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SOME NOTES ON t-DISTANCE VERSIONS

OF EKELAND’S VARIATIONAL PRINCIPLE

Tomonari Suzuki

Abstract

We give some notes on t-distance versions of Ekeland’s variational principle.

1. Introduction

Ekeland [4, 5] proved the following very useful existence theorem, which is called

Ekeland’s variational principle.

Theorem 1.1 (Ekeland [4, 5]). Let ðX ; dÞ be a complete metric space. Let f be a

function from X into ð�y;þy� which is proper lower semicontinuous and bounded from

below. Then for u A X and l > 0, there exists v A X satisfying the following:

( i ) f ðvÞa f ðuÞ � l dðu; vÞ.
(ii) f ðwÞ > f ðvÞ � l dðv;wÞ for all w A Xnfvg.

Theorem 1.1 has many applications. Theorem 1.1 is equivalent to Caristi’s fixed

point theorem [2, 3], which is a generalization of the Banach contraction principle

[1]. Also, Sullivan [11] proved that Theorem 1.1 characterizes the metric completeness

of X . See also [9, 31].

In [13], Suzuki introduced the concept of t-distances in order to generalize the

results of Tataru [30], Zhong [32] and others.

Definition 1.2 ([13]). Let ðX ; dÞ be a metric space. Then a function p from

X � X into ½0;yÞ is called a t-distance on X if there exists a function h from X � ½0;yÞ
into ½0;yÞ and the following are satisfied:

ðt1Þ pðx; zÞa pðx; yÞ þ pðy; zÞ for all x; y; z A X .

ðt2Þ hðx; 0Þ ¼ 0 and hðx; tÞb t for all x A X and t A ½0;yÞ, and h is concave and

continuous in its second variable.

ðt3Þ limn xn ¼ x and limn supfhðzn; pðzn; xmÞÞ : mb ng ¼ 0 imply pðw; xÞa
lim infn pðw; xnÞ for all w A X .

Date: Received November 28, 2008.

2000 Mathematics Subject Classification. 54H25.

Key words and phrases. Ekeland’s variational principle, t-distance.

The author is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of

Education, Culture, Sports, Science and Technology.



ðt4Þ limn supfpðxn; ymÞ : mb ng ¼ 0 and limn hðxn; tnÞ ¼ 0 imply limn hðyn; tnÞ ¼ 0.

ðt5Þ limn hðzn; pðzn; xnÞÞ ¼ 0 and limn hðzn; pðzn; ynÞÞ ¼ 0 imply limn dðxn; ynÞ ¼ 0.

The metric d is a t-distance on X . Many useful examples and properties are stated

in [7, 8, 10, 12–29]. The following is a t-distance version of Theorem 1.1.

Theorem 1.3 ([13]). Let ðX ; dÞ be a complete metric space with a t-distance p. Let

f be a function from X into ð�y;þy� which is proper lower semicontinuous and bounded

from below. Then the following (A) and (B) hold:

(A) For each u A X, there exists v A X such that f ðvÞa f ðuÞ and f ðwÞ > f ðvÞ�
pðv;wÞ for all w A Xnfvg.

(B) For each l > 0 and u A X with pðu; uÞ ¼ 0, there exists v A X such that

f ðvÞa f ðuÞ � lpðu; vÞ and f ðwÞ > f ðvÞ � lpðv;wÞ for all w A Xnfvg.

Motivated by the strong Ekeland’s variational principle proved by Georgiev [6],

Suzuki proved the following theorem.

Theorem 1.4 ([20]). Let ðX ; dÞ be a compact metric space with a t-distance p.

Assume that p is lower semicontinuous in its second variable. Let f be a function from X

into ð�y;þy� which is proper and lower semicontinuous. Let u A X with pðu; uÞ ¼ 0.

Then for l > 0, there exists v A X satisfying the following:

( i ) f ðvÞa f ðuÞ � lpðu; vÞ.
( ii ) f ðwÞ > f ðvÞ � lpðv;wÞ for all w A Xnfvg.
(iii) If a sequence fxng in X satisfies limnð f ðxnÞ þ lpðv; xnÞÞ ¼ f ðvÞ, then fxng is

p-Cauchy, limn xn ¼ v and pðv; vÞ ¼ limn pðv; xnÞ ¼ 0.

In this paper, we give some comments on Theorems 1.3 and 1.4.

2. Preliminaries

In this section, we give some preliminaries.

Definition 2.1 ([13]). Let ðX ; dÞ be a metric space with a t-distance p. Then a

sequence fxng in X is called p-Cauchy if there exist a function h from X � ½0;yÞ into

½0;yÞ satisfying ðt2Þ–ðt5Þ and a sequence fzng in X such that limn supfhðzn; pðzn; xmÞÞ :
mb ng ¼ 0.

Lemma 2.2 ([13]). Let ðX ; dÞ be a metric space with a t-distance p. If fxng is a

p-Cauchy sequence, then fxng is a Cauchy sequence in the usual sense.

Lemma 2.3 ([13]). Let ðX ; dÞ be a metric space with a t-distance p. If a sequence

fxng in X satisfies limn pðz; xnÞ ¼ 0 for some z A X, then fxng is p-Cauchy.

Lemma 2.4 ([13]). Let ðX ; dÞ be a metric space with a t-distance p. If a sequence

fxng in X satisfies limn supfpðxn; xmÞ : m > ng ¼ 0, then fxng is p-Cauchy. Moreover if
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a sequence fyng in X satisfies limn pðxn; ynÞ ¼ 0, then fyng is also p-Cauchy and

limn dðxn; ynÞ ¼ 0.

Proposition 2.5 ([13, 15]). Let p be a t-distance on a metric space ðX ; dÞ. Let c

be a positive real number and let a be a function from X into ½0;yÞ. Then two functions

q1 and q2 from X � X into ½0;yÞ defined by

( i ) q1ðx; yÞ ¼ cpðx; yÞ;
(ii) q2ðx; yÞ ¼ maxfaðxÞ; pðx; yÞg

are t-distances on X.

3. A proof

In [13], using some fixed point theorem, we proved Theorem 1.3. In this section,

we give a direct proof of Theorem 1.3. Concretely speaking, we give a direct proof of

the following theorem, which Theorem 1.3 is an immediate consequence of.

Theorem 3.1 ([13]). Let ðX ; dÞ be a complete metric space with a t-distance p, and

let f be a function from X into ð�y;þy� which is proper lower semicontinuous and

bounded from below. Define

Mx ¼ fy A X : f ðyÞ þ pðx; yÞa f ðxÞg

for x A X. Then the following hold:

( i ) y A Mx and z A My imply z A Mx.

( ii ) For every u A X with Mu0q, there exists v A Mu satisfying MvH fvg.
(iii) There exists z A X such that MzH fzg.
(iv) Mz ¼ fzg implies f ðzÞ < y and pðz; zÞ ¼ 0.

Proof. (i) follows from

f ðzÞ þ pðx; zÞa f ðzÞ þ pðx; yÞ þ pðy; zÞa f ðyÞ þ pðx; yÞa f ðxÞ:

(iii) follows from (ii). We can easily prove (iv). So we shall prove (ii). Fix u A X

with Mu0q. Arguing by contradiction, we assume
� Mxnfxg0q for every x A Mu.

We shall define inductively a sequence fung in X . Put u1 ¼ u. Suppose that un A X is

known for some n A N. Since Munnfung0q, we can choose unþ1 A Mun such that

unþ1 0 un and f ðunþ1Þa inff f ðxÞ : x A Mung þ 1=n < y:

We have defined fung. We note

f ðunþ1Þa f ðunÞ and Munþ1 HMun

because unþ1 A Mun. Since f f ðunÞg is a nonincreasing sequence in ð�y;þy� and f is

bounded from below, f f ðunÞg converges to some real number. We have
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lim
n!y

sup
m>n

pðun; umÞa lim
n!y

sup
m>n

Xm�1

j¼n

pðuj; ujþ1Þ

a lim
n!y

sup
m>n

Xm�1

j¼n

ð f ðujÞ � f ðujþ1ÞÞ

¼ lim
n!y

sup
m>n

ð f ðunÞ � f ðumÞÞ

¼ lim
n!y

lim
m!y

ð f ðunÞ � f ðumÞÞ

¼ 0:

By Lemma 2.4, fung is a p-Cauchy sequence. By Lemma 2.2, fung is a Cauchy

sequence in the usual sense. Since X is complete, fung converges to some point

v A X . Using ðt3Þ and (i), we have

f ðvÞ þ pðun; vÞa lim inf
m!y

f ðumÞ þ lim inf
m!y

pðun; umÞ

a lim inf
m!y

ð f ðumÞ þ pðun; umÞÞ

a f ðunÞ

for all n A N and hence v A 7
n
Mun HMu. We choose w A Mvnfvg. Then w A 7

n
Mun

by (i). We have

lim
n!y

pðun;wÞ ¼ lim
n!y

pðunþ1;wÞ

a lim
n!y

ð f ðunþ1Þ � f ðwÞÞ

a lim
n!y

ð f ðunþ1Þ � inff f ðxÞ : x A MungÞ

a lim
n!y

1=n

¼ 0:

By Lemma 2.4, we have limn dðun;wÞ ¼ 0, which implies v ¼ w. This is a contra-

diction. We have shown (ii). r

4. Strong Ekeland’s theorem

In this section, we consider Theorem 1.4. We first show that the assumption ‘‘p is

lower semicontinuous in its second variable’’ is needed in Theorem 1.4.
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Proposition 4.1. Let ðX ; dÞ be a metric space and let c be a positive real

number. Let p be a function from X � X into ½0;yÞ. Assume
� pðx; yÞa 2c for all ðx; yÞ A X � X;
� pðx; yÞ < c implies x ¼ y.

Then p is a t-distance on X.

Proof. Arguing by contradiction, we assume there exist x; y; z A X such that

pðx; zÞ > pðx; yÞ þ pðy; zÞ:

Then since pðx; zÞa 2c, either pðx; yÞ < c or pðy; zÞ < c holds. From the assumption,

either x ¼ y or y ¼ z holds. In both cases,

pðx; zÞa pðx; yÞ þ pðy; zÞ

holds. This is a contradiction. We have shown ðt1Þ. Define a function h from

X � ½0;yÞ into ½0;yÞ by

hðx; tÞ ¼ tð1Þ

for x A X and t A ½0;yÞ. Then it is obvious that h satisfies ðt2Þ. Assume that

limn xn ¼ x and limn supfhðzn; pðzn; xmÞÞ : mb ng ¼ 0. Since

lim
n!y

sup
mbn

pðzn; xmÞ ¼ 0;

there exists n A N such that

sup
mbn

pðzn; xmÞ < c:

This implies xm ¼ zn for every mb n. Hence x ¼ zn. Therefore

pðw; xÞ ¼ lim inf
n!y

pðw; xnÞ for all w A X :

This implies ðt3Þ. By the definition of h, ðt4Þ clearly holds. We assume

lim
n!y

hðzn; pðzn; xnÞÞ ¼ 0 and lim
n!y

hðzn; pðzn; ynÞÞ ¼ 0:

Then since limn pðzn; xnÞ ¼ 0 and limn pðzn; ynÞ ¼ 0, there exists n A N such that

pðzn; xnÞ < c and pðzn; ynÞ < c

for all nb n. Thus, we have zn ¼ xn and zn ¼ yn for all n A N with nb n. Therefore

limn dðxn; ynÞ ¼ 0 holds. This implies ðt5Þ. Therefore p is a t-distance. r

Example 4.2. Define a compact metric space ðX ; dÞ by

X ¼ ½0; 1�U f2g and dðx; yÞ ¼ jx� yj:
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Define a t-distance p on X by

pðx; yÞ ¼

0 if x ¼ y

2 if x A ½0; 1� and y0 x

2 � y if x ¼ 2 and y A ½0; 1Þ
2 if x ¼ 2 and y ¼ 1:

8>>><
>>>:

Define a continuous function f from X into ½0;yÞ by

f ðxÞ ¼ 1 if x A ½0; 1�
2 if x ¼ 2:

�

Put u :¼ 2 A X and l :¼ 1 > 0. Then there does not exist v A X satisfying (i)–(iii) of

Theorem 1.4.

Proof. Using Proposition 4.1 with c ¼ 1, p is a t-distance on X . pðu; uÞ ¼ 0

obviously holds. For x A ½0; 1�, since pðu; xÞ > 1, we have

f ðxÞ ¼ 1 > 2 � pðu; xÞ ¼ f ðuÞ � lpðu; xÞ:

Thus x A ½0; 1� does not satisfy (i). Define a sequence fxng in X by xn ¼ 1 � 1=n.

Then we have

lim
n!y

ð f ðxnÞ þ lpð2; xnÞÞ ¼ lim
n!y

ð2 þ 1=nÞ ¼ 2 ¼ f ð2Þ

and limn xn ¼ 10 2. Thus 2 does not satisfy (iii). r

We can remove the lower semicontinuity of p when we assume another assumption.

Theorem 4.3. Let ðX ; dÞ be a compact metric space with a t-distance p. Assume

the following:

(A) For every sequence fxng in X, there exists a subsequence fxnkg of fxng such

that fxnkg is p-Cauchy.

Let f be a function from X into ð�y;þy� which is proper and lower semicontinuous.

Let u A X with pðu; uÞ ¼ 0. Then for l > 0, there exists v A X satisfying (i)–(iii) of

Theorem 1.4.

Proof. We first note that f is bounded from below because X is compact and f is

lower semicontinuous. From Theorem 1.3 (B), there exists v A X satisfying (i) and (ii)

of Theorem 1.4. We note f ðvÞ < y follows from (ii). We shall show such v satisfies

(iii). Let fxng be a sequence in X with

lim
n!y

ð f ðxnÞ þ lpðv; xnÞÞ ¼ f ðvÞ:

Let fxnkg be an arbitrary subsequence of fxng. From (A), there exists a subsequence

fxnkj g of fxnkg such that fxnkj g is p-Cauchy. We put yj ¼ xnkj . By Lemma 2.2, fyjg is
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Cauchy in the usual sense. Since X is compact, fyjg converges to some point y A X .

We have

f ðyÞ þ lpðv; yÞa lim inf
j!y

f ðyjÞ þ l lim inf
j!y

pðv; yjÞð2Þ

a lim inf
j!y

ð f ðyjÞ þ lpðv; yjÞÞ

¼ lim
j!y

ð f ðyjÞ þ lpðv; yjÞÞ

¼ f ðvÞ:

From this and (ii), v ¼ y holds. Since fxnkg is arbitrary, we obtain fxng converges to v.

We also obtain pðv; vÞ ¼ 0 from (2). We have

f ðvÞa lim inf
n!y

f ðxnÞ

a lim sup
n!y

f ðxnÞ

a lim sup
n!y

ð f ðxnÞ þ lpðv; xnÞÞ

¼ lim
n!y

ð f ðxnÞ þ lpðv; xnÞÞ

¼ f ðvÞ

and hence limn f ðxnÞ ¼ f ðvÞ. Therefore limn pðv; xnÞ ¼ 0. Thus fxng is p-Cauchy by

Lemma 2.3. r

In the above proof, we only use the completeness of X . However, X becomes

compact from (A).

Proposition 4.4. Let ðX ; dÞ be a complete metric space with a t-distance p. As-

sume (A) of Theorem 4.3. Then X is compact.

Proof. Let fxng be a sequence in X . Then from the assumption, there exists a

subsequence fxnkg of fxng such that fxnkg is p-Cauchy. By Lemma 2.2, fxnkg is Cauchy

in the usual sense. Since X is complete, fxnkg converges to some y A X . Therefore

every sequence fxng in X has a subsequence which converges. Hence X is compact.

r

We finally give the following example.

Example 4.5. Define a compact metric space ðX ; dÞ by

X ¼ ½0; 1� and dðx; yÞ ¼ jx� yj:
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Define a t-distance p on X by

pðx; yÞ ¼ 1 if x ¼ 0

jx� yj if x0 0:

�

Then p satisfies (A) of Theorem 4.3, but pð0; 0Þ > 0 holds.

Proof. By Proposition 2.5, p is a t-distance. It is obvious that pð0; 0Þ > 0. De-

fine a function h from X � ½0;yÞ by (1). Then h satisfies ðt2Þ–ðt5Þ. In order to show

(A) of Theorem 4.3, we let fxng be an arbitrary sequence in X . Since X is compact,

there exists a subsequence fxnkg of fxng which converging. Define a sequence fzkg in

X by

zk ¼
1=k if xnk ¼ 0

xnk if xnk 0 0:

�

Then we have

lim
k!y

sup
jbk

hðzk; pðzk; xnj ÞÞ ¼ lim
k!y

sup
jbk

jzk � xnj j

a lim
k!y

sup
jbk

ðjzk � xnk j þ jxnk � xnj jÞ

a lim
k!y

�
1=k þ sup

jbk

jxnk � xnj j
�

¼ 0;

thus, fxnkg is p-Cauchy. r
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