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Preface 

As the Internet is shifting towards a social and economical infrastructure, it is requited to be 

operated in a reliable and efficient way, and thus should be measurable in terms of its char-

acteristics. Nowadays, characteristics measurement in the Internet is an important issue for 

all participants, e.g., service providers, end-users, hardware or application developers, and re-

searchers [1]. However, since the Internet is characterized by its huge scale, diversity, and 

distributed administration, it is sometime difficult to directly measure the dynamic states and 

performance of the network. Therefore, it is of practical importance to develop a statistical and 
indirect way to infer several characteristics that are expensive, or impossible in some cases, to 

be measured directly in a large network. 

 In this thesis, I have studied on characteristics measurement and inference in statistical and 

indirect ways categorized as the "network tomography", which means a scheme of statistically 

inferring some unobservable characteristics in a network by measuring other (easily observable) 

characteristics simultaneously, maybe at multiple points, and especially by using correlation 

among those measured characteristics. The goal of this thesis, in short, is to develop a gen-

eral framework and its applications of the "inverse function" approach, which is one of major 

approaches to the network tomography, and to show the potential of this approach. 

 First of all, Chapter 1 briefly explains, as motivation of my research theme, why the network 

tomography has become important in characteristics measurements on a large network such as 

the Internet. 

 Chapter 2 introduces the inference problems regarded as the network tomography, and presents 

an overview for this area including my contributions. I give a rough definition of the network 

tomography, and address that the network tomography includes two typical forms, "inference 

of flow characteristics based on aggregated-flow measurements" and "inference of network-

internal characteristics based on end-to-end path measurements". 

 In the former form, since what we want to know is a statistical perspective of global traffic, 

a "flow" is regarded as a series of (some kind of) packets between nodes, where nodes do not 

correspond to a single host but to a large set of hosts (i.e., a network or a set of networks). In 

the latter form, since what we want to know is statistical characteristics of an internal-portion 

along which traffic traverses, a "link" is regarded as not only a physical link but also a set of 
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networks (a network cloud) on an end-to-end path. 

 I also address that two typical approaches, "calculating an inverse function from measurable 

parameters to target parameters" and "calculating an approximate solution of MLE (Maximum 
Likelihood Estimator) of target parameters with respect to observed data", have been employed 

in order to solve the above problems. Historically, first, the latter (the "MLE solver") approach 

was applied to the OD (origin-destination) traffic matrix inference problem, as the former form 

of the network tomography, by Vanderbe [2], Vardi [3] (in the middle of '90), and the succeed-

ing studies. On the other hand, the former (the "inverse function") approach was applied to 

multicast-based inference of network-internal characteristics, as the latter form, by the MINC 

(Multicast-based Inference of Network-internal Characteristics) project  ([4] and the succeeding 
studies from the end of '90). 

 Next, while the latter approach was applied to unicast-based inference of network-internal 

characteristics (as the latter form) by Coates and Nowak [5] and the succeeding studies, my 

study (as shown in Chapter 5) applied the former approach to a variant of the OD traffic ma-

trix inference (as the former form), which was based on a generalization and extension of the 

former approach presented in Chapter 3. Furthermore, several studies have applied the former 

approach to unicast-based inference of network-internal characteristics. Among them, my study 

(as shown in Chapter 4) presented inference of link loss rates using the former approach with 
a certain extension that enables us to deal with inverse tree path topologies, while preceding 

studies dealt with only tree path topologies. Note that a combination of both approaches can be 

also seen (e.g., [6]). 

 Consequently, as similarities and differences between two forms of the inference problems 

are recognized, a common framework of the network tomography has been roughly established, 

which can give a unified viewpoint to various practical methods in the network tomography, and 

thus can give useful insights into advantages and disadvantages of individual inference methods. 

 Chapter 3, an extension of my paper [7], presents a principle of determining characteristics 

(i.e., occurrence probabilities of some states) of network-internal links from given character-
istics of end-to-end paths with an arbitrary path topology, which can be regarded as a general 

framework for the "inverse function" approach. A whole measurement (including inference) 

process in the inverse function approach can be divided into two stages: 1) infer characteristics 
of end-to-end paths by monitoring traffic on the paths, and 2) determine characteristics of links 

from the given (by 1)) characteristics of the paths related to the links. I have focused on the 

latter part, and established a fundamental model and calculations for it, which is applicable to an 

arbitrary path-topology. Packet loss and queuing delay can be treated in this model, for example . 
As mentioned before, this generalization indicates that the "inverse function" approach is also 

applicable to the "inference of flow characteristics" based on aggregated-flow measurements , 
which is demonstrated in Chapter 5. 

 Chapter 4, an extension of my paper [8], presents a method, based on the "inverse function" 
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approach with some extension, inferring packet loss rates on individual links from end-to-end 

measurement of unicast probe packets among several senders' and receivers' nodes. Suppose a 

set of observable paths covering all links whose characteristics should be inferred. Since these 

paths can be regarded as an appropriate combination of tree and inverse tree path-topologies 
under certain conditions, I have presented how to infer loss rates on each link (by using corre-

lation among paths) both on trees and on inverse trees, which enable us to infer link loss rates 

on almost general path topologies. 

 Chapter 5, an extension of my paper [9], presents a method, based on the "inverse function" 

approach, inferring arrival rates of (some kind of) packets on individual flows from measure-

ment of aggregated-flows at several links (e.g., routers' interfaces). Suppose a set of observable 

links being passed through by flows whose characteristics should be inferred. I have presented 

how to infer arrival rates on each flow (by using correlation among aggregated-flows at the 

links) on general aggregated-flow topologies. Although this method requires some condition 

on dynamics of arrivals due to the principle of the "inverse function" approach, it is applicable 

to general (irregular) distributions that cannot be captured by preceding methods based on an 

MLE of normal-based parametric models. 

 Finally, Chapter 6 concludes this thesis by clarifying the contributions of my studies. I also 

remark the future work to be done in this research area, which includes challenges to deployment 

in the real Internet, application to new problems, and novel methodologies that can deal with 

temporal and spatial dependence. 
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 Chapter 1 

 Introduction 

The Internet is currently shifting towards a social and economical infrastructure, which needs 
to be operated in a reliable and efficient way, and thus should be measurable in terms of its 
characteristics. As network users are becoming very interested in quality of services (QoS) 

provided by Internet Service Providers (ISP) as well as networks' connectivity, ISP should be 
aware of QoS they provide and show actual QoS by use of measured data. Therefore, nowadays, 
characteristics measurement in the Internet is an important issue for all participants, e.g., ISP, 
end-users, hardware or application developers, and researchers  [  1  J. 

 What to be known (measured) mainly consists of two types of characteristics: one is quality 

(such as performance) of end-to-end communications, and the other is network-internal statis-
tics, which include local states of network-internal portions and global behaviors of traffic flows 

passing through those network-internal portions. Knowledge of such dynamic characteristics 
on a network is essential not only to reliable, efficient and QoS-aware network operations (in a 
static or a dynamic way), but also to development and researches for new network technologies. 

 How to know (measure) characteristics on a network is categorized in two types of measure-
ments. One is sending controlled probe traffic along one or more paths (routes) on a target 
network and observing it at receivers, i.e., active methods. The other is collecting (capturing) 
real traffic or its statistics at one or more points on a target network and analyzing the data, 
i.e., passive methods. In typical (and simple) cases, the former can be used for direct mea-
surement of quality of end-to-end communications, while the latter for direct measurement of 
network-internal statistics. 

 However, since the Internet is characterized by its huge scale, diversity, and distributed ad-
ministration, such simple scenarios are not always feasible. Because of diversity, i.e., no typical 
configurations / behaviors in the Internet, it is difficult to predict needed characteristics without 
enough information, and thus, we need to know (measure) individual characteristics on the net-
work in each case and each portion. On the other hand, because of a huge scale and distributed 
administration, it is expensive, or impossible in some cases, to directly measure such individual 
characteristics. For example, end-users cannot directly measure ISP's internal states, and even 
ISP cannot directly measure users' LAN or other ISP's internal states. 

 Therefore, it is of practical importance to develop a statistical and indirect way to infer several 
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characteristics that are difficult to be measured directly in a large network. In general, there 

exist possibilities of indirect measurements in each combination of target characteristic types 

and measurement types (Table. 1.1). 

               Table 1.1: Direct and indirect measurements 

                                 active methods passive methods 

                 end-to-end quality Direct, Indirect Direct, Indirect 

                 local statesIndirect Direct, Indirect 

                global traffic(Indirect) Direct, Indirect 

  In this thesis, I have focused on the "network tomography", which is raised in such inference 

problems. A term "network tomography", although not strictly defined, often means a scheme 
of statistically inferring some unobservable characteristics (or characteristics on a large fraction) 

in a network by measuring other, easily observable, characteristics (or characteristics on a small 

fraction) simultaneously, maybe at multiple points, and especially by using correlation among 

those measured characteristics. 

 The network tomography includes two typical forms, "inference of flow characteristics based 

on aggregated-flow measurements" and "inference of network-internal characteristics based on 

end-to-end path measurements". In the former form, since what we want to know is a statistical 

perspective of global traffic, a "flow" is regarded as a series of (some kind of) packets between 
nodes, where nodes do not correspond to a single host but to a large set of hosts (i.e., a network 

or a set of networks). In the latter form, since what we want to know is statistical characteristics 

of an internal-portion along which traffic traverses, a "link" is regarded as not only a physical 

link but also a set of networks (a network cloud) on an end-to-end path. I have studied on 

characteristics measurement and inference especially in the "inverse function" approach to both 

of the above forms in the network tomography. 

 The remainder of this thesis is organized as follows. Chapter 2 introduces the inference prob-

lems regarded as the network tomography, and presents an overview and a rough framework 

for this area. Chapter 3 presents a principle of determining characteristics of network-internal 

links from given characteristics of end-to-end paths with an arbitrary path topology, as a general 

framework for the "inverse function" approach. Chapter 4 presents a method, based on the "in-

verse function" approach with a certain extension, inferring packet loss rates on individual links 

from end-to-end measurement of unicast probe packets among several senders' and receivers' 

nodes. Chapter 5 presents a method, based on the "inverse function" approach, inferring arrival 

rates of (some kind of) packets on individual flows from measurement of aggregated-flows at 

several links (e.g., routers' interfaces). Finally, Chapter 6 concludes this thesis, by clarifying 

the contributions of my studies and remarking the future work to be done in this research area . 
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 Chapter 2 

 Related researches on the Network To-

 mography 

1 Introduction 

As the Internet is shifting towards a social and economical infrastructure, it is requited to be 

operated in a reliable and efficient way, and thus should be measurable in terms of its character-

istics. However, since the Internet is characterized by its huge scale, diversity, and distributed 

administration, it is sometime difficult to directly measure the dynamic states and performance 

of the network. Therefore, it is of practical importance to develop a statistical and indirect way 

to infer several characteristics that are expensive, or impossible in some cases, to be measured 

directly in a large network. 

  In this work, we present a brief introduction to the "network tomography", which is raised 

in such inference problems. A term "network tomography",  although not strictly defined, often 

means a scheme of statistically inferring some unobservable characteristics (or characteristics 

on a large fraction) in a network by measuring other, easily observable, characteristics (or char-

acteristics on a small fraction) simultaneously, maybe at multiple points, and especially by using 

correlation among those measured characteristics. Two typical forms of problems are known; 
"inference of flow characteristics based on aggregated -flow measurements" and "inference of 

network-internal characteristics based on end-to-end path measurements". 

 Although there already exist other survey papers for this area (e.g., [ 10], [11]),  the viewpoint 

of this work is somewhat different from those of them. In [ 10], the authors introduced their 

proposed methodology using multicast active probing for inference of network-internal char-
acteristics, while the authors in [11] emphasized their proposed approach of "approximately 

solving an maximum likelihood estimator" in both cases for inference of network-internal char-

acteristics and for inference of flow characteristics. On the other hand, in this work, we intend 

to compare those two forms of problems in order to notice the similarities and the differences 

between them by applying two different approaches to toy examples in both forms, and to show 

that a common framework of the network tomography has been roughly established. This can 

give a unified viewpoint to various practical methods in the network tomography, and thus may 
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give useful insights into advantages and disadvantages of individual inference methods. 

  The remainder of this chapter is organized as follows . Section 2 and Section 3 describe 

two typical forms of the network tomography problems with simple examples , and two typical 
approaches to the problems, respectively. Finally, Section 4 presents a brief overview of recent 

researches and future work in this area. 

2 Two forms of the tomography 

Network tomography can be regarded as a statistical inverse problem in general . There exist 
two typical forms of the network tomography in recent researches . 

 One is inferring dynamic characteristics (statistical behavior of states) of each link in a net-
work based on end-to-end measurement of traffic along paths. A "link" is regarded as any 

network-internal portion along which traffic traverses, which is distinguished by a set of ob-
servable paths passing through the link. Thus, it can be just a physical link , or a set of networks 
(a network cloud). This form is regarded as a case for indirect measurements of local states 

by active or passive methods. Several works have been presented to infer loss rates , queueing 
delay distributions and moments, bandwidths on individual links , or the existence of shared 
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congestion in a network (See Section 4). In general cases, we consider a set of paths covering 

all links whose characteristics should be obtained, and try to infer some characteristics on those 

(unobservable) links from end-to-end measurements of traffic along those paths. For  example, 
in Fig. 2.1, there exist three observable paths a, b, and c, and five unobservable links, i.e., la, lb, 

lc, lab, and lb, in (I), and la, lb, lac, lbc, and labc in (II), respectively. 

 The other is inferring dynamic characteristics of each traffic flow based on measurement of 

aggregated-flow traffic at some links in a network. A "flow" is regarded as a series of (some 

kind of) packets from an origin node to a destination node, which is distinguished by a set of 

observable links being passed by the flow. Here we intend that a "node" does not correspond 

to a single host but to a large set of hosts (i.e., a network or a set of networks). This form is 

regarded as a case for indirect measurements of global traffic behaviors by passive methods. 

Several works have been presented to infer intensity of relative large traffic or occurrence rates 

of small traffic on individual flows. (See Section 4). In general cases, we consider a set of 

links (as observation points) being passed through by flows whose characteristics should be 

obtained. and try to infer some characteristics on those (unobservable) individual flows from 
measurements of traffic (aggregated-flows) passing those links. For example, in Fig. 2.2 (I), 

there exist four observation points a, b, c, and d, and four unobservable flows, i.e., fac,fbc, 

fad' and fbd, while in Fig. 2.2 (II), there exist three observation points a, b, and c, and six 
unobservable flows, i.e.,fa,fb, fc, fab, fbc, andfabc. 

  Knowledge of dynamic characteristics of individual network-internal portions is essential to 

network management (e.g., detection of failures/congestion, provisioning, and traffic engineer-

ing like QoS routing or server selections). However, because of a huge scale and distributed 

administration, it is expensive (sometime impossible) to measure such characteristics directly. 

Similarly, although knowledge of statistical perspective of global traffic flows, i.e., characteris-

tics of individual traffic flows across a network, is also essential to network management (e.g., 

configuration, provisioning, traffic engineering, and detection of anomalous/malicious activi-

ties), it is also expensive (sometime impossible) to measure such characteristics of each flow 

separately. Therefore, both kind of inference problems are of practical importance. 

 Let us show five simple but intrinsic examples of the above inference problems. 

2.1 Packet loss rates on links 

Let us consider the most simple path topology Fig. 2.3 (a relation between links and observable 

paths passing through the links), and dispatch a number of multicast probe packets from root 
sender's node 0 to leaf receivers' nodes 1 and 2. Each link is labeled by the end-node 0, 1 or 2 

connected to the link. 

 We regard an event that a probe is dropped at a link as an occurrence of the "loss" on the link. 

Let Xi denote a random variable that takes value 1 if the loss state occurs on link i, 0 otherwise. 
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    00 

                  Figure 2.3: A simple path topology 

We assume each Xi has a stationary distribution, and thus, let xi def Pr[X, = 0], which is one 
minus the loss rate of the link. 

  The goal is to infer the no-loss rates {xi 10 < i < 2} from end-to-end measurement using 
multicast probes, i.e., observing whether each probe reaches the receivers' nodes or not. Note 
that "No loss along a path" "No loss on every link in a path". 

  Let Y; denote a random variable that takes value 1 if a probe is not observed at the destination 
node j (i.e., it is dropped on the way), 0 otherwise. Let n be the number of all probes (trials) 
in a measurement, and cpq be the number of trials in which event (Y1 = p f1 Y2 = q) occurs for 

p, q = 0, 1. For convenient, we also define m1defc00 + c01,m2 defC00 + C10,and m12def C00. 

 2.2 Queueing delay distributions on links 

Let us consider the same network as the previous example (Fig. 2.3), and dispatch multicast 
probe packets in the same manner. 

  We regard an event that a probe packet experiences a queueing delay of d on a link as an 
occurrence of the delay of d on the link. Let Xi denote a random variable that takes value d 
if the delay of d occurs on link i. We assume the delays are quantized (as multiples of a unit 
time) in the range {0, 1, ..., dmax}. A too large delay and an infinite delay (i.e., packet loss) are 
regarded as the delay of dmax. We also assume each Xi has a stationary distribution , and thus, 

let xi(d)def Pr[Xi = d], which is the probability of an occurrence of the delay of d on link i. 
 The goal is to infer the (discrete) queueing delay distribution {xi (d) 10 < i < 2, 0 < d < 

dmax} from end-to-end measurement using multicast probes, i.e., observing the queueing delay 
that each probe experiences totally along a path. Note that "A queueing delay along a path" = 
"A sum of queueing delays on every link in a path" . 

 Suppose the sender records a timestamp in each prove just before sending the probe , and 
each receiver can read the timestamp information in receiving probes. Furthermore , we assume 
the queueing delay along each path sometime takes 0. Since the directly-observable delay (i .e., 

6
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              Figure 2.4: A simple aggregated-flow topology 

difference between the timestamp in a received probe and the receiving time of the prove at 

the receiver) mainly consists of propagation time + (packet size / bandwidth) + queuing delay 
along the path, we can extract the queuing delay of each probe by using the minimum value of 

the directly-observable delays along the path. 

  Let yi denote a random variable that takes the value of the queueing delay of a probe along the 

path to the destination node j. Let n be the number of all probes (trials) in a measurement, and 
Cpq be the number of trials in which event (Y1 = p fl Y2 = q) occurs for p, q = 0, 1, ..., dmax. For 

convenient, we also define mi(d)aef>p_o >q=ox cpq, m2 (d)defEdT6.~q0cpq, and m12 (d)def 
      d /pd=0 Cpq' 

 2.3 Occurrence rates of the anomalous packets on flows 

Let us consider the most simple aggregated-flow topology Fig. 2.4 (a relation between flows and 

observable links passed through by the flows), and observe packets passing through the routers 

(as observable links) 1 and 2. There exist three flows from network A to C, from A to B, and 

from B to C, which are labeled by 0, 1 and 2, respectively. 

 We regard an event that some kind of packets (e.g., a kind of ICMP packets) pass through 

a flow in an observation time-interval as an occurrence of the "anomalous" state on the flow. 

Let Xi denote a random variable that takes value 1 if the anomalous state occurs on flow i, 

0 otherwise. We assume each Xi has a stationary distribution, and thus, let xi def Pr[XZ 
0], which is regarded as the occurrence rate of the "silent" state, i.e., one minus that of the 
anomalous state on flow i. 

 The goal is to infer the silent state rates {xil0 < i < 2} by observing whether anomalous 

packets pass through the routers or not, in each observation time-interval. Note that "No anoma-
lous packets at a router" "No anomalous packets in every flow through a router". 

 Let Yi denote a random variable that takes value 1 if anomalous packets are observed at router 

j in an observation time-interval, 0 otherwise, Let n be the number of observation time-intervals 
(trials) in a measurement, and cpq be the number of trials in which event (Y1 = p n Y2 = q) 
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occurs for p, q =  0,  1. For convenient, we also define m1 aef coo + col, m2 def coo + cio, 

and m12 aef coo. For conciseness, we ignore the problem related to timing of observations at 

different routers (points), e.g., the influence of the difference between the time of observations 

for the same packet on a flow, or the clock synchronization between observers. 

2.4 Arrival rates on flows (a discrete model) 

Let us consider the same network as the previous example (Fig. 2.4), and observe arrival rates 
of packets passing through the routers, where "arrival rate" means the number of some kind of 

packets (or bytes) arrived in a unit time-interval. We regard an event that the number of (some 
kind of) packets passing through the routers on a flow in an observation time-interval is d as 
an occurrence of the arrival rate of d on the flow. Let Xi denote a random variable that takes 
value d if the arrival rate of d occurs on flow i. Note that "The number of arrival packets on an 
aggregated-flow" = "A sum of the number of arrival packets on every flow in an aggregated-
flow". First, in this subsection, a discrete model is shown, and then, in the next subsection, a 
normal-based model is also shown. 

 In a discrete model, we assume the arrival rates are quantized (as multiples of a unit bin) in 
the range {0, 1, ..., dmax}. A too high rate is regarded as the rate of dmax. We also assume each 
Xi has a stationary distribution, and thus, let xi(d) aef Pr[X, = d], which is the probability of 
an occurrence of the arrival rate of d on flow i. 

 The goal is to infer the (discrete) arrival rates distribution {xi(d)10 < i < 2,0 < d < 
dm.} by observing the number of arrival packets on aggregated-flows at the routers in each 
observation time-interval. 

 Let Yi denote a random variable that takes the value of the arrival rate on an aggregated-flow 

at router j. Let n be the number of observation time-intervals (trials) in a measurement, and cpq 

be the number of trials in which event (Y1 = p n Y2 = q) occurs for p, q = 0, 1, ..., dmax. For 

convenient, we also define mi (d)aefEd_o Eqmoxcpq, m2 (d)aefEd„ ~ox Eq_oGpq, and m12 (d) aef 
 dCC~~d Ep-0Lq=O cpq. 

2.5 Arrival rates on flows (a normal-based model) 

In a normal-based model, in contrast to the previous subsection, we assume the arrival rates 

of individual flows are modeled by independent stationary normal distributions with a special 

relation between means and variances. Note that it is also implicitly assumed that arrival rates 

are so large that they are suitable to be modeled by normal distributions. 

 Let midefE[X2] and viaef Var[Xi] (i E {0, 1, 2}), and let us assume: vi = pmi for an 
unknown constant (scale parameter) p, for example. 

 The goal is to infer the parameters governing the arrival rates distribution, i.e., 0 def {mo, m1, m2, 

8
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by observing the number of arrival packets on aggregated-flows at the routers in each observa-

tion time-interval. 

 Let  Y3 denote a random variable that takes the value of the arrival rate on an aggregated-flow 

at router j. Since Xis are independent each other, the probability density function px(; 0) of 
X = {Xi} for a given 0 is: 

               (27)ZIVI2exp(-2t(e—m)V-1(4--m))(2.1) 

where mean vector m and covariance matrix V are as follows. 

mo 

          (vo 0 0) mclef m1 ,ii0 v1 0 

m20 0 v2 

  Thus, Y = 111-i} = AX also has a multivariate normal distribution with mean vector Am 
and covariance matrix AVtA, i.e., the probability density function py(r; 0) for a given 0 is: 

           (27)DZexp(-2t(rl- Am)(AVtA)-1(r - Am))(2.2) 
where 

                   Aaef1 1 0Daef IAVtAI 
1 0 1 ' 

 Let n be the number of observation time-intervals (trials) in a measurement, and 7./~z) be the 
observed arrival rate on an aggregated-flow at router j in the i-th trials (1 < i < n). 

3 Two approaches to the tomography 

The above inference problems are included in a very general class of statistical inverse problem 

as follows. Under an appropriate stochastic model, let X be a multidimensional random variable 

that is unobservable, Y be a multidimensional random variable that is observable (i.e., whose 

statistics can be estimated in a straight-forward way from observations), and R is a relation 

between X and Y, which is known by us: R(X, Y). Note that we assume R is a deterministic 

relation. Furthermore, we are interested in cases that there exists the unique map from X to Y, 

but the inverse (from Y to X) is not unique (Fig. 2.5). 

 Suppose we perform a number of trials (observations) and collect data M related to obser-

vation of Y. Our goal is to infer some interested parameter x governing statistics of X from 

M. 

                                                    9



CHAPTER 2. RELATED RESEARCHES ON THE NETWORK TOMOGRAPHY  

             dist. func.  R 
 x4 X-11111.Y=y 

            estimable 4 4 estimable 

unobservable observable 

                 Figure 2.5: Relation between X and Y 

3.1 A Maximum Likelihood Estimator 

Let Me be data as a termination condition of a measurement (related to Y) where we finish 
the measurement when Me occurs. Then let us divide measured data M into Me and Mo, 
i.e., M = (Me, M0). The likelihood L[MoI Me] of (MoIMe) is defined as the conditional 

probability (or probability density in cases for continuous distributions) of the occurrence of 
Mo given that Me occurs. We assume that the likelihood is expressed using parameter x based 
on relation R between X and Y (i.e., L[MoI Me; x]). 

 The MLE (maximum likelihood estimator) of x with respect to (MoI.Mc) is a parameter 
maximizing the likelihood function, or equivalently, maximizing the log likelihood function 

log L[MoIMe; x] (i.e., arg maxx log L[MoIMo; x] ). 
 If this maximization has a unique solution and can be solved exactly (analytically), the MLE 

is always a good choice for the inference of x because of its preferable properties, e.g., con-
sistency, efficiency, and asymptotic normality. In general, however, the above maximization 

problem is often difficult to solve exactly, and thus we need sophisticated methods; two typical 
approaches often appear in recent researches of the network tomography. One is calculating 
an inverse function mapping from some parameter y (with respect to statistics of Y) to x. The 
other is solving an MLE approximately and numerically. Let us explain those two approaches 
and how to apply them to the previous five examples. In what follows, we employ the following 
common assumptions: 

     • {Xi10 < i < 2} are independent each other, i.e., spatial independence. 

     • For each i, Xi is iid over successive trials (probes or time-intervals), i.e., 
       temporal independence. 

     • For discrete models, coo > 0. This implies that each xi in Section 2.1 and 
      Section 2.3 (each xi(0) in Section 2.2 and Section 2.4) is not equal to 
       0, which conditions are required for the use of an essential relation between 

      values 0 of the random variables: Y, = 0 t#. X0 = 0 A = 0 for (j E 

{1, 2}). 

10
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3.2 Calculation of an inverse function 

The first approach calculates an inverse function from some parameter y (with respect to statis-

tics of Y) to x, and uses it to infer x. Although a map from  Y to X is not unique, there often 

exists a unique map from y to x (Fig. 2.5). The widest definition may be given as follows. 

     1. Express parameter y by x deterministically, based on relation R, i.e., y = 

      F(x). 

     2. Estimate y statistically from measured M, i.e., y def  H(M). 

    3. Find the inverse G = F-1 and infer x using y, i.e., i def G(H(.M)). 

 This approach seems to be promising especially in cases that X can be modeled by a discrete 

distribution under a certain condition (See [7]) like the following examples. The examples in 

Section 2.1 and Section 2.3 have the same model, and thus the "inverse function" approach 

can be applied in the same way. 

 Let y? def Pr[yi = 0] (for j E {1, 2}) and y12 def Pr[Y, = 0 n Y2 = 0], respectively. Under 
spatial independence, we have a trivial map y = F(x): 

yl = x0x1, Y2 = x0x2, Y12 = x0X1X27 

which has a trivial inverse map x = G(y), if x, > 0, as follows. 

x0 = yly2/y12, xl = y12/y2, X2 = y12/y1• 

  On the other hand, under temporal independence, from obtained data Mc _ {n} and Mo = 

{coo, C01, C10, C11 } by observing Y1 and Y2, y is estimated in a straight-forward way, i.e.,ydef                                                                     ;_ 

mj/n (for j E {1, 2}) and y12 def mi2/n. 
  Consequently, since we assume coo > 0, we infer x as 

                       def m1m2def m12 def m12 1.0 = -------- , x1 = , •2 =             nm12 m2 ml 

 A basic idea for the above inference can be explained as follows. Recall Fig. 2.1 for loss rates 

on a link, or Fig. 2.2 for anomalous packet rates on a flow. In a trial, if Yl = 0 (i.e., a probe 

packet reaches node 1, or no anomalous packet is observed at router 1) and Y2 = 1 (i.e., a probe 
does not reach node 2, or an anomalous packet is observed at router 2), then we know X2 = 1 

(i.e., a probe is dropped on link 2, or an anomalous packet passes through flow 2). Thus, we can 
estimate statistics of X2 after a number of trials. 

 Let us see the relation to the MLE of x. We denote L[{ml, m1, m12}, {n}; x] as the likelihood 
of ({mi, m2, m121 1{n}). It is clear that L a C42 (7/I - 7/12)m1-'12 (712 - 712)m2—m12 (1 — 

       n-ml-m2+7R12wheredefxxdefxxanddef 712 +xxxThus, 71)=    ~71z)r)101, ~7zozr112012•, (~71,z,1z= 

(ml/n, m2/n, m12/n)maximizes this likelihood, and thus , since we assume coo > 0, so does 

                  (x0, x1, x2) =(mlm2,m12,m12)(2.3) nm12m2 m1 
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 Hence, the above  y and  1 are equal to the MLE of y and x with respect to ({mi, m2, m12 } HOD, 
respectively. 

 In this special case, it should be noted that, since {n, coo, col, clo, c11} and {mi, m2, m12, n} 
have an one-to-one corresponding, two likelihoods of those data are the same, and thus, the 

above y and i are also equal to the MLE of y and x w.r.t. (M0I Mc), respectively. 
 In cases for general tree path topologies, although there may exist several estimators of x 

derived from this approach, it can be shown that one of them is equal to the MLE of x w.r.t. 

(.M0IMc) for a sufficiently large n ([4]). In cases for general path or aggregated-flow topolo-
gies, however, those estimators are different from the MLE w.r.t. (M0I Mc), although it can be 
shown that, for each estimator, ± — x when y -+ y as n -* co. 

 Next we consider the examples in Section 2.2 and Section 2.4, which have the same model 
and can be regarded as a generalization of the above. For j E {1, 2} and d E {O, 1, ...dmax}, let 

y3(d) def Pr[Y3 < d], y12(d) def Pr[Yi < dnY2 < d], y(d) def {y12(k),y1(k),y2(k)I0 <k < d}, 
and x(d)def{xo(k), xi (k), x2(k)IO < k < d}. 

 Under spatial independence, we have a map y(d) = F(d)(x(d)) for each d E {O, 1, ..dmax}: 

d y3 (d) = E xo (k)13 (d — k) j = 1, 2 
k=0 

d 

y12(d) =E xo(k)x1(d — k)x2(d — k) 
k=0 

where xj (d) def Ek__0 xj (d). It can be shown that, if xi (0) > 0 (i E {0, 1, 2}), the above system 
can be solved inductively with respect to d and has the inverse G(d) = (G(0d), Gld), GZd)): 

X i(d) = G(61)(y12(k), yi(k), y2 (k); 0 < k < d) 

 On the other hand, under temporal independence, from obtained data .Mc = {n} and Mo = 
{n, cpq10 < p < dmax, 0 < q < dmax} by observing Y1 and Y2, y is estimated in a straight-
forward way, i.e., y3(d) def m3(d)/n (for j E {1, 2}) and y12(d) def m12(d)/n. 

 Consequently, since we assume coo > 0, we infer x as (0 < i < 2): 

             xZ(d)clefGA(m12(k) mi(k)m2(k);0 < k < d) 
            n nn — — 

 A basic idea for the above inference can be explained as follows. Recall Fig. 2.1 for queueing 

delays on a link, or Fig. 2.2 for arrival rates on a flow. In a trial, if Y1 = 0 (i.e., no queueing 
delay is observed at node 1, or no packet is observed at router 1) and Y2 = d (i.e., a queueing 

delay observed at node 2 is d, or an arrival rate of packet observed at router 2 is d), then we 

know X2 = d (i.e., a queueing delay on link 2 is d, or an arrival rate of packet on flow 2 is 

d), ). Thus, we can estimate statistics of X2 after a number of trials. Note that such estimators 

are different from the MLE of x w.r.t. (M0I.A4,), because they use only partial information of 

obtained data M. 
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 Finally we consider the example in Section 2.5, to which the "inverse function" approach 

in a broad sense is applicable. Let  mq  def E[Yi], vi def Var[Yi], and v12 def Cov[Y1, Y2] (for 

j E {1, 2}). By using Y = AX and vi = pmi (for i E 10, 1, 2}), under spatial independence, 
we have a map from B to {mI, m2, vl, v12}: 

                m; = mo + mj, v12 = Pmo, v1 = p(mo + ml) 

which has a trivial inverse map as follows. 

                 v; ,mo =ml*12,mj= m_mi*  Pm
1v1vl 

 On the other hand, under temporal independence, from obtained data M = {71(i) = (gi), rlai)) I 1 < 
i < n}, {m1, 774, vl, v12} is estimated in a straight-forward way: 

def 1 n (i) E 1 21) 
n i=1 

def  1(i)*2 Vi
n—1~(rll—rni) i=1 

def1
1(E nin22)—nE E rli2)]2))                   v12 

                      i=1i=1 j=1 

which can be used to infer 0. 
  However, since the above method uses little information to infer the parameters, it is not 

expected to give a good estimator. 

3.3 The EM method 

The second approach solves an MLE approximately and numerically. While there exist classical 
methods like the Newton-Raphson methods and its variants (e.g., Fisher's scoring method), the 
EM (expectation-maximization) algorithm is regarded as one of promising methods for this 

purpose. The EM method can finally find a value for x that maximizes likelihood L[.Mo IM,; x], 
but it dose so by making essential use of another likelihood L[Mo, Mc; x] where M' is 
some unobservable (hidden) data ([12], [13]). 

 Let M and M' be multidimensional random variables corresponding to observable data M 
and unobservable data M', respectively. Moreover, let f (., .) be the function satisfying that 

f (.M, x) = log L[Mol -A4c; x], and g(., ., .) be the function satisfying that g(M, .M', x) 
log L[.MO, .M'I.Mc; x]. Although the goal is to find a value for 0 maximizing f (.M, 0) for given 
.A4, we employ the maximization of an expectation of g(M, .M', x), instead. Since .M' cannot 
be measured, we consider the conditional probability (or probability density) of M' given that 
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M = M, and assume it can be computed under a given parameter x. Thus we can take the 
conditional expectation of  g(M, M', 0) given that M = M, as function Q: 

Q(M, 0, x) aef E[g(M, M', 0) I M = M; x] 

 By using measured data M, the EM method finds I iteratively as follows. 

     1. Choose an appropriate initial parameter xo. 

    2. (E-step): For a given (k-th stage) parameter xk, construct Q(M, 0, xk) as a 
      function with only free variable 0. 

    3. (M-step): Find a 0 maximizing Q(M, 0, xk) as the next stage parameter 

xk+1 

                def xk+i = arg maxo Q(M, 0, xk)• 

     4. If xk xk+1 , then 2 aef xk+1 and stop. Otherwise, go to (E-step) again. 

 Since it can be shown that f (M, xk) < f (M, xk+1) for each stage k, the above x is expected 

to give us (at least) a local maximum of f (M, 0), and thus is a candidate of the MLE with 

respect to given M. It is clear that the EM method is useful when maximization (w.r.t. 0) of 

Q(M, 0, x) is easier than that of f (M, 0). 
 For the examples in Section 2.1 and Section 2.3, as shown in Section 3.2, we can compute 

a trivial MLE (2.3) directly, so that no sophisticated method is necessary. 

 On the other hand, for the examples in Section 2.2 and Section 2.4, under spatial inde-

pendence, we have Pr[Yi = p n Y2 = q] =Poxo (k)xl (p k)x2(q — k). Moreover, under 
temporal independence, the likelihood L[{cPgl0 < p, q < dmax}, {n}; {xi(r)10 < i < 2, 0 < 
r < dmax}] can be expressed as: 

Kpq 

~(> xo(k)xi(p — k)x2(q — k))CP9(2.4) 
P,9 k=0 

where Kpq aef min(p, q). Since it is difficult to find {xi(r)} maximizing the above likelihood 
(2.4) directly, let us employ the EM method. Note that, if coo = 0, then the maximization of 
(2.4) is not uniquely solvable. Thus, we assume coo > 0 as mentioned in Section 3.1. 

 Suppose ai (r) is the number of trials in which a probe experiences the queueing delay of r 
on link i (or in which the arrival rate of packets on flow i is r ), and consider {ai(r)10 < i < 
2, 0 < r < dmax} as hidden data. Under spatial and temporal independence, the likelihood 
L[{cpq} U {ai(r)}, {n}; x] can be expressed as 

II II xi (7)a2(r) 
i r 

for any {cpq} that is consistent with {ai(r)}. 
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 Let  Ai(r) be a random variable corresponding to ai(r), g({ai (r) }, {xi (r) })defEZErai (r) log xi (r) 
as the function expressing the log likelihood, and Q({cpq} , e, x) aef E[g({Ai(r)}, 0) {cpq}; x] = 
Ei Er ai (r) log 0i (r) where 

di(r) def E[Ai(r)I {cpq, n}; {xi(r)}] 
                    = > cpgPr[Xi =rIYi =pnY2 =q] 

p,q 

                   _Pr[Xi=rnYi=pnY2=q] c
pq Pr[Yi = p n Y2 = q] 

 Note that ai(r) can be computed using {cpq} and {xi (r)1, and 0i(r) aef ai(r)/ Er ai(r) max-
imizes Q({cpq}, {0i(r)}, {xi(r)}) because Er 0i(r) = 1 for each i. Therefore, on the k-th stage 
of the EM method, 

    • (E-step): Compute Q({cpq}, {0i(r)}, {xik)(r)}) as a function with free vari-
      ables {0i(r)}, by using {cpq} and {xik)(r)}. 

     • (M-step): Compute {ai(r)/ Ei,r ai(r)} as the next stage parameter {xik+1)(r)}. 
  Finally we consider the example in Section 2.5. Using the probability density function (2.2), 
i.e., py (II; 0), of Y for a given 0 = (mo, M17 m2, p), the likelihood L[0(011 < i < n}; 0] 
can be expresses as fI 1 py(rj(i); 0) under temporal independence. Since it is difficult to find 0 
maximizing the above likelihood directly, let us employ the EM method. 

  Suppose 6ji) is the (unobservable) arrival rate on flow j in the i-th observation time-interval, 
and consider {cj2)10 < j < 2,1 < i < n} as hidden data. Under temporal independence, 
the likelihood LAM}, {e(i) }; 0] can be expressed as rriLl pX (et); 0) where px (e; 0) is the 

probability density function (2.1) of X for a given 0. 
 Let Xii) and Y~z) be a random variable corresponding to e) and 70, respectively. The Q-

function with a given parameter B is defined as 

Q({7/(i)}, 0, 0) aef E[1og LIY(i) = r/(i), 1 < i < n; B] 

E E[logpx (X (i); 0)1Y-0) = n(2); 0l 
i=1 

                      = h(m, V, E m~i), E( (i))2, v) 
i=1 i=1 

where h is a (given) polynomial, m(1) def E[X(1)IY(i) = 11(i); 9], and v aef Var[Xj(i)IY(i) = 

 Since 74) and 'bi can be computed using n(i) and 0, the k-th stage of the EM method is as 
follows. 

    • (E-step): Compute Q(0) aef Q({77(i)}, 0, 0(k)) as a function with a free vari-
      able vector 0 = (mo, m1) m2, p), by using n(z) and 0(k). 
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     • (M-step): Compute (mo,  m1i m2, p) maximizing Q(mo, m1, m2, p) as the 

      next stage parameter 0(k+1), by solving the unique positive solution of the 

       following equations: 

               aQ=0,~Q =0(j E {0,1, 21) 

4 Overview and future work 

As mentioned in the previous sections, the network tomography includes two typical forms; 
"inference of flow characteristics based on aggregated -flow measurements" and "inference of 

network-internal characteristics based on end-to-end path measurements". In order to solve 

them, two typical approaches; "an inverse function from measurable parameters to target pa-

rameters" and "an approximate solution of MLE of target parameters with respect to observed 

data", have been employed. 

  General statistical properties of both approaches should be noted. Since the "inverse function" 

approach uses only partial information in the whole observed data so that an inverse function 

is uniquely determined, several (different) estimators are derived from the same data. Although 

they have consistency, they are not always efficient estimators. On the other hand, although it 

uses the whole observed data (and the true MLE always has good properties), the "MLE solver" 

approach has general pitfalls of approximate solvers for maximization problems. For example, 

such solvers can find only local solutions, convergence of solvers is sometimes slow, and such 

behaviors often depend on the choice of an initial point of the iterations. 

 Researches for the former form (inference of flow characteristics) started from [2] and [3] 

(originated from a similar problem in the car transportation system) followed by [14] and [15] 
as "the OD (origin-destination) traffic matrix problem", which was to infer unobservable traffic 

volume (intensity) between each OD pair from the aggregated traffic volume measured at some 

routers' incoming and/or outgoing interfaces. 

 They assumed that all OD byte counts were modeled by independent normal (with a special 

relation between means and variances) or Poisson distributions, and were iid over successive 

observation time-intervals. Then they calculated the approximate MLE of parameters in the 

models numerically (e.g., using the EM method), which were expected to perform well for 

flows having relative large traffic volume. The time-varying nature was also treated by fitting 

the iid model locally using a moving data window [15]. 

 On the other hand, under somewhat different conditions, a method based on the "inverse 

function" approach was presented for a variant of the OD traffic matrix inference [9] , which 
came from a generalization of the "inverse function" approach for the latter form [7] . 

 Researches for the latter form (inference of link characteristics) have been extensively done in 

the MINC (Multicast-based Inference of Network-internal Characteristics) project mainly based 
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on the "inverse function" approach  ([10]). They employed end-to-end multicast probe packets 

from a root sender to several leaf receivers in order to infer network-internal characteristics 

such as packet losses ([4], [16]), queueing delays ([17]), and queueing delay variances ([18]) 

on links. A network-internal topology (as a multicast tree structure from a sender to several 

receivers) was also inferred ([19], [20], [21]). Their method had rigorous and robust statistical 

properties due to the theoretical advantages of properties of multicast probes and tree structures 
of paths. The use of information gathered by RTCP (in RFC1886) was also discussed ([22], 

[23]). 

  The succeeding researches, however, have focused on the use of back-to-back packet pairs in 

unicast active probing or passive monitoring of unicast traffic, although unicast-based methods 

have a problem of imperfect correlation in concurrent events on paths. The reasons why they 

employed unicast-based methods are that multicast communication is not available in the major 

part of the current Internet, and, even in a network supporting multicast, the performance for 
multicast traffic often differs from that for unicast traffic, which is still major in the Internet. 

Inference of packet loss statistics ([5], [24], [25], [8]), queueing delay statistics ([26], [27], [6], 

[28] ), physical bandwidths ([29] ), and the existence of shared congestion ([30]) have been 

studied. 

  Among those works, the extensive use of the "MLE solver" approach (e.g., using the EM 

method) to this form of inference started from [5] followed by several researches ([24], [26], 

[27], [6], and [28]). On the other hand, the "inverse function" approach still has been employed 

( [25], [8], [6]). The use of passive measurements was shown in [24]. Benefit by using a packet 

stripe (more than two closely time-spaced packets) was demonstrated in [25]. Non-tree (e.g., 

inverse tree) path topologies were dealt with in [8]. The time-varying nature was treated by 

using a sequential Monte Carlo procedure in [27]. A combination of both approaches can be 

seen in [6] where the authors employed the "inverse function" approach to find an appropriate 

initial estimator for the "MLE solver" approach. 

 Consequently, in recent one or two years, as similarities and differences between two forms 

of the inference problems are recognized, a common framework of the network tomography has 

been roughly established. Table. 2.1 shows related researches, using the following notations: A - 

inference of link characteristics (unicast-based), A'- inference of link characteristics (multicast-

based), B inference of flow characteristics, C generalization/formulation, X solving an 

MLE, Y - calculating an inverse function, Z - other specific approaches. 

 We remark that there exists much work to be done. First, more deployment: although a 

number of simulation results and experimental results have been presented, there exists little 

practical use of the network tomography in the real Internet. We have many issues to examine 
and solve in actual networks, such as, reliability (limitation), distributed simultaneous measure-

ments, and scalability. 

 There exist several methods (algorithms) to approximately solve an MLE equation in the 
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                    Table 2.1: Related researches 

 X  XY Y Z  

               A [5], [26], [6] [25], [8] [30], [29] 

                    [27], [24], 

                   [28] 
               A'[4], [ 16], [22], [ 19], 

                                 [17] [18], [20], [21], 

                              [23] 
B [2], [3],[9] 

                     [14], [15], 
          C [12](EM) etc. [7]  

"MLE solver" approach as well as several methods (estimators) derived from the "inverse func -

tion" approach, in which we should consider a trade-off between computational and/or opera-

tional costs and accuracy of the inference. We should also choose a number of detailed choices 

(parameters) in measurement and inference phases of a method. Analysis and verification of 
accuracy and reliability of the inference by each concrete method in actual environments are of 

practical importance. Note that the accuracy in experiments (on simulations or real networks) 
reported in the above researches (Table. 2.1) ranges from under 1% to over 20% (in some sense 

of "relative errors"), which depends not only on the type of the inference method but on the 

situation for which the method is applied. Moreover, acceptable accuracy also depends on the 

situation. 

 Second, more applications: the framework and principle (behind two typical forms) of the 

network tomography may be applicable to other inference problems not only in the IP layer but 

also in various applications. We also expect that the third form of the network tomography will 

be found. 

 Third, beyond independence assumptions: we often make assumptions of spatial and/or tem-

poral independence to solve a problem. While several studies have dealt with the time-varying 
nature (non-stationarity), spatial independence is often essential to identifiability. Several stud-

ies have employed Bayesian inference to deal with some dependence, but prior distributions 

were often uncertain. It is a big challenge to find novel methodologies that can deal with tem-

poral and spatial dependence. 
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 Chapter 3 

 Unified approach to inferring link 

 characteristics from path characteris-

 tics 

1 Introduction 

The Internet is currently shifting towards a social and economical infrastructure, which needs 

to be operated in a reliable and efficient way, and thus should be measurable in terms of its 

characteristics. Furthermore, network users become very interested in quality of services (QoS) 

provided by Internet Service Providers (ISP) as well as networks' connectivity. Thus ISP should 
be aware of QoS they provide and show actual QoS by use of measured data. 

  On the other hand, the Internet is characterized by its huge number of geometrically and 

administratively distributed routers and hosts, which makes it difficult to measure its internal 

states and performance  [31]. 

  Therefore, it is of practical importance to develop a statistical way to infer network-internal 

characteristics that cannot be measured directly. Our major concern is to study a general frame-

work for this purpose. In order to infer characteristics of internal links (i.e. occurrence prob-

abilities of states of internal links) from end-to-end path measurements, what we have to do is 

mainly to 1) infer characteristics of end-to-end paths by monitoring traffic on the paths, and to 

further 2) determine characteristics of links from the inferred characteristics (given by 1)) of 

the paths related to the links. The focus of this work is on the latter part. In other words, we 

intend to establish a fundamental model and calculations for the issue of 2) , thus we assume 

that the characteristics of paths can be obtained in some way. 

 In this work, first, we show a general model and conditions that network-internal charac-

teristics to be inferred must satisfy. They are satisfied by various performance parameters of 

practical interest such as packet loss rates and queuing delay time distribution. And then, we 

propose a general method of determining such characteristic of each internal-link from given 
characteristics of paths. 

 The related research have been extensively done in MINC project [10]. They use end-to-end 
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multicast probe packets from a root sender to many leaf receivers in order to infer network-

internal characteristics such as packet loss and delay statistics  ([4], [ 16] and [17]). Their method 

has rigorous and robust statistical properties due to the advantages of multicast probes and tree 

structures of paths. However, it is restricted to networks in which multicast communication is 

available and to paths of a tree topology, whereas multicast is not supported by many ISPs at 

this time. 

 On the other hand, we treat general network topologies. Our inference method consists of 

two parts. One is an extension of MINC's calculation using occurrence probabilities of OR-

events on a set of paths, and the other part is a new calculation using occurrence probabilities 

of AND-events on a set of paths. Since it is defined on a general characteristics model and on 

an arbitrary path-topology, our method has possibilities to be combined with various types of 

end-to-end measurements, which may include both unicast and multicast communications, and 

both active probes and passive monitoring. 

 Furthermore, our framework is applicable to such network design problems as determining 

minimal conditions (specifications) of characteristics of internal-links to achieve required char-

acteristics of end-to-end paths. 

 The remainder of this chapter is organized as follows. Section II describes a model of network 

and some concepts on it. Section III describes a model of network-internal characteristics to be 

inferred. Section IV presents main results. Section V shows case studies where our method can 

be applied effectively. Section VI discusses some issues arising in applying our method to actual 

networks. Finally Section VII concludes this work. Appendix provides proofs of Lemmas and 

Theorems. 

2 Network model 

This section explains some concepts on our general network model. They include a "logical 

link" which is distinguishable by a set of paths which traverse the link, a lattice structure A 

with regard to a relation between paths and links, and the maximal number of independent path 

groups. 

2.1 A set of paths including a link 

Each packet starts at a source node, traverses a path and finally reaches a destination node . 
Assume we can know (identify) a path (i.e. a set of links) which an observed packet traverses. 

 Path is defined as the set of all paths whose characteristics can be obtained from observa-

tions. Link is defined as the set consisting of all physical links included by any path in Path . 
 Fig. 3.1 shows some examples. Path = {a, b, c}. In (I) and (II) of Fig. 3.1, packets are sent 

from node 0 to 1,2,3 through path a, b, c respectively. In (III), packets are sent from node 0 to 
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2,3 and  1 to 4 through path a, b, c respectively. (II) can be regarded as static multi-routes under 

a policy routing, for example. 

 (I) 0(II) co O 0 

          a,b,ca,b,ca,b c 

a, • C 

•a,b,, 

c-,b,ca,• 

   a b
a ba b 

© © © ©© © © © 0 

                Figure 3.1: Examples of simple networks 

 For each physical link e E Link, we define an influence-path set R(e) as a set of paths which 
include the physical link e. Note that R(e) 0. 

 We denote the set consisting of all influence-path sets by A: A def {R(e)le E Link}. Then, 
for R E A, we define a "logical link" lR as a set {e R(e) = R} of physical links. We also denote 
the set consisting of all logical links by A*: A* def {IR1 R E A}, thus R E A H 1R E A*. For 
example, in all three of Fig. 3.1, A* = {la, lb, lc, lab, labc}. 
  In what follows, we use a term "link" as a "logical link". A link may include more than one 

physical link. For example, in (II) of Fig. 3.1, there exists some logical link (lc, labc) to which 
more than one physical link belong. 

 Note that a link of our model indicates a part of the network which packets traverse, and can 

correspond to various elements of an actual network. A link of our model can be just a link of 

the network, and can be a subnet of the network. 

A (A*) can be regarded as a lattice structure on which the inclusion relation among sets of 

paths is considered as semi-order. Fig. 3.2 shows examples of A. (I) of Fig. 3.2 corresponds to 
all three in Fig. 3.1, (II) corresponds to (I) of Fig. 3.3 in Section VI, and (III) corresponds to (II) 

of Fig. 3.3. 

2.2 A set of links included in a path 

For each path r E Path, we define Lr as a set of links which are included in the path r. We 

identify a path by its including links, thus Lr = Lr. q r = r'. 

Lr def {IR~r E R, R E A} r E Path 

 For each non-empty set R of paths, we define L(R) as a set of links which are included in at 
least one of all paths in R, L(R) as a set of links which are included in all paths in R (namely 
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       (I)(II)(III) 

 a.0 a 0 'd'ea 

j0@@; 
      EDCto CA 

O0 0asdd 0 0000 

                 Figure 3.2: Examples of structure 0 

"shared-link set" of R). 

L(R) def {1R,~RnR'#0,R'EO}= ULr 
                                                                rER 

L(R) def {lR' IR C R', R' E 0} = n Lr 
                                                            rER 

  We also define LR, as a set of links which are included in all paths in R' and are not included 
in any path in R — R'. 

               LR, aef L(R')\L(R—R') for R'CR 

  Note that 

      LR = L(R)(3.1) 
                LR = LRR +{{ }} + LR+{r} for r R (3.2) 

where (3.2) is shown as follows: 

        LR, = LR, nLr+LR, \Lr 
           = L(R' + {r}) \ L(R — R') + L(R') \ L(R + {r} — R') 

2.3 Maximal number of independent path groups 

We introduce the maximal number of independent path groups (called "the MIP number" here-
after) of a set R of paths satisfying that L(R) # 0. For such a set R, we decompose each 
Lr (r E R) to a shared part (L(R)) and the remainder (Kr), i.e. Lr = L(R) + Kr. 

 If no remainder part exists, i.e. L(R) = L(R), then we define the MIP number of R as 0. 
Note that IRI = 1 a the MIP number of R is equal to 0. 

 Otherwise there exists a path r (E R) satisfying that Kr 0. Let Ro be the set consisting of 
all such paths, i.e. Ro = {r E RIKr � 0}. If the collection of "remainder" (Ure& Kr ) can 
be divided to a maximum of N subsets with regard to paths ( UrER, Kr, i = 1, 2, .., N) then we 
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define the MIP number of R as  N, and the MIP division as {R1, R2, .., RN}. In other words, the 
MIP number of R is N if there exists a N-division 11:11,RRN}R2,..,RNof Ro (i.e. Ro = EiN-1 RZ) 
satisfying that (UrER, Kr) f1(UrER, Kr) = 0 (for i j) and no (N + 1)-division has the above 

properties. 

 For example, in (I) of Fig. 3.2 where the root node indicates {a, b, c}, the MIP number of 

{a, b, c} is 2, and the MIP division of {a, b, c} is {{a, b}, {c}} as shown there. 

3 Network-internal characteristics model 

This section presents a general model and conditions of network-internal characteristics to be 

inferred, and then explains how to apply the model to actual characteristics of links and paths 

such as packet loss and delay. We implicitly assume a suitable probability space (Q, T, Pr). 

 3.1 A model and conditions of characteristics 

     • M = {0, 1, .., max}: A set of discrete numbers which represent states re-
       lated to characteristic of a link or of a set of links. 

     • Xj(m): An event that the state of a link 1 (E A*) is m E M. 

     • V(L)(m): An event that the state of a set L (C A*) of links is m E M. If 
     L = {1} then V({l})(m) = X1(m). 

     • Y(m) der V (Lr) (m): An event that the state of a path r (e Path) is m e M. 

     • Z(R) (m) def UrER Yr(m): An OR-event that the state of at least one path in 
      a set R (C Path) of paths is m E M. 

    • 7(R) (m) def (1 rER Yr (m): An AND-event that the state of every path in a 
      set R (C Path) of paths is m E M. 

 First we assume V def {V (L) (m) IL C A*, L 0, m E M} satisfies the following condi-
tions: 

V (L) (i) # 0 and V (L) (i) n V (L) (j) = 0 if i j (3.3) 

 Furthermore for V, we assume that there exists {S(m) C M21m E M} such that: 

V(L + L')(m) = E V(L)(si) n V(L')(s2) if L n L' = 0, L, L' � 0 (3.4) 
sES(m) 

(si, s2) E 8(m) = s1, s2 < m(3.5) 
T(m, s) E {T(m' , s') 0 < m' < m, 0 < s' < m} if 1 < s < m (3.6) 

where T(m, s) def {s'l(s, Si) E 7 o S(k)}. 
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  For each k  E {2, 3, ...}, and for each m E M, we define a set Sk(m) of k-tuples of states in 
the following way: 

S2(m) aef 8(m)
(/(3.7)              Sk(m)def {(s", s2)IsnE Sk-1(sl),(Si, s2) E S(m)} 

= {(si s")Is" E Sk-1(s'2), (s'1, 812) E S(m)} 

  Then we have: 

kk 
V(ELj)(m) = E nV(L3)(s3)(3.8) 

j=1 sESA(m) j=1 

for any {L311 < j < k, Li � 0} satisfying that i j=Li n Li = 0. Especially, for 

                                          l L ={ll,...,lk},V(L)(m) = EsESk(m)I. =1 h (lj)(sj)• 
  Conditions (3.3) — (3.6) imply that V (i.e. {S(m) I m e M}) has the following properties: 

(i, j) E S(m) i) E S(m)(3.9) 
i#j S(i)nS(j)=0 (3.10) 

V(L + L')(0) = V(L)(0) n (L') (0) i.e. 8(0) = {(0, 0)} (3.11) 
m > 0 = (m, m) S(m)(3.12) 

            (0, m), (m, 0) E S(m), (0, i), (i, 0) V S(m) (i < m) (3.13) 

(m, i), (i, m) S(m) (0 < i) (3.14) 
                  1 < i < m 3m' < m (T (m, i) = T (m', 0)) (3.15) 

T (m, 0) = {0, 1, .., m} (3.16) 
T (m, m) = {0} (3.17) 

V(L1)(0) n V(L2)(0) = V(L1 U L2)(0)(3 .18) 
           V(Li)(m) n V(L2)(0) = V(L1 \ L2)(m) n V(L2)(0) (3.19) 

  Finally, we assume two conditions of V related to occurrence probabilities: 

                   0 < Pr[V(L)(0)] for L C 0*(3 .20) 
V (L) (i) and V (L') (j) are independent(3 .21) 

                   if L,L' 0, LnL'=0 , i,jEM 

3.2 Examples 

In what follows, we provide some examples of characteristics which can be treated in our model 
and satisfy the above conditions. 
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(Packet loss) 

Note that "No loss on a path"  q "No loss on every link in a path". Thus we interpret — 

     • X1 is an event that no loss occurs on a link 1. Since M = {0}, we omit the 

      parameter (0) in this case. 

    • V (L) is defined by the relation that V (L + L') = V (L) fl V (L') (if L l L' = 
      0) so that conditions (3.3) — (3.6) are held. 

     • Y. is an event that a packet traversing a path r reaches the end. 

 If all packets get lost on a link, we cannot calculate the characteristics beyond that link. 
Thus we should remove paths r from Path on which Pr [Y.] = 0 so that condition (3.20) of 
V is held. Furthermore, we expect that condition (3.21) is loosely held in a large and diverse 
network where a number of independent traffic flows pass through internal-links (routers) and 
cause packet loss and queuing delay on them. 

(Queuing delay) 

Note that "A delay on a path" = "A sum of delays on every link in a path". In addition, we 
regard a delay as a discrete value, and define an unit time of delay. Thus we interpret — 

     • X1 is an event that a queuing delay on a link 1 is m E M = {0, 1, .., max}. 

    • V (L) (m) is defined by the relation that V (L + L') (m) = >7310 V (L) (j) f1 
V(L')(m — j) (i.e. S(m) = {(si, s2)Is2 E M, s1 + s2 = m}) so that 

      conditions (3.3) — (3.6) are held. 

     • Y. (m) is an event that a packet traversing a path r experiences a queuing 
       delay m. 

 Since a total delay that a packet experiences on a link mainly consists of (propagation time) + 

(packet size)/(bandwidth) + (queuing delay), we can extract a queuing delay of each path from 
a series of observed total packet delays on that path. 

 Since each router is expected not to be always in congestion, "queuing delay" is likely to 

sometimes 0. Thus condition (3.20) of V is held in such networks. Furthermore, we expect that 

condition (3.21) is loosely held because of the same reason as packet loss. 

 Note that we should choose the discrete unit of delay time by carefully considering rounding 

errors and computing costs in inference. 

 It should be noted that our model and method have potential possibilities to be applied to 

other kind of inference problems such as, for example, inferring an OD traffic matrix. Origin-

destination (OD) traffic matrix inference problem is to infer "traffic counts" (the amount of 
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traffic in a fixed time interval) of a directed flow between each OD pairs from traffic counts of 

directed links measured at routers' incoming and outgoing interfaces  [15]. 

  Assume, for each OD flow, we can know (identify) the set of router interfaces which the OD 

flow traverses. Then we regard each router interface as a "path" (in terms of our model), and 

each OD flow as a "link" (in terms of our model). Since "traffic counts on a router interface" 
= "A sum of traffic counts on every OD flow passing a router interface", we can treat it in 

our model, and thus, if some conditions of traffic to be inferred are satisfied, we can apply our 

inference method to this problem. 

4 Method of inferring characteristics of links 

In this section, we explain our inference method (calculations) on a general model we present 
in the previous sections. 

 Assume Path (all paths), A* (all links), X1 (events on a link 1) for each l E A*, Yr (events on 
a path r) for each r E Path and V (a relation between them) are given. Then, for each m E M, 

def {R C PathIL(R) 0}(3 .22) 

ai(m)def Pr[Xi(m)] 

a(m)def {(4i)I0 < i < m, l E 0*} 

'y(R)(m) def Pr[U Z(R)(k)](3 .23) 
lc=-0 

         7(m)def {ry(R)(i)10 < i < m, R E 111} 
=7(R, R') (m) aef Pr[Z(R — R') (0) n Z(R') (m)] (3.24) 

ry(m) aef {'y(R, TOW I0<i<m,R'CR,R' R, >1,RE } 

     7(m)def 7(m) U'y(m)(3.25) 

 Under conditions (3.3), (3.4), (3.5) and (3.21) of V, we can calculate 7(m) from a(m) as 

polynomial expressions of a(m). We denote this map from a(m) to 7(m) by I'm. Note that 
0 < ai(m), and El o ai (i) < 1 for l E A* and m E M. In addition, we assume condition 

(3.20) so that 0 < ai(0) for 1 E A*. 
 Let dm def la(m) I and em def I7(m) I. We can regard a(m) and 7(m) as a point in [0, 1]dm 

and in [0,1}em by arranging elements of a(m) and of 7(m) in a fixed order, respectively. We 
denote the domain in which a(m) (7(m)) exists by Dm (Em, respectively). 

              Fm : Dm —} Em such that 7(m) = Pm(a(m))(3 .26) 

 def        Dm={(xk ,i)1<k<IO'I,o<i<mE [0, 1]dm I 0 < xk,o, 0 < xk,z, E, xk,i < 1} 
i=o 

      Em def Fm(Dm) C [0, 1]em 
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 Our goal of this section is to find a subspace  E;,, of [0, lie- and an inverse map (Fm,IE;, )-1 of 
F,,,,IE' which is the projection of I', , on Em: 

                 a(m) _ (FmIEm) 1(7(m)IEm)(3.27) 

 We present our main results. Proofs and calculation algorithms are shown in Appendix. 

If conditions (3.3), (3.4), (3.5), (3.6), (3.20) and (3.21) of V are satisfied, then the follow-

ing Lemmas, and thus Theorem 1 are held. We denote an occurrence probability of an event 

V(L(R))(m) by: 

             AR(m) aef Pr[V(L(R))(m)] for R E , m E M. 

[Lemma 1] 

For each set R of paths satisfying that the MIP number of R is not equal to 1, AR(m) (m E M) 
is uniquely determined as follows: Let the MIP number of R be N, 

    1. If N = 0, then {r} = R, and AR(m) is calculated from an occurrence 

      probability of an event on a path r: AR(m) = Pr[Y.(m)]. 
    2. If N > 2, then there exists a family {Ro, R1, .., RN} of subsets of R satisfy-

      ing that AR(m) is calculated from occurrence probabilities of OR-events on 
     them: {Pr[U1_0Z(R;)(k)]10 < i < m, 0 < j < N} 

[Lemma 2] 

For each set R of paths satisfying that the MIP number of R is not equal to 0, there exists Ro 
satisfying that Ro c R, Ro R, and AR(m) (m E M) is calculated from: 

    • Occurrence probabilities of AND-events on R, R-Ro: Pr[Z(R-Ro) (0)], {Pr[7(R-
     Ro)(0) fl 2(Ro)(i)]i0 < i < m} and, 

    • {AR,(i)I0<i<m, RoCR'CR,R' R}. 

[Lemma 3] 

For each link I (R E A), an occurrence probability Pr[XIR (m)] (m E M) is calculated from: 

{Are (i)i0<i<m,RCR',R'EA} 

 We present Theorem 1. We use notations from (3.22) to (3.26). Combining Lemma 1, 2 
and 3, for each R E A and m E M, ajR (m) can be determined from a subset of ry(m), via 

{AR,(i) <i<<m, RCR', R'EAI. 
 Since, for each R satisfying that L(R) 0, there may exist Ro satisfying that L(R) = L(Ro) 

and (the MIP number of R) (the MIP number of R0), we have more than one way to calculate 
AR(i) by using Lemma 1 and 2 in general. Note that if R E A, then ]R0 C R V1R, E 
L(R) - L(R) (Ro \ R' 0) <=> 3Ro R (L(R) = L(Ro))• 
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[Theorem 1] 

 rm,, is injection. There exist two subsets `I'1 and ̀y2 of I, a subspace El/1,4'2 of [0, 1]em and a 
map I'm-14,1,412  which is defined in a neighborhood of the domain Ern IEw1, '2 satisfying that: 

~(m) F,n1,Y1,q,2 ('Y(m) IEw1'w2 ) 
7"1 (m) U 7412 (m) = 7(M) I41,w2 

where we regard a(m) and 7(m) as a point in [0,1]d- and in [0,1]e-, respectively, and we 
choose a proper Ro C R for each R E 1112: 

             7,~1(m)def {'Y(R) (i) 10< i< m, R E W 1} 

/412 (m) def {'Y(R, Ro) (i) I 0 < i < m, R E W2} 

  Moreover, I'1 1,~2 is continuously differentiable. 

 In what follows, since our calculations include an extension of MINC's inference method, we 

present a brief review of MINC's method and the relation to our method. We consider a tree 

path-topology like (I) of Fig. 3.1, and end-to-end probe packets from a root sender to each leaf 
receiver. 

 Let 0 be a root node (sender), ri ,j be a partial path from node i to j, ej be a directed link from 
node j' to j (j' is the parent of j), and R3 be a set of leaf nodes (receivers) descended from j. 

r0,3 is a (end-to-end) path if j E Ro. 
 Let k be an internal node in a tree. A partial path ro,k can be regarded as a shared-link set of 

paths {ro,jl j E Rk}. Inference calculations are performed by two steps: 

     1. Calculating characteristic on each shared-link set ro ,k from characteristics 

      on paths in {ro,31 j E Rk}. 

    2. Calculating characteristic on each link ek from characteristics on ro,k and 
ro,k, (k' is the parent of k). 

 For example, consider packet loss in (I) of Fig. 3.1. In the above notations, path a, b and c are 
ro,1, r0,2 and r0,3 respectively. Let p and q be the first (upper) and the second (lower) internal 
node in a path from 0 respectively. Thus Rr = {1, 2, 3}, Rq = {1, 2}, and eq is a directed link 
from p to q. 

 We denote an event that a packet passes successfully (no loss occurs) through a path ro,j (a 
partial path ri,j) by Yj (V j, respectively). Moreover we also denote an event that no loss occurs 
on a link ek by Xk• 

 Let Zr = U3ERp Yj: an event that a packet passes successfully through at least one of three 

paths r0,1, T0,2 and ro,3. Similarly let Zq = UjER9 Yj, Wq=UjERqUr J. Then, since we can 
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assume  Vo,p, Wq and Vp,3 are independent, there exists the following relation among occurrence 

probabilities of events. 

Pr[Zp] = Pr[Vo,p n (Wq U Vp,3)1 = Pr[Vo,p](Pr[Wq] + Pr[Vp,3] — Pr[Wq] Pr[Vp,3D3.28) 
  Pr[Zq] = Pr[Vo,p] Pr[Wq] 

   Pr[Y3] = Pr[Vo,p] Pr[Vp,3] 

where the left hand sides of the equations are occurrence probabilities of states of paths which 

can be inferred from end-to-end measurements. Therefore we can obtain Pr[Vo,p] (an occurrence 
probability of states of a shared-link set ro,p) by solving the equations. Similarly we can obtain 
Pr[Vo,q]. Then we calculate Pr[Xq] = Pr[Vo,q]/ Pr[Vo,p]. 

  Next we extend it to general path-topologies. Note that no explicit information about orders 

of links in a path is used in calculating the above occurrence probabilities. This implies that 

the calculation is based upon a combination of paths and links, but is not on a path-topology. 

Therefore we formalize it to a lattice A. 

  Key equation (3.28) in the previous example uses an occurrence probability of an OR-event 

on a set of paths from 0 to descendants of p, and lies on the fact that every internal node k has 

more than one child node. In other words, a set of partial paths from k to descendants can be 

divided into more than one independent path group. Since this division is clear if A is a tree, 

MINC's calculation can be extended in a straightforward way where A is a tree such as (I) of 

Fig. 3.2, even if the path-topology is not a tree. 

 Furthermore, even if A is not a tree such as (II) or (III) of Fig. 3.2, by introducing the MIP 

number of R, we can extend the calculation of AR when the MIP number is not 1 (Lemma 1). 

 Finally we need to develop a different principle of calculation for the case when the MIP 

number is 1 (Lemma 2). This calculation requires occurrence probabilities of AND-events on 

some sets of paths, and can extract occurrence probabilities of events on links from mutually 

overlapped (more than two) paths. Theoretically, since every AR can be calculated by using only 

1. of Lemma 1 and Lemma 2, 2. of Lemma 1 is not necessary. However, in actual inference 

problems where ry(m) are given by end-to-end measurements, we may use 2. of Lemma 1 if 
it is applicable because these OR-event based method and AND-event based method may be 

different in properties of inference such as efficiency and accuracy. 

5 Case studies 

5.1 Round-trip measurements 

We estimate network-internal characteristics by measuring traffic on round trip paths from 
clients to servers in (I) of Fig. 3.3. 
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                      Figure 3.3: Case studies 

  We assume only clients are under our management, thus we cannot measure characteristics of 

servers and physical links directly. The purpose of this measurements is quantitative estimations 

of performance responsibilities for each servers (including physical leaf links) and physical 

backbone links. 

     • node 0,1 are clients, and node 2, 3, 4 and 5 are servers. A client sends a 

       packet and then receives its reply packet by a server. Other unnumbered 
       nodes (circles) indicate routers. 

     • We regard a round-trip route as a path. Some packets are sent by node 0 

      to nodes 2, 3, 4, 5 and, in reply to them, packets go back to node 0 through 

       paths a, b, c, d, respectively. Others are sent by node 1 to nodes 2, 3, 4, 5 and 
       their reply packets go back to node 1 through paths a', b', c', d', respectively, 

      as described in (I) of Fig. 3.3. 

 Note that each leaf (logical) link includes two physical leaf links (both directions) so that we 

cannot distinguish characteristic of each direction, although it is not fatal for the measurement 

purpose in this case. 

5.2 One way measurements 

We estimate each ISP's characteristics from one way measurements on paths across many ISPs 

in (II) of Fig. 3.3. 

 We assume only end-nodes (a sender and receivers) are under our management , thus we 
cannot measure characteristics of each ISP directly. The purpose of this measurements is quan -
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 Table 3.1: Shared link set and the MIP number  

(I) Round trip measurements 

 linkshared-link set MIP # MIP div. 

 1abcd1abcd3 {a}, {b}, {d} 
la' b'c'd'la' 6'c'd' 3 {a'}, {b'}, {d'} 
la'cdla'cd 2 {a'}, {c} 
lt/celb' cc' I — 

laa'laa'2 {a}, {a'} 
1a'dla, d,1a'cd 2 {a'}, {d} 
lbclbc,1abcd 2 {b}, {c} 
lbb'lbb' 2 {b}, {b'} 
lb' c'lb/ c', lb' cc', la' 6'c'd' 2 {b'}, {c'} 
16'clb, c, lb' cc'2 {b'}, {c} 
iceice , lb, cc'2 {c}, {c'} 
1dd'1dd'2 {d}, {d} 
lblb, lbb',16c, 1abcd 0 — 

  lb lb', 1bb', 1b'c, lb'c', 1bcc', 1a'6'c'd' 0 — 

(II) One way measurements 

linkshared-link setMW # MW div. 

labcdlabcdI— 

1abd1abd, 1abcd 2 {a}, {b} 
lacd lacd,1abcd2 {a}, {c} 
lbcd1bcd, 1abcd 2 {b}, {c} 
lbd1bd, lbcd, labcd 2 {b}, {d} 

lala, labd, 1 acd, 1 abcd 0— 

 lblb, lbd, labd, 1bcd, labcd 0 — 

 lclc, lbcd,1acd,1abcd 0 —  
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titative estimations of performance responsibilities for each ISP on end-to-end paths. Therefore 
we regard a transit route through an ISP as a "link". 

     • node 0 is a source (sender) and nodes 1 and 2 are destination (receiver) 
      nodes. Each IX (Internet eXchange) node is an exchange-point among ISPs. 

     • Some packets are sent from node 0 to 1 through paths a, c and d, respectively. 
      Others are sent from node 0 to 2 through path b, as described in (II) of 

        Fig. 3.3. 

 Finally we show concrete expressions to calculate no-loss probability of each link in this 
example. 
 In order to use our inference method, we estimate  'yR (a probability that no loss occurs along 

at least one of path in R) or, in some case, yR (a probability that no loss occurs along all path in 
R) for some Rs, from end-to-end measurements. Then we calculate AR (a probability that no 
loss occurs on all links in the L(R)) from them, and finally calculate aR (a probability that no 
loss occurs on the link 1R) for each R E A. In this example, since the MIP number of {a, b, c} 
is equal to 1, we use yabc instead of ryabc in order to calculate Aabc (= Aabcd). 

  For example, we have Aa = 'ya, Ab = 'yb, Ac = 'yc, Abd = (7b'yd)/(1'b +'yd — bd)' Aabd = 
Aab = ('ya'yb) / (7a +''b'y a6)'Aacd = Aac = ('ya'yc)/(7a +'yc — -y c) , Abed = Abc = (7b' yc) / ('yb + 
7c — rybd. And then, 

                 yabc`4a6Aac'yabc'ya'Yb'yc        A
abcd — Aabc =_                         'y6cAa'ybc ('ya +7b — T)((                                                       'ya + 'yc 7 c) 

  Consequently, 

yabc'ya'yb'c 'ybc ('ya + 'yc — 7 c)  
        aabcd = —,aabd = _                'ybc('ya +'yb —7b)('ya + 'yec)'yc'yabc 

                 'ybc ('ya + -r6— 7 b)'ybc ('ya + 'yb — 7 b) ('ya + 'yc — 7 e)  
Aacd =abcd =                  'yb7'abc'yarYabc (76 + 'yc — c ) 

                     'yd'yabc ('y6 + 'yc —c)'yabc  
   abd = _as = _                 'ybc ('yb + 'yd — T d) ('ya + 'yc — 'Yc) 'y6c 

7b+ 7d —~d'yabc ('yb+'yc —c)  
     ab=, ac= —                   'yd'y bc('ya + 1'6 — 7 b) 

 Note that in this example, due to a special relation that 7a +'yb —'Yb = 'yab, above expressions 
can be expressed more concisely. 
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6 Discussions and future work 

6.1 Conditions of V 

We discuss the conditions of V (a relation between path events and link events). Condition 

(3.21) is "assumption of independence of all links". In actual networks, links are not usually 
independent each other so that this fact can  cause errors in inference. Nevertheless, this assump-
tion simplifies inference calculations, and for this ease, we first employ it here. 

 Note that if the co-relation among links is very weak, the error will be negligible. Further-
more, if we know (estimate) the degree of co-relation in some way, we can correct inference 
calculations. Some analytical and simulation results regarding packet loss rates and queing 
delay distributions on tree path-topologies have been presented ([4], [16] and [17]). 

 Special properties of state-0, condition (3.20) and property (3.11) derived from (3.5), are 
essential for our inference. As an example of V which violates these properties, we consider: 

V(L + L')(0) = V(L)(0) n V(L')(0) + V(L)(1) n V(L')(1) 

V(L + L')(1) = V(L)(0) n V(L')(1) + V(L)(1) n V(L')(0) 

where V can be regarded as a model for "toggling a flag (ON/OFF) in a packet". 

     • The flag in a packet is OFF at source nodes. 

     • The flag may be toggled when it passes a link. 

     • Can we infer the occurrence probabilities of toggle on each link from ob-

       serving packets at destination nodes? 

  Unfortunately we can show some cases in which the solution is not unique. 

6.2 Multi-routes 

Our method can treat static multi-routes, by which we mean that a router decides the next 

physical link for a received packet by using not only a destination IP address but some static 
information like policy routing. Although there are more than one partial path from a router to 

a destination, and more than one path from a source to a destination in such a case, for each 

observed packet, we can identify the path which the packet traverses by its information such as 

its source IP address, port numbers, MAC address, and so on. 

 Note that, in Section III, we consider a general event form V (L) (m) which is parameterized 

by a state m and a set L of links, thus this formalization implicitly assumes that we don't 

mention a relation between a statistical characteristic of each set of links and an information on 

the types of packet passes through the links. In other words, if some link behaves differently for 

packets of different types (for example, if a router gives a priority to packets coming from some 
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special source nodes), and if we need to distinguish the difference, we consider there exist two 

(virtually different) links, and need to determine which link is passed by each traversing packet. 

6.3 Measurements of end-to-end path characteristics 

Finally we mention the relation between inference of characteristics of paths by monitoring 

end-to-end traffic on the paths and our method of determining characteristic of each link from 

the inferred characteristics of the paths related to the link. 

 In general, recalling Section IV, let F :  ry = F(a) be the map from "occurrence probabilities 
of events on each link" (a E D C [0,1]I°I) to "occurrence probabilities of events on each set of 

paths" (ry E E C [0, 1]I71). 
 We have shown that there exists a subspace E' of [0,1] 171 and I1-1 : E I E, -+ D satisfying 

a = I"-1(7') where F' is the projection of F onto E' such that 7' = ma). 
 Then, in order to infer a, what we have to do is to obtain 7'. We consider the case in which we 

infer 7' from n independent end-to-end path measurements by "Strong law of large numbers", 

and denote the inferred value by ry;,,. That law tells us j converges to 7' almost surely as 
n -+ oo. Then, let an aef F-1(ryri) , we expect that an converges to a almost surely. However, 
since P-1 is well defined only when a input value is in E', we cannot define an when ryv, 
approximates ry' from outside of E'. 

 Therefore ry' should be restricted in an open set Etc) C E'. We should do it by removing 
some paths from Path if necessary. Under this condition, since ry;, -+ 7' a.s. (n -* oo), for 
sufficiently large n, ry:, stays in El 0. Hence an -> a a.s. if n -+ oo because of continuity 
of F'-1. Moreover, some analysis of convergence rate can be done by means of continuous 

differentiability. 

  In inferring characteristics from actual measurements, there exist the following three funda-

mental problems related to three different time-scales. They lead to errors or decreasing con-

vergence rate in inference, and strongly depend on concrete characteristics and path-topologies 

rather than abstract models. Therefore we need to study practical improvements to overcome 

these errors in actual inference problems, by using end-to-end measurement techniques and 

statistical error (bias) corrections. 

     • Concurrent events on paths 

       In our inference method, we use occurrence probabilities of concurrent events 

       (OR-events, AND-events) on paths. It is the most important and the most 
       difficult part to estimate them accurately from observations of end-to-end 

       traffic. 

       Especially in using "unicast" traffic, we need more than one packet which 

      traverse the set of links shared by these paths within a trial in which we 
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       assume the links' states do not change. However, the numbers of paths on a 
       concurrent event increasing, a series of packets in a trial may meet changes 

       of state of links. 

     • Independence among each observations 

       The fact that  l'7, converges to 7' almost surely as n -* oo relies on the as-
       sumption of independence among each observations. However, actual net-

       works have temporal dependencies like heavy-tailed behaviors of the Inter-
       net traffic. 

     • Stationarity of links 

       When we infer occurrence probabilities of events on each link, we assume 
       there exists a stable probabilistic model on links. Since long-term observa-

       tions may violate this assumption, we should complete a set of observations 
       within a proper time-scale for consistent inferring. 

  Finally, for efficient and accurate inference, it is of practical importance to find a set of paths 
to be observed that is suitable for a given set of links to be inferred. For a given physical link 
e, we can automatically enumerate all sets of paths satisfying that e is "distinguishable" in the 
set of paths in our model. However, from the above candidates, we need to select a suitable set 
of paths based not only on the size of the set (the number of paths be observed) but on various 

practical factors such as the topology and configuration of a network or occurrence probabilities 
of observed events on the network dependent on end-to-end measurement techniques. 

7 Conclusion 

In this work, we have proposed a general model and method of determining characteristic (i.e. 
occurrence probabilities of states) of each internal-link from given characteristics of end-to-end 

paths. They can be applied to various characteristics of links on an arbitrary path-topology. 
Some examples of such characteristics, and case studies of network (path) topologies have been 
shown. 

 Our model and method are so general that they can give a unified viewpoint to various practi-
cal methods of inferring network-internal characteristics, and thus can give useful insights into 
advantages and disadvantages of such inference methods. 
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8 Appendix (proofs of Lemmas and Theorems) 

[Proof of Lemma 1] 

Let the MIP number of R be  N. If N = 0, then {r} = R and L(R) = Lr. Therefore 
AR(m) = Pr[V(L(R))(m)] = Pr[V(Lr)(m)] = Pr[Vr(m)]• 

 If N > 2, then AR(m) can be calculated as follows: Let Kr def Lr — L(R), R0 be {r E 
R~Kr � 0}, and {R1, .., RN} be the MIP division of Ro. 

 Furthermore we define W; (i, s) def UrER; Es'ET(i,^) V (Kr) (s') for 0 < i < m where T(i, s) 
is defined by (3.6). We have:V 

m m 

U Z(Ro)(i) = U U(L(R)+Kr)(i) 
i=0i=0 rERo 

                 IN'IIrm      =U UL~l                         I (V (L(R))(sl) n V (Kr)(s2)) 
                               j=1 rER, i=0 sES(i) 

mN 
= E(V(L(R))(s) n U W;(m, s)) 

s=oj=1 
mm 

U Z(Ri)(i) = U U V (L(R) + Kr)(i) 
i=0i=0 rERo 

= (V(L(R))(s) n W;(m, s)) 1 < j < N 
s=0 

 Note that we assume condition (3.21). By the definition of the MIP number, (UrER, Kr) n 

(UrER;, Kr) = Ql (j � j'), and thus Wj(m, s) and Wji(m, s) are independent. Similarly, 
because of L(R) n Kr = 0, V (L(R))(s) and W;(m, s) are independent. Thus we have: 

mmN 

         Pr[U Z(Ro)(i)] _ > AR(s)(1 — 11(1 — Pr[W;(m, s)])) (3.29) 
i=0s=oj=1 

mm 

         Pr[U Z(Rj)(i)] = E AR(s) Pr[W;(m, .^)] 1 < j < N (3.30) 
i=0s=0 

 Let A(i) A Bj(i, s) def Pr[W3(i, s)], /0(i)  def Pr[UL0Z(R0)(k)], and 7j(i)def 
Pr[U1=0Z(Ri)(k)]• Pr[U                            L0 

 what follows, we show that {A(i), B; (i, s) 10 < i < m, 0 < s < m, 1 < j < N} are 
uniquely determined from 

CRo,m def {70(i),'Y;(i)10 < i < m, 1 < j < N} 

by solving equations (3.29) and (3.30) inductively with regard to m. 
 Note that, by (3.15), (3.16) and (3.17), 

1<s<m '<m(Bj(m,^)=Bj(m' ,0)) (3.31) 
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 B3  (m,  m) = Pr[Wj (m, m)] = Pr[ U V (Kr) (0)] > 0 (3.32) 
rE RI 

Bj (m, m) < B3 (m, 0) (3.33) 

(case: m = 0) 

From condition (3.20), A(0), B3(0, 0) (1 < j < N) are positive, thus we have 

                  0 < y0(0),' (0) 1 < j < N(3.34) 

20(0)  < yj(0)(3.35) 
j=1 

 We rewrite equations (3.29) and (3.30): 2_0(0)  = A(0)(1 — 113N_ 1(1 — B3(0, 0))) and 73(0) = 
A(0)Bj(0, 0), hence 

                           N Y (0) 
NO) = A(0)(1 — ll(1 — (0)))(3.36) 

                                                 j=1 

 Then we consider an equation with variable x: 

N 7 (0) 
f(x) def 2o(0) — x(1 — fl(1 — x  )) (3.37) 

j=1 

f (x) = 0(3.38) 

 From the above conditions (3.34) and (3.35) of coefficients, Lemma I in [4] tells us that 
equation (3.38) with the range of 0 < -y3(0) < 7 (0) < x < 1 has a unique solution. Therefore, 
let such the solution of (3.38) be x*, we obtain A(0) = x* and B3(0, 0) = -y3(0)/ x* by solving 
(3.38). Thus A(0), B3(0, 0) are determined from CR0,0. 

 Note that 3j(ry3(0) = 'y0(0)) < x' = 20(0), and -y0(0) = 1 — 111;_i (1  — -y3(0)) x* = 1. 

(case: m > 1) 

Suppose that 0 < A(0), Bj (0, 0) < 1 and 0 < A(i), B3 (i, 0) < 1 (1 < i < m — 1) are 

determined from CRo,m_1. Then we show A(m), B3(m, 0) are determined from CpO,m. We 

rewrite equations (3.29) and (3.30): 

mN 

20(m) = A(s)(1 — H(1 - B3(m, s)))(3.39) 
s=0j=1 

N 

A(m)Cm + Dm + A(0)(1 — 11(1 - B3(m, 0))) 
                                             j=1 

                                N 'y (m) — Em,j — A(m) Bj (m, m)  
      = A(m)Cm + Dm + A(0)(1 - A(0) )) 

j=1 
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 m 

 ryj  (m) = E A(s)Bj (m, s)(3.40) 
s=o 

        = A(m)B3(m , m) + Em,j + A(0)B3(m, 0) 

where 

Cm def 1 — 11(1 — B3(m, m)) 
j=1 

m-1 N 

              Dm E A(s)(1 — 11(1 — Bj(m, s))) 
s=1 j=1 

m-1 

                Em,jdef E A(s)Bj(m, s) 
s=1 

  Since each B3(m, s) (1 < s < m) equals one of B3(i, 0) (0 < i < m — 1) by (3.31), Cm, 

Dm and Em,j are calculated by A(i), Bj (i, 0) for 0 < i < m — 1. Then we consider an equation 
with variable x: 

     defNry.(m) — Em,j — xB3(m, m) f (x)=ry o (m) — xCm — Dm — A(0) (1 — 11(1 —----------------------3                                      A(0))03.41) 
i=1 

f (x) = 0(3.42) 

  In what follows, we will show that equation (3.42) with the range of 0 < x always has 
two solutions, and the second largest solution equals A(m). Therefore, let the second largest 
solution be x*, we obtain A(m) = x* and B3(m, 0) = (73(m) — Emj — x*Bj(m, m))/A(0) by 
solving (3.42). Thus A(m), Bj (m, 0) are determined from CRo,m• 

  To show this, we analyze polynomial (3.41) in the same way of Lemma 1 in [17]. Let 

                  g(y) def f(A(m) + yA(0))(3.43) 

 We shall show that y = 0 is the second largest solution of the equation g(y) = 0. In other 
words, we shall show the equation g(y) = 0 with the range of 0 < y has a unique solution. Let 
bj (m) def Bj (m, 0) and bj (0) def Bj (m, m) = Bj (0, 0). 

                                   NA(0)1
j(m) — yA(0)b (0)  g(y) =y(m) — A(m)Cm— yA(0)Cm —Dm— A(0)(1 — 11(1 —

A(0))) )) j=1 

    = 20(m)  — A(m)Cm — yA(0)Cm — Dm — A(0)(1 — 11(1 — bj(m) + ybj(0))) 
j=1 

 Let H def {0,1}N — {1}N — {0}N and H(k) def {h E HI >h; Eh hi = N — k}. It is clear that: 

11(1 — bj(m) + ybj(0)) = H(1 — b3(m)) + E 11(1 — bj(m))hi (yb3(0))1-h; + ybj(0) 
3=17=1hEH j=1 j=1 
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 Thus, by (3.39), we have: 

    g(y) =  ry0(m) — A(m)Cm — yA(0)Cm — Dm — A(0)(1 — 11(1 — bj(m))) 
j=1 

NN 

+A(0) E 11(1 — bi(m))hi(ybj(0))1-hi + A(0) fl ybj(0) 
hEH j=1j=1 

NN 
= —yA(0)Cm + A(0) E. H(1 — bj(m))h' (ybj(0))1-hi + A(0) H ybj(0) 

hEH j=1j=1 

N-1 
        = yNG0A(0) + E ykGm,kA(0) + yF'mA(0) 

k=2 
   where 

               N 1<i<N 

F,m def E( 11 (1 — bi(m)))bj(0) — Cm(3.44) 
j=1 

     N 1<i<NN 

= E( 11 (1—bi(m)))bj(0)+11(1—bj(0))-1 
j=1 i#jj=1 

G0 dg fl MO) 
j=1 
                 N 

Gm def E H(1 — bj(m))hibj(0)1-hi 
hEH(k) j=1 

 Therefore 

N-2 

  dy(y) = YN-1NG0A(0) + E yk(k + 1)Gm,k+1A(0) + FmA(0) 
k=1 

d2N-3   y(y) = yN-2(N — 1)NG0A(0) + E yk(k + 1)(k + 2)Gm,k+2A(0) + 2Gm,2A(0) k=1 

 We show Fm < 0. It is clear that, for any set {W1, ..., WN} of events, 

N N-11<i<N1<i<NN 

   =nwj+ E (( n Wi)n( n Wc))+nW; 
j=1 k=1 hEH(k)hi=1hi=0j=1 

N-21<i<N1<i<NNN 1<i<NN 

.s~ E E ((n Wi)n(n Wc))=nWj+ ((n Wc)nWj)+nw; 
k=1 hEH(k) hi=1hi=0j=1 j=1 i#jj=1 

 Consider Wj (m, m) as Wj. Since Wj (m, m) and Wy (m, m) are independent, and bj (m) < 
bj(0) by (3.33), 

NN 1<i<NN 

1 > 11 Pr[W3(m, m)] + E( 11 (1 — Pr[Wi(m, m)])) Pr[W3 (m, m)] + 11(1 — Pr[W3(m, m)]) 
 j=1j=1 203j=1 

NN 1<i<NN 

=flb3(0)+E([[(1 - bj(0)))bj(0) + 11(1 — bj(0)) 
  j=1j=1 i�j=1 
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 N N  1<i<NNN 

  >  fl  bj(0)  +  E(  II (1 — bj(m)))bj(0) + 11(1 — bj(0)) = 11 bj(0) + Fm + 1 
j=1 j=1 i#jj=1j=1 

 Since bj (0) = Bj (m, m) > 0 by (3.32), Fm < — [11;_i  bj (0) < 0. 
 Therefore we have: g(0) = 0, dg/dy(0) = FmA(0) < 0, d2g/dy2(y) > 0 (0 < y). 

Furthermore, since GoA(0), the coefficient of the principal term, is positive, limi0 g(y) > 0. 
Thus, the equation g(y) = 0 with the range of 0 < y has a unique solution. 

[Proof of Lemma 2] 

For convenience, we define 1/(0)  (0) as the whole event Il, and, for m > 1, V (0) (m) as the 
empty event 0. 

 For each set R of paths satisfying that L(R) $ 0 and L(R) L(R), there exists at least one 
R1 E A such that 1R1 E L(R) and 1R1 L(R). Let R2 aef R n R1, thus we have R2 R and 
lR1 E LR2. Therefore RR def {R' C RI R' R, LR, � 0} is not empty. 
  Then we choose Ro as one of the smallest (in size) element in RR (i.e. Ro E RR, and 

1Rol < IR'I for every R' E RR). 
 We shall show that AR(m) is calculated from UlgR AR°,m, and It, m where 

7R°„ def {Pr[Z(R — R0)(0)]} U {Pr[Z(R — R0)(0) n Z(Ro)(i)]l0 < i < m} 
AR m def {AR„ (i)10 < i < m, Ro C R" C R'} 

  We define UR (m) as follows: 

UR (m) def Pr[V (LR,) (m)] 

  Note that U(m) = AR(m). Furthermore, by using (3.2), we have: 

IIR'(rn) =_ UR+{ }(s1)UR+{T}(s2)(3 .45) 
                                  sES(m) 

(step 1): 

First we show that UR; (m) for each R', R" (such that Ro C R" C R' C R) is calculated from 
.AR° m by induction with regard to I R' — R" I and m. 

(case: I R' — R" I = 0) 

Since R' = R", UR;, (m) = AR, (m) E AP m. 
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(case:  IR' — R"I > 0) 

We choose a E R' A actR". Note that IR' —(R"+{a})I= - Ian -R"I < — R"I. 
For m = 0, then, by (3.45), (3.20) and (3.11), we have: 

                                 R- a(0) 
                      UR~(0) —U„                             UR;,+{a} (0) 

where UR,-{a} (0) and 4+0) (0) are calculated from At) by the induction hypothesis, since 
ARL{a},o C AR?,o• Thus, so is UR, (0). 

For m > 0, then, by (3.45), (3.20), (3.13) and (3.14), we have: 

                RUR"- a (m) — Ls S(m) UR„+{a}(s1)URR„(s2)         UR„ (m) = UR~                               R+{a}0() 

where UR„-{a} (m), URf,+{a} (sl) (for 0 < s1 < m), UR;, (s2) (for 0 < 82 < m — 1) and 
UR„+{a} (0) are calculated from .AR°,„t by the induction hypothesis, thus, so is UR;, (m). 

(step 2): 

Next, we show that UR (m) for each R' (such that Ro C R' C R) is calculated from 7R and 
UR'CR AR',m by induction with regard to IR' — Rol and m. 

(case: IR' — Rol = 0) 

Note that 

Z(R — Ro)(0) n Z(R0)(m) = V(L(R — Ro))(0) n n V(Lr)(m) 
                                                               rERo 

                   = V(L(R — R0))(0) n nV(Lr \ L(R — Ro))(m) 
rERo 

                    = V(L(R — R0))(0) n V(L(R0) \ L(R — Ro))(m)(3.46) 

                    Z(R — R0)(0) n V(LL)(m) 

  Then we have: 

             Um_Pr[Z(R — Ro)(0) n Z(Ro)(m)](3.47)               Ro()P r[Z(R — R0)(0)] 

which is calculated from ryR o. 
  To justify (3.46), we shall show, for every r E Ro, 

Lr\ L(R — Ro) CL(Ro)\L(R—Ro)(3.48) 

 Suppose 3r0 E Ro and 3R1 E A such that 1R, E Lro \ (L(R — Ro) U L(R0)). 
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 Then we have R1 n (R —  Ro) = 0, Ro \ R1 # 0, and R1 n R 0. Hence, R1 n R C Ro, 
Ro — R1 n R 0, and thus IRoI > IR1 n RI. 

 On the other hand, since 1R1 E L(R1 n R) and IR, L(R — R1 n R), we have 

LR1nR = L(R1 n R) \ L(R — R1 n R) 0 

 Since we choose Ro as one of the smallest (in size) R' C R satisfying that LR, # 0, the fact 
that LR,nR # 0 implies !Rol < IRl n RI. 
 This contradiction negatives the hypothesis, thus, (3.48) is held. 

(case: IR' — Ro I > 0) 

We choose b E R' A b Ro. Note that R — {b} C R, IR' — Rol > IR' — {b} — Rol. 
  For m = 0, then we have: 

                         (0)                           U
RR(0) =URR—{}                                U

—{b}(0) 

where UR -{14 (0) is calculated from AR° {b},o, and UR,_{b} (0) is calculated from ryR o and 
URCR AR?,0 by the induction hypothesis. Since AR {b},0 C URCR AR',0+ so is UR, (0). 

For m > 1, then we have: 

            UR,(m) = U(m) — EsR (m)UR(sl)UR'—{b}(s2)                                  UR'-{b} (0) 

where UR -{} (m) is calculated from AR {b},0> , and UR, (s1) (for 0 < Si < m — 1), UR,_{b} (s2) 
(for 0 < s2 < m), and UR,_{b} (0) are calculated from Ii , and UR,g AR by the induction,rn 
hypothesis. Thus so is UR, (m). 

 Note that, we can calculate AR(m) for R A from {AR, (i)IR C R', R' E A, 0 < i < m}, 
because aR(m) is calculated from {AR, (i)IR C R', R' E A, 0 < i < m} by Lemma 3, and 
further, AR(m) is calculated from {a R, (i) IIR, E L(R), 0 < i < m} by its definition. 

[Proof of Lemma 3] 

For each R E A and m E M, we show that aR(m) (= Pr[XIR(m)]) is calculated from: 
AR ra def {AR, (i)IR C R', R' E A, 0 < i < m} 

by induction with regard to m and R. 

(case: IRI = maxREOIRI) 

If R is one of the largest element in A (i.e. IRI = maxREOIRI), then L(R) = {lR}. Because if 
L(R) includes another link 1R, ( lR), then R C R' and R R', thus IRI < IR' I. This conflicts 
the hypothesis of R. 

 Then we have AR(m) = Pr[V(lR)(m)] = Pr[XLR(m)], and thus aR(m) = AR(m) • 

42



                8. APPENDIX (PROOFS OF LEMMAS AND THEOREMS)  

(case:  IRI < maxREOIRI) 

If L(R) = {lR}, then, in the same way as in the previous case, we have aR(m) = AR(m) • 
 Otherwise, L(R) includes a link 1R' other than 1R. 

 For m = 0, suppose that, for each R' E A such that RI < IR'I, air (0) is already obtained 
from AR ,o• 

Let L(R) _ {lR, lR1, lR2, .., lR;, }. 
   nn 

       AR(0) = Pr[V( )(0) n V({1R})(0)] = (11 air,(0))aR(0) 
7=17=1 

where, since R C R'j and R # Rip we have 'RI < IR' I, and thus, aR' (0) are already obtained. 
 Therefore aR(0) = AR(0)/(f17=1 aR' (0)) and thus, aR(0) is obtained from AR,o. 

For m > 1, suppose that, for each R' E A such that IRI < IR'I, aR'(i) (0 < i < m) are 
already obtained from AR,,m. Moreover, for R itself, suppose aR(i) (0 < i < m — 1) are 
already obtained from AR,m_ 1. 

Let L(R) = {lR, lRi,1R2, .., lRn}. Sri(m) is defined by (3.7). 

AR(m) = Pr[ E V(E lR;)(sl) n V({lR})(s2)] 
sES(rn) .7=1 

             = E Pr[V(EIR;)(s1)]aR(s2) = aR(m)Cm+Dm 
sES(m)=1 

           where                       n ft
Ro)Cm(r11a;(s;)) = 

                       (si,m)ES(m)s'ELS,((si) 7=1j=1 
82<mn 

          Dmdef E ( E T7c R, (S,))aR(s2) 
                          (s1,s2)ES(m) s'ESn(si)i=11 

  Since R C Rj and R Rip we have IRI < IR'j I, and thus aR.'i(i) are already obtained. Thus 
Cm, Dm are calculated by aR., (i) (0 < i < m,1 < j < n) and aR(i) (0 < i < m — 1). 
Since Cm > 0, 

                    aR(m) = (AR(m) — Dm)/Cm 

and thus, aR(m) is obtained from AR,m. 

[Proof of Theorem 1] 

First we number all (logical) links. Let K = I O* I, A' = {l(k) 11 < k < K). And, for each 1(k), 
let R(c) be the influence-path set for 1(k) (i.e. 1(k) = lR(k)). We can take the numbering of l(') 
satisfying that R(k) C R(k') = k < k'. 

  We also number all sets of paths related to our calculation. Let ip aef {R C PathIL(R) � 0}, 
J def I Io def {R E IF IRI = 1}, and Jo aef IWo( We can take the numbering of R3 satisfying 
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 that  To={R;11<j< Job  '—  =  Jo<j<J} and  R3cR3  = j < j'. Moreover, 
for each R; (J0 < j < J), we choose Rzi C R; as Ro in Lemma 2. 

 In what follows, we fix some m E M. For 0 < i < m, 1 < k < K, 1 < j < J, we define: 

             ak,idef Pr[X1(k) (z)] 
Ak: def Pr[V(L(R(k)))(i)] 

def Pr[ U Z(R
j) (h)] 

h=0 

           y~Z def Pr[Z(R; — Rz,)(0) n Z(Rz;)(i)] if Jo < j 
          a = <i<m,1<k<K} 

             A = {Ak,iI0 < i < m, 1 < k < K} 

           7 = <i<m,1<j<J,Jo<j'<J} 

  Then we consider a map: 

F : D -* E such that 7(m) = F(a) 

m 

     D def xE[0,11(m+1)KI 0<xx~x< 1}            {(k ,i)1<k<K,O<i<rn,~0k,0k,ik,i 
i=0 

E def F(D) C [0, 11(m+1)(2J—Jo) 

 According to the proofs of Lemma 1, 2 and 3, we have I' = x o V where 0(a) = A and 

x(A) = 7. Thus r-1 def 0-1 o x-1 
  Since has an explicit expression, it follows directly that is injection and 0-1 is continu-

ously differentiable. Therefore we shall show so is x-1 
  We have the implicit function for x: 

             F(x, y) = (Fk,i(x, Y))1<k<K,o<i<m such that F(A,7) = 0 

  According to Lemma 1 and 2, each Ak,i can be determined by one or two types of calculation, 
if it is applicable. Therefore Fk,i can be constructed as follows. 

(case: 0) 

For k such that Ak,i is determined by 1. of Lemma 1, there exists R; = {r} (such that R; C 
R(k), L(R(k)) = L(R;) and the MIP number of R; = 0) where 'yj,o = Ak,o and 7; i — 'y;,i-1 = 
Ak,i for 1 < i < m. Therefore Fk,o(x, y) = y;,o — xk,o and Fk,i(x, y) = Yj,i — xk,i. 
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(case: 1) 

 For  k such that Ak,i is determined by Lemma 2, there exists Rj (such that Rj C R(k), L(R(k)) = 
L(R3) and the MIP number of Rj > 1) and Rj, = Rj — Rzi where Ak,i is calculated by 'yj,i,, 
yj, o or -yj,,o, and Ak,,i, for 0 < i' < i and k' satisfying that Rz; C R(k') C R(k). 

 Thus we can construct an explicit function fk,i satisfying that Ak,i = fk,i(A \ {Ak,i}, 7). 
Therefore Fk,i(x, y) = fk,i(x \ {xk,i}, y) — x)0 and is continuously differentiable in a neigh-
borhood of the point (A, 7). 

(case: 2) 

For k such that Ak,i is determined by 2. of Lemma 1, there exists Rio (such that Rio C R(k), 
L(R(k)) =I(Rio) and the MIP number of Rio > 2) where the MIP number of Rio is Nk, and 
its division is {Rj„ ..., RjNk } satisfying that 

                                                         Nk 

                                            Ak ,o                                  (1A(1—ft(1 —ry~'"o)) = 0 (3.49) 
— h=1 Ak,0 

                                       Nk 
     — A', —,—(1 — If(1Yjh,i'—Ejh,i,— Ak 41 .13)) = 0 (3.50)      k,Cik,DAik,ik,—Ak,o            (1A

k,o 
1<i'<i 

 Combining (3.49) and (3.50), we have: 

Fk,i(x, y) = fk,i(xk,o, Xk,1, ••, xk,i, y.(k),0~y-(k)1,.., y-(k)i,y-(k)0,...,y.(ki)3030 

where Fk,i (A, ry) = 0 for 1 < k < K, 0 < i < m. 
 By the Implicit Function Theorem, continuously differentiability of X-1 (where A = X-1(7)) 

follows by: 

    1. Fk,i(x, y) is continuously differentiable in a neighborhood of the point (A, 7). 
      This follows from Ak,o > 0 in (3.49) and (3.50). 

    2. The linear map (i.e. a matrix) 

          OF A,_ k'ry)A,)                     ax(ry)axk,,i,(1<k,k'<K,0<i,i'<m 

       has the inverse map. 

 We shall show 2. It is clear if k < k' or i < i', then a kks (x, y) = 0. 
 We consider the diagonal elements (i.e. k = k' and i = i'). For k in the (case: 0) and (case: 
1), Ak,i has an explicit expression so that Fk,i(x, y) = fk,i(x \ {xk,i}, y) — xk,i as mentioned 
above, thus Z-)'(x             ,y) = —1. 
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  Otherwise, if i = 0, then, 

             Nk 1<h<NkNk 

 ax~ (x) y) = —xk(— E x2-11 (1 —Xk)) — (1 — 11(1 —xk                                =1))              j=1 k h�jj=1 

 we have: 

   aFNk1<h<NkNk 

     a(A,7)-==Eb(0)11 (1— bh(0)) +H(1 — bj(0)) — 1 = Fo <          j=1 h#jj=1 

where F0 is defined in (3.44). 

  Finally if i > 0, then, by using the function g in (3.43), Fk,i IXk;=Ak;+ZAko = 9(z), and thus, 

        dgaFk                   —
dz(0) = Ak o ,(A,7) axk,i 

             aFk,i (A7) =dg(0) l A ,<—f h-1,Nk bk,jh (0)< 0                                               ko_ 
      axk,idzAk ,o 

  Therefore 4(A, 7) has the inverse. 
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 Chapter 4 

 Inferring link loss rates from unicast-

 based end-to-end measurement 

1 Introduction 

The Internet is currently shifting towards a social and economical infrastructure, which needs 

to be operated in a reliable and efficient way, and thus its characteristics should be measurable. 

However, because of huge scale and distributed administration, it is difficult to measure its in-

ternal states and performance on the Internet. Therefore, it is of practical importance to develop 

statistical methods to infer network-internal characteristics that cannot be measured directly 

from end-to-end path measurement. 

  In [7], we have studied a general principle of inferring various characteristics (i.e., occurrence 

probabilities of some states) of links from given characteristics of paths with an arbitrary "path-
topology" (by which we mean a topological structure of observable paths). 

  In this work, based on our general framework, we present a feasible method of inferring 

packet loss rates on individual links from end-to-end measurement of unicast probe packets 
among several senders' and receivers' nodes. Our ultimate goal is to infer characteristics of 

individual (directed) links in a network with an arbitrary topology from end-to-end path mea-

surement. We consider a set of paths covering all links whose characteristics should be in-

ferred. These paths can be regarded as an appropriate combination of tree and inverse tree 

path-topologies under certain conditions. Thus, as mentioned later (Section 4), for most of 

path-topologies in actual networks, loss rates on individual links can be inferred by combining 
inference of loss rates on trees and inverse trees. Therefore, we develop a technique to infer link 

loss rates on both trees and inverse trees, which are essential to inference on general topologies. 

 For tree path-topologies, extensive researches related to multicast-based inference of network-

internal characteristics have been done in the MINC (Multicast-based Inference of Network-

internal Characteristics) project. In [4], they employed end-to-end multicast probe packets from 

a root sender to many leaf receivers, and they utilized correlation in losses on end-to-end paths 

measured by receivers to infer loss rates on each link. 

 Compared with methods using multicast probes, unicast-based inference methods are more 
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flexible and widely applicable, and thus, are of practical importance. For example, such methods 

are applicable to networks where multicast communication is not available or path-topologies 

are not limited to trees. Furthermore, they can be combined with passive measurement (mon-

itoring) of real traffic generated by unicast communication, which is still major in the current 

Internet. Note that, since multicast-based methods cannot treat inverse tree path-topologies, a 

unicast-based method is essential to us . 

 Nonetheless, unicast-based methods have some pitfalls. The most significant problem is 

imperfect correlation in concurrent events on paths. As mentioned later (Section 2), a basic 

inference method (based on correlation among observations of packets) requires the assumption 

that if a link is shared by a set of paths then the packets along the paths experience the same 

event on the shared link within one atomic trial. Unlike multicast-based methods, unicast-based 

methods cannot realize such perfect correlation, and thus the above assumption is not always 

true. The other problem is the bandwidth inefficiency. Indeed, unicast-based methods need to 

send more probe packets than multicast-based methods if applicable. The focus of this work is 

mainly on the former problem on inference under imperfect correlation of concurrent event on 

paths. 
  There exist several related works. For tree path-topologies, recent researches propose some 

techniques for this problem [5], [25], [24]. In particular, the method in [25] is similar to ours. 

On the other hand, our method can treat not only tree but also inverse tree path-topologies, 

and their combinations. For inverse tree path-topologies, a recent research proposes how to 

infer whether or not a pair of flows experiencing congestion are congested at the same shared 

link [30]. On the other hand, our method infers more quantitative characteristics, i.e., packet 

loss rates on individual links. 

 In the remainder of this chapter, we propose a technique to infer link loss rates on both trees 

(Section 2) and inverse trees (Section 3). We explain how to use it on general path-topologies 

(Section 4). And we show simulation results which indicate potential of our unicast-based 
inference (Section 5). 

2 Tree path-topology 

2.1 Basic model and problem 

Let us consider a single-level binary tree ((I) of Fig. 4.1). We denote the path from node 0 to 1 

by a, and the path from 0 to 2 by b. We label each link by paths including the link (e.g., la, lb 
and lab). 

 We regard an event that a probe packet successfully passes through a link as an occurrence 

of "no loss" on the link. Let xR (R E {a, b, ab}) denote the occurrence probability of "no loss" 
on link 1R, which is one minus the loss rate on 1R. Our goal is to determine xR from end-to-end 
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                   Figure 4.1: Tree path-topologies 

measurement using unicast probes, i.e., observations of unicast probes at the receivers' nodes. 

We assume that each xR is not equal to 0 (i.e., positive). 

  Consider that unicast probe packets can be sent from node 0 to nodes 1 and 2 along paths a 

and b, respectively. Let Pr (r E {a, b}) denote a probe packet on path r. Let yr be the occurrence 

probabilities of "no loss" on path r, and yab be the occurrence probability of "no loss" on both 
path a and b concurrently. 

  To obtain those occurrence probabilities, we dispatch a series of trials where each trial con-
sists of sending Pa and Pb, and the trials can be regarded as independent of each other. We 
denote the number of all trials by N, the number of trials in which Pr reaches the destination 

(i.e., "no loss" occurs on path r) by Nr, and the number of trials in which both Pa and Pb reach 
the destinations by Nab. Then, by "Law of large numbers", we can estimate yr as Nr/N and yab 
as Nab/N, respectively. 
 Then if Pa and Pb in a trial are perfectly correlated on the shared link lab, we have simple 

equations: 

ya = xabxa, Yb = XabXb, yab = XabXaXb(4.1) 

where, if ya, yb and yab are given, xab, xa and xb are uniquely determined as follows. 

xa = yab/y6, xb = Yab/Ya, Xab = yay6/yab(4.2) 

 However, the following problems arise in this naive inference: 

(*) Concurrent events on paths — In (4.1), we assume that Pa and Pb experience the same event 
on the shared link lab within one atomic trial (observation). Nevertheless, even when Pa passes 

through lab, Pb may be dropped on lab, and vice versa. In general, the above assumption is not 

always true in unicast-based inference methods. 

(**) Correlation among links — This problem is common for both unicast-based and multicast-
based inference methods. In (4.1), we assume independence of losses among links. In actual 

networks, however, states of links caused by background traffic flows are not usually indepen-

dent of each other. 
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 For the latter issue (**), note that if the correlation among sibling links is very weak, the 

error will be negligible. Furthermore, if we estimate the degree of correlation in some way, we 

can correct the inference error. Some analytical and simulation results regarding losses on tree 

path-topologies have been presented in [4] and [16]. In actual networks, we can expect such 
correlations are non-negative and small. Moreover, it can be shown that, for each intermediate 

link (i.e., each link except for the root and the leaf links in a tree), the effect of correlation among 

sibling links on the inference error of the link is counterbalanced by the effect of correlation 

among child links on it (e.g., [4]). Therefore, inference errors of intermediate links are expected 

to be small. 

 2.2 Inference method using unicast probes 

We continue to consider a single-level binary tree. Let Ma .b be a series of trials where each trial 
sends an ordered pair (Pa, Pb) of probes, in which sending Pb follows immediately sending Pa. 

Let Mb be a series of trials where each trial sends probe Pb. We perform both Ma.b and Mb in 

which trials can be regarded as independent of each other, and observe arrivals of the probes at 

the destination nodes. 

  Let Pr[X] denote an occurrence probability of event X, and X' denote a co-event of event 
X . For event X which can be defined in both Mad) and Mb, let X (D) denote the event in 

measurement D (D E {a.b, b}). Let XR,,. denote the event that probe Pr (r E {a, b}) passes 
through link 1R successfully, i.e., no loss occurs on link 1R in probe Pr. Let V denote the event 
that the i-th probe entering the shared link lab in a trial passes through the link (i E {1, 2}). 

 For each trial in Ma.b, the event occurring on the shared link lab is one of the followings: (el) 
Xab,a n Xab,b = V1 n V2 , (e2) Xab,a n Xab,b = V1 n (V2)c, (e3) Xab,a n Xab,b = (V1)C n V2, 
(e4) Xab,a n Xab b = (V1)c n (V2)`, where (e2) means that Pa passes but Pb is dropped, and (e3) 
means that Pa is dropped but Pb passes. The occurrence of (e2) and (e3) causes the imperfect 
correlation in concurrent events on paths. If the first packet entering a link is dropped then the 
second packet entering the link immediately after the first one is likely to be dropped because 
of the nature of a FIFO queue. Thus, we assume later that the conditional probability of (V1)` 

given that V2 occurs is small. This assumption implies (e3) is negligible, and is essential to our 
inference method. On the other hand, the occurrence of (e2) is not harmful to the inference. 

 We define the following unknown probabilities in Ma.b and Mb. Our goal is to determine Xa, 
Xb and xab from observable probabilities. 

           xab                   clefPr[Vl(a.b)nV(a.b)]'defPr[(Vi(a.b))dlV(a.b)] 

Xab clef Pr[V(b)] = Pr[V(a.b)] 

Xa def Pr[X(b)aIV1(a.b)], xbdef Pr[X6b)IV(b)] 
xb del Pr[Xbbb)IV1(a.b) v.2 _ Pr[Xbab.b)IV(a.b)] 
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where we introduce an approximation  Pr[Vi(6)] = Pr[Vl(a.6)], which means that loss of the first 

probe packet in a trial on the shared link lab is independent of the destination of the probe. This 

approximation allows us to regard xab as the "general" no loss rate of probes entering link lab 

without interference from other probes. Similarly, xr can be regarded as the general no loss rate 

of probes entering lr given that the probes have passed through the previous link lab without 

interference. On the other hand, xb is regarded as the no loss rate of probes entering lb given 

that the probes have passed through lab in spite of interference from preceded probes, where we 

introduce an approximation Pr[4,ab.6) I VV(a.b) n V2(a.b)] = PT[X6a66) I V(a.b)] 
 Let Yr be the event that probe Pr reaches its destination successfully. Then we define the 

following probabilities , which can be obtained from observations of Mb and 11Ia.b. 

              y6b)defPr[Y6(6)]= Pr[X66) n V(b)] 

ya def Pr[Y(a.b)] = Pr[Xaab) n Vl(a.b)] 

yb def Pr[Yb(a.b)] = Pr[X6ab.b) n V(a.b)] 

YabdefPr[Y(a.b) n Vb(a.b)] 
                    = Pr[Xa ab) n X6ab.b) n V(a.b) n V(a.b)] 

 Furthermore, we define S as a degree of correlation between sibling links la and lb. In what 

follows, we regard 8 as a given small non-negative constant value, which depends on the net-

work considered here. 

Pr[Xa( ab) n 4) bb) I Vl(a.b) n V(a.b)] = xaxb(1 + (5) 

 Then we have the relation between x and y: 

                y6b) = xabx6, Ya = xabxa, Yb = xabxb/(1 — E), 

Yab = x09xaxb(1 + (5)(4.3) 

with six unknown variable xa, xb, xab, xb, xab and E. Note that, if we regard e as a known value 

(parameter), xa, xb and xab are uniquely solved as follows, although xab and x'b still cannot be 
determined. 

Yab _ y(b)Yab                   =xa
yb(1 —E)(1 + (S)'xbYayb(1 — E)(1 + (5)' 
YaYb(1 — E)(1 + 8)  

xab = 
yab 

 Since we assume both E and b are small, we can obtain approximate inference values (Za, xb 

and xab) by letting E = 0 and (5 = 0 as follows. 

                       def Yabdef ybb)yab def yayb  ~
a = —7 xb = , xab =(4.4)             Y

bYa YbYab 
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 We estimate errors between x in (4.3) and i in (4.4) as follows (r E {a, b}): 

          1  xab (1 — E)(1 + S)' x,. = (1 — E)(1 + S) 

where a and 6 are counterbalanced because both of them are non-negative. 
 The above idea can be extended to multi-level tree path-topologies. For example, we consider 

a two-level binary tree ((II) of Fig. 4.1). Unicast probe packets can be sent from node 0 to nodes 
1, 2, 3 and 4 along paths a, b, c and d, respectively. In measurement MD, let P(D) denote probe 
Pr along path r, and y(D) denote probability yr (r E {a, b}). 

 We consider four independent measurements, Ma.b, Mb.c, Mc,d and Md, where Mr.r' ((r, r') E 
{(a, b), (b, c), (c, d)}) consists of a series of ordered pairs (P,(r'r'), Prrr')) of probes, and Md 
consists of a series of probes Pdd). We perform these measurements independently, and then 
estimate probabilitiesWI"), y(.b),yb6.c)ybc.c)'(cd),y(d), and y(dd). 
 According to the above method for single-level binary trees, we can obtain XabcdXab and X 

from Ma .b, xabcd and xabxb from Mb.c, Xabcdxcd and xc from Mc.d, and Xabcdxcdxd from Md, 

respectively. Combining them, we can infer xa, xb, xc, xd, xab, xcd, and Xabcd. Note that 

redundant information may be used for detecting unexpected correlation among trials which 

should be independent. For example, we show xab (an inferred value of xab) and its error 

estimation: 

                          def   xab(ya(a.b)yb(a.b)Ybc(b.c))1(y(a.b)aby(b.cb)Y(b.c)) 
 = xab

—(1 —Eabcd Eabcd) (1 + Sab,cd) (1 +Sb,c)  +                          
xab 1 — Eabp1 + (5.,bb 

where (5 R,RI is a degree of correlation between links lR and lR" ER is Pr[(Vl)WIV2] on a shared 
link 1R, and p is Pr[V2 VI]on lab (=xab/xab). Note that p< 1 and p is expected to be close to 
1. If we assume that Sa,b = Sab,cd, and 6b,c = 0 (because lb and lc are not directly connected to a 
same link along paths), then we have: 

xab — 1 — Eabcd + Eabcd 1 + Cab 
xab 1 — Eab 

 Unlike 6, the effect of ER on inference errors for intermediate links are still first order. 

3 Inverse tree path-topology 

We first consider a single-level inverse binary tree ((I) of Fig. 4.2). Unicast probe packets can 
be sent from nodes 1 and 2 to 0 along paths a and b, respectively. 
 Let Mab be a series of trials where each trial sends an unordered pair (Pa, Pb) of probes. In 

Mab, Pa and Pb should be sent so that they are likely to enter the shared link lab closely in a trial . 

Let Mr be a series of trials where each trial sends probe Pr (r E {a, b}). We perform Mab, Ma 
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 0  4  0 0 

              a b c d 
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      ab a,bc,d 

          (I)a,b(II)a,b,c,d 

                Figure 4.2: Inverse tree path-topologies 

and Mb in which trials can be regarded as independent of each other, and observe arrivals of the 

probes at the destination node. 
 In addition to the notations previously defined, we define some events related to probes en-

tering the shared link. Let Hr denote the event that probe Pr enters tab first in a trial in Mab. Let 
Sab denote the event that probes Pa and Pb enter lab so closely in a trial in Mab that the second 

probe is interfered, and thus more liable to be dropped on lab than the first one. For convenience, 
we also define Wab def Xaaa) n X6 b ). 
 We define the following unknown probabilities in Mab, Ma and Mb. Our goal is to determine 

Xa, Xb and xab from observable probabilities. 

            ha def Pr[Ha n Sab I Wab] 
           hb def Pr [Hb n Sab I Wab] 
           Xab,adefb,aPr[Vl(ab) nV(ab)IlinSabnWab] 

Eb def Pr[(V(ab))clV(ab) n Hb n Sab n Wab] 
          xabbdefPr[Vi(ab) nV(ab)IHbnSab n Wab] 

            Eadef Pr[(V(ab))cIV(ab) n Ha n Sab n Wab] 
xabdefPr[V(ab)Wahl= Pr[Vi(ab) I Xaaa1 = Pr[Vl(ab) IX(b )] 

             = Pr[V1(a) IXaaa] = Pr[V(b) IXb 6)] 

           xa def Pr[Kaaa)] = Pr[X(aa] 
          xb def Pr[Xb n )] = Pr[X] 

where we introduce approximations Pr[V(ab) 'Wad  = Pr[V1(ab) IXaaa)] = Pr[Vi(ab) 14a bb)] 
Pr[V1(a) IXaaa] = Pr[V1(b) IXb,b ], Pr[Xaaa)] = Pr[X0,,aa] and Pr[Xb b )] = Pr[X6 6)]. These approx-
imations allow us to regard xab as the "general" no loss rate of probes entering link lab without 

interference from other probes given that the probes have passed the previous link successfully. 

Similarly, xr can be regarded as the general no loss rate of probes entering lr. 

 We also define the following probabilities which can be obtained from observations of Ma, 
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Mb and Mab. For example, yab (resp. y'ab) is the probability that two probes in a trial in Mab 

enter the shared link lab closely (resp. separately) and then both of them reach their common 

destination. (Note: hereafter, we use "resp." as an abbreviation for "respectively".) 

yaa) def Pr[Y(a)] = Pr[V(a) n Xa a] 
                 ybb) defPr[Y(b)] = Pr[Vi(b) n X6 6)] 

ya def Pr[Y(ab)] = Pr[XQbba n Xaaa)] 
Yb def Pr[Y(ab)] = Pr[Wab e) n Xbb )] 

yab def Pr[V(ab) n v(ab) n Sab n Wad 
yab def Pr[V(ab) n .V(ab) n (5'a6)c n Wad 

where we assume that, in measurement Mab, we can detect whether event Sab occurs or not by 

observing arrival probes and other traffic (if needed) pass through lab at the destination node 0. 

In other words, we can determine whether two probes in a trial reaching the destination have 

passed through lab very closely or not. This assumption allows us to estimate y and ya' b from 

end-to-end observations. 

 Furthermore, we define the degree 6 of correlation between sibling links la and lb as a param-

eter: 

                      Pr[Wab] = xaxb(1 + b) 

 Then we have the relation between x and y: 

   Ya=b  xaxab, Yb = XbXab 

Ya = xa(1 — xb(1 + 6))Xab + XaXb(1 + 6)(haxab + hbxab,b/(1 — Eb)) 

+xaxb(1 + 6)(1 — ha — hb)Xab 
            = xaxab — xaxb(1 + 8)xabhb + xaxb(1 + 6)x:b bhb/(1 — Eb) 

Yb = XbXab — XaXb(1 + 8)xabha + XaXb(1 + (S)xnb aha/(1 — Ea) 

yab = XaXb(1 + 6)(haxab7a + hbxab,b) 

yab = xaxb(1 + 6)(1 — ha — hb)xab 

 To solve xa, xb and xab, we define the followings: 

                 h def ha + hb, Pr def xab,r/xab(r E {a, b}), 
                    def 1 PaEaha PbEbhb               E _ 

                         h 1—Ea+l—Eb)' 
                   z, def 

                   ,y((b)Y
a)+(Yb Yb) + yab, 

Z2defYaYb— yab 
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 Consequently we have the following equations. 

 y(a) XaXab, Yb b)  = xbxab, 

zl = xaxb(1 + 8)xab(1 — E)h, 

Z2 = Xaxb(1 + (5)xabh — Xaxbbxab(4.5) 

 Since pa, pb < 1, E can be estimated as E < max(Ea/(1 — Ea), Eb/(1 — E&)). Similarly to 
the previous case of tree path-topologies, if we regard E as a parameter, then xa, xb and xab are 

uniquely solved: xab = (z2 + Oyaa)y(bb))(1 — E)/z1, xa = ya)z1/((z2 + 6y(a)yb))(1 — E)), and 
xb = yb6)z1/((z2 + (5yaa)ybb))(1 — 6)). Since we assume Ea, Eb and (5 are small, we can obtain 
approximate inference values (xa, xb and xab) by letting E = 0 and b = 0 as follows. 

                   def y(a)z1(yaa)—Ya)+(ybb) — Yb) + yab  xa Z2(b) — yab/yaa) 
def YbZ1(yaa)—Ya)+(Yb — Yb) + yab  xb

Z2(a) — yab/ybb) 
                                   (b)              d

ef Z2 (a)Yb—yab  
xab_ 

zl                         (Y?)+(y6b)—Yb)+yab(4.6) 

 We estimate errors between x in (4.5) and x in (4.6) from z2 < y(a)y(bb) < 1: 

       1 xab  1  

(1 + 6/z2)(1 — E)  xab — (1 + 6)(1 — E) 

(1 + 6)(1 — E) < xT < (1 + 8/z2)(1 — E) 
xT 

which indicate that errors coming from may increase in inverse proportion to z2 (i.e., yaa)ybb) — 
                                                                  Y b)• However, if we can assume that losses are moderated (i.e., y,a)ybb) >> 0) and Sab is likely 

to occur (i.e., yab << yaa)yb)), then the errors are expected to be small. 
 The above idea can be extended to multi-level inverse tree path-topologies. For example, 

we consider a two-level inverse tree ((II) of Fig. 4.2). Unicast probe packets can be sent from 

node 1, 2, 3 and 4 to 0 along paths a, b, c and d, respectively. We consider seven independent 

measurements, Ma,Mab, Mb, Mbc, Mc, Med and Md. 

 According to the above method for single-level inverse trees, we can obtain xabcdxab, xa and 

xb from triple (Ma, Mab, Mb) of measurements, xabcd, xabxb and xcdxc from (Mb, Mbc, Me), and 

xabcdxcd, xc and xd from (Mc, Med, Md), respectively. Combining them, we can infer xa, xb, 

xc, xd, xab, Ted, and xabcd• For example, we show xab (an inferred value of xab) and its error 

estimation: 

                        def (bc)it(bc) xab = (2z1)/(z1z2) 
xab z(ab)(z(6c)+S(bc)ybb)ycc))(1—E(bc)) 
xab (z2ab) + (SQ 6)yaa)y6b))(1 — E(ab))4c) 
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where 

z(ab) def (yaa)— Ya)+(Ybb)— Ybab))+ Yabab) 

i 

         = xaxb(1 + Oa b))xabxabcdh(ab)(1 — E(ab)) 
(ab) def (a) (b) i(ab) Z
2 = Ya Yb — Yab 

xaxb(1+Sab))xabxabcdh(ab) — xaxb8ab)xabxabcd 
     zibc) def(ybb)— Ybbc)+ lye)— yc6c)                                  )+*(bc)                                         ybc 

           = XbxabxcXed(1 + 15(bc))xabcdh(bc)(1 — E(bc)) 
(bc) def (b) (e) '(be) z
2 — Yb Ye — ybc 

            = xbxabXeXcd(1 +(5(bc))xabcdh(bc) — xbxabxexcdb(bc)xabcd 
                   (ab) , (ab)1 (ab) , (ab) 

       (ab)def  1  (h(ab)PaPaE abed,a+ PaEab'a+h(ab)PbPbEabedlb + Pb6 ab,b ) 
h(ab) \ a((ab) (ab))b((ab)(ab)) 

      E 

                          1 — Eabcd ,a 1 — Eab,a1 — Eabcd,b1 — Eab,b 
                                be 

       (bc) def 1  hbbe)Pb6abedbh(cbc)PcEabcdbe,c   E_, +l 
                 h(bc)1 — Eabed,b1 — Eabcd,c 

  (ab)def(ab)h(ab)defdef(bc)def and, h—haab) hb,Pr=xa*bed ,rI xabcd, Pr=xab,rI xabin Mab (r E {a, b}); h— 
 (bc)(bc)(bc)def(bc)(bc)(bc)def hb+ he,b—(1 +~bc)(1 + aabcd) — 1, Pr—xabed ,r/xabed in Mbc (r E {b, c}). 
 If we assume that 6 def 8a n) = a(bbcc) and 6bbe) = 0, then we have: 

                 1 + 8<xab<(1 + (S/z2bc)) (1 — E(bc) ) 
               1 + (5/z2ab) xab (1 + 8)(1 — E(ab)) 

 Since each of pr, pr and p419c) is close to (and is not more than) 1, if we assume that Eabcd def 
(ab)_(ab)(be)(be)def(ab)(ab) E
abcd,a—Eabcd,b — Eabed,b — Eabed,candEab=Eab,a= Eab,bI then we also have: 

    1 — E(be)Eab  --------- < 1
+ 

               1 — E(ab)1—2E ab— (1 — Eab)Eabcd/(1 — Eabcd) 
                          1+Eab 

4 General path-topology 

In the previous sections, we show how to infer loss rates on individual links on a "general" tree 

(resp. inverse tree) by combining inference of loss rates on some single-level binary trees (resp. 

inverse trees). 

 This can be extended to more general path-topologies. For example, in (I) of Fig . 4.3, we 

assume unicast probe packets can be sent from node 0 to 2, 1 to 2 and 1 to 3 along paths a , b and 
c, respectively. We consider a tree traversed by Pb and Pc, and an inverse tree traversed by P a 
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        Figure 4.4: Relations between two paths sharing a common part 

and Pb, and four independent measurements on them, i.e., Ma, Mab, Mb.c and M. Combining 
both inference for a tree and an inverse tree, we can infer xa , xb, xa, xab and xbc. 

def (yna) — y(ab)) (ybb.c) _ ybab)) + y*ab) xa
ybb.c) _ y' bab) /y?) 

                 def ((y(ia) _ yaab))(ybb.c)_y(ab))yabab))ybb.c)               -Lbb
(yaa)ybb.c) _ y b b))ycb.c) 

                             6c) 
                    clef ycc)Ybc  

xc (b.c) (b.c) 
                      Yb Ye 

                 def yaa)y~6.c)—ybab) 
:Lab (

a)(ab)(b.c)(ab)*(ab) 
                    (yaya)+(yb—yb)+yab 

def y(b.c)ycb.c)b
xbc(b .c) y

bc 

 In what follows, we explain how this inference works in general, based on the principle and 

notations in [7]. First we consider a set Path of observable paths, and assume each (directed) 

link is uniquely identified by the set of paths including the link, so that we can label each link 

by paths including the link. We denote all labels for links by 0 c 2Path, thus the set of all links 
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are denoted by {IR E Al. For conciseness, we use abc instead of {a, b, c} as an expression 
of set R (C Path) consisting of paths a, b and c, for example. 

 Let Lr be a set of links included by path r E Path, L(R) be a set of links included by all 

paths in R C Path (i.e., L(R) = nrER Lr), and L(R) be a set of links included by at least one 
path in R (i.e., L(R) = UrER Lv). Furthermore, let A(L) denote an occurrence probability of 
"no loss" on set L of links . We assume losses on individual links in L are independent so that 

A(L) = IIIREL xR, where xR is the "no loss" rate on link lR (R E A), and also assume each X 
is positive (non-zero). 

 Then it can be shown that {xRIR E o} is uniquely determined by {A(L(R))JR E o} under 
the above assumptions. Therefore, our goal is to infer A(L(R)) for each link 1R from end-
to-end path measurement on a general path-topology. If L(R) = La for path 3a E R, then 
A(L(R)) = A(La) = Ya is simply obtained from measurement of path a. 

  Otherwise, we consider whether every pair of paths in R has a shared link besides (outside) 
L(R) or not. The cases in which all paths in R are mutually overlapped outside L(R), like a, 
b, c and d for labcd in (II) of Fig. 4.3, are unusual in actual networks. Thus, we can assume, for 
each 1R, there exists (at least) one pair of paths in R having no shared link outside L(R). For 
such a pair (a, b), it can be shown that L(R) = L(ab) and (La —L(ab)) n (Lb —L(ab)) = 0. 
For example, for labd in (II) of Fig. 4.3, we see L(abd) = {labd, labcd} = L(ab), La — L(ab) = 

{la, lacd} and Lb — L(ab) _ {lb,16d, lbcd}. Therefore, what we should do is to obtain A(L(ab)) 
for an appropriate pair (a, b) of paths in R. 

 Let us consider topological relations among La, Lb and L(ab). In general, there exist four 
cases: (A), (B), (C), (D) of Fig. 4.4. (A) can hardly appear in most of actual networks with usual 

(link-cost based) routing schemes. (B) (resp. (C)) is a single-level binary tree (resp. inverse tree), 
in which A(L(ab)) can be inferred as mentioned in the previous sections. 

 Finally, in case (D), it is difficult to detect whether the two probes enter the shared part L(ab) 
"closely" or not in end -to-end measurement of paths a and b . This also makes it difficult to infer 

A(L(ab)) directly in general. However, if there exists a set L of links including L(ab) satisfying 
that both A(L) and A(L —L(ab)) are inferred, then A(L(ab)) can be obtained as A(L)/A(L — 
L(ab)). For example, for labc in (III) of Fig. 4.3, we can infer xac from measurements Mc.b on a 
tree, and xacxabc from (Ma, Mc, Mac) on an inverse tree, and consequently xabc can be obtained. 

5 Simulation 

We examine four path-topologies shown in Fig. 4.1 and Fig . 4.2 by using the network simulator 
ns [32]. Each probe uses a 64-byte packet (ICMP echo request) . The bandwidth of each link 
is 1.5 Mbps with 10 ms of propagation delay, and a FIFO queue with 6-packet capacity . We 

generate the background traffic by 1500-byte packet TCP flows on each link, between edge 
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nodes of the link, with an infinite data source. The direction of the TCP flow is same as the flow 

of the probes on the link. The number of TCP flows on links  la, lc, lab and labcd (resp. on lb, ld 

and lcd) is one (resp. two). These background flows make queues of some links full, causing 

packet losses on the links. 
 Let {M1, M2, .., Mn} be a set of measurements needed for an inference scenario, and T; be 

the i-th trial in Mi. In this simulation, we choose a simple configuration of measurement. We 

just dispatch each trial in M1, ..., Mr,, in turn in order to perform these measurements indepen-
dently. Time intervals between executing adjacent trials (i.e., T.; and T.;+1, or Tn and T1+1) 
change randomly within some range. The range of time intervals we choose are [8,24] msec for 
Fig. 4.1, [50,80] msec for (I) of Fig. 4.2, and [70,100] msec for (II) of Fig. 4.2, respectively 

 The mean value and the minimum one of the time interval between adjacent trials are sig-
nificant. To avoid change of network states (e.g., routes of paths), it is important to complete 
the whole measurement in an adequate term. Thus, since inference requires a number of tri-
als, short time intervals between trials are preferable. On the other hand, to avoid unexpected 
correlation in different trials, time intervals should not be so short. Especially for inverse tree 

path-topologies, short intervals may cause two probes in different trials to enter a shared link 
closely, which can thus make one probe interfere with another. As the minimum value of the 
time intervals, we employ 8 msec (the transmission time of one TCP packet) for tree, 50 msec 

(greater than 8 msec x 6 packet) for single-level inverse tree, and 70 msec for two-level inverse 
tree path-topologies, respectively. 

  Time intervals between sending two probes in a trial are fixed values. For measurement Mr.r', 
the value is so short that Pr, are sent immediately after Pr (r, r' E {a, b, c, d}). For Mrr', the 
value is chosen so that probes Pr and Pr, are likely to enter a shared link closely. 

  In Mrr', we expect that if Sr,' occurs (i.e., two probes enter a shared link closely) and none 

of them are dropped on the link, then the inter-arrival time at the destination node 0 between 

the two probes is likely to be less than some threshold value. We choose 24 msec as this value. 

Although this (too simple) strategy may not be optimal, our simulations show acceptable results. 

 For inverse tree path-topologies, we also examine the cases on high bandwidth links with a 

large number of TCP flows starting randomly. The bandwidth of each link is 150 Mbps with 1 

ms of propagation delay. As the number of TCP flows, we choose 60 for lab, 80 for la, and 110 

for 1b in (I) of Fig. 4.2; 13 for la, lc and lab, 17 for labcd, and 25 for lb, Id and lcd in (II) of Fig. 4.2, 

respectively. Time intervals between executing adjacent trials change randomly within [0.6,0.9] 

msec for (I) of Fig. 4.2, and [0.7,1] msec for (II) of Fig. 4.2, respectively 

 In Fig. 4.5, Fig. 4.6 and Fig. 4.7, the upper (resp. lower) shows comparison between the 

inferred loss rates and the real loss rates of probes on some links in an example of the single-

level (resp. two-level) tree or inverse tree path-topology. On tree path-topologies in Fig. 4.5, 

inference seems quite stable and accurate, although there exists a certain bias in some cases. 

On the other hand, on inverse tree path-topologies in Fig. 4.6, we see inaccuracy and slow 
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convergence with instability. In Fig. 4.7, however, we can see better accuracy and stability in a 
high bandwidth network (with many background TCP flows). 

  In general, the above errors are mainly due to 1) correlation between links in a trial, i.e., 
spatial dependence, 2) correlation between trials in different measurements, i.e., temporal de-

pendence, and 3) measurement procedure itself. Both 1) and 2) come from the interaction 
among probes and background TCP flows exhibiting non-smooth behaviors. As examples of 
3) , in measurement Mab,Mbcand Mcd, we sometimes find that two probes in a trial do not en- 
ter a shared link so closely, and that it is not so accurate to detect whether the two probes enter 
the shared link closely or not by observing the inter-arrival time of these probes at a receiver. 

  Therefore, adequate control of the timing of dispatching trials and adequate criteria to detect 
interference between two received probes are required for accurate inference. To improve them, 
we may need to introduce more randomness and adaptability (e.g., feedback of probes' arrival 
time information from receivers to senders) in control of measurement. 

6 Concluding Remarks 

In this work, we have presented a method of inferring packet loss rates on individual links from 

end-to-end unicast probe measurement, which is applicable to various path-topologies including 

trees, inverse trees and their combinations. Simulation results have indicated potential of our 

method. 

  To establish a reliable inference method which can be widely usable in the Internet , we are 

going to examine our method in more complex scenarios and clarify the reliability and limita-

tions in practical use. 
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 Chapter 5 

 Inferring traffic flow characteristics 

 from aggregated-flow measurement 

1 Introduction 

The Internet is currently shifting towards a social and economical infrastructure, which needs to 

be operated in a reliable and efficient way, and thus whose characteristics should be measurable. 

For example, a statistical perspective of global traffic flows has been considered as an important 

key to network management, e.g., configuration, provisioning and traffic engineering. Nonethe-

less, it is expensive or sometime difficult to measure statistics of each flow directly (although 

some researches try it by capturing and analyzing raw traffic data at some routers in a network, 

e.g., [33]). Therefore, it is of practical importance to infer unobservable statistical characteris-

tics of individual flows from characteristics of the aggregated-flows, which are easily observed 

at some points in the network. 

  In this work, we propose a new approach to infer characteristics of each flow from given 

characteristics of the aggregated-flows. We regard a "flow" as a series of (some kind of) packets 

from an origin node to a destination node. Here we intend that a "node" does not correspond to 

a single host but to a large set of hosts (i.e., a network or a set of networks), and thus a "flow" 

is not related to source-destination  IP addresses directly but to a partial topological structure of 

routing paths in a network under a fixed routing scheme. Let us consider flows f 1, f2, .., f p, and 

directed-links 11, l2, .., l9. Each link li is associated with a set F2 of flows where all (and only) 

flows in the set F, pass through the link I,. The problem is to infer characteristics of each flow 

h (1 < j < p) from observation of the aggregated-flow F2 at the link 1, (1 < i < q). 
 The arrival rate, i.e., the number of arriving traffic bytes or packets in a unit time-interval, is 

a typical example of flow characteristics. The inference for arrival rates is known as the origin-

destination (OD) traffic matrix problem. Originally, the OD traffic matrix problem is to infer 

unobservable OD flow traffic volume (byte counts) from the link traffic volume (byte counts) 

measured at some routers' interfaces, and several researches studied this problem (e.g., [2], [3], 

[14] and [15]). They assumed that all OD byte counts were modeled by independent normal (or 

Poisson) distributions, and were iid over successive measurement time-intervals or something 
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like that. Then they employed the EM method to calculate the maximum likelihood estimators 

for parameters of the models, which were expected to perform well for flows having relative 

large traffic volume with a relative long measurement period. 

  Our approach is different from the above approach. It is based on the same principle as a gen-

eral framework we previously proposed for inferring network-internal (i.e., link) characteristics 

from given end-to-end path characteristics ( [7]), which can be regarded as a generalization 

and extension of [17]. We infer some characteristics (occurrence probabilities of some discrete 

states) of each flow from correlation among characteristics of aggregated-flows at different links 

with an arbitrary network (routing) topology. 

  As concerns the case of inferring the arrival rates, we infer a discrete distribution of the num-

ber of arriving packets in a measurement time-interval. Our method is applicable to models with 

general distributions that cannot be captured by normal-based parametric models. Moreover the 
computational cost is less than the above existing approach using the EM method. On the other 

hand, our method requires that the number of arrivals in a measurement time-interval should 

sometime take 0. Therefore, in this work, instead of the inference for the arrival rate of the 

whole traffic, we focus especially on the inference for the arrival rate of some kind of special 

packets, where by "special" we mean that such packets do not always arise in each measurement 
interval. Of course, this condition is relative to the scale of measurement periods, and thus a 

very short measurement period allows us to infer the arrival rates of the whole traffic . However, 
our intention is to infer some irregular events with a distribution that is not covered by the exist-

ing normal-based methods for the OD traffic matrix inference. For example, we intend to infer 

the arrival rates of (some kind of) ICMP packets, or packets with (some kind of) IP options . 
Other end-to-end events related to TCP or application layers can be regarded as targets of our 

method if routers count such events. It is expected that the dynamics of such special events on 

each flow often indicate useful information, e.g., detection of anomalous congestion , malicious 
activities, or deployment of some optional functions. 

  Note that to count such events (passages of such packets) is quite easier than to record or 

classify the source-destination IP addresses of the arriving packets . Furthermore, since a "flow" 
we mention here is related to a partial topological structure of routing paths , it is not always 
easy to map the source-destination IP addresses of the arriving packet to the flow to which the 

packet belongs. In addition, we need to treat cases that source IP addresses are not reliable (e.g., 
watching malicious packets). 

 The remainder of this chapter is organized as follows . Section 2 describes a general model 

consisting of flows, links, aggregated-flows, and characteristics of flows to be inferred . Section 3 
explains how to apply our inference method to inferring arrival rates of packets with some 

 examples  . Section 4 shows simulation results. Finally Section 5 concludes this work . 
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 (I) (II) 
      a c 

       0p4p2 

                    I0— p1—e—s.2—e—s.3 1a b c               1--e—.. 5 —e—^ 3 
      b d 

                          0 :measurement point (observable link) 

      Figure 5.1: Examples of the network model (nodes, links and flows) 

2 General model 

According to the framework in [7], we define a general model for our inference method. 

2.1 Links and flows 

Let us consider a directed-graph consisting nodes (vertexes) and directed-links (edges), and 
flows on the graph. Each flow is a series of some kind of packets from an origin node to a 
destination node along a fixed sequence of directed-links without a loop. We call a set of flows 

passing through the same link by an aggregated-flow passing through that link. 
 Link is defined as a set consisting of all observable links at which the characteristic of the 

aggregated-flow passing through the link can be obtained from observations. Typically, Link 
corresponds to a set of (incoming and/or outgoing) interfaces of one or more routers in a net-
work. Flow is defined as a set consisting of all flows passing through at least one of links in 
Link. 
 For each flow e E Flow, we define passing-link set R(e) as a set of links in Link that are 

passed through by the flow e. Note that R(e) � 0. We denote a set consisting of all passing-link 
sets by A: A def {R(e) le E Flow}. Then, for R E A, we define "distinguishable flow" fR 
as a set {eIR(e) = R} of flows. In other words, we label each (distinguishable) flow by its 

passing-link set R. We also denote a set consisting all "distinguishable flow"s by A*. In what 
follows, we use a term "flow" as a "distinguishable flow". 

 For each link l E Link, we define F1 as a set of flows (an aggregated-flow) passing through 
the link 1: F1 def {fR1l E R, R E 0}, for 1 E Link. We assume that F11 � F1 if 11 � 12. 

 Fig. 5.1 shows some examples. Both (I) and (II) have four end nodes 0, 1, 2 and 3. In 

(I), Link = {a, b, c, d}, and A = {ac, ad, bc, bd}, where fac is a flow from node 0 to 2, fad 
is from 0 to 3, fbc is from 1 to 2, and fbd is from 1 to 3, respectively. Aggregated-flows are 
Fa =Mc, fad},F'b ={fbc,Ad}, F ={fac,fbc}, and Fd ={fad,fbd}. 

 In (II), Link = {a, b, c}, and A = {a, b, c, ab, bc, abc}, where fa is a flow from node 0 to 
1, fb is from 1 to 2, ff is from 2 to 3, fab is from 0 to 2, fbc is from 1 to 3, and fabc is from 
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0 to 3, respectively. Aggregated-flows are  Fa = {fa, fab, fabc}, Fb = {fb, fab, fbc, fabc}, and 
Fc = {fc, fbc, fabc}. 

 2.2 Characteristics of flows to be inferred 

We define some notations to describe characteristics of a flow or a set of flows as follows. 

     • M = {0, 1, .., M}: A set of integers that represents states related to charac-
       teristic of a flow or a set of flows. 

     • XR(m): An event that the state of a flow fR (R E A) is m E M. 

     • V (F) (m): An event that the state of a set F of flows is m E M. If F = { fR} 
     then V ({ fR}) (m) = XR(m). 

• Y(m) def V(Fl)(m):An event that the state of an aggregated-flow F1 is 
m e M. 

  We also define the occurrence probabilities related to the above events. 

xR(m) def Pr[XR(m)] 

             y(R)(m) def Pr[U U Y(k)] 
k=0 /ER 

y(R, R') (in) def Pr[ n 1'(0) n n Y(m)] 
lER—R'1ER' 

 Roughly speaking, if {V (F) (m) jF C A*, F 0, m E M} satisfies the following condi-
tions, then we can uniquely determine unobservable probabilities {xR(m)10 < m < M, R E 
A} from observable probabilities {y(R)(m), y(R',R")(m)10 < m < M, R E ,R' E 
~', R" is a subset of R'}, where i and are appropriate subsets of 214nk. Therefore, by 
using inference of {y(R)(m)} and {y(R', R")(m)}, we can infer {xR(m)}, which is our goal. 

 The conditions that {V(F)(m)} should satisfy are: 

   1. Pr[V(F)(i) n V(F)(j)] = 0 if i j 

   2. 0 < Pr[V(F)(0)] 

    3. V (F) (i) and V (F') (j) are independent if F, F' 0, F n F' = 0, i, j E M 
    4. A certain technical condition on the relation between V (F + F') (m) and 

V(F)(si) n V(F')(s2) for Vs', s2 < m. Note that if V(F)(m) satisfies 

V(F+F')(m) = EV(F)(j)nV(F')(m— j) 
                                       j=0 

      for 0 < m < M, then it also satisfies that condition . 
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3 Inference method for arrival rates 

3.1 General description 

We explain how to infer the distribution of the arrival rates of packets on each flow. Let T 
be a measurement period, and  [(i — 1)T, iT) be the i-th measurement interval. For each i E 

{1, 2, .., n}, let wi and vR be the number of target packets arriving to aggregated-flow F1 and 
flow fR in the i-th measurement interval, respectively. The number of arrivals ranges from 0 to 
M. We assume {vjIl < i < n} is iid for each R, and let vR be the number of target packets 
arriving to flow fR in a measurement interval. We ignore the problem of transmission time 
delay and clock synchronization between different measurement points (links), and thus assume 
that wi can be observed at link 1. Our goal is to infer the distribution of vR (i.e., xR(m) aef 
Pr[vR = m] for m = 0, 1, .., M) for each flow fR, which leads to the average arrival rate 
E,no mxR(m)/T of fR. 

 We have the relation (linear equations) among observable wi and unobservable vR for each 
i E {1,2,..,n}. 

wi = E ,/)!  for 1 E Link(5.1) 
fREF( 

 If the above relation (5.1) is uniquely solvable, then we have the map HR such that vR = 
HR(wi; 1 E Link). In this case, for a sufficient large n, we can directly estimate xR(m) as: 

n xR(m)def 1E 1(v? = m) 
n i =1 

= 1 >2 1(HR(wi; 1 E Link) = m) 
n i=i 

where 1(.) denotes the indication function. 
 Hereafter, we consider cases in which relation (5.1) is not uniquely solvable. Even if each 

vR cannot be uniquely solved in a deterministic way, we show that the distribution of vR can be 
determined in a statistical way. 

 In accordance with the general model mentioned in the previous section, let V (F) (m) be 

an event that >fREF vR = m. Then XR(m) (resp. Y(m)) is an event that vR = m (resp. 

>fREF, vR = m) for F C 0*, R E 0, 1 E Link, and 0 < m < M. 
 Let us check the conditions on V in the previous section. Condition 1. is clear. Moreover 

we can show V (F + F') (m) = >r o V (F) (j) n V (F') (m — j) for 0 < m < M, so that 
condition 4. is satisfied. Whether condition 2. and 3. are satisfied or not depends on both the 

nature of the target traffic and measurement period T, and thus these conditions are requirements 

(restrictions) for our approach. Note that condition 3. is expected to be satisfied approximately 

because of diversity of traffic in actual networks. 
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  Several estimators can be derived by a framework in [7]. For the examples in the next sec-

tion, since the MIP number of each flow is 2 or 0 (in term of [7]), we can employ a basic 

estimator based on the relation among the shared-part and two independent-parts. For concise 

descriptions, we use the following definitions of  xR(m), y1(m) and y1,12(m) for R E Li and 
1,11,12 E Link. 

mm 

xR(m) def P<m]= Pr[ U XR(k)] =>2XR(k) Pr[vR 
 k=0k=0 

m 

yl(m) def y(l)(m) = Pr[U Mk)] 
k=0 

           Y1,12(m)def y(li)(m) + y(/2)(m) — y(1112)(m) 
mm 

               = Pr[ U 111(k) n U Y2 (k)] 
k=0k=o 

where y(R) (m) is defined in the previous section. 
  For a sufficient large n, we can estimate y1(m) (resp. y1,12(m)) as 91(m) (resp. 91,12(m)): 

                   -
/ (171)def1(wi < m) 

z=1 

              y1,12 (m)defnE 1(w,?<mnw42 <m) 
i=1 

Then we can show that {xR(m) I R E A, 0 < m < M} are determined from {yl(m), y1112 (m)1/, h, l 
Link, 0 < m < M} by solving the relation among xR, yl and y1112. To be more precise, we 
have the map GR,m such that xR(m) = GR,m(y1(i), y1112(i); 1,11i 12 E Link, 0 < i < m). 
Consequently we infer xR(m) as follows. 

            xR(m) def GR,m(y1(i), y1112(Z); 1,11,12 E Link, 0 < i < m) 

 3.2 Examples 

We provide some examples in Fig. 5.2. For (I) in Fig. 5.2 (modeled by (I) in Fig. 5.1), we 
observe aggregated-flows at four interfaces a, b, c and d of a router, and can obtain, ya(m), 
yb(m), 9e (m), 9d (M), yac(m), yad(m), ybc(m), and ybd(m), for 0 < m < M. Although the 
number of links is equal to the number of flows, relation (5.1) is not uniquely solvable because 
of the implicit restriction wa + wb = w? + wf. 

  Let us infer xac from ya, yc and yac, for example. We have the following relation. 

ya(m) = > xac(Z)xad(m — i) 
i=0 

yc(m) _E xac(Z)xbc(m — i) 
i=0 

yac(m) => xac(Z)xad(m — i)xbc(m — i) 
i=0 
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 (I)(II) 
t a c

—— 

b da bc 

0 :network 111 :router 

                Figure 5.2: Examples of actual networks 

 Then we can solve it inductively as follows. 

             xac(m) = Gac,m(Ya(i), yc(i), yac(i); 0 < i < m) 
def xac(0) (Eac(m) — 

 2  4Ca(m)Cc(m) 4Dac(m)  

                   1 F'ac(m) ya(0)Yc(0) + Yac(0) 

             xad(71L) =Ca(m) — xac(m)xad(0)  
xac(0) 

             xbc(m) =Cb(m)—xac(m)xbc(0)  xac (0) 

where 

m-1 

              Ca(m) def ya(m) — E xac(i)xad(m — i) 
i=1 

m-1 

              Cc(m) def Ye(711) — E xac(i)xbc(m — i) 
i=1 

m-1 

Dac(m) def yac(m) — E xac(i)xad(m — i)xbc(m — i) 
i=1 

            Eac(m)def Ca (M)+Cc(m) 1 
                  ya(0)yc(0) 

 Using this Gac,m, we can infer xac(m) as xac(m) def Gac m(y(i); 0 < i < m). Similarly, we 

infer xad (from ya, yd and yad) , xbc (from yb, yc and ybc) , and xbd (from yb, yd and ybd). Figure 

5.3 (I) shows the above relation between the flows and the aggregated-flows. 

 As mentioned previously, there exist similar estimators. For example, in the above derivation 

of an estimation for xac, we also have an estimator for xad, and so for xad (xad(m) = xad(M) — 
Xad(m — 1)). Another estimator for xad can be derived from a simple relation: ad(m) _ 

y(ac, a)(m)/y,(0). 
 For (II) in Fig. 5.2 (modeled by (II) in Fig. 5.1), we measure aggregated-flows at three routers 

a, b and c, and can obtain, ya(m), yb(m), yc(m), yab(m), yac(m) and ybe(m) for 0 < m < M. 
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        (I) (II) 

        F.c       (*to
FaFbFc 

          Figure 5.3: Relation between flows and aggregated-flows 

Since the number of flows is greater than that of links, (5.1) is not uniquely solvable. In the 

same manner as the previous example, we infer xabc (from 1a'y~andliac),XabXabc (from ya, 

yb, andYab) , XbcXabc (from yb, yc and ybc). Figure 5.3 (H) shows the above relation between the 
flows and the aggregated-flows. Consequently, we can obtain Xabc , xab , xbc , xa , xb , and xc 

separately. 

 Before ending this section, we note that to infer arrival rates as the number of arriving bytes 

(instead of arriving packets), we need to round the number of bytes by an adequate bin size that 
depends on acceptable cost and required accuracy. 

4 Simulation 

We examine two examples shown in Fig. 5.2 by using network simulator ns [32]. We dispatch a 
series of pings (i.e., ICMP echo request packets) as a target (i.e., to be inferred) flow, and a series 
of TCP packets as background traffic. We employ three types of distributions of interval time 
between adjacent pings: (U) uniform distribution in a range [0.2 x m, 1.8 x in] with average m, 

(P) Pareto distribution with average m and shape p, (E) exponential distribution with average 
m. The bandwidth of each link is 1.5 Mbps with 10 ms of propagation delay. We count the 
number of pings arriving to each aggregated-flow in each measurement interval [(i — 1)T, iT) 
for i = 1, 2, .., n, where we choose 1 or 0.5 sec as measurement period T. Then we infer the 
average arrival rate of ping (the average number of pings arriving in 1 sec, i.e., pps) on each 
flow. 
 For (I) of Fig. 5.2, we generate three independent streams of type (U) ping with average 

interval time in = 1.5 sec on flow fac, a stream of type (P) ping with m = 0.7 and p = 1.5 on 

fad, a stream of type (E) ping with m = 1.3 on fbc, and a stream of type (E) ping with m = 0.3 
on fbd, respectively. The theoretical average arrival rates (pps) are 2 (0.66 x 3) for fac, 1.4 for 

fad, 0.8 for fbc, 3.3 for fbd, respectively. 
 For (II) of Fig. 5.2, we generate three independent streams of type (U) ping with average 

interval time m = 2.5 sec on flow fa, two independent streams of type (U) ping with in = 2.5 
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on flow  fb, a stream of type (P) ping with m = 0.8 and p = 1.5 on fc, a stream of type (P) ping 
with m = 1.5 and p = 1.3 on fab, a stream of type (E) ping with m = 1.3 on fbc, and a stream 
of type (E) ping with m = 1.5 on fabc, respectively. The theoretical average arrival rates (pps) 
are 1.2 (0.4 x 3) for fa, 0.8 (0.4 x 2) for fb, 1.3 for h, 0.7 for fab, 0.8 for fbc, 0.7 for fabc, 

respectively. 

  Fig. 5.4, Fig. 5.5 and Fig. 5.6 show comparison between the real average arrival rates and the 

inferred average arrival rates in [0, t) from t = 0 to 1500 (sec). They correspond to case (I) with 
measurement period T = 1 and 0.5 sec, case (II) with T = 1 sec, and case (II) with T = 0.5 
sec, respectively. 

  In all figures, we do not see particular differences in inference accuracy among three types of 
distributions of ping intervals. In case (I), inference seems quite stable and accurate (Fig. 5.4). 
On the other hand, in case (II) with T = 1, although the inferred values roughly track the real 
values, we see inaccuracy and slow convergence with instability (Fig. 5.5), where we try to infer 
arrival rates on six individual flows from observation of only three aggregated-flows. Case (II) 
with T = 0.5 verifies that a shorter measurement period makes better stability and accuracy 
(Fig. 5.6). 

5 Concluding remarks 

In this work, we have presented a new approach to inferring statistical characteristics (occur-
rence probabilities of discrete states) of each flow from given characteristics of the aggregated-
flows. By this approach, the distribution of the number of packets arriving to each flow (in a 
measurement interval) can be inferred from observation of the aggregated-flows at some links 

(interfaces of routers). Although our method requires some condition on dynamics of arrivals, 
it is applicable to general (irregular) distributions that cannot be captured by existing meth-
ods based on normal-based parametric models. For smaller average arrival rates and shorter 
measurement time-intervals, our discrete model is expected to be more suitable. Furthermore, 
our method is computationally light-weight, which makes real-time estimations feasible. We 
have provided some examples and shown simulation results, which indicate potential of our 
approach. 
 For development and deployment of practical methods based on the approach proposed in 

this work, we have many issues to examine and solve in actual networks, such as, reliability 

(limitation), distributed measurements, and scalability. Our method may also require additional 
functions to current routers in order to count some events in a short interval. However, this 
work has provided a starting point to establish a novel method for efficient inference of flow 
characteristics, which is useful and valuable for network management. 
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 Chapter 6 

 Conclusion 

In this thesis, I have studied on characteristics measurement and inference in statistical and 

indirect ways categorized as the "network tomography", which includes two typical forms; 
"inference of flow characteristics based on aggregated -flow measurements" and "inference of 

network-internal characteristics based on end-to-end path measurements". 

  My contributions are as follows. In Chapter 2, I have shown that a common framework of 

the network tomography has been roughly established, which can give a unified viewpoint to 

various practical methods in the network tomography, and thus can give useful insights into 

advantages and disadvantages of individual inference methods. 

  In Chapter 3, I have presented a principle of determining characteristics (i.e., occurrence 

probabilities of some states) of network-internal links from given characteristics of end-to-end 

paths with an arbitrary path topology, as a general framework for the "inverse function" ap-

proach. This generalization indicates that the "inverse function" approach is also applicable to 
the "inference of flow characteristics" based on aggregated-flow measurements, which is shown 

in Chapter 5. 

  In Chapter 4, I have presented a method, based on the "inverse function" approach with 

some extension, inferring packet loss rates on individual links from end-to-end measurement 

of unicast probe packets among several senders' and receivers' nodes. This method enables 

us to deal with inverse tree path topologies (and thus, almost general path topologies), while 

preceding methods have dealt with only tree path topologies. 

 In Chapter 5, I have presented a method, based on the "inverse function" approach, inferring 

arrival rates of (some kind of) packets on individual flows from measurement of aggregated-

flows at several links (e.g., routers' interfaces). Although my method requires some condition 

on dynamics of arrivals due to the "inverse function" approach, it is applicable to general dis-

tributions that cannot be captured by preceding methods based on an MLE of normal-based 

parametric models. 

 Before ending this thesis, I remark research directions in this area. First, more deployment: 

although a number of simulation results and experimental results have been presented, there 

exists little practical use of the network tomography in the real Internet. We have many issues to 

examine and solve in actual networks, such as, reliability (limitation), distributed simultaneous 
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measurements, and scalability. 

  There exist several methods (algorithms) to approximately solve an MLE equation in the 
"MLE solver" approach as well as several methods (estimators) derived from the "inverse func-

tion" approach, in which we should consider a trade-off between computational and/or opera-

tional costs and accuracy of the inference. We should also choose a number of detailed choices 

(parameters) in measurement and inference phases of a method. Analysis and verification of 
accuracy and reliability of the inference by each concrete method in actual environments are of 

practical importance. Note that the accuracy in experiments (on simulations or real networks) 
reported in the above researches (Table. 2.1) ranges from under 1% to over 20% (in some sense 

of "relative errors"), which depends not only on the type of the inference method but on the 

situation for which the method is applied. Moreover, acceptable accuracy also depends on the 

situation. 

  Second, more applications: the framework and principle (behind two typical forms) of the 

network tomography may be applicable to other inference problems not only in the IP layer but 

also in various applications. We also expect that the third form of the network tomography will 

be found. 

  Third, beyond independence assumptions: we often make assumptions of spatial and/or tem-

poral independence to solve a problem. While several studies have dealt with the time-varying 
nature (non-stationarity), spatial independence is often essential to identifiability. Several stud-

ies have employed Bayesian inference to deal with some dependence, but prior distributions 

were often uncertain. It is a big challenge to find novel methodologies that can deal with tem-

poral and spatial dependence. 
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