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Abstract 

The linear complexity ( LC ) of a sequence has been used as a con-
venient measure of unpredictability of the sequence. However it is 

known that the LC has such an unnatural property as an extreme 

increase by one-symbol substitution, one-symbol insertion or one-

symbol deletion. The k-error linear complexity ( k-LC ) defined by 
M. Stamp et al. is very effective for reducing the above-mentioned 

unnatural property of the LC. M. Stamp et al. proposed the fast 

algorithm for the k-LC of sequences over  GF(2) with period pn, 
named as the Stamp-Martin algorithm. The Stamp-Martin algo-

rithm is derived from the Games-Chan algorithm for the LC of bi-

nary sequences with period 2n by the cost vector whose element 

means the minimum number of changes about the original sequence 

such that the k-LC does not increase and previous conditions are 

kept. The main result in this dissertation is the algorithm for the 

k-LC and the error vector which gives the k-LC of sequences over 

GF(pm) with period pn, where p is a prime and n and m are positive 
integers. This generalization is derived by the generalized Games-

Chan algorithm for the LC of sequences over GF(pm) with period 
pn. Firstly another algorithm of the k-LC of sequences over GF(2) 
with period 2n that is different from the Stamp-Martin algorithm 

is derived. Moreover this algorithm gives not only the k-LC but 

also an error vector. It is shown by the shift and offset of the cost 

that this algorithm is equivalent to the Stamp-Martin algorithm. 

Next in order to generalize the Stamp-Martin algorithm into non-

binary sequences, I discuss sequences over GF(3) with period 3n. 
The algorithm for the k-LC and the error vector of sequences over 

GF(3) with period 3n is derived. Hence the two algorithms for the 
k-LC and the error vector of sequences over GF(pm) with period pn 
is shown by the generalized Games-Chan algorithm. One of them, 

called the generalized k-LC algorithm, does not use the shift and 

offset of the cost and consists two steps as the step of computing 

the k-LC and the step of computing the error vector. Other one, 

called the generalized Stamp-Martin algorithm, use the shift and 

offset of the cost and consists only one step given the k-LC and the 

error vector at the same time. At the end of each chapter numerical 

examples of proposed algorithms in that chapter are given.
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Chapter 1 

Introduction 

1.1 Background 

The linear complexity (LC) of a sequence has been used as a con-
venient measure of unpredictability of the sequence, i.e., difficulty 

in recovering more of the sequence from a short captured segment, 

where the LC of a sequence is defined as the length of the shortest 

LFSR (linear feedback shift register) that generates the  sequence[Rup86]. 
The LC of a sequence 

{a2} = (ao, al, ...)(1.1) 

over GF(q), denoted as LC({ ail), is defined as the minimum L 
satisfying that fixed co, cl, • •, cL_i exist in GF(q) such that 

aL+i + cL+i-laL+i-1 + • • • + coai = 0 (1.2) 

for i > 0. There are many useful algorithms such as the Berlekamp-

Massey algorithm[Ber168, Mas69], the method using discrete Fourier 
transform[MS86] and the method of continuous fraction[Mi175]. There-
fore the LC is studied by many researcher and there are many 

results about the LC. However it is known that the LC has such 

an unnatural property as an extreme increase or decrease by one-

symbol substitution[IMU91, DI98], one-symbol insertion[UI96] and 
one-symbol deletion[UI97]. 

  In 1993 M. Stamp and C. F. Martin[SM93] defined the k-error 
LC (k-LC) of periodic sequences as the smallest LC that can be 
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obtained when any k or fewer of the symbols of a sequence are altered 

in one period. The k-LC is very effective for reducing the above-

mentioned unnatural property of the LC. The k-LC of sequences is 

a very natural and useful generalization of the LC. The k-LC of a 

sequence  {ai} over GF(q) with period N is defined as 

         k-LC = min{LC({ai + ei})jwH(e) < k}, (1.3) 

where {ei} = (eo, el, • • •) is a sequence over GF(q) with period N 
and WH(e) is the Hamming weight of a vector e = (eo, el, • • • , eN_i) 
with length N, especially the vector e which gives k-LC is called the 

error vector. Note that the period of e do not need the minimum 

period, i.e., it is sufficient to satisfy 

eN+i = ci for i > 0.(1.4) 

  The sphere complexity defined by C. Ding, G. Xiao and W. Shen 

in 1991 [DXS91] is essentially the same as k-LC except to don't care 
about the LC of the input sequence. The definition of the sphere 

complexity of a sequence {ai}, denoted as SC({ ail) with period N, 
is 

SC({ai}) = min{LC({ai wH(e) < k}. (1.5) 

I must note that the sphere complexity defined by Ding, Xiao and 

Shan in their book [DXS91] is earlier than the k-LC and they are 
essentially the same (but not completely the same). In this disser-
tation will use the k-LC instead of the sphere complexity in spite 

of the earlier introduction of the sphere complexity because of the 
following two reasons. Firstly the use of the term "LC" is desir-

able to show that these complexities are natural generalizations of 

the LC. Secondly an efficient algorithm has been given only for the 
k-LC of a binary sequence with period 2n. By the way the k-LC 

and the sphere complexity are not completely the same, since for an 

m-sequence over GF(q) with period N = qn — 1 the 1-LC is equal 
to the LC of an m-sequence valued n, but the 1-sphere complexity 

is equal to N — n[DXS91]. 
  Unfortunately an effective algorithm for computing the k-LC has 

been known only for sequences over GF(2) with period 2n, named 
the Stamp-Martin algorithm[SM93]. The Stamp-Martin algorithm 
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uses the Games-Chan  algorithm[GC83] for computing the LC of se-
quences over GF(2) with period 2'. In 1991 by C. Ding, G. Xiao 
and W. Shen[DXS91] the generalized Games-Chan algorithm of se-
quences over GF(pm) with period p" is proposed and independently 
the same algorithm proposed by K. Imamura and T. Moriuchi[IM93] 
in 1993. 

  The Stamp-Martin algorithm is very fast but this algorithm gives 

only the value of the k-LC. I think not only the k-LC but also the 
error vector of a sequence is very important in view of applications 

such as the field of computer science, communication systems and 

cryptography. 
  Recently the author et al. [KUI96, KUI96-2, KUI98, KUI98-2, 
KUI99] gave algorithms for the k-LC of sequences over GF(p"`) 
with period pn, p a prime. 

  Firstly another algorithm for the k-LC of sequences over GF(2) 
with period 2' was proposed by the author et al. [KUI96-2] using 
the shift and offset of the cost. Moreover equivalent between the 

Stamp-Martin algorithm and the proposed algorithm was showed 
and modified algorithms from the Stamp-Martin algorithm and the 

proposed algorithm were proposed, respectively in order to decide 
one of the error vectors in [KUI96-2]. 

  Secondly the author et al. [KUI96] showed the algorithm for the 
k-LC of sequences over GF(3) with period 3" by generalization of 
the cost vector into the cost matrix in 1996. At the same time 
this algorithm derives one of error vectors which gives the k-LC 
of the sequence. Since the algorithm uses the generalized version 
of the Games-Chan algorithm for computing the LC of sequences 
over GF(3) with period 3', more generalization of the algorithm 
into sequences over GF(p"') with period pm is possible by using the 
generalized Games-Chan algorithm for the LC of sequences over 
GF(pm) with period 

  Finally the author et al. [KUI99, KUI98-2] proposed two gener-
alized algorithm for k-LC and the error vector of sequences over 

GF(pm) with period p". One of them is the true generalization of 
the Stamp-Martin algorithm by using the concepts called the shift 

and offset of the cost [KUI98-2] . This algorithm gives the k-LC and 
an error vector at the same time in step by step. Another algorithm 
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remains about the error vector throughout all the steps for comput-
ing the k-LC but stores data to determine an error vector. After 
k-LC is decided the algorithm calculate an error vector by reading 
the stored data in the reverse order from the last step to the first 
step. 

1.2 In This Dissertation 

In This Dissertation I show the generalized algorithms for the k-
LC and the error vector of sequences over  GF(pm) with period p", 
where p is a prime and n and m are positive integers. 

  Firstly the algorithm for the k-LC and the error vector of se-

quences over GF(2) with period 2n is shown in chapter 2. I describe 
the Games-Chan algorithm for the LC and the Stamp-Martin al-

gorithm for the k-LC of sequence over GF(2) with period 2" This 
algorithm is different from the Stamp-Martin algorithm about do 

not use the shift and offset of the cost and the cost matrix not but 

the cost vector in the Stamp-Martin algorithm. I show that the 

Stamp-Martin algorithm is derived from the proposed algorithm by 

the shift and offset of the cost. Moreover the proposed algorithm can 

derive an error vector which gives the k-LC. After the algorithm for 

the k-LC is over, the algorithm for the error vector uses memories 

of the change value at the algorithm for k-LC. 

  In Chapter 3, I propose the algorithm over GF(3) with period 3n 
in order to generalize the Stamp-Martin algorithm into non-binary 

sequences. Since the concepts called the shift and offset of the cost is 

applied, I can generalize the Stamp-Martin algorithm into sequences 

over GF(3) with period 3ni at the first step for generalization into 
sequences over GF(pm) with period p' . Hence I show the generalized 
Games-Chan algorithm for the LC into sequences over GF(3) with 
period 3n. Using this algorithm the generalization of the algorithm 
for the k-LC is derived and the algorithm for the error vector is 

given originally. At the end of Chapter 3 an example, denoted as 
Example 3.1, of the performance of the proposed algorithm for the 

k-LC and the error vector and the profile of the value k-LC about 

k are given. 

  Moreover I propose more generalized algorithm for the k-LC and 
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the error vector into sequences over  GF(pm) with period p", where 
p is a prime, in Chapter 4. Firstly the generalized Games-Chan 
algorithm is described as a preparation. Then I propose the gener-

alized algorithm for the k-LC and the error vector into sequences 

over GF(pm) with period pP. This algorithm has also two parts as 
the algorithm for the k-LC and the algorithm for the error vector. 

The algorithm for the error vector executes with the memories of the 

change value after the algorithm for k-LC. Two examples are shown 

at the end of Chapter 4. In Example 4.1 the performance of the 

proposed algorithm for the k-LC and the error vector of sequences 
over GF(3) with period 33. In Example 4.2 the performance of the 
proposed algorithm for the k-LC and the error vector of sequences 
over GF(33) with period 33 also. 

  In Chapter 5 I propose the another algorithm for the k-LC and 

the error vector of sequences over GF(pm) with period p". This algo-
rithm gives the k-LC and the error vector at the same time. Firstly 

several preparations of the cost matrices of the vector a and the 

vector b and the shift and offset of the cost and so on, is described. 
Next I show the proposed algorithm for the k-LC of sequences over 

GF(pm) with period p" and the algorithm for the error vector of 
sequences over GF(pm) with period p". This algorithm for the error 
vector is different from the algorithm proposed in Chapter 4 about 

only one part for the k-LC and the error vector not but two parts 

separated the k-LC and the error vector. A numerical example, de-

noted as Example 5.1, is the performance of the algorithm for the 

k-LC and the error vector at the same time. 

  Finally I discuss the computational complexity in order to com-

pare two algorithm for the k-LC and the error vector of sequences 
over GF(pm) with period pP in Chapter 4 and Chapter 5. After 
these algorithm is written again, the time-complexity and the space-

complexity are evaluated. The time-complexity is the number of the 

addition and subtraction except the comparison and the setting vari-

able in this dissertation. The space-complexity is the number of the 

required memories in these algorithms. 

  In chapter 7, I describe the conclusions and the future works. 

The result of this work is explained in this chapter. I need discuss 

the problem of the period. More works in future are found in this 
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chapter. 
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Chapter 2 

Algorithms for the k-LC 

over GF(2) with Period  271 

2.1 Introduction 

In this chapter an alternative derivation of the Stamp-Martin algo-
rithm is given. This method can compute not only k-LC but also 
an error vector with Hamming weight < k which gives the k-LC. 
  Unfortunately the Stamp-Martin algorithm[SM93] can apply only 
for sequences over GF(2) with period 2n, because of using the 
Games-Chan algorithm[GC83] for computing the LC of sequences 
over GF(2) with period 2n. 

  In next Section 2.2 I show algorithm for computing the k-LC of 

sequences over GF(2) with period 2" similar to the Stamp-Martin 
algorithm after the Games-Chan algorithm for the LC of sequences 

over GF(2) with period 2n is given. 
  Secondly I propose another algorithm for the k-LC of sequences 

over GF(2) with period 2n, denoted as the Algorithm I in Section 
2.3. By the extended cost matrix from the cost vector at the Stamp-

Martin algorithm, the Algorithm I is derived. And the Algorithm I 

is executed without the shift and offset of the cost matrix. Therefore 

it is possible that the value of k is fixed and the vector a is given 

simply at each step. Moreover I propose the algorithm for the error 

vector in the Algorithm I by using the stored data about the value 

of changing at each step. The validity of the Algorithm I is shown 
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by the property of the Algorithm I as Proposition 2.1. An example 

of the Algorithm I, denoted as Example 2.1, is given in the end of 

this section. 

  In Section 2.4 I try to derive the Stamp-Martin algorithm from 

the Algorithm I proposed in Section 2.2 by rewriting the Algorithm 

I into the Algorithm II by using the shift and offset of the cost 

matrix. It is clear to be equivalent between the Algorithm I and the 

Stamp-Martin algorithm. 

  I propose the part of computing an error vector of Hamming 

weight < k which gives the k-LC about the Algorithm I in Section 

2.5. An efficient computation is necessary not only of the k-LC but 

also of an error vector, since the number of possible candidates of 

the error vector 

           (2fl)                                         (2.1) 
 0<i<k2 

is very large number even for moderate n and k. 
  At the end of this chapter an example, denoted Example 2.2, of 

the performance of Algorithm II is given. 

2.2 The Stamp-Martin Algorithm 

In this section I briefly review the Games-Chan algorithm[GC83] 
and the Stamp-Martin algorithm[SM93]. 

  In this chapter I will consider a periodic sequence 

{ai} = {ao, al, a2i • • •} (2.2) 
over GF(2) with period N = 2n for n > 1. Let 

                  d = (ao, al, ... , aN-1)•(2 .3) 

I will write a as 

              = (40) , 41)),(2.4) 
where 

Q(0) _ (ao, al, ... , aN/2_1), 
             a(1)_(aN/2, aN/2+1, ... , aN-1)•(2.5) 

  For a binary periodic sequence (2.2) there exists the following fast 
algorithm[GC83] for computing the LC of {ai} denoted as LC({ ail) . 
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[Games-Chan Algorithm] 

 1. Initial values: 

   N  = 2', LC = 0, a = Eq.(2.3). 

 2. Repeat the following (a)N(c) until N = 1. 

   (a) From the given a in (2.4), compute 
         = (bo,bl,...,biso_i) by 

b = a(0) + a(1).(2.6) 

   (b) If g = 0, then 
d(0), N F- N/2 

      and go to (a). 

   (c) If b 0 0, then 
dd* -b, LC—LC+N/2, N4—N/2 

      and go to (a). 

3.Ifa00 for N=1,then 

LC4-LC+1. 

  The final LC is equal to the LC({ai}). 

  The basic logic of the Stamp-Martin algorithm[SM93] for com-
puting the k-LC of a binary sequence (2.2) with period N = 2', 
denoted as k-LC({ai}), is "apply the Games-Chan algorithm, but if 
b 0 and I can force b = 0, I do so". The algorithm uses the cost 
of current element ai, denoted as A(i), as a measure of the "cost" 
(in terms of the number of bit changes required in the original se-
quence (2.3)) of changing the current element ai without disturbing 
the results of any previous steps. The algorithm can be summarized 

as follows (I use here some notations different from those used in 
[SM93], so that the comparison with our method stated in the next 
section will become more obvious). 
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[Stamp-Martin Algorithm] 
 1. Initial values: 

 N  =  2', LC = 0, a = Eq.(2.3). 
A(0)=A(1)=•••= A(N —1)=1. 

 2. Repeat the following (a)N(c). until N = 1. 

   (a) From the given a in (2.4), compute 
b = (bo,b1, • • •,bN/2-1) by 

                   = a(0) + a(1).(2.7) 

      Compute T B by 

TB = E bi min(A(i), A(i + N/2)) 
0<i<N/2-1 

   (b) If TB < k, then firstly 
k4-k—TB; N*—N/2 

      and secondly compute A.=  (A(0), A(1), • • , A(N —1)) and 
a = (ao,ai,...,aN-1) by 

      • if bi = 1 and A(i) < A(i + N) then 

A(i) — A(i + N) — A(i); ai 4— ai + 1 

      • if bi = 1 and A(i) > A(i + N) then 

                A(i) *— A(i) — A(i + N) 

       • if bi = 0 then 

               A(i) *— A(i) + A(i + N) 

      and thirdly 

d — (ao, a1, ... , aN-1). 

       If N 1, then go to (a). 

    (c) If TB > k, then firstly 
N4—N/2; LC4—LC+N 

       and secondly compute A = (A(0), A(1), • • • , A(N —1)) and 
a = (ao, a1, ... , aN_i) by 
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              A(i)  f— min(A(i), A(i + N)) 

       and 

ai i — ai + ai+N 

      If N # 1, then go to (a). 

 3. If a: 0 and A(0) > k for N = 1, then 

LC*—LC+1. 

  The final LC is equal to the k-LC({ai}). 

2.3 Another Algorithm for Computing the k-
   LC 

In this section I give a new method for computing the k-LC of 
binary sequence (2.2) with period 2n by applying the method of 
[KUI96]. Some basic properties of the algorithm are also shown. The 
relation between our algorithm and the Stamp-Martin algorithm will 

be shown in the next section. 

  Instead of the cost vector A = (A(0), A(1), • • • , A(N — 1)) in the 
Stamp-Martin algorithm I will use the following 2 x N cost matrix 

A = [A(j, i)], (j = 0,1; 0 < i < N — 1, N = 2') at the step u, 
and cost vector B = (B0, B1i • • • , BN/2_1) of the vector b at the step 
u, A(j, i) is defined as the minimum number of changes about the 
original sequence (2.3) with period N = 2' necessary and sufficient 
for changing the current element ai to ai + j with the condition that 
all the previous b = 0's are kept unchanged. The definition of Bi is 
similar to that of A(j, i) except that I change bi to 0. 
  The Games-Chan algorithm for a binary sequence with period 

2' consists of n + 1 steps and at the step u, (0 < u < n), the 
length of the vector a is equal to 2n-'2. I need to find formulas 

for determining (i) the cost vector B at the step u and (ii) the 
cost matrix A' = [A'(j, i)] at the step u + 1 from the cost matrix 
A = [A(j, i)] and the vector b at the step u. 

  Note that bi = ai + ai+N/2 and Bi is the cost (in terms of the 
number of symbol changes required in the original sequence (2.3)) 
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                                                        ti 

of making  bi to 0 with the condition that the previousb = 0's are 
kept unchanged. Making bi to 0 with such a condition is performed 
by changing ai and aN/2+i to ai + do and aN/2+i + d1i respectively, 
where do and d1 must satisfy (ai + do) + (aN/2+i + d1) = 0. Therefore 
I have 

Bi = min (A(j, i) + A(j + bi, N/2 + i)) (2.8) 
jE{0,1} 

  Let a' = (do, ai, • • • , 412_1) be the vector a at the step u + 1. 
There are two cases; (i) ai = ai if I can make b = 0 at the step 
u and (ii) ai = ai + aN/2+i otherwise. Note that A'(j, i) is the 
cost of making a'i to di + j with the condition that the previous 
b = 0's are unchanged. Therefore making a2 to ai + j must be 
performed in both (i) and (ii) by changing ai and aN2+i to ai + do 
and aN/2+i + d1, respectively, where do and d1 must satisfy ai + do = 

ai + j and (ai + do) + (aN/2+i + d1) = ai + aN/2+i in case of (i), and 
(ai+do)+(aN/2+i+d1) = (ai+aN2+i)+j in case of (ii), respectively. 
Those two cases can be decided by using the total cost 

TB=Bo+B1+•••+BNI2_1 (2.9) 

at the step u, i.e., the case (i) corresponds to TB < k and the case 
(ii) to TB > k. Therefore I have 

A'(j, i) = A(j, i) + A(j + bi, N/2 + i) if TB < k, (2.10) 

A'(j, i) = min (A(s, i) + A(j + s, N/2 + i)) if TB > k. (2.11) 
sE{0,1} 

 I will define a 2 x N matrix D = D(u) _ [1D (j, i)], where D(j, i) 
is a binary 2-tuple, j = 0,1, 0 < i < N — 1 and N = 2'. The 
element D(j, i) = (do, d1) is defined as 

A'(j, i) = A(do, i) + A(d1i N/2 + i). (2.12) 

From (2.10)-(2.12) I have 

do = j, d1 = j + bi, if TB < k, (2.13) 

do = s, d1 = j + s, if TB > k, (2.14) 
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where s is a solution of  A'(j,  i) = A(s, i) + A(j + s, N/2 + i) in 
(2.11). It may happen that the 2-tuple (do, d1) in (2.14) is not 
unique because of non-uniqueness of s in (2.11). 

  I have the following algorithm for computing the k-LC. 

[Algorithm I] 
  1. Initial values: 

N = 2', LC = 0, Et=  Eq.(2.3). 
A(0,i)=0, A(1, i) = 1 for 0 < i < N — 1 

 2. Repeat the following (a)t(c) until N = 1. 

    (a) From the given a in (2.4), compute 
b = (bo, b1i • • • , bN/2_1) by (2.7) and its cost vector B = 

       (B0, B1, • • • , BN/2-1) by (2.8) and TB by (2.9). 
   (b) If TB < k, then firstly 

       • compute the cost matrix A' = [A'(j, i)] and the matrix 
      D = [B(.0)1, (D(j, i) = (do, d1)), at the next step by 
       (2.10) and (2.13), respectively, 

       and secondly 

• N <— N/2, a" a"(0), A — A'. 
      If N 1, then go to (a). 

   (c) If TB > k, then firstly 
       • compute the cost matrix A' = [A'(j, i)] and the matrix 

     D = [BUM], (D(j, i) = (do, d1)), at the next step by 
       (2.11) and (2.14), respectively, 

       and secondly 

• N 4— N/2, a" a"(0) + a"(1), A *— A', LC 4- LC + 
        N. 

      If N 1, then go to (a). 

 3. If A(ao, 0) > k for N = 1, then 

                    LC *— LC + 1. 

The final LC is equal to the k-LC({ai}). 
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  The validity of the Algorithm I can be proved by the following 

proposition. 
Proposition 2.1 

  Let MAS(u) at the step u, (0  <  u < n), be defined by 

  MAS(u) = >2 min(A(0, i), A(1, i)), N = 2"-'°. (2.15) 
0<i<N-1 

Let TB(u) be TB at the step u. I have the following (i)-(iv). 

(i) MAS(u) < TB(u). 

(ii) MAS(u + 1) = TB(u) if TB(u) < k. 

(iii) MAS(u + 1) = MAS(u) if TB(u) > k. 

(iv) 0 = MAS(0) < MAS(1) < • • • < MAS(n) < k. 

proof 

  (i) This is obvious from (2.8), (2.9) and (2.15). 
 (ii) If TB(u) < k, then A'(j,i) = A(j, i) +A(j +bi, N/2+i) from 

(2.12) and (2.14). I have 

   MAS(u + 1) = >2 min(A'(0, i), A'(1, i)) = TB(u) 
0<i<N/2-1 

from (2.8). 
  (iii) This is also obvious from (2.11) and (2.15). 

  (iv) MAS(0) = 0 is trivial from the initial values. The remaining 
relation can be easily proven from (ii) and (iii) by the induction on 
u. 

  The validity of the Algorithm I is now clear, since its basic logic is 

the same as that of the Stamp-Martin algorithm and Proposition2.1 

ensures that min(A(0, 0), A(1, 0)) < k, which means that at least 
one of the minimum cost necessary and sufficient for changing ao at 

the step n to either ao + 0 or ao + 1 is not greater than k. In section 

2.5 I will give a method for computing an error vector by reading 

the matrices D(n), D(n — 1), • •, D(1) in this order. 
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[Example 2.1] 
  Consider the 2-LC (i.e., k = 2) of the following binary sequence 

with period 32 =  25 defined by 

a = (0001 1010 1001 1010 1000 1010 1001 1010). (2.16) 

(Step 0) A(0, i) = 0, A(1, i) = 1, for 0 < i < 31. 
b = (1001 0000 0000 0000), B = (1001 0000 0000 0000), 
TB=2=k, LC=O. 

(Step 1) a = (0001 1010 1001 1010), 
A(0, 0 < i < 15) = (1001 0000 0000 0000), 
A(1, 0 < i < 15) = (1221 2222 2222 2222). 
13(o, *) = (01, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00), 
13(1,*)=(10,11,11,10, 11,11,11,11, 11,11,11,11, 11, 11, 11, 11), 
b = (1000 0000), B = (1001 0000), TB = 2 = k, LC = 

     0. 

(Step 2) Et=  (0001 1010), 
A(0, 0 < i < 7) = (3001 0000), 
A(1, 0 < i < 7) = (1443 4444), 

     y 

   13(0, 0 < i < 7) = (01, 00, 00, 00, 00, 00, 00, 00), 
13(1, 0 < i < 7) = (10, 11,11, 11, 11, 11, 11, 11), 
b=(1011), B=(1o43), TB=8>k=2, 
LC=0+4=4. 

(Step 3) d = (10 11), 
A(0, 0 < i < 3) = (3, 0, 0, 1), A(1, 0 < i < 3) = (1, 4, 4, 3), 
1D(0, 0 < i < 3) = (00, 00, 00, 00), 13(1, 0 < i < 3) _ 
(10, 01, 01, 10), 
b=(01), B=(33), TB=6>k=2, LC=4+2=6. 

(Step 4) a = (0 1), A(0, 0 < i < 1) = (3, 1), A(1, 0 < i < 
1) = (1, 3), 
D(0, 0 < i < 1) = (00, 00), 13(1,0<i<1)=(10, 01), 
b=(1), B=(2), TB=2=k, LC=6+0=6. 

(Step 5) d' = (0), A(0, 0) = 6, A(1, 0) = 2, 
13(0, 0) = (01), B(1, 0) = (10), A(0, 0) = 6 > k = 2, 
LC=6+1=7. 
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  I have  k-LC({ai}) = 7. 

2.4 Derivation of the Stamp-Martin Algorithm 

In this section I will show that the Stamp-Martin algorithm can be 
obtained from the Algorithm I by making 

A(0, 0) = A(0, 1) = • • • = A(0, N - 1) = 0, N = 2n_u (2.17) 

at each step u, (0 < u < n). 
  Let a = (ao, a1, • • • , ay_1) and A = [A(j, i)] be the vector a and 

the cost matrix at the step u. Let a' = (ao, ail, • • • , 412_1) and 
A' = [A'(j, i)] be the vector a and the cost matrix at the step u + 1. 
Assume that (2.17) holds until at the step u. In order to make 
(2.17) true at step u + 1, I introduce two operations, i.e., "shift" 
and "offset" as follows. The "shift" is used to make 0 < A'(0, i) < 
A'(1, i) when 0 < A'(1, i) < A'(0, i) (inclusion of "=" is arbitrary) 
by ai i- aZ + 1, A'(0, i) - A'(1, i) and A'(1, i) F- A'(0, i). The 
"offset" is used to make A'(0

, i) = 0 when 0 < A'(0, i) < A'(1, i) 
by A'(0, i) E A'(0, i) - A'(0, i), A'(1, i) <- A'(1, i) - A'(0, i) and 
k F- k - A1(0,0. Assume that (2.17) holds at step u. Then (2.8) 
becomes 

   _0if bi = 0,     B' min(A(1, i), A(1, N/2 + i)) if bi = 1. (2.18) 

  First consider the case TB < k. 

• If bi = 1 and A(1, i) < A(1, N/2 + i), then from (2.10) I have 
   0 < A'(1, i) = A(1, i) < A(1, N/2 + i) = A'(0, i) and I need 

   in general both of "shift" and "offset", i.e., I make a change 

   of A'(1, i) - A(1, N/2 + i) - A(1, i), di 4- ai + 1 and k 
k - A(1, N/2 +i). 

• If bi = 1 and A(1, i) > A(1, N/2 + i), then from (2.10) I have 
A'(0, i) = A(1, N/2 + i) and A'(1, i) = A(1, i). In this case 

    "shift" is not necessary but I may need "off
set", i.e., I make 

   a change of A'(1, i) F- A(1, i) - A(1, N/2 + i) and k 4 -- k - 
   A(1, N/2 + i). 
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• If  bi = 0, then I have A'(0, i) = 0 and A'(1, i) = A'(1, i) + 
   A(1, N/2 + i) from (2.10). 

  From (2.18) the reduction of k is in total k <- k -TB and notice 
that k - TB > 0 by Proposition 2.1. 

  Next consider the case TB > k. 

• From (2.11) I have A'(0, i) = 0 and A'(1, i) = min(A(1, i), A(1, N/2+ 
   i)). 

  If A(0, 0) = 0 is assumed in case of N = 1, then the increase of 
LC happens if and only if ao = 1 and A(1, 0) > k. 

  Above discussion gives the following modified version of the Al-

gorithm I. 

[Algorithm II] 

 1. Initial values: 

N=2', LC=0, d=Eq.(2.3). 
A(1,0) = A(1,1) = • • = A(1, N - 1) = 1. 

 2. Repeat the following (a),--,(c) until N = 1. 

   (a) From the given a in (2.4), compute 
b = (be, b1i • • • , bN/2_1) by (2.9), and the cost vector B = 

       (B0, B1, • • • , BN/2_1) by (2.18) and TB by (2.9). 
   (b) If TB < k, then firstly 

k - k - TB; N4-N/2 

      and secondly compute A = (A(1, 0), A(1, 1), • • • , A(1, N - 
        1)) and a = (ao, al, • • • , a1V_i) by 

      • if bi = 1 and A(i) < A(i + N) then 

ai E- ai + 1; A(i) - A(i + N) - A(i) 

      • if bi = 1 and A(i) > A(i + N) then 

A(i) F- A(i) - A(i + N) 

      • if bi = 0 then 
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               A(i)  <- A(i) + A(i + N) 

      and thirdly 

[L 4--- (ao,(11,...,aN-1). 

      If N # 1, then go to (a). 

   (c) If TB > k, then firstly 
N E- N/2; LC F- LC + N 

      and secondly compute A = (A(0), A(1), • • • , A(N -1)) and 
a= (ao,ai,••.,aN-1) by 

              A(i) - min(A(i), A(i + N)), 
ai ai + ai+N. 

      If N 1, then go to (a). 

 3. If a" � 0 and A(1, 0) > k for N = 1, then 

LC<-LC+1. 

  The final LC is equal to the k-LC({ai}). 

  It is clear that Algorithm II is the same as the Stamp-Martin 
algorithm. 

2.5 Computation of an Error Vector 

It is also important to find an error vector effectively together with 
the k-LC. Algorithm I is very suitable to find an error vector 

e= (eo, e1, • • • , eN-1), N = 2n, (2.19) 

which satisfies that (i)-0<i<N-1 ei < k and (ii) the LC of the binary 
sequence corresponding to a + e instead of the vector a is equal to 

k-LC({ai}). 
  After finishing the Algorithm I, I can compute an error vector 

(2.19) by reading the matrices D(u)'s, (1 < u < n), in the order 
from u = n to u = 1 in the following way. I use the following vector 

d(u) = (do, dl, • • • , 4-1), N = 2', (2.20) 
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where  di = (do,i, d1,i) is equal to either D(0, i) or D(1, i) with D(j, i) 
being the (j, i)-th element of the matrix D(u) at the step u. 

[Computation of an Error Vector] 
  1. Initial values: 

    Start from u = n and N = 2l—u = 1. Let d = (s) be the vector 
   d at step n. Let A(j, 0) be the element of the matrix A at 

                              ti 

   step n. LetD(0, 0) andD(1, 0) be the elements of the matrix 
   D(n) at step n. Compute d(n) = (do, d1) by d(n) = D(s, 0) if 

                      ti 

   A(s, 0) < k andd(n) = D(s + 1, 0) if A(s, 0) > k. 
 2. Repeat the following (a),--,(b) until u = 1 and N = 2n-1. 

    (a) Given the vector d(u) of (2.20) with di = (do, d1,i). Also 
      given the matrix D'(u — 1) = [D'(j, i)], (j = 0, 1; 0 < i < 

       2N — 1). 
       Compute vector d' (u — 1) = (do, di, • • • , d'2N_1) with di = 

      (do,i, di,i) by 

di = D'(do i, i), dN+i = D'(d1,i, N+i), (0 < i < N-1). 
                                       (2.21) 
    (b) N<-2N,u—u-1 

      If u � 1 and N # 2', then go to (a). 
 3. If u = 1 and N = 2n-1, write 

d(1) = ((do,o, d1,o), (41, d1,1), ... , (do,N-1, d1,N-1)) (2.22) 
    Compute an error vector (2.19) by 

ei = do,i, eN+i = d1,i, (0 < i < N — 1). (2.23) 

[Example 2.2] 
Consider the sequence (2.16) in Example 2.1 and k = 2. All the 
necessary data are given by Example 2.1. This computation runs as 

follows. 
          ti 

(Step 5)d(5) = (1, 0), since d = (0), A(0, 0) = 6 > k = 2, 
A(1, 0) = 2, and 
D(1, 0) = (1, 0) 
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                    ti 

(Step 4)d(4)  _ (do, dl) = ((1, 0), (0, 0)), since from the matrix 
  D(4) 

   in Example 1 and d(5), I have do = 13'(1, 0) = (1, 0) and d1 
= D'(0,1) = (0, 0) 

(Step 3) d(3) = ((1, 0), (0, 0),.(0, 0), (0, 0)). 

(Step 2) d(2) = ((1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)). 

(Step 1) d(1) = ((1, 0), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), 
(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)). 

I have an error vector 

e= (1000 0000 0000 0000 0001 0000 0000 0000), (2.24) 

since I have e0 = e19 = 1 from d(1). 

2.6 Conclusion 

Another method for computing the k-LC of a binary sequence with 
period 2' was given (Algorithm I in section 2.3). 
  An alternative derivation of the Stamp-Martin algorithm was 

shown to be possible from the Algorithm I (Algorithm II in sec-
tion 2.4). 
  Computation of an error vector after finding the k-LC was given 

by using the Algorithm I. The similar computation is possible by 

using the Algorithm II if I include the matrix D(u) with suitable 
modifications corresponding to the shifts. I have a conjecture about 
the computation of an error vector using the Stamp-Martin algo-
rithm which does not use the matrices D(u)'s. 

  Since the Games-Chan algorithm was generalized to the non-

binary sequences, the Stamp-Martin algorithm for binary sequences 

can be generalized to the one for sequences over GF(pm) with period 
pfl, where p is an odd prime. Such a generalization is truly possible 
as shown by the authors [KUI96] . 
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Chapter 3 

An Algorithm for the k-LC 

over GF(3) with period  3n 

3.1 Introduction 

Unfortunately an effective algorithm for computing the k-LC has 
been known only for sequences over GF(2) with period 2', which 
is called the Stamp-Martin algorithm[SM93]. The Stamp-Martin 
algorithm uses the Games-Chan algorithm [GC83] for computing 
the LC of sequences over GF(2) with period 2n. Since the Games-
Chan algorithm was generalized to the sequences over GF(pm) with 
period p", p a prime, by Ding, Xiao, and Shan[DXS91] and also 
by Imamura and Moriuchi[IM93], it seems to be possible to find 
a similar algorithm for the k-LC of sequences over GF(pm) with 
period pl. In this chapter I propose an algorithm for the k-LC of 
sequences over GF(3) with period 3" , i.e. in case of p = 3 and 
m = 1, as the first step for generalization of the Stamp-Martin 

algorithm into sequences GF(pm) with period pn. The algorithm 
is derived by the generalized Games-Chan algorithm for the LC of 

sequences over GF(3) with period 3" and using the modified cost 
not the same as that used in the Stamp-Martin algorithm. 

  In Section 3.2 I explain the generalized Games-Chan algorithm 

for the LC of sequences over GF(3) with period 3", since this algo-
rithm is applied in derivation of the proposed algorithm. 

  Secondly after several preparations of the cost matrices about 
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the vector d and the vector  b I derive an algorithm for the k-LC of 
sequences over GF(3) with period 3'. Moreover the property of the 
algorithm is shown as Proposition 3.1 in the end of Section 3.3. 

  In Section 3.4 I give a method for computing an error vector, 

which gives the k-LC, of sequences over GF(3) with period 3'. This 
algorithm uses the stored data about the value of changing at the 

algorithm for the k-LC after the k-LC is decided. It is easy in 

principle to generalize the method for sequences over GF(pm) with 
period pn. 

  Finally I show an example, denoted as Example 3.1, of sequences 
over GF(3) with period 3'. This example consists of the perfor-
mance of the proposed algorithm and the profile of the k-LC about 
the value k in Section 3.5. 

3.2 Generalization of the Games-Chan Algo-

    rithm into GF(3) with Period 3' 

In this chapter I consider only case that given sequences are over 

GF(3) with period 37z, since I want to show an algorithm for the 
k-LC of sequences over GF(3) with period 3'. 

  Let fail = {ao, a1, a2i • • .} be a sequence over GF(3) with period 
N = 3' and 

= (ao, al, .••,aN -1)•(3.1) 
I will write d as 

             d = (a(0), d(1), a(2)),(3.2) 
where 
             d

/(0) =(ao, ai, ... ,am-i),              d(1) =(aM, aM+1, ... , a2M-1), (3.3) d(2) = (a2M, a2M+1, ... , a3M-1), 
M = N/3. 

  The generalized Games-Chan algorithm for computing the LC of 

{ai} , denote as LC({ai}), is written as follows. 

[ Generalized Games-Chan algorithm over GF(3) ] 

(i) Initial values: 
N=3', LC=0, a"=Eq.(3.1). 
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(ii) Repeat the following  0)r3) until N = 1. 
   0). From the given a in (3.2), compute 

         ti 

b = (bo, bi, ... , bM-1), 
c= (co, cl, .•• , cm-4), M = N/3 by 

                = a(0) + a(1) + a"(2), } (3.4) c = 2a(0) + ad(1). 

1).Ifb=c=O,then 

a" F- a(o), N N/3 

       and go to 0). 
   2). If b = O and c 0, then 

a" 4-- c, LC 4- LC + N/3, N 4- N/3 

       and go to 0). 

   3). If b 0, then 

<-b, LC4-LC+2N/3, N -N/3 

       and go to 0). 

(iii) If a 0 0 with N = 1, then 

LC*-LC+1. 

   The final LC is equal to LC({ai}).^ 

3.3 The proposed Algorithm for Computation 
    the k-LC 

The k-LC of a sequence {ai} over GF(3) with period N = 3". is 
defined as 

k-LC({ai}) = min{LC({ai + ei})1wH(g) < k}, (3.5) 

where {ei} is a sequence over GF(3) with period N called the error 
sequence, e = (eo, e1, • • • , eN_1) called the error vector and WH(e) is 
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the Hamming weight of the vector  e If I have no effective algorithm 

for computing the k-LC, I must repeatedly apply the generalized 

Games-Chan algorithm at the worst case 

2i ( N(3.6) 
_o 

times to the sequences {ai + ei}'s with different ei's. However (3.6) 
is very large when either N or k is large. 

  In order to compute the k-LC of a in (3.1), I must check, in the 
step (ii) of the generalized Games-Chan algorithm, whether I can 
make first 1) b = 5= 0 and next 2) b = (Cif  1) is impossible under the 
condition that the minimum number of changes about the original a 

of length N = 3" necessary and sufficient for obtaining 1) or 2) with 
                                                              ti 

the additional condition that all the previous b =0and c=0are 
kept the same. This check can be made conveniently by introducing 
the following costs of a, b and e. 

  First the cost of a = (ao, al, • • • , aN_1), N = 3771, is denoted as 
3 x N matrix A = [A~ i] (j = 0, 1, 2; i = 0, 1, • • , N — 1), where 
A3 ,i is defined as the minimum number of changes about the original 
sequence with period 3n necessary and sufficient for changing ai to 

ai + j with the condition that all the previous b = 0 and 5= 0 are 
kept the same. 

                       ti 

  Secondly the cost ofb = (bo, b1i • • • , bM_1), M = N/3, is denoted 
as B = (B0, Bl, • • , BM_1), where Bi is defined as the minimum 
number of changes about the original sequences with period 3n nec-
essary and sufficient for changing bi to 0 with the condition that all 
the previous b = 0 and 5= 0 are kept the same. 

  Thirdly the cost of c = (co, c1, , cM_1) is denoted as C = 
(Co, Cl, • • • , CM_1), where Ci is defied in the same way as Bi pro-
vided the condition bi = ci = 0 is substituted instead of the condi-

tion bi = 0. 

  When d = (ao, a1, • • , aN_1) and its cost A = [A;,2] are given in 
step (ii), I can compute the cost B = (B0, B1,•• , BM_1), M = N/3, 
and the cost C = (Co, C1i • • • , CM_1) in the following way. 
  The cost Bi is equal to the minimum value of Ad o,i + Ad1,i+M + 
Ad2 ,i+2M under the condition that do + d1 + d2 = 2b2, or equivalently 
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 do = s, dl = t, d2 = 2(s + t + bi) with s, t E {0, 1, 2}, since bi = 
ai+ai+M+ai+2M and I try to make (ai + do) +(ai+M+dl)+(6d+2M+ 
d2) = 0. Therefore I have 

Bi = min [As,i + At,i+M + A2(s+t+bi),i+2M]• (3.7)                  s,tE{0,1,2} 

                ti 

As to the costC = (Co, C1, • • , CM_1), I try to make (ai + do) + 
(ai+M + d1) + (ai+2M + d2) = 0 and 2(ai + do) + (ai+M +'d1) = 0, 
which gives two conditions of do + d1 + d2 = 2bi and 2d0 + d1 = 2c1 

and three solutions of do = s, dl = s + 2ci and d2 = s + 2bi + ci with 

s E {0, 1, 2}. Therefore I have 

Ci = min [A3,i + As+2ci,i+M + As+2bi+ci,i+2M] • (3.8) 3E{0,1,2} 

It is obvious from (3.7) and (3.8) that Hi < Ci. 
  The decision of 1), 2) and 3) in step (ii) is made by 

TB=Bo+Bi+• •+BM_l, }(3 .9) 
TC=Co+CI+•••+CM_l 

in the following way, i.e., 

               1). <—> TC<k, 
            2). <---> TB < k <TC,(3.10) 

              3). <----> k < TB. 

  Let a = (ao, ai • , a'M_1), M = N/3, be obtained from a = 
(ao, al, • • • , aN_l) by choosing one of 1), 2) or 3) in step (ii). The 
computation of the cost A' _ [A';,i] of d' can be made in the following 
way. 

  First consider the case of 1), to find I try to make a2 = ai to 
ai +j by substituting ai + do, ai+M + d1 and ai+2M + d2 into ai, ai+M 
and ai+2M, respectively, under the condition that I keep (ai + do) + 
(ai+M+dl)+(ai+2M+d2) = 0 and 2(ai+do)+(ai+M+dl) = 0. These 
conditions on do, d1, d2 become as do = j, do + d1 + d2 = 2bi and 
2do+d1 = 2ci, or equivalently do = j, d1 = j+2ci and d2 = j+2bi+ci. 
Therefore I have 

               = A;,i + Aj+2ci,i+M + A;+2bi+ci,i+2M (3.11) 
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in case of 1). 
  Second consider the case of 2), to find  A/3,i I try to make aZ = 

ci = 2ai + ai+M to a? + j by substituting ai + do, ai+M + d1 and 
ai+2M+d2 into ai, ai+M and ai+2M, respectively, under the condition 

that (ai + do) + (ai+M + di) + (ai+2M + d2) = 0. The condition on do, 
d1 and d2 becomes 2do+d1 = j and do+d1+d2 = 2bi, or equivalently 
do = s E {0, 1, 2}, d1 = s + j and d2 = s + 2(bi + j). Therefore I 
have 

A;  = min {As,i + As+.j,i+M + As+2(b,+,j),I+2M} (3.12)              sE{o,1,2} 

in case of 2). 
  Third consider the case of 3), to find Ai I try to make ai = 

bi = ai + ai+M + ai+2M to ai + j by substituting ai + do, ai-FM + d1 
and ai+2M + d2 into ai, ai+M and ai+2M, respectively. The 3-tuple 

(do, d1, d2) must satisfy do + d1 + d2 = j in this case and I have 

         = min {Ai + At,i+M + A;+2(s+t),2+2M}(3.13)                s,tE{0,1,2} 

in case of 3). 
  Above preparations give the following algorithm for computing 

the k-LC of {ai} over GF(3) with period N = 3'. 

[ Algorithm for computing the k-LC] 

(i) Initial values: 
N = 3', k-LC = 0, a" = Eq.(1), 

0 0 ••• 0 

A= 1 1 ••• 1 . 

1 1 ••• 1 

N 

(ii) Repeat the following 0),3) until N = 1. 

   0). From the given d in (2), compute b and c by (4). 
       Compute costs B = (Bo, B1i • • • , BM_1) and 

C = (Co, C1, • • • , CM_1) by (3.7) and (3.8), respectively. 
      Compute costs TB and TC by (3.9). 
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   1). If TC < k, then 

 a" ei(0), A—A', N—N/3, 

      where A' = [Ai i] is computed by (3.11), and go to 0). 
   2). If TB < k < TC, then 

it 2a(0) + a(1), 
                    k-LC - k-LC + N/3, 

A — A', N 4— N/3, 

       where A' = [A,] is computed by (3.12), and go to 0). 
   3). If k <TB, then 

a a(0)+a(1)+a(2), 
                    k-LC k-LC + 2N/3, 

A4—A', N—N/3, 

       where A' = [A] is computed by (3.13), and go to 0). 

(iii) If A2ao,0 > k for N = 1, then 

                    k-LC — k-LC + 1. 

   The final k-LC is equal to the k-LC({ai}). ^ 

  I define 
N-1 

           MAS(u) = E min{ A0,,, Ai,i, A2,i} (3.14) 
                                 i=o 

concerning the matrix A(u) at step u. I also write TB and TC at 
step u as TB(u) and TC(u) in order to make it clear that those are 
values at step u. Then I can prove the following proposition. 

 Proposition 3.1: (a) MAS(u) < TB(u) < TC(u). 
(b) If TC(u) < k, then MAS(u + 1) = TC(u). 
(c) If TB(u) < k < TC(u), then MAS(u + 1) = TB(u). 
(d) If k < TB(u), then MAS(u + 1) = MAS(u). 
(e) 0 = MAS(0) < MAS(1) < • • • < MAS(n) < k. 
  The proof of Proposition is rather easy, and so I will omit it. 
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  The validity of this algorithm is clear, since (i) it uses the logic 
similar to that used in the Stamp-Martin algorithm  [SM93],  i.e., 

                                                                      ti "apply the generalized Games-Chan algorithm, but ifcd or b0 
and I can force e = b = 0 or b = 0, I do so" and (ii) from (e) of 
Proposition 3.1, the minimum of A0,0, A1,o, A2,0 is less than or equal 
to k. 

3.4 Computation of an Error Vector 

Computation of an error vector e appeared in (3.5) is straight-
forward, as shown below, if (i) I include additional 3 x 3n_u ma-
trix D(u) at step u in our algorithm for computing the k-LC and 
(ii) reading D(u)'s backward from u = n to u = 1. Firstly the 
(j, i)-element of D(u), denoted as D(u)3 i is the 3-tuple (do, d1, d2), 
(do, d1, d2 E 10, 1, 2, }), satisfying A'  = Ado,i + Ad1,i+M, Ad2,i+2M In 
(3.11), (3.12) or (3.13), where A~,i is the value at step (u-1) and A~ i 
that at step u. I defined a vector d(u) = (d(u)0i d(u)1i • • • , d(u)M_1), 
where M = 3' and d(u)i a 3-tuple over GF(3). I have the follow-
ing algorithm for computing an error vector. 

[ Algorithm for computing an error vector ] 

(i) Initial values: 
   Let a = (ao) at step n and u = n. 

    s = 2a0 if A2ao ,o < k. 
    s = min{Ao,o, A1,0, A2,0} if A2ao,o > k. 

ti 

   Compute a 3-tuple d by d(n) = D(n)3,o• 

(ii) Repeat the following calculation (a)-(b) 
   until u = 1. 

   (a) Compute d(u — 1) = (d(u — 1)0, (4u — 1)1, 
• • • , d(u — 1)3M_1), M = 3' by 

                       y 

                d(u— 1)i = D(u — 1)i,do,=, 
                   ti 

                d(u —1)i+M = D(u — 11di,1,i+M, 
                 d(u — i)i+2M = D(u — 1)dt,2,i+2M, 
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                       ti 

       where I writed(u)i =  (C/0,i, d1,i, d2,i). 
    (b) MF-3M,u<—u-1. 

      If u 0 1, then go to (a). 

(iii) If u = 1 and d(1) = ((don, d1,o, d2,0), 
(41, d1,1, d2,1), • • • , (do,m-1, di,M-1, d2,M-1)), then I have an er-

   ror vector by 
ei = do,i, ei+M = d1,i, ei+2M = d2,i. 

   The final e" is desirable error vector. ^ 

3.5 A Numerical Example 

In this section I show the performance of the proposed algorithm 
and the profile of the k-LC about k. 
  Let fail be a sequence over GF(3) with period 33 = 27 whose 
one period is 

a = (020211010120111010220211010). (3.15) 

I will compute 3-LC (k = 3) and an error vector. 

[Example 3.1] 
(initial values) 

FL = (020211010120111010220211010) 
      000000000000000000000000000 

A =111111111111111111111111111 

      111111111111111111111111111 

(step 1) 
i = (000200000) B = (000100000) TB = 1 
6= (100200000) C = (200100000) TC = 3 
61=  (020211010) k-LC = 0 

      200100000 

  A =233333333 

233233333 

(021)(000)(000)(010)(000)(000)(000)(000)(000)  
D(1)=(102)(111)(111)(121)(111)(111)(111)(111)(111) 

(210)(222)(222)(202)(222)(222)(222)(222)(222) 
(step 2) 
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 b=(211) B=(333) TB=9 
d= (221) C = (533) TC = 11 
d= (211) k-LC = 6 

      300 

A = 333 

      333 

(000)  (000) (000)  
 D(2) = (100)(001)(001) 

(200)(002)(002) 
(step 3) 

6.=  (1) B = (3) TB = 3 
e= (2) C = (3) TC = 3 
d = (2) k-LC = 6 

      9 A= 9 

      3 

       (011) 
 D(3) = (122) 
       (200)  

  Finally k-LC= 7 (k = 3). Since d = (2) at step 3 and A1,0 = 
9 > k = 3, so k-LC= 6 + 1 = 7. 

[ computing an error vector ] 
(initial value) s = 2 
(step 3) d(3) = (200) 
(step 2) d(2) = ((200)(000)(000)) 
(step 1) 
d(1) = ((210)(000)(000)(010)(000)(000)(000)(000)(000)) 

  The error vector is 

e = (200000000100100000000000000). 
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  Next there is table. 1 which shows the value of the k-LC about 

the allowed number of errors  k. 

  [table. 1 profile of {ad about k] 

k 0 1 2 3 4 5 6 7 8 
  k-LC 27 15 15 7 7 7 7 7 7  

k 9 10 11 12 13 14 15 16 17 
  k-LC 4 4 3 2 2 2 2 1 0  

3.6 Conclusion 

In this section I propose the algorithm for the k-LC of sequences 
over GF(3) with period 3'. In order to generalize into non-binary 
sequences, I try to extend the cost vector at the Stamp-Martin al-

gorithm of sequences over GF(2) with period 2' to the cost matrix. 
  Furthermore I show a method for computing not only the k-LC 

but also the error vector of sequences over GF(3) with period 3n. 
In applications the error vector will play important roles. And an 

example of sequences over GF(3) with period 33 = 27 and the profile 
of the k-LC about k are shown. 

  Finally it is able to calculate the k-LC of general sequences over 

GF(pm) with period p". 
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Chapter 4 

An Algorithm for the k-LC 

over  GF(pm) with period pn 

4.1 Introduction 

An algorithm for the k-error linear complexity of sequences over 
GF(pm) with period p" is given, where p is a prime. The algorithm 
is derived by the generalized Games-Chan algorithm for the LC of 

sequences over GF(pm) with period pl, and by using the modified 
cost not the same as that used in the Stamp-Martin algorithm for 

sequences over GF(2) with period r. A method is also given for 
computing an error vector which gives the k-LC. 

  The k-LC gives much more reasonable evaluation than the con-

ventional LC for the randomness of a keystream in stream ciphers. 

It is desirable to find useful applications of the k-LC in the crypt-

analysis of stream ciphers. 

  Unfortunately an effective algorithm for computing the k-LC has 

been known only for sequences over GF(2) with period 2n (the 
Stamp-Martin algorithm) [SM93]. The Stamp-Martin algorithm 
uses the Games-Chan algorithm [GC83] for computing the LC of 
sequences over GF(2) with period 2n. An alternative derivation of 
the Stamp-Martin algorithm [SM93] was recently given by the au-
thor et al. [KUI96-2]. This method[KUI96-2] can compute not only 
the k-LC but also an error vector which gives the k-LC. 

  Since the Games-Chan algorithm was generalized to the sequences 
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over  GF(pni) with period pn, p a prime, by Ding, Xiao, and Shan 
[DXS91] and also by the author et al.[IM93], it seems to be possible 
to find a similar algorithm for the k-LC of sequences over GF(p'n) 
with period pn. Such a generalization was made by the author et 

al. [KUI96] in case of p = 3 and m = 1. In this chapter I give 
a complete description of the algorithm for the k-LC of sequences 

over GF(pm) with period pn, p a prime. It is shown that both of 
the logic of our algorithm and its description are rather simple. 

  Firstly I show the generalized Games-Chan algorithm for the LC 

of sequences over GF(pm) with period pn, where p is a prime and n 
and m are positive integers, in Section 4.2. This algorithm can be 
written very simply by the formula of vector b given in'IUIK97]. 

  In Section 4.3 the proposed algorithm for the k-LC of sequences 

over GF(pm) with period pn is given after several preparations of the 
cost matrices of the vector a and vector b. Moreover the property 
of the algorithm, named Proposition 4.1, is shown in order to prove 
the validity of the proposed algorithm. 

  Next in Section 4.4 I discuss about computing an error vector 
which gives the k-LC. This algorithm executes using the stored data 
for the value of changing at each step in order of backward when 
the k-LC is calculated similar to the algorithm of sequences over 
GF(2) with period 2n in Chapter 2 or over GF(3) with period 3n in 
Chapter 3, respectively. 

  Finally I show two numerical examples of computing the k-LC 

and an error vector. In Example 4.1 the performance of the proposed 

algorithm of a sequence over GF(3) with period 33 = 27 and k = 3 
is given. In Example 4.2 the performance of the proposed algorithm 

of sequence over GF(32) with period 33 = 27 is given also. 
  On the other hand Blackburn [Bla94] gave an algorithm for the 

minimal polynomial of a periodic sequence with period Nopn, where 

p is a prime and gcd(No,p) = 1, by jointly using the discrete Fourier 
transform for sequences with period No and the Games-Chan algo-

rithm for sequences with period pn. In this dissertation, however, 

I will not try to find an algorithm for the k-LC of sequences with 

period Nopn, although Blackburn's algorithm looks very promising 
to generalize this algorithm to the most general case. 
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4.2 The Generalized Games-Chan Algorithm 

In this chapter I will consider sequences over GF(q) with period 
N =  pn, n > 1, where q = p'n and p is a prime. 

  Let {a2,} = {ao, a1, a2, • •} be a sequence over GF(q) with period 
N = pl and the first period of the sequence be denoted as 

               N)_(a(oN), alN), ... , a(N_1)•(4.1) 

I will write a(N) as 

a(N) = (a(0)(N) ... , a(p - 1)(N)), (4.2) 

where 

a(.7)(N) = (a~i), ... , a(+)1)M_1), M = N/p = pfl-i. (4.3) 
  The LC of fail over GF(q), denoted as LC({ai}), is defined as 
LC({ai}) = L if 

a(x)(N) 
                      aix-(i+1) = 

                       2.>0xN-1 

                          (xg(x))L,(4.4) 

where a(x)(N) = ao)xN-1 + ai)xN-2 + ... + a(N )1 and g(1) $ 0 
(Note that xP" - 1 = (x - 1)1'). If a(x)(N) has a zero for the 
order Z =. zo + zip + • • + zn_1p'n-1, (0 < zi < p - 1), of zero at 
x = 1 in the order from zn_1 to zo, where zi E {0, 1, • • ,p - 1} for 
i = 0,1, • • • , n - 1. Therefore I have L = N - Z. The Games-Chan 

algorithm determines zn_1, zn_2, • • •, zo in the order by making 

repeated divisions of a polynomial with degree at most pi+l - 1 by 

(x-1)P' = - 1. 
  Let M = N/p and a(j)(N) = (a3(M , a(3M+l, , a(A)nr_1) be an 
M-tuple for j = 0, 1, • • • , p-1. I will rewrite a(N) = (a(0)(N), a(1)(N), • • • , 
a(p - 1)(N)). I show the generalized Games-Chan algorithm as 
follows[DXS91, IM93]. 
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[  Generalized Games-Chan Algorithm ] [DXS91, GC83, IM93] 

(i) Initial values: 
   N = pM = pf, LC = 0, d(N) = Eq.(4.1). 

(ii) Repeat the following 0)N2) until M = 1. 
   0). From a given pM-tuple over GF(q), 

PM) = (a(o)(PM), ... I a(p — 1)(PM)), (4.5) 

      compute the following M-tuples over GF(q), b(u)(M)'s, 
(u=0,• •,p-2),by 

b(u)(M) = Fu(a(0)(PM), ... , d(p — 1)(PM)) 
          P-uu-1

(((4.6)                       EC u,.7a(j)(PM), 
7=o 

        where 

P_u-1~p7— 1
l           Fu (xo , ..., xP-1) = E Cu,~xj , Cu,~_                       l 

j=o                                                  u 

                                       (4.7) 

   1). Choose one of the following p cases. 
       Case 1: 

b(0)(M) _ • • • = b(p — 2)(M) = 0. (4.8) 

Case w, (2<w<p-1): 

b(0)(M) = ... = b(p — w —1)(M) = , b(p - w)(M) � . 
                                       (4.9) 

       Case p: 

b(0)(M) # 0.(4.10) 

   2). If Case w, (1 < w < p) is chosen, then 

PI) FP_w(a(0)(PM), ... , d(p — 1)(PM)) 

LC4--LC+(w-1)M, ME-- M/p 

       and go to 0). Here I use FP_1(xo, • • • , xP_1) = xo. 
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(iii). Let  (1) _ (a(01)). If ao' 0 0, then 
LC 4- LC + 1. 

 The final LC is equal to LC({ai}).^ 

  Note that the Case w (1 < w < p) corresponds to the case where 
(xM — 1)11-w divides a(x)(PM) but (xM — 1)7 '44 does not. The 
formula (4.6) and (4.7) are given in [UIK97]. Note also that for 
(PM) 0 only one of the p cases, i.e., Case 1, • • •, Case p, occurs 
[UIK97]. 

4.3 An Algorithm for Computing the k-LC 

The k-LC of a sequence {ail over GF(q) with period N = p" is 
defined as 

k-LC({ai}) = min{LC({ai + ei})lwH(e) < k}, (4.11) 

where {ei} is an error sequence over GF(q) with period N and wH(e) 
is the Hamming weight of the first N-tuple, e = (eo, ei, • • , eN_1), 
of {ei}, i.e., the number of nonzero e3 's. I will call a an error 
vector. If I have no effective algorithm for computing the k-LC, I 

must repeatedly apply the Games-Chan algorithm at the worst case 

           E(q — 1)i (N)(4.12) 
i—o 

times to the sequences {ai + ei}'s with all the possible e 's having 
Hamming weight < k. However (4.12) becomes very large even for 
moderate N and k. 

  In order to compute the k-LC of a in (4.1), I must try to force 
Case w to happen for as small w as possible in step (ii) of the 
Games-Chan algorithm under the condition that the minimum num-
ber of changes in the original (N) necessary and sufficient for forcing 
Case w to happen is less than or equal to k. This logic is the same 
as that used in the Stamp-Martin algorithm [SM93]. This can be 
done conveniently by introducing the following cost of a(M) and the 

costs of b(u)(M)'s, (0 < u < p - 2). 
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  In the following I will write 

 GF(q) = {a° = 0, a1 i • • • , ceq-1 }, (4.13) 

and 

             b(u)(M) _ (b( o) • • • , b(Mn)t-1). (4.14) 
  Firstly the cost of a(M) is denoted as a q x M matrix 

 AC(M) = [A(h, i)M] , (0 < h < q — 1; 0 < i < M — 1), (4.15) 

where A(h, i)M is the minimum number of changes in a(N) necessary 
and sufficient for changing ce) to ai(M) +ah under the condition that 
forcing Case w to happen is not altered. In the following discussions 

I will often use the notation A(ah, i)M for A(h, i)M. 
  Secondly the costs of b(u)(M)'s, (0 < u < p — 2), are denoted as 

a (p — 1) x M matrix 

BC(M) = [B(u, i)M] , (0 < u < p — 2; 0 < i < M - 1), (4.16) 

where B(u, i)M is the minimum number of changes in a(N) necessary 
and sufficient for making b(M) = = b(M) = 0. I will define the 
total cost of b(u)(M) as 

M-1 

TB(u)M = E B(u, i)M, (0 < u < p — 2), (4.17) 
                        i=o 

which means the minimum number of changes in a(N) necessary and 

sufficient for making b(0)(M) = • • • = b(u)(M) = 0. 
  In step (ii) of the Games-Chan algorithm I can force Case 1 to 

happen if TB(p — 2)M < k, Case w, (2 < w < p — 1) to happen 
if TB(p — w — 1)M < k <TB(p — w)M, and Case p to happen if 
k < TB(0)M, respectively. 

  The following initial value, AC(N) = [A(h, i)N], (N = pf`; 0 < 
h < q — 1; 0 < i < N — 1 ), is obvious from the definition. 

A(h, z)N =1,if h 0.(4.18) 

  I can compute BC(M) and AC(M) from AC(pM) in the follow-
ing way for M = p"-1 , p in the order. 
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  BC(M)  =  [B(u,  i)M] can be computed from AC(pM) = [A(h, i)pM] 
by 

p-1 

B(u, i)M = min E A(ei, i + jM)pM e E D(u, i)M , (4.19) 
j=o 

where 

e = (eo, ... , ep_1) E [GF(q)]P, 

and 

D(u, i)M = {e l Fj (eo, • • • , ep_1) + b(i " = 0, (0 < j < u)}. (4.20) 

Note that D(u, i)M is the set of all the e 's which can make b0M) = 
..•=b u,i(M)=0. 
  The computation of AC(M) from AC(pM) depends on the case 
chosen at step (ii). If I can force Case w, (1 < w < p), to happen, I 
must choose e = (eo, ..., ep_1) such that 

Fp_w(a(Pm) + eo, ... , a(+(p) 1)M + ep-1) 
     = Fp_w(a.PM), ... , a(+(P) 1)M) + FP ''''W ... , ep-1) 

 (M)(4.21)     = ai+ F'p-w(eo, ... , ep-i) 
  = a(M) + ah 

and 

Fj (a(PM) + eo, ... , a(+(P) 1)M + ep_1) = b(1M) + F; (eo, ... , ep_1) = 0 
                                       (4.22) 

for 0 < j < p — w — 1. Therefore I have 

                          p-1 

  A(h, i)M = min E A(ej, i + jM)pM ê E 15(h, i)7,1 , (4.23) 
                     j=o 

where 

D(h,Wm — {e Fj(eo, ... , ep-1) + b;M) = 0, (0 _< j< p —2), eo—ah=0,} 
                                      (4.24) 

                        40



DhiweFi(eo, • .. , ep_i)+ b~(M)  =  0, (0<j < p - w - 1),  (~)M-           F
P_w(eo,•••,eP-1)-ah=0, JJ 

                                      (4.25) 
for 2 < w < p - 1, and 

D(h, i)M = {e1 Fo(eo, • • • , ep_1) — ah = 0, }, (4.26) 

respectively. 

  I will keep a record of the following p-tuple 

e(h, i)M = (eo, ... , e,_i) E [GF(q)]P (4.27) 

found at the computation of A(h, i)M in (4.23) in such a way as 
e = e(h, i)M gives A(h, i)M in the right-hand side of (4.23). In 
general e(h, i)M is not unique. The record of e(h, i)M's is a q x M 
matrix with p-tuple elements 

               E(M) = [e(h, i)M] (4.28) 

and will be used for computing an error vector which gives the k-LC. 

  The proposed algorithm for computing the k-LC of {a2} in (4.1) 
is written as follows. 

[Algorithm for Computing the k-LC 

(i) Initial values: 
   N = pM = ph, k-LC=0, a(N) = Eq.(4.1), 

   AC(N) = [A(h.i)N] = Eq.(4.18) 

(ii) Repeat the following 0)r.2) until M = 1. 
   0). Compute BC(M) by (4.19)-(4.20) and TB(0)M, • • • , TB(p-

      2)M by (4.17). 
   1). Choose 

      Case 1 if TB(p - 2)M < k, 
Case w, (2 < w < p - 1), if TB(p - w - 1)M < k < 
TB(p - w)M, 
and Case p if k < TB(0)M, respectively. 

   2). If Case w, (1 < w < p), is chosen, then 

a F FP_w(a(0)(PM), ... , a(p - 1)(PM)), 
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                  k-LC  — k-LC + (w — 1)M. 

     Compute AC(M) by (4.23)-(4.26) and E(M) by (4.27) and 
      (4.28). 

      If M 1, then 

                     M —M/p 
       and go to 0). 

(iii) Let a(1) = (ao1)) and AC(1) = [A(h, 0)1]. If A(-41), 0)1 > k, 
   then 

                     k-LC <— k-LC + 1. 

The final k-LC is equal to the k-LC({ai}). El 

  The validity of this algorithm can be shown by using the following 

Proposition 4.1. 

Proposition 4.1: Let 

M-1 
MTAC(M) = E min{A(h, i)M I 0 < h < q— 1}. (4.29) 

                        i=o 

(a) MTAC(pM) < TB(0)M < • <TB(p — 2)M. 

(b) If TB(p — 2)M < k, then MTAC(M) = TB(p — 2)M. 

(c) If TB(p — w — 1)M < k < TB(p — w)M, then MTAC(M) = 
TB(p — w — 1)M. 

(d) If k < TB(0)M, then MTAC(M) = MTAC(pM). 

(e) 0 = MTAC(pn) < MTAC(p'n-1) < • • • < M-TAC(po) < k 

0 Proof: 
(a) TB(u)M < TB(u+ 1)M is obvious from (4.17) and (4.19) and 
(4.20). 
MTAC(pM) < TB(0)M is also obvious, since 

M-1 p-1 

MTAC(pM) = E E min{A(h, i + jM)pM I 0 < h < q — 1} 
i=o j=o 
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and 

      M-1 p-1 
TB(0)M = E minE A(ej, i +jM)pM Fo(eo, • • • , ep-1) + boM)= 0 . 

i=0j=o 

(b) If TB(p - 2)M < k, then I can force Case 1 to happen in 
step (ii). In this case AC(M) is given by (4.21) and (4.22). I have 
MTAC(M) = TB(p - 2)M, since 

             u nut, i)M = D(p - 2, i)M 
0<h<q-1 

from (4.20) and (4.22). 
(c) In this case I can force Case w to happen in step (ii) and 
AC(M) is given by (4.23) and (4.25). I have MTAC(M) = TB(p-
w - 1)M in the same reason as (b). 
(d) The proof is the same as (b) and (c). 
(e) From (a)-(d) I have MTAC(pM) < MTAC(M). MTAC(pT) = 
0 is obvious from (18). From (b)-(d) have MTAC(M) < k if 
MTAC(pM) < k. 

  Consider the cost matrix AC(1) = [A(h, 0)1] of a(1) = (ao1)). Let 

        A(s, 0)1 = min{A(h, 0)1 0 < h < q - 1}. (4.30) 

I have A(s, 0)1 < k from (e) of Proposition 1. This means that I 
can change ao1) to 4) + a3 under the condition that the minimum 
number of changes in the original c7(N) necessary and sufficient for 
making this change is less than or equal to k. Therefore the validity 
of this algorithm is shown. 

4.4 Computation of an Error Vector 

After performing the proposed algorithm for computing the k-LC of 

{ail, finding an error vector 
e"=  (eo, ... , eN-1)(4.31) 

which gives the k-LC is straight by tracing the step (ii) in the reverse 
order, i.e., from M = p° to M = 
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[  Computing an Error Vector ] 

(i) Initial values: 
M = 1, e(1> = (an, AC(1) = [A(h, O)1], 
A(s, 0)1 = Eq.(4.30). 

   If A(—ao1), 0)1 < k, then e(1) = e(-41), 0)1. 
   If A(-41), 0)1 > k, then e(1) = e(s, 0)1. 

(ii) Repeat the following computation of 
e'(pM) = (e-0, • • • pM-1) 

   from e(M) = (eo, • • , eiM_1) by using E(pM) until pM = pl-1. 
    If ei = (ei,o, • • • , ei,P_i), then 

e i+;M = e(ei,;, i + jM)PM, (0 < j < p — 1; 0 < i < M — 1). 

(iii) Let M = IP' and e(M) _ (eo, • • • , eM_1). An error vector e 
   in (29) can be computed as 

ei+;M=ei; (0<i<M-1;0< j <p-1) 

    if ei = (ei,o, • • • , ei>12-1). 

0 4.5 Numerical Examples 

[ Example 4.1] 
  Let fail be a sequence over GF(3) = {ao = 0, a1 = 1, a2 = 2} 

with period 33 = 27 whose one period is 

          = (020211010120111010220211010). (4.32) 

I will compute the 3-LC (k = 3) and an error vector. In order to 
compute an error vector e", I will compute the matrices E(9), E(3), E(1) 
at each step in this example. 

[Computing the k-LC] 
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(initial values)  a(27) = (020211010120111010220211010) 
           000000000000000000000000000 

   AC(27) =111111111111111111111111111 
           111111111111111111111111111 

(step 1; M=9) b(0)(9) = (000200000) g(1)(9) = (100200000) 

   BC(9) =
L0001000001TB(0)9 = 1          L 200100000  TB(1)9 = 3 

    9) = (020211010) k-LC = 0 

           200100000 

   AC(9) =233333333 
233233333 

(021)(000)(000)(010)(000)(000)(000)(000)(000)  
  E(9) =(102)(111)(111)(121)(111)(111)(111)(111)(111) 
(210)(222)(222)(202)(222)(222)(222)(222)(222) 

(step 2; M=3) b(0)() = (211)b(1)(3) = (221) BC(9) =333533 

   TB(o)3 =913) = (211) k-LC = 6 
         300(000)(000)(000)    AC(3) = 333 I E(3) = (100)(001)(001) 
         333(200)(002)(002) 

(step 3; M=1) 6(0)(') = (1) g(1)(1) = (2) BC(1) = 133J 
   TB(0)1 = 3 

   TB(1)1 = 3 

               9 (011) 
   a(1) = (2) k-LC = 6 AC(1) =9 E(1)=(122) 

                 3(200)  

  Since a(1) = (2) and A(-2,0)1 = A(1,0)1 = 9 > k = 3, therefore 
k-LC= 6 + 1 = 7. Finally k-LC= 7 (k = 3).0 
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[  Computation of an error vector ] 

(initial value) s = 2 

(step 3; M=1) e(1) = (200) 

(step 2; M=3)  e(3) = ((200)(000)(000)) 

(step 1; M=9) e(9) _ ((210)(000)(000)(010)(000)(000) 
(000) (000) (000)) 

  The error vector is F= (200000000100100000000000000).0 

[ Example 4.2] 
  Let {a2} be a sequence over GF(32) with period 33 = 27. Let 

/3 be a primitive element of GF(32) = {ao = /3 = 0, a1 = ,Qo = 
1, a2 = /31, • , a8 = ,37} defined as N/32 = 2/3+ 1. In the following 
computations I will denote0*,/32 as *,i, respectively, for simplicity. 

  Let us write the first period of {ad as 

          = (012345670012345671012345672). (4.33) 

  I will compute the 3-LC (k = 3) and an error vector. In order to 
compute an error vector e, I will compute the matrices E(9), E(3), E(1) 
at each step in this example. 

[ Computation of the k-LC ] 

(initial values) ¢(27) = (012345670012345671012345672) 
           000000000000000000000000000 

           111111111111111111111111111 

           111111111111111111111111111 

           111111111111111111111111111 

   AC(27) = 111111111111111111111111111 
           111111111111111111111111111 

           111111111111111111111111111 

           111111111111111111111111111 

- 111111111111111111111111111 
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(step 1; M=9)  g(0)(9) = (********4) g(1)(9) = (********6) 

   BC(9) =
L000000001 TB(0)9 = 1         L 000000002 ] TB(1)9 = 2 

a") = (012345670) k-LC = 0 
           000000002 

           333333333 

           333333333 

           333333333 

   AC(9) = 333333333 
           333333333 

           333333332 

           333333332 

           333333333 

(* * *) (* * *) (* * *) (* * *) (* * *) (* * *) (* * *) (* * *) (*21) 
        (000) (000) (000) (000) (000) (000) (000) (000) (037) 
        (111) (111) (111) (111) (111) 

        (222) (222) (222) (222) (222) (222) (222) (222) (260) 
  E(9) = (333) (333) (333) (333) (333) (333) (333) (333) (314) 
        (444) (444) (444) (444) (444) (444) (444) (444) (456)  
        (555) (555) (555) (555) (555) (555) (555) (555) (57*) 
        (666) (666) (666) (666) (666) (666) (666) (666) (6 * 3) 

_ (777) (777) (777) (777) (777) (777) (777) (777) (742) 

(step 2; M=3) g(0)(3) = (456) g(1)(3) = (234) BC(9) = 1666 

TB(0)3=93) = (456) k-LC = 6 [                                        TB(1)
3 = 18 

002(* * *)(** *)(* * *) -
          333(**0)(**0)(**0) 

          333(**1)(**1)(**1) 
          333(* *2)(* *2)(* *2) 

  AC(3) = 333 E(3) = (* * 3)(* * 3)(* * 3) 
          333(* *4)(* * 4)(* *4)  

          332(* *5)(* * 5)(* *5) 
          332(* * 6)(* * 6)(* * 6) 

          333(* *7)(* * 7)(** 7) 
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(step 3; M=1)  b(0)(') = (0) g(1)(1) _ (3) BC(1) = 5 
   TB(0)1 = 3 

   TB(1)1 = 5 
3 (**4) 
6 (*00) 

              6 (*13) 
              6 (*27) 

d(1) = (3) k-LC = 7 AC(1) = 6 E(1) = (*31) 
              5(*4*) 

              5(*56) 
              5(*65) 

-6- -(*72) 

  Since a(1) = (3) = (03) and A(-03,0)1 = A(07,0)1 = A(8,0)1 = 
6 > k = 3, therefore k-LC= 7 + 1 = 8. Finally k-LC= 8 (k = 3). 

[ Computation of an error vector ] 

(initial value) s = 2 

(step 3; M=1) e(1) = (* * 4) 

(step. 2; M=3) e(3) = ((* * *)(* * *)(* * 4)) 

(step 1; M=9) e(9) = ((* * *)(* * *)(* * *)(* * *)(* * *)(* * 
*)(* * *)(* * *)(456)) 

  The error vector is e. (********4********5********6).0 

  Although necessary computations are simple additions and com-

parisons, the computational complexity increases rapidly in case of 
the large w or equivalently the large k-LC because of the fact that 

from (4.25) the number of the possible e 's in D(h, i)M is equal to 
qw-1 
  The amount of the memories necessary for performing the com-

putation is the same independent of the value of the k-LC. 
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4.6 Conclusion 

Firstly the Stamp-Martin algorithm  [SM93] for computing the k-LC 
of sequences over GF(2) with period 2' is generalized into sequences 
over GF(pm) with period pn, where p is a prime. 
  Secondly the proposed algorithm can compute not only the k-LC 

but also an error vector which gives the k-LC. Computation of an 

error vector is important in applications of the k-LC. 

  The generalized Games-Chan algorithm used in the proposed al-

gorithm needs memories for the entire period of the given sequence 
in computation, which may cause the disadvantage compared with 

the Berlekamp-Massey algorithm when the period is very large and 

the k-LC is small. However as to the computation of the k-LC there 

seems to be very difficult to find an effective algorithm by using the 

Berlekamp-Massey algorithm. 

  Further generalization of the algorithm for the most general se-

quences with period Nop'`, gcd(No,p) = 1, by using Blackburn's 
algorithm [B1a94] is interesting. 
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Chapter 5 

 Another Algorithm for the 

k-LC over GF(prn) with 
period pn Using the Shift 
and Offset 

5.1 Introduction 

In this chapter another algorithm is given for the k-LC of sequences 
over GF(pm) with period pl, where p is a prime. The algorithm is 
different from the previous one given by the author at Chapter 4 

in the following two points and can be said to be a generalization 

of the Stamp-Martin algorithm for the k-LC of binary sequences 

with period 2'. (1) The value of k decreases as the proceeding of 
computations. (2) The error vector can be obtained at the same 
time when the k-LC is obtained. The key ideas of the algorithm are 

the "shift" and the "offset" of the cost matrix, which are introduced 

by the authors to derive the Stamp-Martin algorithm for binary 

sequences from our previous algorithm. 

  In Chapter 4 the author[KUI96, KUI96-2, KUI99] gave an algo-
rithm for the k-LC of sequences over GF(p"`) with period ph, where 
p is a prime. The algorithm can find not only the k-LC but also an 
error vector which gives the k-LC. The algorithm uses the general-

ized version of the Games-Chan algorithm for computing the LC of 
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sequences over GF(pm) with period  p" [GC83, IM93, B1a94], and 
consists of n steps for sequences with period p". At an algorithm in 

Chapter 4[KUI96, KUI96-2, KUI99] the value of k remains the same 
throughout all the steps and the determination of an error vector 

can be performed only after finding the k-LC by reading the stored 

data in the reverse order from the last step to the first step. 

  In this chapter I will give another algorithm for the k-LC of se-

quences over GF(pm) with period pf. This new algorithm can be 
said to be the generalization of the Stamp-Martin algorithm[SM93] 
for the binary sequences with period 2n, since the value of k de-

creases as the proceeding of the steps. Another feature of this new 

algorithm is that an error vector can be obtained at the same time 

when the k-LC is obtained. The key ideas of this new algorithm 

are the "shift" and the "offset" of the cost matrix, which were intro-

duced by the author[KUI96-2] to derive the Stamp-Martin algorithm 
from our previous algorithm in case of binary sequences. 

  In Section 5.2 I give several preparations for generalization of the 

Stamp-Martin algorithm into sequences over GF(pm) with period 
pl and several conditions needed to generalize the Stamp-Martin 
algorithm. For instance the cost matrices of the vector a and the 

vector b are defined again using the shift and offset of the cost. For 

the generalized Games-Chan algorithm I need to choose only one 

case in p cases by computing the costs at each step. 

  The proposed algorithm in this chapter for the k-LC of sequences 

over GF(pP') with period p"' is given in Section 5.3. This algorithm 
decides the k-LC and an error vector at the same time. 

  Finally an example, denoted as Example 4.1, of the proposed 

algorithm for k-LC and an error vector of a sequence over GF(32) 
with period 33 = 27 is given in Section 5.4. From this example it 
seems for the proposed algorithm to be simpler than the algorithm 
in Chapter 4. 

5.2 Generalization of the Stamp-Martin Algo-
    rithm 

In this chapter I will use the same logic and cost matrices AC(M) 
and BC(M) as those in the previous algorithms[KUI96, KUI96-2, 
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 KUI99] except that the following two operations, i.e. the "shift" 
and the "offset" will be introduced in the computation of AC(M). 

  Let GF(q) = {ao = 0, ai, ... , aq-1 } and b(u)(M) = (b(u)oM), b(u)(1M), 
• • • 

, b(u)521). Firstly the cost of a(M) is denoted as a q x M matrix 

   AC(M) = [A(h, i)M], 0 < h < q — 1; 0 < i < M — 1, (5.1) 

where A(h, i)M is the minimum number of changes in the initial N-
tuple a(N) necessary and sufficient for changing ce) into ae) + ah 
under the condition that forcing Case w to happen is not altered. 

Secondly the cost of b(u)(M) is denoted as a (p — 1) x M matrix 

   BC(M) = [B(u, i)M], 0 < u < p — 2; 0 < i < M — 1, (5.2) 

where B(u, i)M is the minimum number of changes in the initial N-
tuple(N) necessary and sufficient for making b(0e) = b(1e) = 
• • = b(u)r) = 0. I define the total cost of b(u)(M)'s for u = 

0,1,•••,p-2 as 
M-1 

TB(u)M = E B(u, i)M(5.3) 
                                       Z-o 

which means the minimum number of changes in the initial N-tuple 

a(N) necessary and sufficient for making b(0)(M) = b(1)(M) = • • • = 
b(u)(M) = 0. In step (ii) of the generalized Games-Chan algorithm 
I can force Case w to happen: 

    Case 1 t#. TB(p — 2)M < k, 
Case w <=> TB(p — w — 1)M < k < TB(p — w)M 

                for w = 2, 3, ••, p — 1,(5.4) 
   Case p to k < TB(0)M. 

The initial value of the cost of (N) denoted as AC(N) = [A(h, i)N], 
where N = p" and 

            A(h, i)N =0 i f h = 0,(5.5)                     1 if h 0 

is obvious from the definition. I can compute BC(M) and AC(M) 
from AC(pM) in the following way for M= pn-1, p"-2'•••,p° in 
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the order. The cost of  b(u)(M) denoted as BC(M) = [B(u, i)M] can 
be computed from the previous cost AC(pM) = [A(h, i)pM] by 

                           P-1 

B(u, i)M = min E A(ej, jM + i)pM e E D(u, i)M , (5.6) 
j=0 

where e = (eo, e1i • • • , ep-1) E [GF(q)]p and 

D(u, i)M = {el Fs(eo, e1, ... , ep-1) + b(s),(M) = 0, s = 0, 1, ... , u} 
                                       (5.7) 

is the set of all the es which can make 

b(0)(M) = b(1)i(M) = ... = b(ur) = 0.(5.8) 
  The computation of AC(M) from AC(pM) depends on the case 
chosen at step (ii) of the generalized Games-Chan algorithm. Here 
I will introduce the "shift" and the "offset" in computing AC(M). 
The shift is used to make 

A(0,i)M < A(h,i)M for h= 1,2,•••,q— 1;i =0,1,•••,M— 1. 
                                       (5.9) 

The offset defined as 

A(h, i)M 4— A(h, i)M — A(0, i)M (5.10) 

for h=0,1,•••,q-1; i=0,1,•••,M-1is used to make A(0,i)M= 
0 for i = 0, 1, • • • , M — 1 after the shift is executed. 

  If I can force Case w to happen then I record the change vector 

of a(M) as pM-tuple 

co(M) = (C(0, 0)M, C(0, 1)M, ... , C(0, pM — 1)M), (5.11) 

such that 

p-1 

E A(C(0, jM + i)M, jM + i)pM = B(p — w — 1, i)M (5.12) 
    j=o 

ifw=1,2,•••,p-1and 

p-1 

E A(C(0, jM + i)M, jM + i)pM 
j=o(5 .13) 

p-1 

      = min E A(ej, jM + i)pM e E [GF(q)]p 
j=o 
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if w = p, i.e. C(0, jM +  i)M gives a change value of a.(iM+i with 
the minimum number of changes in the initial N-tuple a(N) under 

the condition that forcing Case w to happen is not altered at step 

(ii) of the generalized Games-Chan algorithm. I also compute the 
change matrix C(M) = [C(h, i)M] such that 

p-1 

A(h, i)M = E A(C(h, jM + i)M, jM + i)pM. (5.14) 
J=0 

  The shift is performed by changing the possible region D(h, i)M 
of e used in computing 

                           p-1 

  A(h, i)M = min E A(ej, jM + i)pM e E D(h, i)M (5.15) 
                       j=o 

by changing as 

             F8(eo, ... , ep_i) + b(sel) = 0 

mil,w=es=0,1,•••,p—w-1  (h~)M F
p-w(eo7•••7ep-1)                = Fp_,,,(C(0, i)M, • • • , C(0, (p - 1)M + i)M) + ah 

                                       (5.16) 
ifw=1,2, ... ,p—land 

D`h' Z)M — leF'0(e0Fo(C(0')M, ... , C(0, (p - 1)M + i)M) + ah 
                                       (5.17) 

if w = p and 

(M) . Fp_w(a(0)(PM) + 5(0)(M), . . . Q(p — 1)(PM) + e(p — 1)(M)), 
                                       (5.18) 

where e(j)(M) = (C(0, jM)M, C(0, jM +1)m,-  - • , C(0, (j + 1)M — 
1)M) for j =_0,1,  • • • ,p — 1. Note that in the last relation of the 
definition of D(h, i)M, ah+Fp_w(co(M)) is used instead of ah. Since 
I have eo(M) E D(0, i)M and co(M) D(h, i)M for h # 0, I have (
5.9) from (5.12),(5.13) and (5.6),(5.7). 
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  In the case of w  # p I have shown B(p - w - 1, i)M = A(0, i)M 
from (5.6) and (5.16). Therefore 

M-1 

E A(0, i)M = TB(p - w - 1)M < k (5.19) 
i-o 

from (5.3) and (5.4). Therefore in order to keep the condition until 
the step M, I need at least (5.19) changes in the initial N-tuple (N). 
After the offset of AC(M), I replace k by k - TB(p - w - 1)M. 
  Finally in order to determine an error vector I compute the error 

matrix at a"(M) as 

E(M)=[E(h,i)M],0<h<q-1;0<i<N-1=pf'-1. (5.20) 

The definition of E(h, i)M is as follows. In order to change ce) 
(0 < i < M - 1) by ah under the condition that the happening of 
Case w at step M is not altered, I change N/M elements cai 
(0 < j < M - 1) by E(h, jM + i)M in the original sequence a(N) of 
length N = p". 

  Since such a change of az(M) by ah can be obtained by changing 

a~M+)i(0<j< p - 1) by C(h, jM + i)M from (5.14), I have 

E(h, pPM+jM+i)M = E(C(h, jM+i)M, p0I+jM+i)PM (5.21) 

                                             N for h - 0,1,•••,q - 1; j = 0,1,•••,p - l;~= 0,1,•••,PM - 1; 
i = 0, 1, • • • , M - 1. The initial value of the error matrix E(N) _ 
[E(h, i)N], where E(h, i)N = cah for i = 0, 1, • - • , N - 1 is obvious 
from the definition. 

5.3 The proposed Algorithm for Computing the 

    k-LC 

After above preparation, I propose the generalized Stamp-Martin 
algorithm with computing an error vector. 
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[Generalized Stamp-Martin  Algorithm  ] 

(i) Initial values: N = pM = pl, k-LC = 0, 
d(N) = (a(ON), a1N), ... , ar1), 

        0 0 .. 0- ao ao ••• ao 

1 1 ... 1a1 al ••• a1 
AC(N) =. , E(N) _ 

           1 1 .. 1 - _ aq-1 aq-1 .. aq_1 

(ii) Repeat the following 0)~2) until M = 1. 

   0). Compute BC(M) and TB(0)M, • • • ,TB(p—  2)M by (4.6), 
      (4.7), (5.2), (5.3) and (5.6). 

   1). Choose one of the following p cases. 
      Case 1: if TB(p — 2)M < k, 
      Case w: if TB(p — w — 1)M < k < TB(p — w)M for 

w = 2, 3, • • • , p — 1, 

      Case p: if k < TB(0)M, respectively. 
   2). If Case w is chosen, then compute (M) by (5.18) and 

       k-LC F- k-LC + (w — 1)M. 
If pthen kF-k— TB(p —w-1)M. 

      First consider the shift operation by computing AC(M) 
      and C(M) from (5.15)-(5.17) and (5.14). 

       Next consider the off-set operation (5.10) by computing 
      AC(M) = [A'(h, i)M], which is the final AC(M) at the 

       step M. 

      Compute E(M) by (5.21) from E(pM) and C(M). 
IfM#1 then M—M/p and goto0). 

(iii). Let a(1) = (a(01)) = (as), at = —as. 
   If A(t, 0)1 > k then k-LC — k-LC+1 and e = (E(0, 0)p1), E(0,1)(1), 

• • • , E(0,N — 1)(1)), 
   else e=(E(t, 0)(1), E(t,1)(1), • • • , E(t, N — 1)(1)). 

  The final k-LC is equal to k-LC({ai}) and e is an error vector.^ 

  In the proposed algorithm with the shift and offset of the cost, 

I do not need to record the matrices AC(M), BC(M), C(M) and 
E(M) after the next matrices at the step M/p is calculated by their 
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matrices at the step M since the vector  a(M) is changed into the 

vector satisfied the minimum number of changes and the condition 

until the step M at every steps. Moreover the first row of AC(M) 
can be forgot, i.e. all of these is zero at any time. Therefore the 

proposed algorithm needs only one step for the k-LC and an error 
vector, and less memory than the algorithm in [KUI99]. 

5.4 A Numerical Example 

In this section I show a small example for 3-LC, i.e. k = 3, of a 
sequence over GF(32) with period 33. Let {a2} be a sequence over 

GF(32) = {a° = a* = 0, al = a° = 1, a2 = al, • • , a8 = a7} 
                                       (5.22) 

with period 33 = 27, where a is a primitive of GF(9) such that 
a2 = 2a + 1. I will denote a*, al as *, i, respectively for simplicity. 

Let one period of {az} be 

(27) = (012 345 670 012 345 671 012 345 672). (5.23) 

I will compute 3-LC (k = 3) and an error vector as follows. 

[Example 5.1] 

(initial values) 
(27) = (012 345 670 012 345 671 012 345 672) - 

        000 000 000 000 000 000 000 000 000 

        111 111 111 111 111 111 111 111 111 

        111 111 111 111 111 111 111 111 111 

        111 111 111 111 111 111 111 111 111 

AC(27) = 111 111 111 111 111 111 111 111 111 
        111 111 111 111 111 111 111 111 111 

        111 111 111 111 111 111 111 111 111 

        111 111 111 111 111 111 111 111 111 

        111 111 111 111 111 111 111 111 111 
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 *** *** *** *** *** *** *** *** *** 

       000 000 000 000 000 000 000 000 000 

       111 111 111 111 111 111 111 111 111 

       222 222 222 222 222 222 222 222 222 

E(27) = 333 333 333 333 333 333 333 333 333 
       444 444 444 444 444 444 444 444 444 

       555 555 555 555 555 555 555 555 555 

       666 666 666 666 666 666 666 666 666 

_777 777 777 777 777 777 777 777 777 

(M = 9) 
b(0)(9)=(*** * * * **4)b(1)(9)=(*** *** **6) 

BC(9) =000 000 001 TB(0)9 = 1        000 000 002 TB(1)
9 = 2 

I choose Case 1, since TB(1)9 = 2 < k = 3. 
(9) = (012 345 670) 
k-LC 0 kf--3-2=1        - 

000 000 000 

       333 333 331 

       333 333 331 

       333 333 331 

AC(9) = 333 333 331 
       333 333 331 

       333 333 330 

       333 333 330 

       333 333 331 

*** *** *** *** *** **2 *** *** **1 

       000 000 000 000 000 003 000 000 007 

       111 111 111 111 111 110 111 111 115 

       222 222 222 222 222 226 222 222 220 

E(9) = 333 333 333 333 333 331 333 333 334 
       444 444 444 444 444 445 444 444 446 

       555 555 555 555 555 557 555 555 55* 

       666 666 666 666 666 66* 666 666 663 

      777 777 777 777 777 774 777 777 772 

(M=3) 
b(0)(3) = (4 5 6) 6(1)(3) = (2 3 4) 
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BC (3) =
L3 3 1 TB(0)3=7      L6 6 3 TB(1)3 = 15, 

I choose Case 3, since k = 1  <  TB(0)3 = 7. 
3) = (4 5 6) 

k-LC<-0+2x3= _6 k—1 
       0 0 0 

3 3 1 

3 3 1 

3 3 1 

AC(3) = 3 3 1 
3 3 1 

3 3 0 

3 3 0 

       3 3 1 

*** *** *** *** *** **2 *** *** **1 

*** *** 000 *** *** 003 *** *** 007 

*** *** 111 *** *** 110 *** *** 115 

*** *** 222 *** *** 226 *** *** 220 

E(3)= *** *** 333 *** *** 331 *** *** 334 
*** *** 444 *** *** 445 *** *** 446 

*** *** 555 *** *** 557 *** *** 55* 

*** *** 666 *** *** 66* *** *** 663 

*** *** 777 *** *** 774 *** *** 772 

(M = 1) 
R0)(1) = (0) b(1)(1) = (2) 
BC(1)=1 TB(0)1=1 3 TB(1)

1 = 3 
I choose Case 2, since TB(0)1 = 1 < k = 1 < TB(1)1 = 3. 
a(1)=(2) k-LC<-6+1=7 k<-1-1=0 
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       0 

       2 

       2 

       2 

 AC(1)  = 3 

       2 

       2 

       2 

3 

* * * *** **4 *** *** **5 *** *** **6 

*** *** 4** *** *** 4*2 *** *** 4*1 

*** *** 5*6 *** *** 5** *** *** 5*3 

*** *** 6*5 *** *** 6*7 *** *** 6** 

E(1)= *** *** *31 *** *** *30 *** *** *35 
*** *** *4* *** *** *42 *** *** *41 

*** *** *56 *** *** *5* *** *** *53 

*** *** *65 *** *** *67 *** *** *6* 

*** *** *72 *** *** *76 *** *** *70 

                                                                                              - 

  Since a(1) = (a2), —a2 = a7 and A(8, 0)1 = 3 > k = 0, then 
k-LC i— 7 + 1 = 8 and an error vector e is the first row of E(1). 
Hence k-LC({ai}) = 8 and 

e=(*** *** **4 *** *** **5 *** *** **6). (5.24) 

5.5 Conclusion 

The new algorithm using the shift and offset of the cost matrix 
AC(M) in this paper is a generalization of the Stamp-Martin algorithm[SM93], 
since in case of binary sequences I can show that the part of comput-

ing the k-LC in the proposed algorithm is the same as the Stamp-

Martin algorithm. 

  I am interested in more extension about the period of sequences, 

i.e., considering sequences over GF(pm) with period N = Noe, 
where gcd(No,p) = 1. Blackburn[B1a94] gave an algorithm for the 
LC of general periodic sequences using the generalized Games-Chan 

algorithm and the discreet Fourier transform. 
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Chapter 6 

Complexity Analysis of the 

Algorithms 

6.1 Introduction 

Unfortunately the complexity analysis of the algorithms has not 
studied  yet[KUI98-3]. In this chapter I try to evaluate the time-
complexity and the space-complexity in order to compare with the 

generalized Stamp-Martin algorithm in Chapter 5 and the general-
ized k-LC algorithm in Chapter 4. 

  One of the algorithms is the generalized Stamp-Martin algorithm 

with the shift and offset of the cost, shown in chapter 5. The gen-

eralized Stamp-Martin algorithm has only one step to decide the 

k-LC and an error vector. Therefore I can calculate the k-LC and 

the error vector at the same time. 

  Another algorithm is the generalized k-LC algorithm without the 

shift and offset of the cost, shown chapter 4. The generalized k-LC 

algorithm consists two steps in order to decide the k-LC and the 

error vector. Therefore I know the error vector after the calculating 

the k-LC. 

  In Section 6.2 I rewrite the generalized k-LC algorithm in order to 

evaluate the time-complexity and the space-complexity easily. Next 

the different points of the generalized Stamp-Martin algorithm from 

the generalized k-LC algorithm in this section are shown. 

  In section 6.3 I discuss the time-complexity of two algorithms for 

                         61



k-LC and an error vector of sequences GF(pm) with period  pP using 
the algorithms in Section 6.2. However the time-complexity in this 

section evaluate only the number of the operations about addition 

and subtraction. 

  In section 6.4 I discuss the space-complexity of two algorithms 

for k-LC and an error vector of sequences GF(pm) with period pin 
using the algorithms in Section 6.2. 

6.2 The algorithms for Computing the k-LC 

In order to compare two algorithms for k-LC I write these again. 

[generalized k-LC algorithm] 

 (i) Initial Values: N = pM = pl, k-LC= 0, 
   a(N) _ (a(N), a(1N), ... , a(( ))i), 

                          0 0 ••• 0 

1 1 ••• 1 
  AC(N) = [A(h, i)N] _ 

1 1 ••• 1 

(ii) Repeat (0)-(6) until M = 1. 

   (0) Compute BC(M) = [B(u, i)M] for (0 < u < p - 2, 0 < 
i<M-1)by 

p-1 

       B(11, i)M = min> A(ei, i + jM)rM g E D(u, i)M , 
j=0 

                                      (6.1) 
      where g= (eo, e1, ... , er-1) E [GF(4)]P, 

rM D(u, i)MgF'-(eo,e1,• • • er-1) + b~Z)=0 (0<j<u)}' 
                                      (6.2) 
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 b(u)(M) = (bu,0 (M), bu,1 (M), ... , bu M_1 (M)) 
            = Fu(a(0)(PM), a(1)(PM), ... , a(p — 1)(PM)) 

P-u-1 

           = > Cu,ja(j)(PM) 
j=o 

                                   (6.3) 
   and 

               cu,~_(p—j-11.(6.4) u ) 

(1) Compute TB(0)M, TB(1)M, • • • , TB(p — 2)M from 

M-1 

TB(u)M = E B(u, i)I,,I.(6.5) 
i=o 

(2) Choose only one Case w in p cases as Case 1 Case p 
   from 

      Case 1 TB(p — 2)M < k 
      Case w 4 TB(p — w — 1)M < k < TB(p — w)M 

Case p k < TB(0)M 
                                    (6.6) 

(a) (3) If Case w is chosen, then compute dm and k-LC from 

a(M) = Fp_w(a(o)(PM), a(1)(PM), ... , d(p — 1)(PM)) (6.7) 

   and 

             k-LC F- k-LC + (w — 1)M.(6.8) 

(4) compute AC(M) = [AC (h, i) m] for 0 < h < q — 1, 0 < 
  i < M — 1 from 

                            P-1 

A(h, i)M = min E A(ei, i + jM)PM e E D(h, i)M , 
                        j=o 

                                   (6.9) 
   where 

        {Fi(eo, el, - • • , ep_i) +bT) = 0}     DM=e(0 < j < p — 2)(6.10) 
                   FP—w(eo, el, •••,er_i)—cxh=0 
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 if1<w<p-1or 

DM = fel Fo(eo, el, ... , eP-i) — ah = 0} (6.11) 

if w = p. 

   (5) Let e(h, i)M in E(M) = [e(h, i)M] for 0 < h < q —1, 0 _< 
      i < M — 1 be e" in right hand side of (6.9) when A(h,i)M 

      is calculated at the step (4). 
   (6) If M 1, then let M <— M/p and go to (0). 

(iii) If A(-41), 0)1 > k, then k-LC <— k-LC +1 
(iv) Let 

          A(-41), 0)1 < k e(1) = e(-4,1), 0)1,          f 
A(-41), 0)1 > k e(1) = e(s, 0)1, 

   where s is such that A(8,0)1 = min{A(h, 0)1 0 < h < q — 1}. 

(v) Computee(pM)_($PM),eipMe(                        ), • • • ,4Pmm)i) fromM) = (en,
(M)    e1..eM-4M)1) and E(pM) by 

    e+MM=e(ei,~,i+jM)pM(0<j<p-1, 0<i<M-1), 
                                       (6.12) 

wheree,iM = (ei,o, ei,1, .. , ei,p-1)• 

(vi) Let M — pM. 
   If M p"-1, then go to (v). 

(vii) Compute e = (eo, e1, • • , eN_1) by 

ei+iM= (0<i<M-1, 0<j<p-1).(6.13) 

  The steps from (i) to (iii) give k-LC and the steps form (iv) to 
(vii) give an error vector at above algorithm. 
  Next I show the generalized Stamp-Martin algorithm which gives 

the k-LC and the error vector at the same time. The differences 

from the generalized k-LC algorithm are the size of q x N and the 

element over GF(q) with the respect to the error matrix E(M). At 
the generalized k-LC algorithm the size of E(M) is q x M and the 
element is over [GF(q)]P. 
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  Moreover q x M the change matrix C(M) = [C(h,  i)M] is defined 
as C(h, i)M such that 

p-1 

A(h, i)M = E A(C(h, i + jM)M, i + jM)pM. (6.14) 
                    j=o 

In (6.9) I define D(h, i)M also by 

         Fj(eo,e1,...,ep_i)+b(3M) = 0 (0 < j < p-w- 1) 
DM=eFp-w(eo, e1, • •• , ep-1) 

           = Fp_w(C(0, i)M, • • • , C(0, i + (p - 1)M)) + ah 
                                       (6.15) 

if1<w<p-1or 

 DM - {e Fo(e=Fo(C(O, )M1) , C(0, i + (p - 1)M)) + ah , 
                                       (6.16) 

if w = p. And computing ad(M) defined by 

(M) = Fp-w(a(0)(PM) + e(0)(M), . . . , a(p - 1)(PM) + c(p -1)(m)), 
                                       (6.17) 

where 

e(j)(M) = (C(0, jM)M, ...,C(0, (j + 1)M - 1)M). (6.18) 

  The shift of AC(M) is executed after computing AC(M) as fol-
lows. After 

A(h, i)M A(h, i)M - A(0, i)M (6.19) (0<h<
q-1, 0<i<M-1) 

is computed, let AC(M) into AC(M) = [A(h, i)M]. Finally k is 
changed to k 4— TB(p - w - 1)M. 

  I explain the method for the error vector. I set initial value of 

E(N) by 
ao ao ... ao 

a1 a1a1 

    E(N) =(6.20) 

- aq_1 aq_i ... aq-1 
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At each step I compute q  x N matrix E(M) =  [E(h,  i)M] from 
E(pM) by 

E(h, pa +i+jM)M = E(C(h, i+jM)M, pIM+i+jM)PM (6.21) 

from (0 < h < q-1, 0< j <p-1, 0<t<PM-1, 0<i<M-1). 
Finally an error vector e is decided by 

F= (E(0, 0)1, E(0,1)1, • • • , E(0, N — 1)1) (6.22) 

if A(t, 0)1 > k or 

e = (E(t, 0)1i E(t,1)1i • • • , E(t, N —1)1) (6.23) 

if A(t,0)1 < k with respect to E(1) at the final step, where t is 
satisfying at = —col) 

6.3 Evaluation of the Time-complexity 

In this section I discuss evaluation of the time-complexity for the 
two algorithms. I count the number of additions and subtractions 
the worst case with respect to the algorithms in order to evaluate 
the time-complexity. 

   Firstly I consider same number of operations between the gener-
alized k-LC algorithm and the generalized Stamp-Martin algorithm. 

pm(p-1)_pm The number of computing BC(M) at the step m is p  m — 1 
M, since the cardinality of D(u, Om is pm(P-i-1) depending on u 
and the number par one error vector is p x M, where p is the length 

of the error vector and M is the number of positions or the size of 

column with respect to BC(M). Next the number of computing 
TB(u) at the step M is (p— 1) x M with respect to the both of two 
algorithms. 

   Secondly I consider the difference between two algorithms. The 

number of computing AC(M) at the step M with respect to the gen-
eralized Stamp-Martin algorithm is p(P-1)m+l x M and The number 

of computing AC(M) at the step M with respect to the generalized 
k-LC algorithm is pPm+1 x M since the cardinality of D(u, i)M at the 
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generalize k-LC algorithm is  pm times of the cardinality of D(u, i)M 
at the generalized Stamp-Martin algorithm. 

  Finally I need pl x M times at the offset of the cost and n times 

at changing k only the generalized Stamp-Martin algorithm. 

  Here the values of M takepn-1,p"-z, ,p° =1 at the step M 

in the order. Therefore since the summation of M's isp" — 1, 
                                                     p-1 

have the same order O(p(P-1)m 1) about the time-complexity with 
respect to the both of two algorithms. However I know the gener-

alized Stamp-Martin algorithm has nearly 1/2 times coefficient at 
p(P-1)m+n to the generalized k-LC algorithm. 

6.4 Evaluation of the Space-complexity 

In this section I discuss evaluation of the space-complexity for the 
two algorithms. I count the number of required memories with re-
spect to the algorithms in order to evaluate the space-complexity. 

  Firstly I consider same number of memories between the general-
ized k-LC algorithm and the generalized Stamp-Martin algorithm. 
From variables M and k-LC I need 4 including temporary variables 
M' and k' at changing. The number of a is (p + 1)pn-1 and the 
number of AC(M) is p'n(p + 1)pn-1 including temporary variables. 
Since variables BC(M) and TB(0), • • • , TB(p — 2) do not need tem-
porary variable, the number of BC(M) and TB(0), • • • , TB(p — 2) 
are (p — 1)p'i-1 and p — 1, respectively. 

  Secondly I consider the difference between two algorithms. With 

respect to k the generalized k-LC algorithm does not need tempo-

rary variable but the generalized Stamp-Martin algorithm does need. 

Hence the generalized k-LC algorithm and the generalized Stamp-

Martin algorithm need 1 and 2 about k, respectively. Next with 

respect to E(M), the generalized k-LC algorithm needs to store 
all of E(N), E(N/p), • • •, E(1). On the other hand the general-
ized Stamp-Martin algorithm needs only one E(N) at some step 
and temporary variable for changing. Therefore the numbers of 

E(N), E(N/p),..., E(1) arep'"'+1 
                                     n-1 

 pi = p-rn,+ipn — 1 and 2pm+n 
i=0P — 1 

with respect to the generalized k-LC algorithm and the generalized 
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Stamp-Martin algorithm, respectively. Finally the generalized k-LC 

algorithm needs (p +  1)p71-' with respect to e including temporary 
variable and the generalized Stamp-Martin algorithm needs pm+n 

with respect to C(M). 
   Therefore I have also the same order O(pm+n) about the space-

complexity with respect to the both of two algorithms. However I 

know the generalized k-LC algorithm has nearly 2/3 times coefficient 
at pm+n to the generalized Stamp-Martin algorithm. 

6.5 conclusion 

In this section I show the different points between the generalized 
Stamp-Martin algorithm and the generalized k-LC algorithm. In 
order to evaluate the time-complexity and the space-complexity, I 
count the number of operations as addition and subtraction, and 

, required memories. 
   It become clear that the time and space-complexity for the gener-

alized Stamp-Martin algorithm and the generalized k-LC algorithm 
have same order complexity, respectively. In view of the coefficient 
at the maximum order, the generalized Stamp-Martin algorithm is 
superior about the time-complexity and inferior about the space-
complexity. 

   It remains that I consider the comparison and the setting vari-
ables when the time-complexity is evaluating. Many procedures at 
the part of computing the error vector are shared by the comparison 
and the setting variables. 
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Chapter 7 

Conclusions and Future 

Works 

7.1 Conclusions 

The main result in this dissertation is the generalized algorithms for 
the k-LC and the error vector of sequences over  GF(pm) with period 
p" . 

  Firstly I consider sequences over GF(2) with period 2n. In this 
case the Stamp-Martin algorithm has been given by M. Stamp and 

C. F. Martin[SM93]. However another algorithm for the k-LC with 
modified cost matrix not but the cost vector in the Stamp-Martin 

algorithm. Moreover this algorithm decides not only the k-LC but 

also the error vector which gives the k-LC. I show that the pro-

posed algorithm is equivalent to the Stamp-Martin algorithm by 
the Proposition 2.1. Two examples are given at the end of Chapter 

2. 

  Secondly the algorithm for the k-LC of sequences over GF(3) 
with period 3" is given in Chapter 3. This generalization of the 

algorithm into sequences over GF(3) with period 3n is derived by the 
case of p = 3 and m = 1 in the generalized Games-Chan algorithm 

for the LC of sequences over GF(pm) with period p". Hence this 
result leads to more generalization into sequences over GF(pm) with 
period pl as the first step. In the end of Chapter 3 the performance 
of the proposed algorithm and the profile of the k-LC about k is 
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shown as Example 3.1. However the concepts of the shift and offset 

of the cost are not used in that chapter. 

  Thirdly the algorithm for the k-LC and the error vector of se-

quences over  GF(pm) with period pP is shown in Chapter 4. This 
algorithm is derived by the generalized Games-Chan algorithm sim-

ilar to the case of p = 3 and m = 1 in Chapter 3. However the 

concepts of the shift and offset of the cost are not used also in that 

chapter. The algorithm using the concepts of the shift and offset of 

the cost is shown in the next chapter. 

  In the same as the case of binary sequences the concepts of the 

shift and offset of the cost can derive another algorithm for the k-

LC and the error vector of sequences over GF(pm) with period pm. 
In Chapter 5 another algorithm for the k-LC and the error vector 

of sequences over GF(pm) with period pP is showed by the shift 
and offset of the cost. Because of the shift and offset the proposed 

algorithm needs only one step to computing the k-LC and the error 

vector, i.e. the algorithm in Chapter 4 needs two steps consisted the 

first step computing the k-LC and the second step computing the 

error vector but the proposed algorithm in that chapter is not need 

two steps. An example is given also at the end of Chapter 5. 

  In Chapter 6 I discuss the time-complexity and the space-complexity 

about the algorithms in Chapter 4 and Chapter 5. The time-complexity 

is the number of the addition and subtraction and the space-complexity 

is the number of required variable. The algorithm in Chapter 4 is 

called the generalized k-LC algorithm and the algorithm in Chap-

ter 5 is called the generalized Stamp-Martin algorithm. Two algo-

rithm have same order about the time-complexity and the space-

complexity. However in view of the coefficient of the maximum 

order, the generalized Stamp-Martin algorithm is superior nearly 

1/2 to the generalized k-LC algorithm with respect to the time-
complexity. Next in view of the coefficient of the maximum order , 
the generalized k-LC algorithm is superior nearly 2/3 to the general-
ized Stamp-Martin algorithm with respect to the space-complexity . 
I need to note that I do not consider the comparison and the set-

ting variable in the time-complexity and the subscript in the space-

complexity. 
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7.2 Future Works 

In this section I discuss remaining problems about the k-LC and the 
algorithm for the k-LC and the error vector. 

  Firstly I think main problem is more generalization about the 

period of sequences. I know the fast algorithms for the k-LC and 
the error vector only case of sequences over GF(pm) with period  ph, 
i.e. I do not know fast algorithms for the k-LC and the error vector 

in the case of sequences over GF(pm) with period Nopn, where p is a 
prime and No is coprime against a prime p. If an algorithm is given 
in this case, I know the algorithm for the k-LC and the error vector 

in any case. In 1994 S. R. Blackburn[Bla94] gave the algorithm for 
the LC in the case of sequences over GF(pm) with period Nop' . It 
seems that this result is useful to solve the above problem. 

  The algorithm given in this dissertation executes over a finite 

field. Generalization of ground set into finite rings[MUKI96] from 
finite fields is second problem remaining. The proposed algorithms 

need only the addition and the subtraction. Hence I do not need to 

care about the inverse element with respect to multiplication. 

  Next I would like to evaluate the time-complexity and the space-

complexity of the proposed algorithms more strictly. In Chapter 

6 I do not consider the operations of the comparison and the set-

ting variable in the time-complexity and the subscript in the space-

complexity. Hence the detail analysis about above problems may 

lead to make some difference between the two algorithms. In appli-

cations these evaluations are very important. 

  Thirdly modifications of the proposed algorithms is remained, for 

instance, if the profile of the k-LC is needed, you must apply one of 

the proposed algorithms for k = 0, k = 1, • • •, k = N, where N is 

the period of given sequence. I think some reduction can be derived. 

  The proposed algorithms give only one error vector, but the error 

vector is not unique in general. If I do not need to consider about 

computational complexity, the algorithm for all error vectors can be 

derived by the stored data of the change value in all cases at all 

steps. 

  Finally, I do not discuss about the property of k-LC over any 

sequences. In future this problem is solved about the typical se-

quences. I think these results is useful for many fields such as 
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random numbers, cryptography and communication systems. For 

instance, the profile of the k-LC about k may be very important in 

the theory or the applications. 
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