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SOME NOTES ON 7-DISTANCE VERSIONS
OF EKELAND’S VARIATIONAL PRINCIPLE

Tomonari SUZUKI

Abstract

We give some notes on z-distance versions of Ekeland’s variational principle.

1. Introduction

Ekeland [4, 5] proved the following very useful existence theorem, which is called
Ekeland’s variational principle.

THEOREM 1.1 (Ekeland [4, 5]). Let (X,d) be a complete metric space. Let [ be a
function from X into (—oo,+o0] which is proper lower semicontinuous and bounded from
below. Then for ue X and 1 >0, there exists ve X satisfying the following:

(i) f(v) < f(0)— 7 d(uv).

(i) f(w)> f(v)—Ad(v,w) for all we X\{v}.

Theorem 1.1 has many applications. Theorem 1.1 is equivalent to Caristi’s fixed
point theorem [2, 3], which is a generalization of the Banach contraction principle
[1]. Also, Sullivan [11] proved that Theorem 1.1 characterizes the metric completeness
of X. See also [9, 31].

In [13], Suzuki introduced the concept of z-distances in order to generalize the
results of Tataru [30], Zhong [32] and others.

DeriNniTION 1.2 ([13]). Let (X,d) be a metric space. Then a function p from
X x X into [0, 00) is called a t-distance on X if there exists a function # from X x [0, c0)
into [0,00) and the following are satisfied:
(r1) p(x,z) < p(x, )+ p(p,z) for all x,y,ze X.
(12) n(x,0) =0 and #(x,7) > ¢ for all xe X and 7€ [0, o), and # is concave and
continuous in its second variable.
(z3) lim, x, =x and lim,sup{y(z,, p(zs, X)) :m=n} =0 imply p(w,x) <
liminf, p(w,x,) for all we X.
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(t4) lim, sup{p(xy, ym) : m = n} = 0 and lim, #(x,, t,) = 0 imply lim, #(y,, t,) = 0.
(¢5) lim, 5(z,, p(zn, X)) = 0 and lim, n(z,, p(z,, y»)) = 0 imply lim, d(x,, y,) = 0.

The metric d is a t-distance on X. Many useful examples and properties are stated
in [7, 8, 10, 12-29]. The following is a z-distance version of Theorem 1.1.

THEOREM 1.3 ([13]). Let (X,d) be a complete metric space with a t-distance p. Let
[ be a function from X into (—oo,+0o0] which is proper lower semicontinuous and bounded
from below. Then the following (A) and (B) hold:
(A) For each ue X, there exists ve X such that f(v) < f(u) and f(w) > f(v) —
plo,w) for all we X\{v}.
(B) For each A >0 and ue X with p(u,u) =0, there exists ve X such that
Sf@) < f(u) — Ap(u,v) and f(w) > f(v) — Ap(v,w) for all we X\{v}.

Motivated by the strong Ekeland’s variational principle proved by Georgiev [6],
Suzuki proved the following theorem.

THEOREM 1.4 ([20]). Let (X,d) be a compact metric space with a t-distance p.
Assume that p is lower semicontinuous in its second variable. Let [ be a function from X
into (—oo, 400 which is proper and lower semicontinuous. Let ue X with p(u,u) =0.
Then for A >0, there exists ve X satisfying the following:

(i) f(0) < f(u) — ip(uv).

(i) fw) > f(v) — Ap(v,w) for all we X\{v}.

(iii) If a sequence {x,} in X satisfies lim,(f(x,)+ Ap(v,x,)) = f(v), then {x,} is

p-Cauchy, lim, x, = v and p(v,v) = lim, p(v, x,) = 0.

In this paper, we give some comments on Theorems 1.3 and 1.4.

2. Preliminaries
In this section, we give some preliminaries.

DeriNiTION 2.1 ([13]). Let (X,d) be a metric space with a z-distance p. Then a
sequence {x,} in X is called p-Cauchy if there exist a function # from X x [0, c0) into
[0, c0) satistying (72)—(z5) and a sequence {z,} in X such that lim, sup{#(z,, p(zu, Xm)) :
m>n} =0.

Lemma 2.2 ([13]). Let (X,d) be a metric space with a t-distance p. If {x,} is a
p-Cauchy sequence, then {x,} is a Cauchy sequence in the usual sense.

Lemma 2.3 ([13]). Let (X,d) be a metric space with a t-distance p. If a sequence
{xn} in X satisfies lim, p(z,x,) =0 for some z € X, then {x,} is p-Cauchy.

LemMa 2.4 ([13]). Let (X,d) be a metric space with a t-distance p. If a sequence
{x,} in X satisfies lim, sup{p(x,,x,) : m > n} =0, then {x,} is p-Cauchy. Moreover if
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a sequence {y,} in X satisfies lim, p(x,, y,) =0, then {y,} is also p-Cauchy and
lim,, d(x,, y,) = 0.

ProposITION 2.5 ([13, 15]). Let p be a t-distance on a metric space (X,d). Let ¢
be a positive real number and let o be a function from X into [0, 0). Then two functions
q1 and q, from X x X into [0,00) defined by

(i) qi1(x, ) =ep(x, );

(i) g2(x, y) = max{a(x), p(x, y)}
are t-distances on X.

3. A proof

In [13], using some fixed point theorem, we proved Theorem 1.3. In this section,
we give a direct proof of Theorem 1.3. Concretely speaking, we give a direct proof of
the following theorem, which Theorem 1.3 is an immediate consequence of.

THEOREM 3.1 ([13]). Let (X,d) be a complete metric space with a t-distance p, and
let f be a function from X into (—oo,+o0] which is proper lower semicontinuous and
bounded from below. Define

Mx={yeX:f(y)+pxy <f(x)}
for xe X. Then the following hold:

(1) yeMx and ze My imply z € Mx.

(ii) For every ue X with Mu # (J, there exists ve Mu satisfying Mv = {v}.
(iii) There exists z€ X such that Mz < {z}.

(iv) Mz ={z} implies f(z) < oo and p(z,z) =0.

Proor. (i) follows from

f(@)+plx,2) < f(2) + plx, ¥) + p(y,2) < f(¥) + plx, ») < f(x).

(iii) follows from (ii). We can easily prove (iv). So we shall prove (ii). Fix ue X
with Mu # (. Arguing by contradiction, we assume

Mx\{x} # & for every x € Mu.
We shall define inductively a sequence {u,} in X. Put u; =u. Suppose that u, € X is
known for some ne N. Since Mu,\{u,} # &, we can choose u,.| € Mu, such that

U1 7 Uy and  f(ups1) < inf{f(x):x e Mu,} +1/n < 0.
We have defined {u,}. We note
f(un+1) < f(un) and Muy,11 = Muy,

because u,. € Mu,. Since {f(u,)} is a nonincreasing sequence in (—oo,+o0] and f is
bounded from below, {f(u,)} converges to some real number. We have
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m—1

lim sup p(uy,un) < lim sup Zp(uj,uj+1)

=% m>n =% m>n i=n

m—1
< lim sup (/) — f (1))
m>n =

= lim sup(f(u,) — f(tm))

=% m>n

= lim lim (f(u,) — f (t))

n—0o0 m—oo

=0.

By Lemma 2.4, {u,} is a p-Cauchy sequence. By Lemma 2.2, {u,} is a Cauchy
sequence in the usual sense. Since X is complete, {u,} converges to some point
ve X. Using (z3) and (i), we have

f(v) + pup,v) < liminf f(u,) + lminf p(uy, 1)

m—oo

< liﬂigf(f(u,,) + p(un, t))
< f(un)

for all n e N and hence v e ("), Mu, = Mu. We choose w e Mv\{v}. Then we (), Mu,
by (i). We have

lim p(unv W) = lim p(un+l ) W)

n— o0 n— oo

< lim (f(uni1) — f(W))

n—oo

< lim (f (up11) — inf{f(x) : x € Mu,})

n—oo

< lim 1/n

T n—w
=0.
By Lemma 2.4, we have lim, d(u,,w) =0, which implies v =w. This is a contra-

diction. We have shown (ii). O

4. Strong Ekeland’s theorem

In this section, we consider Theorem 1.4. We first show that the assumption “p is
lower semicontinuous in its second variable” is needed in Theorem 1.4.
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ProposITION 4.1. Let (X,d) be a metric space and let ¢ be a positive real
number. Let p be a function from X x X into [0,0). Assume
p(x,y) <2c for all (x,y)e X x X;
p(x,y) < ¢ implies x = y.
Then p is a t-distance on X.

PrOOF. Arguing by contradiction, we assume there exist x, y,z € X such that
p(x,2) > p(x, y) + p(y, 2).

Then since p(x,z) < 2¢, either p(x, y) < ¢ or p(y,z) < c holds. From the assumption,
either x =y or y =z holds. In both cases,

p(x,z) < p(x,¥) + p(y,2)

holds. This is a contradiction. We have shown (zl). Define a function # from
X x [0,00) into [0,00) by

(1) n(x,t) =t

for xeX and 7€[0,00). Then it is obvious that # satisfies (72). Assume that
lim, x, = x and lim, sup{#n(z,, p(zn, X)) : m >n} = 0. Since

lim sup p(z,,x,) =0,
=% m>n

there exists v € N such that

sup p(zy, Xm) < c.

mz>=v
This implies x,, =z, for every m >v. Hence x = z,. Therefore

p(w,x) = liminf p(w,x,) for all we X.

n—oo

This implies (z3). By the definition of #, (74) clearly holds. We assume

lim #(zy, p(zn,%4)) =0 and lim #%(z,, p(zn, yn)) = 0.

n—oo n— oo
Then since lim, p(z,,x,) =0 and lim, p(z,, y,) = 0, there exists v e N such that
p(zn,xn) < ¢ and P(Zuy yn) <

for all n > v. Thus, we have z, = x,, and z, = y, for all n e N with n > v. Therefore
lim, d(x,, y») = 0 holds. This implies (z5). Therefore p is a z-distance. O

ExaMpLE 4.2. Define a compact metric space (X,d) by

X =10,11U{2} and d(x,y)=|x—y
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Define a z-distance p on X by

if x=y

if xe[0,1] and y # x
—y ifx=2and ye[0,1)

if x=2and y=1.

p(x,y) =

NN O

Define a continuous function f from X into [0, c0) by

1 if xe0,1]

f(x):{z if x=2.

Put u:=2€X and A:=1>0. Then there does not exist v e X satisfying (i)—(iii) of
Theorem 1.4.

ProoF. Using Proposition 4.1 with ¢ =1, p is a r-distance on X. p(u,u)=0
obviously holds. For xe[0,1], since p(u,x) > 1, we have

J(x)=1>2—p(u,x) = f(u) — Ap(u, x).
Thus x € [0,1] does not satisfy (i). Define a sequence {x,} in X by x,=1-1/n.
Then we have

lim (f(xn) +4p(2,%,)) = im (2 4+ 1/n) = 2 = f(2)

n—oo
and lim, x, =1 #2. Thus 2 does not satisfy (iii). O
We can remove the lower semicontinuity of p when we assume another assumption.

THEOREM 4.3. Let (X,d) be a compact metric space with a t-distance p. Assume
the following:
(A) For every sequence {x,} in X, there exists a subsequence {x, } of {x,} such
that {x, } is p-Cauchy.
Let [ be a function from X into (—oo,~+0o0] which is proper and lower semicontinuous.
Let ue X with p(u,u) =0. Then for A>0, there exists ve X satisfying (i1)—(iii) of
Theorem 1.4.

Proor. We first note that f is bounded from below because X is compact and f is
lower semicontinuous. From Theorem 1.3 (B), there exists v € X satisfying (i) and (ii)
of Theorem 1.4. We note f(v) < oo follows from (ii). We shall show such v satisfies
(iii). Let {x,} be a sequence in X with

lim (/ () + Ap(e,3) = /(0).
Let {x, } be an arbitrary subsequence of {x,}. From (A), there exists a subsequence
{xnkj} of {x,} such that {x,,k/_} is p-Cauchy. We put y; =, . By Lemma 2.2, {y;} is
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Cauchy in the usual sense. Since X is compact, {y;} converges to some point y € X.
We have

(2) f () +2p(v, y) < liminf f(y;) + 2 lijrgglf p(v, y;)

J—o

< liminf (1 (y) + 2p(v, ;)

J=

= lim (f(3) + 2p (v, 3;))
= /(v).

From this and (ii), v = y holds. Since {x,, } is arbitrary, we obtain {x,} converges to v.
We also obtain p(v,v) =0 from (2). We have

f(v) < liminf f(x,)

n—o0

< limsup f(xy)

n—oo

< limsup(f(x,) + Ap(v, x,))

= nhnalc(f(xn) + p(v, X))

=f(v)
and hence lim, f(x,) = f(v). Therefore lim, p(v,x,) =0. Thus {x,} is p-Cauchy by
Lemma 2.3. |

In the above proof, we only use the completeness of X. However, X becomes
compact from (A).

PROPOSITION 4.4. Let (X,d) be a complete metric space with a t-distance p. As-
sume (A) of Theorem 4.3. Then X is compact.

Proor. Let {x,} be a sequence in X. Then from the assumption, there exists a
subsequence {x,, } of {x,} such that {x,, } is p-Cauchy. By Lemma 2.2, {x,, } is Cauchy
in the usual sense. Since X is complete, {x, } converges to some ye X. Therefore
every sequence {x,} in X has a subsequence which converges. Hence X is compact.

O
We finally give the following example.

ExampLE 4.5. Define a compact metric space (X,d) by

X=[0.1] and  d(x.y) =lx—l.
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Define a z-distance p on X by

1 if x=0

P, ) _{|x—y| if x #0.

Then p satisfies (A) of Theorem 4.3, but p(0,0) > 0 holds.

ProoF. By Proposition 2.5, p is a t-distance. It is obvious that p(0,0) > 0. De-
fine a function # from X x [0, 00) by (1). Then 7 satisfies (72)—(z5). In order to show
(A) of Theorem 4.3, we let {x,} be an arbitrary sequence in X. Since X is compact,
there exists a subsequence {x, } of {x,} which converging. Define a sequence {z;} in
X by

{l/k if x,, =0
Zk — .
X, if x, # 0.

Then we have

lim sup #(zx, p(zk, X)) = lim sup |zx — x|
k—o0 >k k—o0 >k

IA

lim sup(le - xnk| + |x”k - x”j|)
k—o0 j>k

IA

lim <1/k + sup [ X, — x"/|)
k— oo j=>k

= 0’
thus, {x,} is p-Cauchy. O
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