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Abstract. Fisherface is a popular subspace algorithm used in face recognition, 
and it is commonly believed superior to another technique, Eigenface, due to its 
attempt to maximize the separability of training classes. However, the derived 
discriminant subspace of the training set may not easily extend to unseen 
classes, as in the case of enrollment of new subjects. In this paper, we select 
some “representative” classes for Fisherface training using a recently proposed 
neural network architecture SOM2. The experiment on ORL face database 
shows the proposed method can effectively reduce the performance variance 
and improve the generalization of Fisherface. 

1   Introduction 

Face recognition has become an active research topic for decades of years due to its 
value in both theory and application. To solve this problem, a great number of tech-
niques have been developed, among which Eigenface, a PCA-based algorithm [1], 
and Fisherface, an LDA-based algorithm [2], are very popular ones. 

Although it is argued that LDA may not always outperform PCA, especially when 
the training samples per class are insufficient or ill-sampled [6], it is a common belief 
that LDA is superior to PCA, since it tends to maximize the separability of the train-
ing classes [2]-[5]. However, in most previous work related to LDA, the classes are 
fixed during the training and testing phases, i.e. the subjects (not the images) being 
tested are always those involved in training phase [2]-[5]. 

On the other hand, training is a standalone process prior to the enrollment of sub-
jects in some large-scale face recognition test-bed. The face image database is usually 
divided into a development set for training, a gallery which contains the images to be 
enrolled, and a probe set which comprises of unknown faces to be identified [7, 8]. It 
should be noted that the training set does not contain all the subjects in the gallery, 
just as in a real problem. Once training is accomplished, re-training is impractical 
because it requires updating millions of existed records [7]. 

It remains unclear whether Fisherface, an LDA-based algorithm especially tuned 
for  training classes, can also perform well on unseen classes in the gallery. This is in 
fact a generalization problem. This paper aims at improving the generalization of 



Fisherface by selecting some “representative” training classes using a recently pro-
posed neural network architecture SOM2 which has been applied in data class visuali-
zation and interpolation [9, 10]. 

The remaining of this paper is arranged as follows: a brief review of the Eigenface 
and FisherFace algorithms is given in Section 2; The algorithm of SOM2 and its ap-
plication in training class selection of Fisherface are described in Section 3; Section 4 
gives experimental result on a publicly available face database, the ORL face data-
base; Finally conclusion is drawn in Section 5. 

2   Background 

Eigenface is a classical subspace face recognition algorithm proposed in [1]. It is 
based on the observation that all face images (one image is denoted by a sample vec-
tor whose elements are pixels concatenated in a row-wise or column-wise manner) 
reside in a relatively small subspace, called “face space”, compared with the original 
image space. Thus a classical dimensionality reduction technique PCA is employed to 
derive such a subspace, which is spanned by the eigenvectors corresponding to the m  
largest eigenvalues of the samples’ covariance matrix. These eigenvectors are re-
ferred to as Eigenfaces because their appearances are like faces when displayed as 
images. Although the features derived from Eigenfaces capture most variances of the 
samples, they are not optimal for classification purposes, for the variances are caused 
by not only the intrinsic differences of faces (the identities) but also the unwanted 
extrinsic factors such as lighting conditions. 

To overcome the drawback of Eigenface and make use of the label information of 
the training samples, several LDA-based algorithms are proposed [2]-[5], among 
which Fisherface is the most famous one. Assume that N  training samples 
{ }1 2, , , Nx x xr r r

L  belong to I  classes { }1 2, , , IX X XL , the aim of LDA is to select the 
projection matrix W  in order that the ratio of the between-class scatter and the 
within-class scatter is maximized,  i.e. 
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the number of samples in iX , and iur , ur  are the mean vector of the samples in iX  
and the grand mean vector of all samples respectively. If wS  is nonsingular, the solu-
tion is given by the eigenvectors of 1

w BS S− . However wS  is always singular in face 



recognition problems, therefore PCA is used to reduce the dimensionality of samples 
so that wS  is full ranked. In Fisherface, the dimension of this intermediate subspace is 
N c− , and then LDA is applied in this reduced space. Similarly, if these eigenvectors 
are treated as images, they are called Fisherfaces. 

It can be seen that Eigenface aims at deriving a general face subspace. If the train-
ing samples are sufficient, a test face image can also be projected into this subspace 
effectively, and the classification is performed within it. On the other hand, the atten-
tion of Fisherface is mainly focused on deriving a subspace in which the separability 
is maximized between training classes, which generally results in better classification 
performance than Eiganface with regard to these classes. However, it is not evident 
that the separability can be easily extended to unseen classes, as in the case of enroll-
ment of new subjects. Although a conjecture is proposed in [2] that “Fisherface meth-
ods, which tend to reduce within-class scatter for all classes, should produce projec-
tion directions that are also good for recognizing other faces besides the ones in the 
training set.”, it is not theoretically sound and not validated by their experiments. 

We notice that in practice the training classes of Fisherface are usually randomly 
selected from a large dataset [8]. In the worst case Fisherface may be trained on some 
“noise” (non-representative) classes, thus the discriminant performance will be poor 
when confronted with new classes. From a statistical viewpoint, since each time a 
random training set is used, the variance of performance can be large across different 
trials. Our idea is that if some “representative” training classes can be selected out of 
the whole dataset, the performance variance may be reduced and the generalization of 
Fisherface may be improved. 

3   Training Class Selection Using SOM2 

Suppose that a face database includes N  samples { }1 2, , , Nx x xr r r
L  belonging to I  

classes { }1 2, , , IX X XL , it is more often than not that only a subset of it can be used 
in Fisherface training. Our goal is to select some “representative” (prototype) classes 
out of the whole dataset to form the training set so that the generalization is improved 
compared with an arbitrary selection. Unfortunately, classical techniques of VQ fam-
ily, such as K-Means, Neural Gas [11], or SOM [12], do not provide us any solutions 
to this problem, since they only induce some “reference (codebook) vectors” without 
any class formation of them. In our case we need some more high-level techniques 
which enable density approximation in terms of classes rather than samples. In this 
paper, we use SOM2, a newly proposed neural network architecture which has been 
applied in data class visualization and interpolation, to achieve this end. 
 



 
Fig. 1. The scheme and architecture of SOM2 as “SOM of SOMs” 
 

SOM2 is short for “SOM of SOMs” [9, 10] which is a hierarchical structure of self-
organizing maps, see Fig.1. The mapped objects in SOM2 are called child SOMs, 
each trained to represent a data manifold. These child SOMs are interacting via a 
grand parent SOM, which finally generates a self-organizing map representing the 
distribution of data manifolds modeled by child SOMs. The algorithm of SOM2 con-
sists of three processes: the competitive process, the cooperative process, and the 
adaptive process. These processes are iterated until the result is converged or a maxi-
mum number of iterations is reached. 

Suppose that SOM2 comprises of K  child SOMs, each of which has L  codebook 
vectors { } ( ),1 ,, , 1,2, ,k k k LW w w k K= =

r r
L L . The competitive process includes the 

competition inside each child SOM and the competition between child SOMs (i.e. in 
the parent SOM). Let *

,
k
i jl  denotes the “best matching unit (BMU)” in the k th child 

SOM for the j th sample of the i th data class. It is given by: 
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Then the average quantization error of the k th child SOM for the i th class is deter-
mined as: 
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Finally, the “best matching map (BMM)”, i.e. the child SOM which minimizes the 
average quantization error, is chosen for i th class: 

* arg min k
i i

k
k e=  (4) 

In the cooperative process, the learning rates for the parent SOM and the child 
SOMs are calculated. The normalized learning rate for the k th child SOM from the 
i th class is: 
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And the normalized learning rate for the l th codebook vector from the j th sample of 
the i th class is: 
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Here [ ],⋅ ⋅g  and [ ],⋅ ⋅h  are the neighborhood functions of the parent and the child 

SOMs respectively, which shrink with the iteration T . ( ),d ⋅ ⋅  refers to the distance 

between two nodes in the map space, and **
,i jl  denotes the BMU in the BMM for the 

j th sample of the i th class, i.e. 
*** *

, ,
ik

i j i jl l� . 
In the adaptive process, all the codebook vectors of all the child SOMs are updated 

as follows: 
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In our setting, SOM2 is working in the “class density approximation” mode, i.e. the 
child SOMs are less than the data classes, or K I< . In this case, each child SOM 
learns the data vectors of the assigned classes in such a way that they can represent 
their average distribution. It can be regarded as an analogy of conventional SOM in 
the “point density approximation” mode: as the codebook vectors of a conventional 
SOM are “representative samples” (prototypes) of the training samples, the child 
SOMs of a SOM2 form “representative classes” of the training classes. Inside each 
child SOM, it is still flexible whether to approximate or to interpolate the data distri-
bution, depending on the number of codebook vectors and the number of samples. 

The K L×  codebook vectors ( K  classes with L  samples per class) of SOM2 are 
used as Fisherface training samples. Since these training classes are more “representa-
tive” than those randomly selected ones, they can be helpful to reduce the perform-
ance variance and improve the generalization of Fisherface, which will be validated 
in the next section. 

4   Experiments 

The ORL face database contains different images of 40 distinct subjects, with 10 
images per subject. These images includes variations of lighting conditions, facial 
expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no 



glasses). All the subjects are in the upright, fontal position, with tolerance for some 
side movement. And all the images are grayscale with a resolution of 92×112. No 
preprocess is involved in this experiment. Ten images of one subject of the ORL 
database are shown in Fig. 2. 
 

 
Fig. 2. Ten images of one sample subject from ORL face database 

Please note that we are interested in the case of insufficient training classes and in-
vestigating the generalization of Fisherface. Thus we first divide the whole database 
into two partitions: a candidate training set which includes the first 5 images of all 
subjects, and a test set including the rest 5 images of all subjects. The candidate train-
ing set is used to train SOM2, thus 40I =  and ( )5 1, , 40iN i= = L . There are 

( )K I<  child SOMs, and each one consists of 5 codebook vectors, i.e. 5L = . In this 
experiment, both the parent SOM and the child SOMs are one-dimensional maps. As 
mentioned before, these child SOMs are regarded as some “representative” classes for 
Fisherface training, and the codebook vectors within them are samples belonging to 
different training classes. 

For comparison, another K  classes are randomly selected from the candidate 
training set for Fisherface and Eigenface training. The ultimate feature dimensions are 
set to ( )1K −  and ( )1K L× −  for Fisherface and Eigenface respectively, since the 
best choices of feature dimensions for minimum recognition error are unknown be-
forehand in a real problem. Then the whole candidate training set serves as a gallery 
so that all the images in it are enrolled into the trained recognition system. At last, a 
Nearest Neighbor classifier is applied to determine the identity of each image in the 
test set based on the cos-similarity between a test image and the enrolled class centers. 
For each different K , 20 trials are conducted to determine the mean and standard 
deviations of recognition error rates. The results are listed in Table 1 and visualized in 
Fig. 3. 

Table 1. Mean error rates and standard deviations of different K  over 20 trials 

K  
Proposed Method

(Fisherface) 
Random Selection

(Fisherface) 
Random Selection 

(Eigenface) 
10 24.10%±2.52% 27.30%±3.38% 25.00%±1.43% 
15 18.43%±1.09% 19.03%±2.74% 20.40%±1.40% 
20 13.10%±0.87% 15.43%±2.01% 18.25%±1.45% 
25 10.20%±1.34% 12.53%±2.85% 17.13%±0.86% 
30 11.35%±0.69% 11.73%±1.67% 16.82%±0.94% 
35 8.97%±1.04% 11.43%±1.82% 16.00%±0.71% 

 



Several interesting discoveries can be obtained from this experiment: 1) When the 
training classes are extremely insufficient ( 10K = ), Fisherface is inferior to Eigen-
face, then it outperforms Eigenface when more classes are involved in training. This 
phenomena is quite similar to that in [6], but the cause in [6] is insufficient data per 
class for training, rather than insufficient classes in our case; 2) The performance 
variances of Eigenface are always smaller than those of Fisherface, although the 
mean error rates are higher. This can be explained from a generalization perspective: 
since Eigenface is more successful in deriving a general face representation with the 
training samples, it is more statistically stable than Fisherface; 3) Our method effec-
tively improves the generalization of Fisherface, which results in lower error rates, 
and reduces the performance variances, which are comparable to those of Eigenface. 
 

 
Fig. 3. Error rate versus number of training classes ( K ). The bars denote the mean error rates, 
and the lines denote the standard deviations over 20 trials 

5   Conclusion 

Although there have been a great number of papers published in the face recognition 
area, few of them investigate the impact of training set. A good start point is in [13], 
where some statistical properties of PCA (Eigenface) are studied. Along this line, we 
focus on the generalization problem of Fisherface in this paper. We first remind that 
the optimal discriminant subspace of the training set may not easily extend to unseen 
classes, as in the case of enrollment of new subjects; then we propose a method to 
reduce the performance variance and improve the generalization of Fisherface by 
selecting some “representative” training classes using a recently proposed neural 
network architecture SOM2. The experiment on ORL face database validates this 
method. 

In the future, some larger-scale face databases, such as FERET or CAS-PEAL-R1, 
will be used to investigate the statistical behavior of Fisherface. Another future work 
is to make use of some unique attributes of SOM2, such as topological preservation in 
both parent SOM and child SOMs, and homology between different child SOMs. 
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