0,7,17
29 18 3 4 0,7,13,17
30 26 17 4 5 2,8,17
31 4 5 4,14,17
32 16 5 6 2,4,13,17
33 5 6 4,7,13,17

16
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Table 3.3: Ternary Cyclic Codes of n < 26 ( Continued)

I_ NO. n k dr(C) ds(C) l G __J

[ 34 5 6 1,8,13,17 |
35 4 6 4,8,13,17
36 16 4 6 7,8,13,17
37 5 6 1,13,14,17
38 5 6 2,13,14,17
39 5 6 4,13,14,17
40 5 6 7,13,14,17
41 15 5 6 0,7,8,13,17
42 5 6 0,4,8,13,17
43 .5 6 1,2,8,17
44 5 6 4,714,17
45 5 6 1,7,8,17
46 14 4 6 1,7,14,17
47 5 7 1,8,14,17
48 26 5 6 2,8,14,17
49 5 6 4,.814,17
50 5 T 1,8,13,14,17
51 5 6 1,7,8,13,17
52 5 6 4781317
53 5 8 1,2,13,14,17
54 13 5 6 1,4,13,14,17
55 5 6 2,4,13,14,17
56 T 8 451314,17
57 5 6 1718 17
58 6 7 4,7,13,14,17
59 5 6 4,8,13,14,17
60 7 8 0,4,7,13,14,17
61 12 5 6 0,4,7,8,13,17
62 7 8 0,1,8,13,14,17
63 6 7 0,1,8,13,14,17
64 11 5 7 1,4,8,14,17
65 5 6 2,4,8,14,17
66 7 8 2,7,8,14,17

17



Chapter 4

The Feng-Rao Designed minimum
Distance and the Feng-Rao
Decoding

4.1 Introduction

In this chapter we will briefly review Miura’s definition [8] of the Feng-Rao designed
minimum distance drpg of linear codes and related facts including the Feng-Rao decoding
of linear codes, since drg is closely related to the Feng-Rao decoding.

The Feng-Rao decoding (3, 8] of an (n, k) linear code C over F, is as follows.

(1) We consider an ordered basis
B, = {b1,bs,---,b,} (4.1)
of Fy' and define an (n, k) linear code C over Fy as
C = Span{B}", (4.2)
where .
B = {by,,by,, -, by, .} C Bp, (4.3)

and Span{B} means a subspace of F}' spanned by B.
(2) Let c = (e1,¢2,---,cn) € Fg be a codeword of C. If y = (y1,%2,+-,¥n) € Fy
is received when the code word ¢ was sent, we define as y = ¢ + e. Then the Feng-Rao

decoding will find the error vector e = (ey,e3,--,ep) € F‘;" correctly as

e=y—c (4.4)

18
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when

wt(e) < |(drr — 1)/2]. (4.5)

(3) The determination of e will be done as follows. Define an n x n syndrome matrix

S(e) over Fy as

S(e) = H(Bn)diag(e)' H(Ba), (4.6)
where )
b
by
HB,)=]| . |, (4.7)
by
€1
() 0
dioge)= | 7 .|, (18)

and *H(B,) is the transposed matrix of H(B,). If we can compute S(e) from the received
word ¥, then we can determine the error vector e by the inverse matrixes of H(B,) and
tH(B,) as

diag(e) = H(B,) 'S(e)'H(B,)™! (4.9)

since H(B,) is nonsingular.

The main effort of the Feng-Rao decoding is the computation of S(e) from y. This
effort can be done as follows.

The (i, 7) element of S(e) is given by (e, b;b;). For two vectors & = (z1,%2,"++,Tn) €
F7 and y = (y1,92," yYn) € Fy' we define the inner product

(®,y) = 2191 + Tay2 + - -+ + TnlYn € F7

and vector product
Yy = (-'L'lyl, TaY2,° ", m‘ny‘n) € F";",
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respectively. By expanding b;b; with respect to the ordered basis B, = {b1,ba,,bs}

the element (e, b;b;) can be computed from
(e,b1),{e,ba), -, {e, by). (4.10)
Among the n values of (4.10), the n — k values
(e,by,) (i=1,2,--,n—k) | (4.11)

can be easily computed by
(E, b‘u.') = {y, b’u-.)?

since (c, by,,) = 0 from the definition of C, i.e., (4.2) and (4.3). The remaining k values

(e,bj) j ¢ {wa,uz, -, Un—k}

will be determined by applying the Extended Fundamental Iterative Algorithm (EFIA) to
the n x n matrix S(y) using the majority voting principle together {3, 4].

Therefore we will briefly review the EFIA in Section 4.2, the definition and useful
properties of drg in Section 4.3, and the Feng-Rao decoding in Section 4.4.

4.2 The Fundamental Iterative Algorithm and Its Extension

In this section we explain the fundamental iterative algorithm and its extension as reference

for the Feng-Rao decoding.

Let
a) a2 - N
a1 a2 - Q2N
A=
api epm2 ¢t AQMN

be an M x N matrix over a field F. We assume rank(A) < N. Then the columns of A

are linearly dependent. Let
Clxz) =co taz+ cotgxt, e=1

a(i)(:n) =ai0 + a; 1T Jrmm s G..g1N:L‘N, aio= 1, = 1, 2, 8 ,M.

Let [C(z)a® (2)],, [+1<n <N, be the coefficient of z" in C(z)a)(x). deg(C(x)) < I
such that [C(z)a®(2)]j41 =0fori=1,2,--- M
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For each column 7, we define C*~17) (z) = Z‘;’;E c}f_u)m’“, where1 <i < M, cgi_l’j) =5

1, to be the polynomial with the property that

[C(i—lvj)(ﬂ:)a(h)(z)]j = an;+ Cg_i_l’j)ﬂh‘j—l h TR Cg'i__f'j)ah,l ‘
= 0 h<i-—1.

C(O’j)(m) is then referred as the initial polynomial for column j. We have C(®!(z) = 1
for the first column. We refer to

dij = [CO)(2)aD (@)} = as; + & Pagiir +-+ ¢ 3 iy

as the discrepancy at the row ¢ and column j. We define the final polynomial at column
j to be CU)(x) = C"—13)(x) and refer to this nonzero d,; as the final discrepancy in
column j. We will also refer to a final discrepancy as a primary discrepancy and mark its
existence with an ” x”.
(1) Fundamental Iterative Algorithm (FIA)

Step 1 : Empty Table D and C,1 — 5,1 = 7,1 = C®9) ().

Stap 2 : Compute dr s = [C"19) (x)a(" (z)];.

Stap 3 : If d, s = 0, then

(a) ifr=M,thens—1—1, CU~)3(z) = C(x), stop;
(b) otherwise C{™—3%)(z) — C"*)(x), r+ 1 — r, and return to Step 2.

Stap 4 : If d, s # 0, then

(a) if there exists a d,,, € D for some 1 < u < s, then

C(rfl,s)(w) _ %C(n)(a:)xs—u - C(r—l,s)(m)

s
and return to Step 3(a);
(b) otherwise, dy is stored in D,

Cr19)(x) = CC) (@) — O+ ()

and C®)(z) is stored in C, then s +1 — 5,1 — r, and return to Step 2.
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The final s and C("~1#)(a) give the solutions to [ and C(z). It is seen that whenever
d;; = 0, the top ¢ components of column j is a linear combination of the top ¢ components

of its preceding j — 1 columns.

Example 4.2.1 Let the binary matric

[0 0 1 1 01
ail a2 a3 - 016 1 00001
e az G2 azy ‘- G 1000000
- : : : 1010100
ag1 Qg2 a3 *** Qg6 000111
L0 01 011 i
If we use FIA, we have the following matriz D
0 01 (1) O i
10 0 0
0 0 0
D: ]
1 @
1 0
| 0 :

andl=s5—-1=4,C(x)=CO9(x) =14+ +2?+ 25

Now we consider the application of the FIA to the matrix A. For any column j, assume
we have obtained C("~14)(z) such that [C"19)(z)a®(x)]; = 0 for i = 1,2,---,7 — 1
and a,; is unknown. Then there are two cases to be considered, if there is no primary

discrepancy at row r to the left of a; ;.
(1) In case of drj = 0:
dy; = [CU1)(2)a") (2)]; = arj + " apig 4o 4+ ey =0,

then

j—1
=1 7
a‘!",j — Z C(T ,J)a‘T,j—k,

k=1
the value computed for a,; is true, if a,; is unknown syndrome.

(2) In case of d,j # 0: dy,; is a primary discrepancy, the value of a,; can not be decided.

(2) Extended Fundamental Iterative Algorithm (EFIA)
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Step 1 : Empty Table D, C, E and F, 1 — 5,1 — r,1 — C%%) ().
Stap 2 : Compute d,. s = {C(’"_l"‘)(m)a(r)(m)]s.
Stap 3 : If dr s = 0, then

(a) if r =2t + 1 — s, then if there is no d,41, € D, then go to (al), otherwise go
to (a2);
(al) calculate

s—1
(7,s)
Qr4l,s = § € Qri1,5—ks
k=1

ary1,s and C"~19)(z) are stored in E and F, respectively, then go to (a2);
(a2) if s = 2, then stop, otherwise

Cr—12(z)  0O)(x) - COH) (),
s+1—s, 1—r, and return to Step 2;
(b) otherwise C"~1%)(z) —» C™*)(x),r + 1 — 7, and return to Step 2.
Stap 4 : If d, s # 0, then

(a) if there exists a d,,, € D for some 1 < u < s, then
C(‘rul,s)(w) _ %C(u) (m)ms—u Y C(r—l,s}(m)
dr,u
and return to Step 3(a);
(b) otherwise, dy, is stored in D, and C(®)(z) is stored in C, then go to Step 3(a2).

When the algorithm stops, Table E contains all the values computed for unknown syn-
dromes. Obviously, the complexity of this algorithm is O(n?%).

4.3 The Definition of the Feng-Rao Designed Minimum Dis-
tance by Miura '

We will call B, = {by,bs,--+,b,} C Fg an ordered basis of F7' if By, is a basis of F‘;‘ and
the ordering of n vectors by, b, -+, b, has meaning. The subset B; of B, is defined by
B; = {b1,bs,--- ,b;} for 1 <i <.
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Definition 4.3.1 For a vector b € F}, the map o: Fj —{0,1,2,--,n} is defined as
o(b) = min{ilb € Span{B:}, 0 <i < n},
where Span{B;} is a subspace of Fy spanned by B; and Span{Bp} = {0}.

For two vectors @ = (1,2, *+,Zn), ¥ = (¥1,¥2,-**,¥n) € F7, their product zy is
defined as zy = (z1y1, Zoy2, "+, Tuln) € Fy.

Definition 4.8.2 The product b;b; is said to be well-behaved if o(byb,) < o(b;b;) for any
u,v satisfying 1l <u<i, 1<v<j, (u,v)#(i,75)

Definition 4.3.3 The product b;b; is said to be weakly well-behaved if o(bub,) < o(b;b;)
for any u satisfying 1 < u < i,v = j, and any v satisfyingu =1i,1 <v < j.

Definition 4.3.4 For 1 < s < n, we define N(s), N*(s) as
N(s) = #{(i,4)|o(b;ib;) = 8, 1 < i,j < n,b;b;is well-behaved},
N*(s) = ${(4, §)|o(bib;) = 5, 1 < 1,j < n, b;bjis weakly well-behaved},

where §A means the cardinality of set A. For an ordered basis B, of F} we define
N(B,),N*(B,) as
N(Bﬂ) = (N(l)!N(z): . ,N(ﬂ.)),

N*(Bn) = (N*(1), N*(2),---, N*(n)).

Lemma 4.3.1 For a given ordered basis B, = {b1,bs,---,bn}, we can determine N(B,)

in computational complezity O(n*).
Proof We can calculate N(B;) from the n x n matrix
[o(bib;)] (1 <4,5 < n),
where o(b;b;) can be determined as follows. Let
™
bibj = Z akbk
k=1

= aby +agby +--- +anby,
= aH(B,),
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where
a:=(a1,09, Q)
and
by by bz -+ bin
by bar baa -+ b2y
H(Bn) = . = . . .
bn bn.l bn2 e bﬂn

We have o = b;b;H(B,)~! and
o(bib;) = max{k|ax # 0,1 < k < n},

where H(B,,)~! is the inverse matrix of H(B,). The computational complexity of H(B,, )}
and o are O(n?) and O(n?), respectively. Therefore we can compute the n x n matrix
[o(b;b;)] with the computational complexity of O(n?).

a

Lemma 4.3.2 Let a, b € F},a, § € F;, we have o(aa + Gb) < max{o(a),o(b)}. The
equality holds if « # 0,8 # 0,0(a) # o(b).

Proof Let o(a)=u,o(b) =v. We have
a = c1b; +c2ba + - - + cuby,
b =cyby + cobg + - + ¢ by,

Wherec,;,c;EFq (L<i<u,lLj<).
If u > v and a # 0, then we have

aa + Gb
= (aer +Ber)by + (aes + Bea)by + -+ + (acy + B, )by + acy 1yt
+ o + acyby,

and o(aa + fb) = u.
If u < v and 8 # 0, then we have o(aa + 8b) = v.
If u = v, then we have o(aa + 3b) < u =v.
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Lemma 4.3.3 For 1 <t < n,b € F}, if o(b:b) < t, then there erists at least one i with
1 <1 <t such that o(bib) < o(b;b). ‘

Proof See the proof of Lemma 5.2.1 in the next chapter.
0
This Lemma tells us that b;b; is not weakly well-behaved, therefore b;b; is not also
well-behaved, if o(b;b;) < i or o(b;b;) < j.

Corollary 4.3.1 If o(b;b;) = s and b;b; is weakly well-behaved, then we have 1 < i <
s, 1<3<s.

Proof If we assume that ¢ > s, then we have o(b;b;) = s < ¢. From Lemma 4.3.3

there exists at least one u with 1 < u < 1 such that
D—(bubj) > O'(bibj)s

which is a contradiction to the assumption that b;b; is weakly well-behaved.
The proof of j < s is the similar.
O

Lemma 4.3.4 For 1 < s <n, we have 0 < N(s) < N*(s) < s.

Proof 0 < N(s) < N*(s) is obvious. N*(s) < s is shown as follows.

(1) When u is fixed, N*(s) = #{(i, 7)|o(bib;) = s, 1 < i, < n, b;b;
is well-behaved}, there exists at most one v for 1 < v < n. From Corollary 5.2.1, we
have 1 <v < s, N*(s) < s.

(2) When v is fixed, the proof is as same as (1).

£1
Let B be a subset of an ordered basis By, of F'. The linear code C(B,, B) over Fy is
defined as
C(Bn, B) = Span{B}*,

where Span{B}+ means the set of all vectors in Fi* orthogonal to Span{B}.
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Definition 4.3.5 The Feng-Rao designed minimum distance of the linear code C is de-
noted as drgr(C, Bn) and defined as

drr(C, Bp) = min{N(s)|b, € B,\B, 1< s < n},

#r(C, Bp) = min{N*(s)|bs € B,\B, 1< s <n},

where B, \B is the subset of B, without the elements of B.

4.4 The Feng-Rao Decoding

Definition 4.4.1 For y = (y1,y2, **,¥n) € FZ, the n x n diagonal matriz diag(y) over
Fy, is defined as '

1

. Y2 0
diag(y) = " .

Yn

Let B, = {by, ba,---,b,} be an ordered basis of F'. Let H(B,) be an nxn nonsingular

matrix defined as
by

HB) = |

bn
Definition 4.4.2 For y € F, the n x n matriz S(y) over Fy, is defined as
S(y) == H(By)diag(y)"H (Bn),
where*H (By,) is the transposition of H(B,). S(y) is called the syndrome matriz of y € F'.

Lemma 4.4.1 For 1 <4,j <n, we have S(y) = [(y, bib;)].

Proof From above definition, we have

S(y)
= H(Bn)diag(y)tH(Bn)
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[ bll b]g e bln iy
| b by e oy Y2
| bﬂl bn2 b bnn

[ 31 bibuyy;
3 i=1 bajbijy;

D j—1 b1;bo;y;
3 i=1 bajbajy;
| 51 bnjbriy; 30T bujbajy;
2 5=1 b1bijy;

= : 2 =1 bijbr;jy;
| 201 bnjb1jy; e

On the other hand,

[(yv bib_‘i)]

[ (y,b1by)  (y,biby)
(y,b2b1) (y,baby)

B (y‘.‘ b‘n.bl) (y: bnb2)

[ 37 bijbijy;

= : >t bijbiiy;

| 2251 bnjbisy;

Consequently, we have S(y) = [(y, b;b;)].

[ 0y buibiiys X7 bisbajy;
Yio1 bajbijy; 350 bajboy;

| D=1 bugbijyy 3051 bagbojy;

b b1 - bu
0 big by -+ bna
UYn bln b2'n. Sl b'rm

E;‘l: 1 b156n;Y;
371 bajbnjy;

> 5=1 bjbnjy;
371 bijbnjy;

E;';: 1 bnibnjy;

(ya blbn)
(ya bzbn)

<y:- bnbﬂ->
E?:l blj‘ anyJ
2i=1b2;bnjy;

E?:l bnj by 544
3 o7=1 bijbnjy;

3o7=1 brgbnjy;

|

Lemma 4.4.2 For y € F', we have wt(y) = rank(diag(y)) = rank(S(y)).

Proof wt(y) = rank(diag(y)) is obvious. Since H(B,) is nonsingular matrix,

rank(H (B,)) = rank(*H(B,)) = n. From

S(y) = H(Bn)diag(y)" H(Bn),

we have

rank(H (B, )diag(y)) = rank(diag(y)).

28
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In the same way, from

rank(diag(y)*H (B, )) = rank(diag(y)),

we have
rank(S(y)) = rank(diag(y)).

Consequently, we can prove

wt(y) = rank(diag(y)) = rank(S(y))-

O

Lemma 4.4.3 Let d be the true minimum distance of C(B,,B). Then we have d >
dpg(C, Bn) 2 drr(C, By).

Proof Let c € C(B,,B)=Span{B}*, c#0. For1<s<n, let
{e,b1) = {e, b} =---={e,b,—1) =0,
and (¢, b,) # 0, then b, € B,\B. For
Y(k,1) € {(3,5)lo(bib;) = 5, 1 < i,j < n,b;bjis weakly well-behaved}

the element (¢, bib;) of S(c) is nonzero, because

(Cbb) = (e asby)
t=1

= > e, by)
t=1

s—1

= as<c1 bs) + § Qi (c: bt)
t=1
— Q’s(c; bs)

£ 0.

On the other hand, foru =4,1 <v <jorl <u<i,v=j (¢ byby) = 0. The ith column
and jth row of [(c, b;b;)] are linearly independent. Therefor at least the matrix [{(c, b;b;)]

has N*(s) independent row or column. From Lemma 4.4.1 and Lemma 4.4.2, we have

wt(c) = rank(S(c)) = rank([{c, b;b;)]) > N*(s) > N(s).
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Moreover, from the Definition of dyr(C, B,) and drr(C, B,), we have
d 2 dpg(C, Bn) > dpr(C, By).

O

For linear codes C (B, B), let y € Fg be received vector, and e € F' be error vector.
Then ¢ = y — e € C(B,, B). We assume wt(e) < |(drr(C,B,) — 1)/2], for b, € B,\B
such that 5,1 < s < n, there is rank(S(e)) = wt(e) < |(V(s)—1)/2]. From Lemma 4.3.4,
we have wt(e) < (s — 1)/2]. If s < 2, there is no error because wt(e) = 0. Therefore we
can assume by, by € B. Let (e, b), (e, ba),---, (e,bs_1) be known.

In case of b; € B, we can determine (e, b), from y — e € C(By, B), we have (y, b,) —
(e,b.) = 0 and (e, b,) = (y,bs).

In case of bs ¢ B, i.e., by € B,\B, let

(k,1) € {(i,5)|o(bib;) = s, 1<1i,j < n.b;bjis well-behaved}.

We have o(buby) < o(bpb)) =sfor1 <u <k, 1 <v <, (u,v) # (k,1). Let o(bub,) <
s — 1. We can determine (e, b,b,), since (e, by), (e, b2), -, (e, bs—1) are known. The
portion (e, bib;) of S(e) with the location

(k, 1) € {(3, 5)lo(b;ib;) = 5,1 < 1,j < n, b;bjis well-behaved}

can be determined from the EFIA in Section 4.2. N
Let rank(S(e)) = [(N(s) — 1)/2] = v < t, then there are at most v primary discrep-

ancies. For each
(k, 1) € {(2,))|o(b:b;) = 5,1 < i,7 < n, b;bjis well-behaved},

the number of primary discrepancy at its internal is at most p where g < v. The elements
at lower or right of a primary discrepancy can not determine, then there are at most 2u
unknown positions. If 4 = v, the number of unknown as follows
N(s)—1 if N(s)—1 iseven,
[(N(s) -1)/2] x 2= { N(s)—2 if N(s)—1 isodd.
Then the number of the true values is at least one, and the number of the true values is

greater than the number of the false values.
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Since o(bkb;) = s, we can write
bbby = a1by + agby + - - - + b,

Then we can calculate by

(e,brb)) = (e,onb; + agby + -« + a;b,)

= ai{e,b) +az{e,by) + - + as_1{e,bs_1) + as(e, bs)
s—1

= i ar(e, by) + as(e, by).
k=1

Hence we have

s—1
(E, bs) o ((E, bkbl) - Z ak(e, bk))/am
k=1

therefore, (e, b;) can be computed. Consequently, the element (e, b;b;) of S(e) such that
o(bib;) < 5,1 <4,j <n are a known.
From
S(e) = H(B,)diag(e) H(Ba),

we have
diag(e) := H(B,) 'S(e)*H(B,)™},

then the error vector e can be computed.



Chapter 5

The Feng-Rao Designed Minimum
Distance of Binary Linear Codes

5.1 Introduction

The Feng-Rao designed minimum distance drp and the Feng-Rao decoding were originally
introduced into algebraic geometry codes by G. L. Feng and T. R. N. Rao [3]. They have
been extended to the case of general linear codes over a finite field by Miura [8].

Miura’s definition of drr(C, By,) for an (n, k) linear code C over a finite field F; with
order g depends on the choice of an ordered basis B, = {b1, ba, -+, b, } of the vector space
F7 with dimension n over Fy, and the ordering of n vectors by, by, - -+, b, has meaning.
It is interesting to find such an optimum ordered basis B, as dpg is maximum, since the
Feng-Rao decoding can correct up to |(drr(C, B,) — 1)/2] errors.

This chapter shows that dpg(C, By) of binary linear codes can not take an odd value
except one if we use Miura’s definition of dpr(C, B,).

Recently the definition of dpg(C, B,) of linear codes has been slightly modified by
Matsumoto [7] which uses three ordered basis of F' instead of one in case of Miura’s
definition. This chapter does not discuss whether the freedom introduced in Matsumoto’s

definition will result in another conclusion or not, although it is a very interesting problem.

We will discuss about this problem in Chapter 6.

32
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5.2 The Feng-Rao Designed Minimum Distance of Binary
Linear Codes

For a given (n, k) linear code C over Fy, the value of the Feng-Rao designed minimum dis-
tance dpg(C, By,) depends on the value of the number of well-behaved, since the definition
of dpr(C, By,).

The matrix [o(b;b;)| is

O'(blbl) O'(blbz) Fid O'(blbn)
O’(b2b1) U(bgbz) nde J(bgbn)
a(b,-,,b1) O‘(b,'lbz) - U(b,;bn)

from the property of symmetry, we have o(b;b;) = o(b;b;). Let

n
bibj = Za,;bi, a = (0/.'1,0!2, L ‘,Oln) S F;’,

i=1

if b;b; # 0 then we have
o(bib;j) =max{i | a; #0, 1<i<n}.

From Lemma 4.3.4, the ideal N(s) is equal to s, therefore the matrix [o(b;b;)] becomes
the following ideal form

(1 2 3 4 n—-3 n—2 n—1 n]
2 3 4 5 n—2 n-—1 n

3 45 6 n—1 n

4 5 6 7 n

_n -

Particularly, for (n = ¢—1, k) Reed-Solomon code C over Fy(q = p™), dpr(C) =n—k+1
which is equal to the Singleton bound and the true minimum distance.
However, in case of binary linear code when i = 5, we have o(b;b;) = o(b?) = o(b;) = i,
then the matrix [o(b;b;)] is
1 O'(b1b2) U(b1b3) O’(blb-,,)

a(baby) 2 o(babs) -+ o(babn)
a(bsb)) o(bsby) 3 o+ o(bsby)

slbbi) olbabs) o) = 7
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The next will consider only binary linear codes over F;. The following lemma. {[8], Lemma
3.3] and its corollary [[8], Corollary 3.4] are essential in our discussions in this section.
They will be quoted in case of binary linear codes, although Miura proved them in case
of linear codes over any F,. Their proof will be given for the convenience of readers who
will find difficulty in obtaining Miura’s thesis [8].

Lemma 5.2.1 Let B, = {by,by, --,b,} be an ordered basis of Fy. If a(bb) <t <m,
then there exists at least one i such that o(bb) < o(bb) and 1 < i < L.

Proof We will show a contradiction if we assume
o(bb) < o(byb) fori=1,2,---,t—1. (5.1)
Let o(b:b) = s < t. We have
bb = by + agby + -+ - + ash,, o0,=1. (5.2)
a; € F, for 1 < i < 5. From the assumption (5.1) we also have
bib = Bi1b1 + Bigba + -+ - + Bis—1bs—1. (5.3)
Bij € Fpfor1<i<t,1<j<s Wehave bb = b for any binary vector b and we have

bib — bbb = (bb)b
= (albl +ogby +--- + asbs)b
= a1bib+ asbsb+4 -+ asbsb (54)

from (5.2). From (5.3) we have

bb = ai(Bi1b1+ Praba+ -+ fr,s-1bs—1)
+ag(f2,1b1 + Bagby + -+ + Bas—1bs-1)
oo 4 as(Bs1b1 + Be2ba + -+ + Bss-1bs—1)
= (fra +a2fa1+ - +asfs1)b
+(a1fr2 + agfles + -+ asfs,2)ba

+--+ (0161,3_1 + c'12ﬂ2,s—11 ot asﬁs,s—l)bs—l
s—1

= Z(i @if3i,j)bj,

j=1 i=1
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then o(bsb) < s. However (5.2) and (5.4) are contradiction, since the term asb, in (5.2)
is missing in the right-hand side of (5.4).
O

Corollary 5.2.1 If o(b;b;) = s and b;b; is well-behaved, then we have 1 < i,j < s.

Proof If we assume i > s, then application of Lemma 5.2.1 with t = 7 and b = b;
shows that b;b; is not well-behaved from the definition of well-behavedness.
The proof of j < s is the same.
a

Next we will prove the following theorem.

Theorem 5.2.1 Any binary linear code has dpr(C, B,) equal to either one or an even

number.

This theorem tells that binary linear codes can not have an odd dpgr(C, B,) > 3. Our
proof of Theorem 5.2.1 is very simple as shown below.

First we use the following property which is obvious from the definition.
Lemma 5.2.2 If b;b;(i # j) is well-behaved, then b;b; is also well-behaved.

Proof Since the property of symmetry, the proof of this Lemma is obvious.
O

Next we use the following lemma which is almost obvious from Corollary 5.2.1.
Lemma 5.2.3 If b;b; is well-behaved, then we have N (i) = 1.

Proof For a binary vector b; we have b;b; = b; and o(b;b;) = i. There can not
exist another byb,, (u,v) # (i,1) which satisfies the condition that o(b,b,) = ¢ and byb,
is well-behaved, since such b, and b, must satisfy 1 < u,v < i from Corollary 5.2.1 and

o(byb,) must be less than i because of b;b; being well-behaved.

Proof of Theorem 5.2.1 We have N(1) = 1 because of o(b1b;) = 1.

If b;b; is not well-behaved for i > 2, then N (i) is even for ¢ > 2 from Lemma 5.2.2.

If there exists such a b; € B,\B as b;b; is well-behaved, then we have N(i) = 1 from
Lemma 5.2.3 and dpg(C, B,) = 1 from the definition of drr(C, By).

Therefore we have Theorem 5.2.1.
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5.3 Conclusion

This Chapter showed that dpg(C, B,) of binary linear codes can not take an odd number
greater than or equal to 3 if we use Miura’s definition (8] of drr(C, By) for linear codes.

Recently Miura’s definition of dpr(C, By,) has been modified by Matsumoto [7] so that
we can include the case where Lemma 5.2.2 does not hold. Therefore it is an interesting
problem to examine whether Theorem 5.2.1 still holds or not if we use Matsumoto’s
definition of dpg(C, B,) for linear codes. In Chapter 6 we will give some conjectures for
Matsumoto’s definition of drg(C, B,).



Chapter 6

Matsumoto’s Definition and Some
Conjectures

6.1 Introduction

Theorem 5.2.1 in the previous chapter is Closely related to the fact that the matrix [o(b;b;)]
is symmetric in Miura’s definition [8] of dpg.

Recently Matsumoto [7] slightly extended Miura’s definition of dpg by using three
ordered basis U, = {uj,ug, - ,un},V, = {vy,v9,---,v,} and B, = {by,bs, -,b,}
instead of the only one ordered basis B,, in case of Miura. This generalization induce that
the matrix [o(u;v;)] is not symmetric in general.

In this chapter we will discuss the effect of the unsymmetry of {o(u;v;)] on the possible
value of dpg of binary cyclic codes. Our numerical experiments suggest a conjecture that

this generalization is not so effective.

6.2 Matsumoto’s Definition of JFR and Some Conjectures

Miura’s definition of the Feng-Rao designed minimum distance in Section 4.3, has been

generalized to dpg by Matsumoto [7].
Definition 6.2.1 For a vector b € Fy, the map o: Fi' — {0,1,2,---,n} is defined as
o(b) = min{i|b € Span{B;}, 0 <i < n}.

Definition 6.2.2 Let u; € Up, vj € V. The product u;v; of u; and v; for an ordered
basis B, is said to be well-behaved if o(uyvy) < o(uw;) forany 1 < u <i, 1 <w <
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J» (u,v) # (3, 7).

Definition 6.2.3 For 1 < s < n, we define N(s) as

N(s) = H{(i,j)

J(uivj) =3 1 < ?’JJ < n,
u;v; is well-behaved '

For an ordered basis B,, U, and V, of Fg we define JV(Bn,Un,Vn) as N(Bn, Un,Va) =

Our numerical experiments in case of all (7, k) linear codes by generating all the possible
set of three bases show N(1) < 1 and N(2) < 2. So we have the following conjecture.

Conjecture 6.2.1 We have 0 < IV(S) <s, forl<s<n.

Definition 6.2.4 The Feng-Rao designed minimum distance by Matsumoto of the linear
code C (B, B) is denoted as &FR(C, B,,U,,V,,) and defined as

drr(C, Bn, Uy, V,,) = min {N(s)

b; € B,\B.
1<s<n ’

Definition 6.2.5 For y = (y1,¥2, -, ¥n) € Fy, the syndrome matriz S(y) over Fg, is
defined as

S(y) = H(Uyn)diag(y)'H(Vn)

u] 51 Yy

usz Ya 0 V2
0

un yn ’vﬂ

Lemma 6.2.1 For 1 <i,j <n, we have S(y) = [{y, uiv;)].

Proof We can refer to the proof of Lemma 4.4.1.
O

Lemma 6.2.2 For y € F}, we have wt(y) = rank(diag(y)) = rank(S(y)).

Proof See the proof of Lemma 4.4.2.
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Lemma 6.2.3 Let d be the true minimum distance of C(By,B). Then we have d >
dAFR(C: B‘l’h Un, V‘n)

Proof Let ¢ € C(By,B) = Span{B}+, ¢ # 0. Let
(e,b1) = (e,by) =--- = (¢, b,_1) =0,
and (c,b,) # 0, then b, € B,\B. For
Yk, 1) e {3, 9)lo(uivs) = s, 1 < 14,j < n, ujv;is well-behaved}

the elements (¢, uxv;) of S(c) are nonzero, because of
-3
(e, upv)) = (c,Zatbt)
t=1

s
= Z ai<c: bt)
t=1

s—1

= a,s(e, b)) + Z ai{c, by)

t=1
— les (C, bﬂ)

# 0.
On the other hand, foru = 4,1 < v <jorl <u<i,v=7j (eu,v,) =0. The i-th
column and j-th row of [(c,u;v;)] are linearly independent. Therefor at least the matrix

[{(c, u;v;)] has N(s) independent row or column. From Lemma 6.2.1 and Lemma 6.2.2, we

have
wt(c) = rank(S(c)) = rank([(c, u;v;)]) > N(s).

Moreover, from the definition of dpgr(C, By, Un, Vi), We have
d > dpg(C, Bn,Up, Va).
O

Definition 6.2.6 For a linear code C we define the set of all triples with three ordered
bases such that C can be defined by an ordered basis B, i.e.,

3B C B, st. C =C(B,,B) and
Un, Vo are ordered bases of F;" ’

T(C) = {(Bn: Un-.\ Vn)
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Note that B is uniquely determined from C and B,. Moreover U, and V,, are not
concerned with the linear code C. The purpose is to give an optimum triple of three
ordered bases (B, Uy, V,) for a given linear code C.

Definition 6.2.7 The Feng-Rao designed minimum distance dpr(C) of C by Matsumoto
is defined as

dpr(C) = max{drr(C, Ba, Un, Vs)|(Bn, Un, Va) € T(C)}.
The triple of three ordered bases (By,,U,,V,) satisfying
drr(C) = dpr(C, Bn, Un, V)
is called an optimum triple for C.

The next shows an example of a triple of three bases in order to discuss Matsumoto'’s

generalization of d FR-

Example 6.2.1  For (7,4) binary linear code, let three ordered basis be as follows:
by =u; = (1 01110 0),

by=u3= (0 1 0 1 1 1 0),
bs=uz3= (0 0 1 0 1 1 1),
by=us= (0 0 0 1 1 0 0),
bs=us= (0 0 0 0 0 1 1),
bg=ug= (0 0 0 1 0 1 0),
b7=’t(.7: (O O 0 0 0 1 0),

and

vi= (0 0 0 0 0 1 0),
vo= (00 0 0 0 1 1),
vs= (1 01 11 0 0),
va= (0 0 0 1 1 0 0),
vs= (01 0 1 1 1 0),
vg= (0 0 1 0 1 1 1),
vz;= (0 0 0 1 0 1 0).
Then the matriz of o(u;v;) is
(001 445 7]
7 7 4 4 2 6 6
75576 37
0044477
7500757
" Y T T BT B
770077T7)|
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Above matrix o(u;v;) shows that o(ujv3) = 1 and u;v; is well-behaved, which con-
tradicts with Corollary 5.2.1. Therefore in Matsumoto’s definition we don’t have Lemma
5.2.1 and Corollary 5.2.1, which are used in proving Theorem 5.2.1.

O
However our numerical experiments on (7, k) binary codes strongly suggest the follow-

ihg conjecture which is the same our previous Theorem 5.2.1.

Conjecture 6.2.2 Any binary linear code has L'ZFR(C, Bn,U,, Vp,) equal to either one or

an even number.

6.3 Conclusion

In this chapter we discussed Miura’s definition and Masumoto’s definition of the Feng-Rao
designed minimum distance for binary linear codes. Matsumoto’s definition is a gener-
alization of Miura’s definition. Some properties and examples induce some conjectures
which tell Matsumoto’s generalization is not so effective compared with Miura’s definition
for binary linear codes.

Future works are giving proofs for these conjectures and investigate nonbinary linear

codes.



Chapter 7

The Feng-Rao Designed Minimum
Distance of Cyclic Codes

7.1 Introduction

This chapter is a first trial to find an optimum ordered basis B, for (n, k) cyclic codes over
F,, which are in a class of the most useful linear codes. For a cyclic code C' there exists
a good designed minimum distance such as BCH designed minimum distance denoted by
dpcy- It is interesting to compare dpgr(C) with dpopy of a cyclic code C.

The "Type I” ordered basis B, will be introduced, which corresponds to the well-
known form of the parity check matrix of an (n,k) cyclic code expressed by its parity
check polynomial, i.e., we use a natural choice of B, a subset of B,, as (n — k) vectors
{61, ba, -+, bp_i}, which consists of a permutation of vectors corresponding to the check
polynomial and its (n — k& — 1) consecutive right cyclic shifts. The possible values of dpg
of an (n, k) cyclic code will be investigated when we use the Type I ordered basis B,.

Firstly, it is shown that for nonbinary cyclic codes, i.e., in case of ¢ # 2 we have
drr(C,B,) < 1if B, is Type I and the check polynomial h(z) has a coefficient # 0, 1.

Secondly, for binary cyclic codes, i.e., in case of ¢ = 2 it is shown that dpr(C, B,) =
n — 1 for k = 1 (repetition code), drr(C, Ba) = 2(3 — 1) for k = 2 if B, is Type I, and
drpr(C, B,) = 2 for k =n — 1 (parity code), respectively.
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7.2 The Feng-Rao Designed Minimum Distance of Cyclic
Codes and Type I Ordered Basis

In this section the Feng-Rao designed minimum distance drgr(C) for (n, k) cyclic code C
over Fy is investigated. We are interest in the relation between the choice of ordered basis
By, = {by,by,---,b,} and the Feng-Rao designed minimum distance drgr(C, By), since the
value of drr(C, B,) depends on the choice of B, [8]. If we define drg(C) as the maximum
value of dpg(C, B,) among all the possible choices of B, for C, it is believed that dpr(C)
is a good lower bound of the minimum distance of C.

For a fixed linear code C we can choose many bases B,, such that C = C(B,, B).

Definition 7.2.1 For a cyclic code C we define the set B(C) of all ordered bases such
that C can be defined by this ordered basis, i.e.,

B(C) = {B.|’B C B, s.t. C = C(B,, B)}.

Note that B is uniquely determined from C and B,. Our purpose is to give an optimum

ordered basis B, for a given cyclic code C.
Definition 7.2.2 The Feng-Rao designed minimum distance dpr(C) of C is defined as
drr(C) = max{drr(C, B,)|Bn € B(C)}.

The ordered basis B, satisfying dpr(C) = dpgr(C, B,) is called an optimum ordered basis
for C.

The computation of drg(C) needs the choice of an ordered basis of F, i.e.,

Bﬂ. = {b11b27”'3bn}' (7]‘)

In this chapter we will consider an (n, k) cyclic code C over a base field Fy. Let g(z)
be the generator polynomial of C. Let

h(z) = (2" —1)/g(z) = zF + boz* 1 + - + by (7.2)

be the check polynomial of C. It is well known that C consists of all vectors in F'

orthogonal to
b=(1,bz,*,bgy1,0,---,0) € FY', b1 #0 (7.3)
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and

J(b)1 Ty 6n—k-1 (b):

where §(¢) = (cn, €1, +,¢n1) fore = (1, ¢, - - -, € ) is the right cyclic shift of ¢. Therefore
without loss of generality we will assume that

C = Span{b,s(b),--,6" *"1(b)}*. (7.4)

There are many choices for B,,. From Lemma 4.3.4 and Definition 4.3.5 we need to set
b; € B for small s in order to obtain a large value of dpp.

The following B, is a natural choice for computing dpg(C, By) in case of (n, k) cyclic
codes C.

Definition 7.2.3 The ordered basis B, is called "Type I” if B = {b1,ba,--+,by_4} is a

permutation of
{b3 6(b)7 T 5n_k_1(b)}!
where b is the vector of (7.3).

7.3 The Feng-Rao Designed Minimum Distance of Nonbi-
nary Cyclic Codes

First the following proposition will be proved about the product of two vectors of B.

Proposition 7.3.1 Let B = {by,,by,, - ,bu,_ .} be a subset of an ordered basis B, with
Type I. For 1 <i<n—k,1 <j<n—k, we have following two statements:

1. byb,, = ab,, with a € F,\{0} or b,.b,, ¢ Span{B}.

2. if i # j, then by,by; = 0 or by by, ¢ Span{B}.

Proof Let#; =bandt; = 4§ 1(b) fori=2,3,---,n — k. From Definition 7.2.3 we

have
B= {b‘uj. ) b‘u;n ety bun__k} = {t17t21 Rty tn—k}-

We will first prove 1. We have

tltl:(127"'sbi+1:07“':0)'_léo . (75)
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When we assume £,¢; € Span{B}, we have

n—k
tity =) Gits.
i=1

In order to satisfy (7.5), we need 3; =0 fori=n—k,n—k—1,---,2 from (7.3) and (7.5).
Then we have 8; = a # 0 from t,¢; # 0. Consequently we have ¢;t; = at,. It is obvious
that £,t, ¢ Span{B} if t,t; # at;.

The proof of t;t; = at; or t;t; ¢ Span{B} is similar, since t;t; = ot; is equivalent to
tit; = at; from t; = 6"~ (t;) and #;t; = 6 1(81¢y).

Next we will prove 2. Since t;t; = t;t; and

tit; = J(tiw_ltj_l) = 5i_l(t1tj_,;+1)
for i < j, it is enough to prove the case of i = 1 and 2 < j < n — k. We have
Byt = (0F 2, %, 0 0n, %, 07 %1), (7.6)

where 0* denotes the zero vector of length u and * means any value in F,, When we

assume t,t; € Span{B}, we have

n—k
tit; =) vt
i=1

From (7.3) and (7.6) we have ¢;¢; = 0.
O
The following proposition shows that the choice of an ordered basis B, with Type Iis

worst in many cases of nonbinary cyclic codes.
Proposition 7.3.2 Let C be a nonbinary (n,k) cyclic code. We have

drr(C,Bp) <1, (7.7)
if By, is Type I and the check polynomial h(x) of (7.2)has a coefficient b; # 0,1.

Proof If b; ¢ B we have dpg(C, B,) <1 from Lemma 4.3.4 and Definition 4.3.5.
Then we consider the case of by € B. From Proposition 7.3.1,

blbl = (01"'10312)@?'"1b£+1707“'10)

= ab;, aec F\{0} (%.5)
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or
biby ¢ Span{B}. (7.9)

From (7.8) weneed b; =0 or e forall i = 1,2,---,k+ 1. Since b; = 1 # 0, we have o = 1.
If there exists a b; # 0,1 with i = 2,3,---,k + 1, then (7.8) can not hold.

In case of (7.9), we have o(b1b1) = r > 1 and N(r) = 1, which means drg(C, B,) <1
because of b, € B,\B.

O

Proposition 7.3.2 shows that the choice of any Type I ordered basis is not good for
most of nonbinary cyclic codes, although no efficient method has been known for computing
good ordered basis. Another possible approach is to modify the definition of dgg for linear
codes|[7].

7.4 The Feng-Rao Designed Minimum Distance of Binary
Cyclic Codes

We consider (n,k) cyclic codes over F» with an odd length n and kK = 1, £k = 2 and

k = n — 1 in this section. We will show that there exists not so bad ordered basis with

Type L

7.4.1 (n,1) Binary Cyclic Code (Repetition Code)

In this case the code has only two code words, i.e., 0 = (0,0,---,0) and 1 = (1,1,---,1).
Since its generator polynomial g(z) = z" ! + z" 2+ ...+ z + 1 has n — 1 roots, i.e., a,

a?, ---, ™1 with a being a primitive n-th root of unity, we have

dBCH =M. (710)
Lemma 7.4.1 For a binary repetition code C (k = 1), we have dpr(C,B,) <n — 1.

Proof If b, € B, then we have B,\B = {bs}(1 < s < n—1) and drr(C, B,) =
N(s) < n—1 from Lemma 4.3.4.

Therefore we consider the case where B,\B = {b,} and drr(C, B,,) = N(n). We have
N(n) = n if and only if

{ o(bib;) <n ifi+j<n+l, (7.11)

o(bibpy1)=n ifl1<i<n
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For a binary vector b; we have b;b; = b; and o(bps1bns1) = 241l < n. Therefore (7.11)
2 2
can not hold.

O
Proposition 7.4.1 For a binary (n,1) eyclic code C, we have dpg(C, Bn) =n — 1.

Proof We will show the existence of a Type 1 ordered basis B, = {b1,b2,---,bs}
which satisfies dpr(C, B,) =n — 1. Let

e = (01,1,0°) € Fp, (7.12)

From h(z) = (" — 1)/g(z) = = + 1, we can choose B, as
b; =eq_1+ ey for1 <4

bni,;=e€n (2i-2) t€n_(2i-1) forl<i
b’n. = e,

and B = B,_;. Since e; ¢ Span{B,_} fori=1,2,---,n, we have

U’(b,’b,;) =q ifl<i<mn,
o(bib))=0 ifl<i<j<n—1-1i, (7.13)
G'(bibn_i) =n ifl S 1 S n—1.
We have N(n) > n—1 and dpg(C, B,) > n—1. From Lemma 7.4.1 we have dpr(C, B,) =
n— 1.
O

Therefore from (7.10) and Proposition 7.4.1, we have [Q‘—g_—lj = [éﬁﬂ.f;lj - 1.

Example 7.4.1  For the binary (7,1) cyclic code with the check polynomial h(z) = z+1,
we can choose B = {by,by,---,bg} and B,\B = {b;} as follows:

b= (1 1.0 0 0 0 0),
b= (0 01 1 0 0 0),
b= (0 0 0 0 1 1 0),
by= (0 0 0 0 0 1 1),
bs= (0 0 0 1 1 0 0),
b= (0 1 1 0 0 0 0),
b;= (1000 0 0 0).

Since the matriz of o(b;b;) is
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100007 7]
0200770
0037700
007 4000],
0770500
77000 6 0
(700000 7|
we have dpr(C, B,) = 6. From dpcy = 7, we have dpg(C, B,) = dpcm — 1.

g

7.4.2 (n,2) Binary Cyclic Code

Let C be a binary (n, 2) cyclic code. In this case, it is obvious that the check polynomial of
C is only h(z) = 22 +z+1. We have 23 — 1}z™ — 1 and 3|n, since h(z)|z” -1, z—1|z" — 1,
23— 1= (z—1)h(z), and 2™ — 1 = z"(z® — 1)(z3" D 4+ 23(m=2) 4 ... 4 23 + 1) + (z" - 1)
forn=3m+rand 0 <r <2

Lemma 7.4.2 The odd code length of binary (n,2) cyclic codes C is a multiple of 3.

Let a be a primitive n-th root of unity, then two roots of the check polynomial of

n/3 2n/3 — /3

C are ™" and « Since the number of consecutive roots of the generator

polynomial of C is %n — 1, we have
iy == %” (7.14)
Proposition 7.4.2 For a binary (n,2) cyclic code C, we have
drr(C, Bn) 2 23 ~ 1) (7.15)
with a Type I ordered basis B,.

Proof A lower bound of (7.15) is showed by finding an ordered basis B, satisfying
equation (7.15). Let B, = {b1, bs,---,b,} be an ordered basis with

r

b; = ez o + €31 +es for 15655,
baiok—1 = €n—3k + €n—3k+1 + En—3k+2

. for LEkE 2 —1;
bz ok = €n-3k-1+ €n—3k + €n—3k+1
for lEk<g—~1

bn.-l = é3g, b'n, = €2,
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where e; is defined by (7.12). From this we have B = B,,_ and dpg(C, B,) = min{N(n—
1), N(n)}. We can write e3;, e3;—; and e3;_o for 1 <i < 2 as

esi=bn1+ (), esi-1=bn+(f), esi—2=bp+by1+(H),
where (ff) represents a vector in Span{B,_3}. Therefore we have

o(bib)) =0, if i+1<j<n—2i-1,
a(biby, 2 1)=n—1, (7.16)
O’(b,;bn_gi) =n
for1 <4< 3-1,sincebb; =0fori+1<j<n—2i—1, bjb,_9i—1 = ez, and
bibn -2 = es; + e3;_1.
Hence we have N(n — 1) = N(n) = 2(§ — 1) and dpgr(C, B,) = 2(5 — 1).
O

Example 7.4.2  For the binary (9,2) cyclic code with the check polynomial h(z) =
z? + 1z + 1, we can choose B = {by,bs,---,b;} and B,\B = {bs, be} as follows:

b= (1 110 0 0 0 0 0),

b= (0 001110 0 0),

bs= (0 00 00 0 1 1 1),

b= (0 0 0 0 0 1 1 1 0),

bs= (0 0001 110 0),

bg= (0 0 1 1 1 0 0 0 0), .

b= (0 1 1100 0 0 0),

bs= (0 01 00 0 0 0 0),

bo= (0 1 0 0 0 0 0 0 0).

The matriz O'(b,;bj) 18

"1 0 00 0 8 9 8 9]
0208 98 900
003890000

0 88 490000

099 959000 (7.17)
83 830096 9 820

9 90009789

8 00 008 8 380
(90000090 9]

and we have dpr(C, Bn) = 4. On the other hand we have dpcu = 6. (]
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Although Proposition 7.4.2 gives a lower bound of drgr(C, B,) for a binary (n,?2)
cyclic code C with a Type I ordered basis B, the following consideration suggests us to
conjecture that the lower bound is also an upper bound. Let b; = §~1(b) (1 <i < 7), i.e.,

bj= (111000 0 0 0),
by= (0 1 1 1000 0 0),
b= (0 01 1100 0 0),
by= (0 001110 0 0),
b;= (0 0 0 0 1 1 1 0 0),
bs= (0 0 0 0 0 1 1 1 0),
b= (0 0 0 0 0 0 1 1 1).

From this for each i (1 < i < 7) the number of the pair {b;, b;} (i # 7) satisfying b;b; #0
(1<j<T)isequalto2 (i=1,7),3 (i=26), or 4 (i = 3,4,5). For such a pair we have
0 # bib; € Bx\B = {bs, bo}

from Proposition 7.3.1. Therefore we can make dpr(C, B,) = 6 > 4, if o(b;b;) is the form

1 00 008 9 % =
0 2008 9 = * =%
0 03 89 * * x =«
0 0 8 4 % *x *x * x
0 8 9 % 5 % * * x|, (7.18)
8 9 x * % 6 * * =x
9 x *x * * %x T % x
* 0k % * * * * 8 %
| * % * * * * * *x O |

which gives N(8) = N(9) = 6.

The first row of (7.18) requests that b; should be b; or b,. We consider the case of
by = b,. The case of by = b, is similar.

From the form of the first row of (7.18), we have bg = b'z, by = b'3 or bg = b'3, by = b’2.
However any choice of by € {by, bs, bg, by} can not satisfy the form of the second row of
(7.18). Therefore (7.18) is impossible. From the symmetric property o(b;b;) = o(b;b;) and
o(bib;) =1 (1 < i < n) for binary codes, the value of drpgr(C, By) is even if dpr(C, B,) > 1
[19] and so dggr(C, By,) < 6 means dpr(C, B,) < 4.

From the above discussion we strongly conjecture that dpg(C, B,) = 2(3 —1) < dpcu
and |2£8-1| = |deca—1| _ ] with a Type I ordered basis By.
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7.4.3 (n,n— 1) Binary Cyclic Code (Parity Code)

Let C' be a parity (n,n — 1) code with h(z) = '+ 22+ ... + z + 1. From
by = (1,1,---,1) € F}, we have a(bb;) = j for j = 1,2,---,n and N(2) = 2.We
have dpgr(C, B,) = 2, since B = {b;} and B,\B = {b2, bs,---,b,}. Since the minimum

distance of the parity code is 2, we have following proposition.

Proposition 7.4.3 For the parity (n,n—1) code C, we have drpr(C, B,) = dpcy =d = 2.

7.5 Conclusion

The relation between the choice of an ordered basis B, = {by,bs,---,b,} of Fg and
drr(C, By,) was discussed, where dpg(C, B,,) is the Feng-Rao designed minimum distance
of an (n, k) cyclic code C, computed by using B,.

The ordered basis B,, with Type I is defined such that the subset B = {by,bs,- -+, b,_x}
of B, satisfies C = Span{B}* and B is a permutation of {b,d(b),--,d"*~1(b)}, where
b= (1,b2,---,bg41,0,---,0) corresponds to the check polynomial h(z) = z* + bz:l?k_i +
-+« + bgy1 and 4(b) is the right cyclic shift of b.

It was shown that the choice of an ordered basis B, with Type I is worst in many
cases of nonbinary cyclic codes, since dpr(C, By) < 1 if the check polynomial h(z) has a
coefficient neither equal to 0 nor 1.

Recently it is shown that drg of binary linear codes can not be an odd number greater
than one [19]. This is due to the symmetric property of o(b;b;), i.e., o(b;b;) = o(b;b;) in
Miura’s definition[8] which is not assumed in [7].

It was also shown that in case of binary (n,%) cyclic codes C with £ = 1,2, and
n — 1, there exists an ordered basis B, with Type I such that dpr(C,B,) = n — 1,
drr(C, Bn) = 2(3—1), and drr(C, B,) = 2 for k = 1,2, and n—1, respectively. Especially
we have dpg(C) = n — 1 in case of k = 1 and dpg(C) = 2 in case of k = n — 1 for binary
cyclic codes with any B,,.

For cyclic codes conventional decoding methods up to BCH bound, HT bound and
Roos bound need the computation over the extension field, on the other hand the Feng-Rao
decoding up to the Feng-Rao designed minimum distance needs only the computation over
its base field. We showed that the Feng-Rao designed minimum distance is inferior only
by one or equal to the BCH designed minimum distance in the ability of error correction
for binary (n, k) cyclic codes with odd lengthnand k=1,k=2,and k=n— L
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Finding an optimum ordered basis B, for computing drr(C) of any (n, k) cyclic code
C is a desirable future work. Further investigation of the computational complexity of
the Feng-Rao decoding of linear codes [8] and their modification for cyclic codes are very
important future problems.



Chapter 8

Conclusions and Future Works

8.1 Conclusions

Some lower bounds for the minimum distance of cyclic codes are surveyed. For cyclic
codes the BCH bound dpcy(C), HT bound dyr(C), Roos bound dr(C) and the Shift
bound ds(C) for the minimum distance are well-known. It is known that dgcy(C) <
dgr(C) < dgr(C) and dur(C) < dg(C). But the relation between dg(C) and dg(C) has
been not known. In Chapter 3 this relation is discussed with some numerical examples.
For the binary cyclic codes with n < 31, about 25% is dgr(C) < ds(C), about 75% is
dr(C) = ds(C), and there is no case of dg(C) > dg(C). Therefore we have dg(C) < ds(C)
for binary cyclic codes with n < 31. For the ternary cyclic codes with n < 26, about
32% is dr(C) < ds(C), about 67% is dgr(C) = dg(C), and there are two cases with
dr(C) > ds(C). One of them was reported in [11] and another one found by the author.

Miura’s definition of dpr(C, B) for an (n, k) linear code C over a finite field F,; depends
on the choice of an ordered basis B, = {b1, bs,-- -, b} of the vector space F7. In Chapter
5 we proved that drpr(C, By) of binary linear codes can not take an odd number greater
than or equal to 3 if we use Miura’s definition (8] of dpg(C, B,) for binary linear codes.

Recently Miura’s definition of dpg(C, By,) has been modified by Matsumoto [7] so that
we can show the case where Lemma 5.2.2 does not hold. Therefore it is an interesting
problem to examine whether Theorem 5.2.1 still holds or not if we use Matsumoto’s
definition of dpr(C, By) for binary linear codes. In Chapter 6 we gave some conjectures
for Matsumoto’s definition of dpgr(C, B,).

The ordered basis B,, with Type L is defined such that the subset B = {b;,bs,---,b,_x}
of B, satisfies C = Span{B}* and B is a permutation of {b, (b),---,6"%~1(b)}, where

53
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b= (1,ba,:+,bg41,0,---,0) corresponds to the check polynomial h(z) = =¥ + boz*~! +
»+++ bry1 and d(b) is the right cyclic shift of b. In Chapter 7, it was shown that the
choice of an ordered basis B, with Type I is worst in many cases of nonbinary cyclic
codes, since drr(C, By,) < 1 if the check polynomial h(z) has a coefficient neither equal
to 0 nor 1. It was also shown that in case of binary (n, k) cyclic codes C' with k = 1, 2,
and n — 1, there exists an ordered basis B, with Type I such that dpg(C,B,) = n—1,
drr(C, By) = 2(5—1), and drr(C, B,) = 2 for k = 1,2, and n—1, respectively. Especially
we have dpr(C) =n — 1 in case of k = 1 and dpg(C) = 2 in case of k = n — 1 for binary
cyclic codes with any ordered basis By.

For cyclic codes conventional decoding methods up to BCH designed minimum distance
need the computation over the extension field, on the other hand the Feng-Rao decoding
method up to the Feng-Rao designed minimum distance needs only the computation over
its base field. We showed that the Feng-Rao designed minimum distance is inferior only
by one or equal to the BCH designed minimum distance in the ability of error correction
for binary (n, k) cyclic codes with odd lengthnand k=1, k=2, and k=n — 1.

8.2 Future Works

In Chapter 6 some properties and examples suggest us some conjectures which tell Mat-
sumoto’s generalization is not so effective compared with Miura’s definition for binary
linear codes. Giving proofs for these conjectures and investigating nonbinary linear codes
are future works.

Chapter 7 discussed the case of binary (n, k) cyclic codes C with ¥ = 1,2, and n — 1.
A derivation of dpg(C, By) for any k is very interesting work. We need that the upper
bound of dpgr(C, B,) with k = 2 is proved as same as the lower bound.

Finding an optimum ordered basis By, for computing drpr(C) of any (n, k) cyclic code C
or any linear code C is a desirable future work. Further investigation of the computational
complexity of the Feng-Rao decoding of linear codes and their modification for cyclic codes

are very important future problems.
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