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SUMMARY In difficult classification problems of the z-dimensional
points into two groups giving 0-1 responses due to the messy data structure,
we try to find the denser regions for the favorable customers of response 1,
instead of finding the boundaries to separate the two groups. Such regions
are called the bumps, and finding the boundaries of the bumps is called
the bump hunting. The main objective of this paper is to find the largest
region of the bumps under a specified ratio of the number of the points of
response 1 to the total. Then, we may obtain a trade-off curve between
the number of points of response 1 and the specified ratio. The decision
tree method with the Gini’s index will provide the simple-shaped bound-
aries for the bumps if the marginal density for response 1 shows a rather
simple or monotonic shape. Since the computing time searching for the
optimal trees will cost much because of the NP-hardness of the problem,
some random search methods, e.g., the genetic algorithm adapted to the
tree, are useful. Due to the existence of many local maxima unlike the
ordinary genetic algorithm search results, the extreme-value statistics will
be useful to estimate the global optimum number of captured points; this
also guarantees the accuracy of the semi-optimal solution with the simple
descriptive rules. This combined method of genetic algorithm search and
extreme-value statistics use is new. We apply this method to some artifi-
cial messy data case which mimics the real customer database, showing a
successful result. The reliability of the solution is discussed.
key words: data mining, data science, bump hunting, genetic algorithm,
extreme-value statistics, trade-off curve, decision tree, bootstrap

1. Introduction

Suppose that we are interested in classifying n points in
a z-dimensional space into two groups according to their
responses, where each point is assigned response 1 or re-
sponse 0 as its target variable. For example, if a customer
makes a decision to act a certain way, then we assign re-
sponse 1 to this customer, and assign response 0 to the cus-
tomer that does not. We want to know the customers’ pref-
erences presenting response 1. That is, who is likely to do
this decision? We assume that their personal features, such
as gender, age, blood type, living district, education, family
profile, etc., are already obtained; the features can be plot-
ted in the z-dimensional explanation variable space. Such
a classification problem is fundamental in the data science
field.

Many classification problems have been dealt with
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elsewhere to rather simpler cases using the methods of the
linear discrimination analysis, the nearest neighbor, logis-
tic regression, decision tree, neural networks, support vec-
tor machine, boosting, etc. (see [12], e.g.) as fundamental
classification problems. In some real data cases in customer
classification, however, the classification for the favorable
customers is found to be difficult because of the messy data
structure [13]. In such cases, we cannot separate the points
of response 1 from those of response 0 clearly; we can find
at most the denser regions to the favorable customers. Such
regions are called the bumps, and finding the obscure bound-
aries from the noisy data is called the bump hunting.

Our Contributions. The primary objective of this paper
is to find the bump regions under an optimization crite-
rion (which will be precisely described later) in a high-
dimensional space [14]. Let a pureness rate of a region R
be the ratio of the number of points of response 1 to the
total number of points in R. Also, let a capture rate of a
region R be the ratio of the number of response 1 points in
R to the whole number of ones. We can easily see that in
general, the larger the pureness rate, the smaller the number
of points in the bumps. In this paper, the situation we fre-
quently encounter is formally modeled as the following op-
timization problem: Given n points with their responses 0/1
in the z-dimensional space and a rate p (0 < p < 1), we
find a region such that its pureness rate is at least p and it
contains as the large number of points of response 1 as pos-
sible. Furthermore, our second objective is to find a trade-
off curve of the capture rate to the specified pureness one
when some appropriate bump hunting method is available.
For the z-dimensional explanation variable space, an O(n2z)
algorithm was proposed in [1], [6]. Its running time might
be polynomial of the instance size if we can be regarded z
as constant. However, if the dimension is large, say, z = 100
or z = 1, 000, then the running time could not be tractable.
Hence, as a common alternative approach, we go into more
efficient, simpler heuristics which have an approximation
guarantee to the optimal value of the problem.

Even if we could obtain the free-shaped optimal bound-
aries for the bumpy regions, it would be difficult for us to
make future actions to the customers directly using the in-
formation of the boundaries of the bumps. The bumps, hav-
ing much simpler shapes of their boundary such as the union
of z-dimensional boxes located parallel to some explanation
variable axes, are more useful in doing the actions. Thus, as
our basic strategy, we make use of the (binary) decision tree
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method in principle in the classification since it provides the
clear descriptive rules. We will show that the Gini’s index in
the decision tree may discover the boundaries for the bumps
if the density for the favorable customers has a rather simple
or monotonic shape; this would not be the optimal solution,
but we prefer to adopt this simpler shape because of its ease
of use. We call this the semi-optimal solution in the follow-
ing.

One of the crucial issues in the decision tree technique
is how we should determine the sequence of explanation
variables used to make decisions. Probably, the conven-
tional decision tree algorithm do not always provide the
large capture rate in the bumpy regions we satisfy, if the al-
gorithm is left as it is; we have to modify the algorithm.
Since the computing time and the search for the optimal
trees will cost too much intuitively due to the NP-hardness
of the optimal decision tree layout [16], some random search
methods for the optimal tree are required; if the sample size
is N, then we have to investigate cases of Ω(zN) and the cost
of computing would be exponential. We propose here to use
the genetic algorithm adapted to the tree; see [7] for the ge-
netic algorithm and [17] for the genetic programming, for
example.

Some data cases have many local maxima for the num-
ber of captured points unlike the ordinary search results
in the genetic algorithms; then, the extreme-value statistics
will be useful to estimate the global optimum number of
captured points in hyper rectangles. This will also guarantee
the accuracy of the semi-optimal solution with the simple
descriptive rules obtained by using the genetic algorithm.
We apply this method in Sects. 4 and 5 to an artificial messy
data case which mimics the real customer database, showing
a successful result assured by the bootstrap method.

Relation to the Related Work. The bump hunting has
been studied in the fields of statistics, data mining, and ma-
chine learning in this decade [1], [6], [9], [10]: Friedman and
Fisher [9] were aware of the importance and difficulty of
finding the bumpy regions in higher dimensions early, and
proposed a method based on PRIM (patient rule induction
method); this would still cost much in computing, although
lesser by a greedy method. Gray and Fan [10] proposed a
probabilistic bump finding method, a kind of genetic algo-
rithm, to enhance the computational speed. To provide many
genes, they used the decision tree method. However, these
two references do not touch on the pureness-rate capture-
rate trade-off curve mentioned above. Solutions obtained
by the genetic algorithm primarily are not global optimal.
Our proposed approach using the extreme-value statistics
to many local solutions obtained by the genetic algorithm
provides not only the estimate for the optimal solution but
also the confidence interval of the solution; thus, the trade-
off curve obtained has also a confidence band under the
condition that we are using hyper rectangles. This com-
bined method of the genetic algorithm search and extreme-
value statistics use is new. Other topics regarding the bump
hunting are studied by Becker and Fahrmeir [2], Hand and

Heard [11], Kehl and Ulm [15], Muller and Sawitzki [18],
and Yip et. al. [19]; they are related to the bump hunting to
some extent but not so much related to our approach.

2. Problem and Objectives

Our Problem. In two-class classification problems, we usu-
ally try to find the boundaries to discriminate the points of
response 1 from those of response 0 in the z-dimensional
space which corresponds to the z explanation variables. Tra-
ditionally, the goodness of optimality in classification has
been measured by the misclassification rate which means
the ratio, q, of the misclassified number of points to the total
number of points. The smaller the misclassification rate, the
better the classification. If we are interested in searching for
a certain class, say, response 1, to which the pureness rate of
response 1 in the class is high to some extent, the provided
boundaries would be satisfactory. A typical case is shown
on the left in Fig. 1 where the misclassification rate is small
and the pureness rate of response 1 is high.

However, we often experience cases in practical prob-
lems where the misclassification rate could not be made
smaller no matter how carefully we search, due to the messy
data structure. Such a case is shown on the right in Fig. 1
where the number of the points of response 1 with a high
pureness rate would be very small. Rather, we require the
number of points to some extent with an acceptable pure-
ness rate. This is our primary objective in this paper. The
misclassification rate, in such a case, can no longer be the
criterion for the optimality of classification.

Optimization Criterion. We propose a new criterion for
classification, i.e., a trade-off relationship, T (p, c(p)), be-
tween the pureness rate, p, and the maximum capture rate,
c(p), where p and c(p) denote the pureness rate of re-
sponse 1 in some region and the maximum capture rate in
the region when the pureness rate is given, respectively; we
try to find the largest region R(p) when a pre-specified pure-
ness rate is provided, and R(p) becomes the optimal region,
in other words, the optimal bump. Another trade-off rela-
tionship, T (p,m(p)), between the pureness rate and the max-
imum captured points, m(p), may also be useful; m(p) is
expressed as

m(p) = sup
R⊂Ω

mR(p), (1)

where Ω denotes the total region. Our second objective is to

Fig. 1 Different optimality criterion is required.
Left: misclassification rate Right: pureness rate
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construct the trade-off curve. Figure 2 shows an example of
this optimal trade-off curve of T (p, c(p)).

Why We Use the Decision Tree. As as understood easily,
the region R(p) is not uniquely determined, if we perturb the
boundary surface S (p) of the region R(p) a little bit; c(p) can
remain the same value with this perturbation. Even if the re-
gion R(p) is determined somehow, it would be difficult how
we use this boundary information. We cannot simply inter-
pret the boundary information to the concrete explanation
variable terms. On the contrary, the rules made by using the
decision tree method are descriptive, and they can be easily
understood by the (if-then) rules due to the binary splitting
algorithm. The region made by the decision tree is a kind of
box located parallel to the explanation variables. We prefer
the simple shaped box to the optimum region with the free
surface boundary, even though the optimization is spoiled a
little. Thus, semi-optimization is pursued here. In Fig. 2 an

Fig. 2 Optimal and semi-optimal trade-off between the pureness rate and
the capture rate.

Fig. 3 How the Gini’s index detect the bumpy region.

example of the semi-optimal trade-off curve of T ∗(p, c(p))
is superimposed.

Another merit using the decision tree is that we can cir-
cumvent the curse of dimensionality (see [3]); the decision
tree method requires a one-dimensional search (for the split-
ting point). Whether the decision tree can detect the bump
is important next, and this is discussed in the following sec-
tion.

3. Can the Decision Tree Detect the Bump?

The Gini’s index pursues to find the best explanation vari-
able and the splitting point in the sense that the two split
children nodes contain the purer classes than the parent
node. If the shape of the marginal density function of an
explanation variable is simple, such as being monotonic or
unimodal, the Gini’s index can detect the possible change
points of the density function. We do not know exactly
where the index splits the region of a certain explanation
variable, but somewhere the change in the density shape can
be caught.

Let us see how the decision tree can find the boundaries
for the bumpy region in the one-dimensional case. Figure 3
shows a one-dimensional example in which a major group
with response 0 is uniformly distributed, and a minor group
with response 1 is almost uniformly distributed except in
the bumpy region. The major group has a mass about five
times larger than the minor group. By moving the threshold
x from the left to the right to set the splitting point, we can
find the optimal point in the sense of the Gini’s impurity.
This point coincides with a boundary point for the bumpy
region, even if the mass of the bump is very small. Thus, the
bump hunting can be achieved by the decision tree algorithm
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Fig. 4 Marginal density functions of eight explanation variables to response 1 and 0.

with the Gini’s impurity. These splitting points may differ
according to the volume of response 0, but the amount of
fluctuation in the splitting points are small.

Even in a typical two-dimensional case of 0/1 re-
sponses, where 1,000 points of response 1 are uniformly
distributed in xy-plane with a spread of [−5.0, 5.0] for each
axis, and 200 superimposed points are normally distributed
on a bumpy region with mean 0.0 and a standard devia-
tion of 1.0, and the response 0 are 5,000 uniformly dis-
tributed points in xy-plane with a spread of [−5.0, 5.0] for
each axis, the decision tree detects a bumpy region around
x, y ∈ [−a, a], where 1.5 ≤ a ≤ 2.0. This is satisfactory.

4. The Random Search Method

In our optimization criterion, whether the conventional de-
cision tree can give a semi-optimal solution is unknown.
However, any simple example can be a counter example to
the semi-optimal solution; this will be shown later in an ex-
ample case. This fact proves that the conventional automatic
tree algorithm will not provide the globally semi-optimal so-
lution. Then, the random assignment method of the expla-
nation variables has the possibility of providing the globally
optimal solution.

To glance at how the numbers of the captured points
are distributed by randomly assigned explanation variables
to each splitting node, we here define the tree-gain plot. We
assign an identification number, id, to the tree by this for-
mulation,

id =
k∑

i=1

(ai − 1)zk−i, (2)

where ai is the explanation variable number, k is the num-
ber of splitting nodes, and z is the number of explanation
variables. For example, we observe the case in Fig. 4; in
the figure, each histogram corresponds to a density of the
explanation variable for responses 0 and 1. We regard the
points in one dimensional space as those projected from a
high dimensional space. The number of simulated random

Fig. 5 Tree-gain plot (an example case).

points are 800 and 200 for responses 0 and 1, respectively.
We assume eight explanation variables here; the shapes of
the density functions are mimicked by the real data case of
some customer database. 500 randomly generated trees and
corresponding numbers of captured points of response 1 are
plotted in Fig. 5. We call this the tree-gain plot. It appears
that we cannot find any key features in this distribution, so
we will next consider the random search method such as the
genetic algorithm.

In applying the genetic algorithm to the tree structure,
we are supposed to modify the crossover method to preserve
the good inheritance property. To execute the crossover in
the tree structure, we, for example, consider parents A and
B, and we preserve the left hand side of tree A with the top
node and preserve the right hand side of tree B without the
top node, combining them to create a new tree having good
inheritance. This genetic algorithm method is adapted to the
tree structure. Then, to pursue the semi-optimal solution,
the detailed algorithm of the genetic algorithm adapted to
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Fig. 6 The number of captured points for response 1: 5 evolution procedures with 5 different initial
conditions.

the tree is as follows:

Step 1. Specify the pureness rate for the bumpy region.

Step 2. Generate some number of trees randomly, and from
each tree, count the number of points in the nodes in which
the pureness rates are larger than the pre-specified value;
then, sort the trees in descending order of the captured num-
ber of points.

Step 3. Select the top ten trees as they are, and the rest
of the trees are changed by crossover with good inheritance
property.

Step 4. Some of the trees are changed by mutation. The mu-
tation percentage is 1% through 20%, because the tree-gain
plot shows quite a randomness, and the mutation procedure
may pick up unfavorable trees.

Step 5. Continue the evolution procedure according to the
genetic algorithm.

Step 6. Pick up the converged tree for the specified density,
and memorize the number of points in the bumpy region.

Even if one solution is obtained by using the genetic
algorithm with some initial value, the number of captured
points is larger than any when using the simple random
search method of 500 cases in some example case, which
proves that the genetic algorithm works well.

5. Extreme-Value Statistics Assist the Genetic Algo-
rithm

As Fig. 6 shows the ten cases of the iteration procedures in
the previous example with ten different initial conditions,
the converged solution may differ from each other when the
initial value is set to a different value. The genetic algorithm
may have an inclination of searching for the local maxima
because the tree-gain plot shows the randomness of the cap-
tured points and suggests the existence of many local max-
ima. From 20 trials of the genetic algorithm, the maximum
value of the captured points is 138. On the contrary, the con-
ventional decision tree algorithm provides only 47 captured
points; this is a typical counter example.

The histogram shown in Fig. 7 is made from the 20 con-
verged values in the example case, using the genetic algo-
rithm with 20 different initial values. As each value can be

Fig. 7 Frequency distributions of the maximum number of captured
points for response 1, and the fitted gumbel density function.

considered to be the maximum value in some domain, the
distribution for these values will follow an extreme-value
type distribution, such as the gumbel, the Weibull, and the
Fréchet distributions. If the mother distribution function
is a normal, exponential, log-normal, gamma, gumbel, or
Rayleigh type distribution, then the limiting distribution of
the maximum values from the mother distribution follows
the gumbel distribution (see [5] e.g.). Here, the gumbel fit-
ting to the maximum values obtained by the genetic algo-
rithm is first applied.

By fitting the gumbel distribution to these 20 data, we
can obtain the fitted density distribution function and the
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cumulative distribution function with the estimated location
parameter 119, and scale parameter 3.95. Using these val-
ues, we can predict the maximum value of the captured
points in other numbers of searching cases. Although we
have only obtained the maximum value and its correspond-
ing rule out of 20 genetic algorithm cases, we may predict
where this maximum value is located. If we try 500 ge-
netic algorithm cases, and we want to obtain the maximum
converged value, then, it is estimated to be 144, and 138 is
the 96 percentile point if we regard 144 to be the maximum
value. We think that this result is satisfactory. We can use
the number 138 and the corresponding descriptive rule as a
semi-optimal solution.

To obtain the reliability of these estimated values, we
have done the the bootstrap method (see [8]) using 20 ge-
netic algorithm results. The number of trials is 1,000.
Then, for the number 144, the 95% confidence interval is
(135, 150). To confirm that this is true, we have computed
500 genetic algorithm cases, and the result is satisfactory.

By doing this procedure to the cases of 50%, 60%,
and 70% pureness rates of response 1 in a similar manner,
we can obtain the semi-optimal trade-off curve between the
pureness rate and the number of response 1 captured points
in the bumpy regions, which is shown in Fig. 8.

6. Discussions

Other Extreme-Value Type Distribution. Other extreme-
value type distribution functions with the threshold to the
right such as the Weibull distribution may also be applied
to this problem instead of using the gumbel distribution.
Due to the inclusion of the location parameter, the confi-
dence interval to the threshold parameter may become large
if the number of samples is not so large. Thus, the three-
parameter estimation to find the endpoint of the distribu-
tion is not treated here. Rather, finding the higher percentile
point is recommended.

Cases for Easier Classification Problems. We try to solve
problems that are very hard to classify using the newly in-
troduced classification criterion, which is the trade-off curve
between the pureness rate and the capture rate. The cap-
ture rate strongly depends on the pureness rate as shown in
Fig. 8. This dependency will become more gentle as the sep-
arability for response 0 and 1 can be obtained much easier.
Figure 9 shows two other trade-off curves as well as the case
in Fig. 8. The curve’s upper side corresponds to an easily
separable case for the explanation variables; this reminds us
the figure on the left in Fig. 1. The curve in the middle cor-
responds to a case with mid-class separability.

Versatility of the Proposed Method. In Sects. 1 and 2,
we introduced that the target of our problem is to solve the
problems where the misclassification rate cannot be large
but the capture rate can be obtained to some extent with the
specified pureness rate. However, the method proposed here
will work for any problem if we are interested in acquisition

Fig. 8 Semi-optimal trade-off curve between the pureness rate and the
number of captured points.

Fig. 9 Three types of trade-off curves between the pureness rate and the
number of captured points.

of one class items. Thus, the proposed method is versatile
as the method includes the conventional splitting algorithm
such as the CART by Breiman et. al. [4]. We have experi-
enced such cases and the proposed method has worked well.

Reliability of the Solution. In discussing classification ac-
curacy, we often use misclassification error fluctuations by
many learning-test data combinations, e.g., ten-fold cross-
validation. This method is useful in prediction; if we used all
the data as learning data in classification problems, then an
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over-fitted solution adapted to the very learning data would
result; that is, a bias to the true model might be produced.
Another method to assess the accuracy of the misclassifica-
tion rate is to use the bootstrap. The non-parametric boot-
strap resamples the points from the original data with equal
probability to every point in drawing for many trial cases.
The statistical property of all the results given by each trial
shows the accuracy of the estimated misclassification error.
This method essentially uses the original data as the learn-
ing data, and has the possibility of producing the model bias.
However, if the number of data points is large enough, such
a bias would be reduced.

To assess the accuracy of the solution in our approach,
we basically use the bootstrap method. We first select trees
at random as the gene seeds for the genetic algorithm from
the very original data. Then, we obtain a number of semi-
optimal local solutions, say 20 solutions, which are con-
verged capture rates using the genetic algorithm. Finally, we
estimate the semi-optimal global solution using the extreme-
value statical method based on the maximum likelihood
principle. If we use the parametric bootstrap method to
the underlying probability distribution for the solution, we
can assess the accuracy of the solution similarly to the non-
parametric bootstrap method.

Although we do not construct the solution tree by the
learning data and do not assess the capture rate by the test
data because such a method requires extremely large com-
puting time, the proposed treatment using the combination
of the genetic algorithm and the extreme-value statistical ap-
proach will provide an almost equivalent accuracy for the
trade-off curve to the accuracy by using the learning-test
data combined method. The difference between the two is
whether it is sampled earlier or later. The reliability of the
confidence band for the trade-off curve depends on the num-
ber of the extreme-value statistics samples, but the mean
location of the band would not be affected by the number
of samples. In addition, the number of data points in our
real customer database model is large enough, e.g., 200, 000
points, so why we used the bootstrap method to obtain the
reliability for the trade-off curve in this paper.

7. Concluding Remarks

In difficult classification problems of the z-dimensional
points into two groups giving 0-1 responses due to the messy
data structure, we try to find the bumpy regions for the favor-
able customers of response 1, instead of finding the bound-
aries to separate the two groups. By specifying the pureness
rate of response 1 to the total, we can find the largest semi-
optimal boxes parallel to some of the explanation variables
using the decision tree both with the Gini’s index and with
the genetic algorithm method. Then, we can obtain a trade-
off curve between the pureness rate and the number of points
of response 1. Due to the existence of many local max-
ima unlike the ordinary genetic algorithm search results, the
extreme-value statistics work to estimate the semi-optimal
solution with the guarantee of the accuracy of the descrip-

tive rules. The reliability of the solution can be obtained
using the bootstrap method.
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