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Three-nucleon force effects in the 1H( �d, �p p)n reaction at 135 MeV/nucleon
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The deuteron to proton polarization transfer coefficients Ky′
yy and Ky′

y together with the deuteron analyzing
powers are measured in three coplanar configurations of the deuteron-proton breakup reaction with a
135-MeV/nucleon polarized deuteron beam at the RIKEN Accelerator Research Facility. The data are compared
with theoretical predictions based on exact solutions of the three-nucleon (3N ) Faddeev equations with
high-precision nucleon-nucleon (NN ) forces, alone or combined with two 3N force (3NF) models, the
2π -exchange Tucson-Melbourne′(99) (TM′99) and Urbana IX. Large 3NF effects have been found for all the
measured observables. Predicted effects are supported by the data, with the exception of the vector analyzing
power Ad

y . For this observable, theory based on only NN forces is sufficient to explain the data. The behavior of the
breakup analyzing powers is found to be different from the corresponding observables in elastic nucleon-deuteron
scattering.
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I. INTRODUCTION

One of the main interests in nuclear physics is under-
standing the forces acting between nuclear constituents. A hot
topic in present few-nucleon system studies is the properties
of three-nucleon forces (3NFs) that appear when more than
two nucleons (A � 3) interact. An intensive study of 3NFs
was begun after the establishment of high-precision nucleon-
nucleon (NN ) potentials in the 1990s, such as AV18 [1],
CD-Bonn [2,3], and Nijmegen I, II, and 93 [4]. These NN

potentials reproduce a rich set of NN data up to a laboratory
energy of 350 MeV with very high precision (χ2/datum
∼1). However, they fail to predict the correct experimental
binding energies of three-nucleon (3N ), i.e., 3H and 3He,
and four-nucleon (4N ), i.e., 4He, bound states [5]. This is
generally taken as evidence that 3NFs are required in the
nuclear Hamiltonian. The commonly used 3NF models are
based on an exchange of two pions between three nucleons,
with the main factor in that process being a �-isobar excitation,
initially proposed by Fujita and Miyazawa half a century
ago [6]. Improvements in that picture have led to the Tucson-
Melbourne (TM) [7] and the Urbana IX [8] 3NF models.
It turns out that we can simultaneously achieve the correct
binding energies for the 3N and 4N systems by including the
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TM or Urbana IX 3NFs in the nuclear Hamiltonian. Further
evidence for 3NF effects have been reported for the binding
energies of higher mass nuclei when stochastic techniques are
applied [9–11]. The realistic NN forces fail to reproduce the
measured binding energies of light nuclei with mass numbers
4 < A � 10. The addition of the Urbana IX 3NF improves
significantly the descriptions of the low-energy spectra of
bound states for these nuclei. Recently, further improvements
have been obtained by adding the so-called Illinois 3NFs
to the nuclear Hamiltonian. These 3NFs include three-pion
exchanges with the intermediate �-isobar excitation [12].

New impetus to the study of 3NFs has come from the chiral
effective field theory approach to nuclear interactions (χPT).
In that framework, consistent two-, three-, and more-nucleon
forces have been derived on the same footing [13,14]. The
first nonzero 3NFs appear at the next-to-next-to-leading order
(NNLO) in χPT. So far, calculations have been performed
up to the NNLO for the 3N system, providing reasonable
agreement with experimental data for the 3N bound as
well as the 3N unbound systems at a laboratory energy of
�100 MeV/nucleon [15].

The results for the binding energies of light nuclei show that
3NFs provide non-negligible effects and are clearly required
for an understanding of nuclear phenomena. The 3N scattering
system is an attractive candidate for studying the detailed
properties of 3NFs, such as momentum, spin, and/or isospin
dependences. Nucleon-deuteron (Nd) elastic scattering and
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the breakup reaction provide a rich set of spin observables and
differential cross sections and, therefore, are suited to studying
these dependences.

3NF effects in 3N scattering were identified for the first
time by Witała et al. in 1998 [16] in the cross section minimum
for Nd elastic scattering at incoming nucleon energies above
60 MeV. Since then, experimental studies of higher energy
proton-deuteron (pd) and neutron-deuteron (nd) elastic scat-
tering covering incident energies up to ≈250 MeV have been
performed extensively and have provided precise data for cross
sections [17–24] and spin observables, including analyzing
powers [17–19,25–29], spin correlation coefficients [30,31],
and polarization transfer coefficients [20,28,32]. Precise cross
section data for elastic dp scattering taken at RIKEN with
135-MeV/nucleon deuterons show large disagreement be-
tween data and rigorous Faddeev calculations with modern
NN forces [17–19]. Combining these NN potentials with
3NFs such as TM′99 [33] (TM′99 is a version of the TM
force that is more consistent with chiral symmetry [34,35])
and Urbana IX removes this discrepancy and has allowed a
good description of the measured cross sections. Applying
the coupled-channel formulation based on the CD-Bonn
potential with the �-isobar excitation, including the long-
range Coulomb force, gives complementary results [36]. The
influence of the Coulomb force is only visible at very forward
angles; it is negligible in the cross section minimum, the most
sensitive region for the 3NFs. These results are a clear signature
of the 3NF effects in Nd elastic scattering. However, spin
observables cannot always be explained when adding these
3NFs, indicating a defect in the spin-dependent parts of the
presently used 3NF models [32].

The situation is even more interesting for kinematically
complete dp breakup (d + p → p + p + n) experiments
at higher incoming nucleon energies. At higher energies,
the breakup reaction starts to dominate the total cross
section for the nd interaction, e.g., σ total

breakup ∼ 2.5σ total
elastic at

135 MeV/nucleon [37]. Contrary to elastic scattering, where
transition amplitudes are integrated over the relative momen-
tum of nucleons forming the deuteron, the exclusive breakup
process projects the transition amplitude in a pointwise
manner. The selectivity of breakup reactions together with
its rich phase space allows one to single out kinematically
complete configurations, where the observables are specially
sensitive to properties of the 3NFs [37]. The existing higher
energy dp breakup data consist of cross sections and tensor
analyzing powers at 65 MeV/nucleon [38,39] and data fo-
cusing on the axial observables A

p
z , Czz,z, and Cy,x − Cx,y at

135 MeV/nucleon [40]. The pd breakup data at an incoming
proton energy of 65 MeV consist of the cross sections and
proton analyzing powers for numerous kinematically complete
configurations [41–44].

In the present study, we extend our measurements of elastic
dp scattering to the dp breakup reactions (d + p → p1 +
p2 + n). We first look theoretically for configurations and
observables in which there are clear 3NF model dependences.
The polarization transfer coefficient Ky ′

yy in particular coplanar
configurations was found to show clear model dependences,
with the TM′99 and Urbana IX 3NFs giving very different
theoretical predictions. Such coplanar configurations are the

laboratory angles θ1 = 28◦, 30◦, and 32◦ and θ2 = 31◦ for
the first, p1, and second, p2, emerging protons, respectively,
with a relative azimuthal angle between p1 and p2(φ12 ≡
φ1 − φ2) of φ12 = 180◦. These configurations include the
final state interaction geometry between the proton p2 and
the neutron [FSI(p2n)] where their momenta are equal. In
the measurement, the deuteron to proton polarization transfer
coefficient K

y ′
y and the induced polarization P y ′

of the proton
p1 were simultaneously obtained. All the deuteron analyzing
powers Ad

y,Ayy, Axx , and Axz were measured, for which
strong sensitivities to the current 3NFs are also predicted.

In the next section, the details of the experimental ar-
rangement are presented. Section III provides a description of
the data analysis and experimental results. Section IV briefly
reviews the basics of the theoretical 3N scattering formalism
and gives a short description of the dynamical input used in
this study. The experimental results are compared with the
theoretical predictions in Sec. V, while Sec. VI presents a
summary and conclusions.

II. EXPERIMENTAL PROCEDURE

A. Polarized deuteron beams and target

The breakup 1H( �d, �pp)n experiment was performed at
the RIKEN Accelerator Research Facility (RARF) using the
SMART (swinger and magnetic analyzer with rotator and
twister) spectrograph system [45] including the focal plane
polarimeter EPOL [46] (see Fig. 1). The atomic-beam-type
RIKEN polarized ion source [47] provided vector and tensor
polarized deuteron beams. The deuteron polarization axis
was rotated by a spin rotation system Wien filter [48] prior
to acceleration. It was set perpendicular to the scattering
plane when measuring K

y ′
y ,K

y ′
yy, A

d
y , and Ayy . For the Axx

measurement, the polarization axis was rotated into the
scattering plane so that it pointed sideways, perpendicular
to the beam. For the Axz measurement, the spin symmetry
axis was additionally rotated in the reaction plane and aligned
at an angle β to the beam direction, with a typical value of
β = 47.0◦ ± 0.2◦. The beam polarization was monitored by
dp elastic scattering at 135 MeV/nucleon [32,49] and found
to be 60–80% of the theoretical maximum value throughout
the measurements. Liquid hydrogen with a thickness of
71 mg/cm2 was employed as a hydrogen target (1H) [50],
and was bombarded with a beam intensity of 10–20 nA.

B. Detector arrangement

1. Detectors for the proton p1

The protons p1 with kinetic energies from 164 to
180 MeV were momentum analyzed by the magnetic spec-
trograph SMART [45] and detected at the second focal
plane (FP2 in Fig. 1). The polarization of p1 was measured
with the focal plane polarimeter EPOL [46]. In the SMART
system, the magnetic spectrograph was fixed to the ground,
and the incident beam direction was rotated by the swinger
magnet, giving a vertical reaction plane. For this experiment,
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FIG. 1. Arrangement of the RIKEN spectrograph SMART. FP1 and FP2 denote the first and second focal planes, respectively. Scattered
protons are momentum analyzed by the magnetic spectrograph and detected at FP2. The polarization of the scattered proton is measured with
the focal plane polarimeter EPOL.

the swinger magnet was set at 31◦. The collimator was set
440 mm downstream from the target. Its aperture covered the
polar angles �θ = ±4.2◦ and azimuthal angles �φ = ±1.4◦.
The solid angle was determined by binning the aperture into
�θ = ±1◦ and �φ = ±1.4◦.

The focal plane detector system consisted of a mul-
tiwire drift chamber (MWDC1 in Fig. 2), two plastic
scintillation counters (SC1 and SC2 in Fig. 2), and the
polarimeter EPOL. MWDC1 was used for the reconstruc-
tion of the particle trajectory and its configuration was
X-U -V -X′-U ′-V ′-X′-U ′-V ′-X-U -V . In the SMART system,
the coordinate frame of a multiwire drift chamber was defined
as the left-handed one as is shown in Fig. 2. The z axis
referred to the central ray. The x axis was perpendicular to
the z axis in the horizontal plane, and the y axis was taken
as �x × �z. Note this coordinate frame is different from that for
the polarization observables (see Sec. III B I). The y positions
were obtained by the U (U ′) and V (V ′) planes, which were
inclined by +45◦ and −45◦ with respect to the X(X′) planes,
respectively. All the position-sensitive planes were normal to
the z axis. The planes with primes were displaced by half a
cell relative to the unprimed planes, which helped to solve
the so-called left-right ambiguity. The cell size was 20 mm ×
20 mm for the X planes and 20.5 mm × 20 mm for the U(V)
planes. The plastic scintillation counters (Bicron, BC-408)
of size 180 mmH × 800 mmW × 5 mmT (SC1 and SC2 in
Fig. 2) were used to identify proton events scattered at the

hydrogen target. Photomultiplier tubes (Hamamatsu, H1161)
were attached at both ends of the scintillators via light guides.

The polarization of p1 was measured by the EPOL after
momentum analysis with the magnetic spectrograph. The
EPOL consisted of an analyzer target, a multiwire drift
chamber (MWDC2 in Fig. 2), and two sets of plastic scintillator
counter hodoscopes (HOD1 and HOD2 in Fig. 2).

Polarimetry was performed through p + C scattering. As a
carbon analyzer target, a 5-cm-thick graphite plate was placed
in front of the two plastic scintillation trigger counters SC1
and SC2. The trajectories of the scattered protons from the
p + C reaction were reconstructed by MWDC2. MWDC2
was located downstream of the graphite plate and had eight
layers of sense wire planes with a Yf -Y ′

f -Xf -X′
f -Yr -Y ′

r -Xr -X′
r

configuration. Here, subscripts f and r denote the front and
rear planes, respectively. The planes with primes were, again,
displaced by half a cell relative to the unprimed planes.
The coordinate frame was defined as for MWDC1. The cell
size was 14 × 14, 15 × 15, 14 × 14, and 16 × 16 mm for the
Xf ,Xr, Yf , and Yr planes, respectively. The number of cells
was 64 for the X planes and 32 for the Y planes.

Event triggers for protons from the p + C reaction on
the carbon analyzer target, taken as double-scattering events,
were generated from the coincidence of the signals of the
SC1 and SC2 counters and the signals of the hodoscope
system (HOD1 and HOD2). The angular range covered
by the hodoscope system was ±20◦, both vertically and
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FIG. 2. (Color online) Second-
focal-plane detector system including
the focal plane polarimeter EPOL. The
system consists of two multiwire drift
chambers (MWDC1 and MWDC2),
plastic scintillation trigger counters
(SC1, SC2), a polarization analyzer
target, and the counter hodoscope
system (HOD1, HOD2). The coordinate
frame used for multiwire drift chambers
is shown in the upper part. The inset
surrounded by a dotted line indicates the
same coordinate frame viewing along
the z axis.

horizontally. HOD1 consisted of nine horizontally segmented
plastic scintillators, which were 1300 mm wide, 80 mm high,
and 10 mm thick. HOD2 consisted of 12 vertically segmented
plastic scintillators. Each HOD2 counter was 900 mm wide,
100 mm high, and 50 mm thick. Two photomultiplier tubes
(Hamamatsu, H1161) were attached to both ends of each
scintillation counter via light guides both for HOD1 and
HOD2.

2. Detectors for the proton p2

The protons p2 were detected by the E-�E detectors
located 390 mm downstream from the target position in the
scattering chamber. The E detector was a 14-mm-diameter
by 35-mm-long cylindrical NaI(Tl) scintillator mounted on a
photomultiplier tube (Hamamatsu, H7415). The �E detector
was a 2-mm-thick plastic scintillator. A 50-mm-thick brass
collimator with a circular hole collimated the proton flux to
the E-�E detectors. The aperture of the collimator hole was
�� = 0.8◦. These detectors identified protons with energies
between 30 and 75 MeV. The E detector was calibrated by
measuring dp elastic scattering at several angles. The full
width at half maximum (FWHM) of a peak for the elastic dp

events was 3 MeV.
Event triggers for dp breakup reactions were generated

by the coincidence of the signals of the E-�E detectors and
those of the focal plane detectors. For the analyzing power
measurements, the event triggers from SC1 and SC2 were

used as the signals for the focal plane detectors, while the
signals generated as double scattering events were used for the
polarization transfer measurement.

C. Data acquisition

Data acquisition was carried out with a fast data acquisition
system for the SMART spectrograph [51]. The data were
accumulated in a VME memory module through a FERA bus
and then DMA-transferred to a personal computer.

III. DATA ANALYSIS AND EXPERIMENTAL RESULTS

A. Selection of d p breakup events

To eliminate background and accidental coincidences, the
following conditions were imposed during the analysis. First,
particle identification of the protons p1 and p2 emerging from
the dp breakup reactions was performed. The protons p1 were
selected with the plastic scintillators SC1 and SC2 at the focal
plane (see Sec. II B I). Identification of the scattered protons p2

was performed through their energy deposits in the �E and E

detectors shown in Fig. 3. The proton events were selected with
cuts defining the particle identification as shown in the figure.
Second, the “true + accidental” events and the “accidental”
events were distinguished using the time-of-flight difference
between the �E detector and the SC1 detector shown in
Fig. 4. The typical S/N ratio was 1:1.
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FIG. 3. Two-dimensional plot of the E-�E scintillation detector
outputs.

By subtracting the accidental events from the true +
accidental events, the spectrum of true events around a central
kinematical curve of two protons p1 and p2 for the dp breakup
reaction was obtained. An example of such a spectrum for
the central positions of the proton detectors at (θ1, θ2, φ12) =
(28◦, 31◦, 180◦) is shown in Fig. 5. The kinematical curve
S shown as a solid curve in the figure was calculated for
the central three-body kinematics in the relativistic frame.
The point at S = 0 was defined as that where the kinetic
energies of the two protons p1 and p2 have equal values
shown in Fig. 5. The events were projected on the central
S curve and allocated to the closest S bin. As the figure
shows, this configuration includes the final state interaction

FIG. 4. Difference of the time of flight between the �E detector
in the scattering chamber and the SC1 detector.

FIG. 5. (Color online) Spectrum of events for the two emerging
protons p1 and p2 measured in a configuration with (θ1, θ2, φ12) =
(28◦, 31◦, 180◦). The solid curve is the kinematical S curve for the
central three-body kinematics in the relativistic frame.

of the proton p2 and the neutron, FSI (p2n). The other two
configurations also include the FSI (p2n). To obtain reasonable
statistical accuracy, different energy bin sizes of S were taken
depending on the different observables and/or configurations:
�S = 8 MeV for Ad

y,Ayy, Axx , and Axz; �S = 18 MeV for

K
y ′
yy at θ1 = 28◦; and �S = 12 MeV for K

y ′
yy at θ1 = 30◦ and

32◦.

B. Extraction of polarization observables

1. Coordinate frame for the polarization observables at the
SMART system

The coordinate frame for the polarization observables of
the SMART system is defined according to the Madison
convention [52] shown in Fig. 6. The z axis is given by the
beam direction, the y axis is perpendicular to the reaction
plane, and the x axis is defined by �y × �z. The coordinate system
(x ′, y ′, z′) for the polarization of the scattered protons is rotated
through the dipole magnet of the SMART spectrograph into
the coordinate system at FP2 (x ′′, y ′′, z′′). {pij } in the figure are
the vector or tensor deuteron beam polarizations, pi ′ denotes
the polarization of the scattered protons at the target position,
and pi ′′ denotes the polarization of the scattered protons at
FP2. The polarization py ′′ was measured with the focal plane
polarimeter EPOL, and py ′ was extracted from py ′′ and the spin
precession angle χ in the dipole magnets of the spectrograph.

2. Calibration of effective analyzing powers of the EPOL

The effective analyzing power AC
y of the EPOL was

calibrated at a proton energy of 168 MeV. Since the polarized
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FIG. 6. Definition of the coordinate frame for the
polarization observables at the SMART system. {pij }
denotes the vector or tensor deuteron beam polariza-
tions, pi′ is the polarization of the scattered protons
at the target position, and pi′′ is the polarization of
the scattered protons at the second focal plane FP2.

proton beams were not available at the RARF, the in-
duced polarization P y ′

in the 12C(p, �p)12C elastic scat-
tering was used to determine AC

y . P y ′
is equal to

the analyzing power Ay for the time-reversed reaction
12C( �p, p)12C, which has been precisely measured at Ep =
200 MeV by Meyer et al. at IUCF [53]. Thus, in the first
step we produced polarized proton beams by 12C(p, �p)12C
elastic scattering at θlab. = 17.1◦ and 27.1◦, using unpolarized
proton beams of 200 MeV energy and a 284-mg/cm2-thick
graphite target. Then, we created 168-MeV proton beams
by reducing the energy of the elastically scattered protons
with a brass plate installed downstream of the graphite
target. The expected values of the polarizations P y ′

were
0.981 and −0.381 at θlab. = 17.1◦ and 27.1◦, respectively.
After momentum analysis by the magnetic spectrograph,
the polarization analyzer target was bombarded by polarized
proton beams. Because the y ′′ axis was in the horizontal plane
in the SMART system (see Fig. 6), the up-down asymmetry
was measured by the EPOL to extract the effective analyzing
power AC

y given by

AC
y =

∫
Io(θ )Ay(θ ) cos φd	∫

Io(θ )d	
. (1)

The numbers of events in the upper side, NU , and the lower
side, ND , regions were obtained as

NU =
∫ �φ

−�φ

∫ θmax

θmin

Io(θ )[1 + Ay(θ )py ′′ cos φ]d	, (2)

ND =
∫ �φ+π

−�φ+π

∫ θmax

θmin

Io(θ )[1 + Ay(θ )py ′′ cos φ] d	. (3)

Here, Io(θ ) and Ay(θ ) are the cross section and analyzing
power for inclusive proton scattering in the carbon analyzer of
the EPOL. py ′′ is the proton beam polarization at FP2. Angular
integrations in Eqs. (2) and (3) were performed over regions
of polar and azimuthal angles of 5◦ � θ � 20◦ and �φ = 60◦,
respectively.

The proton spin precessed around the vertical axis of the
spectrograph. The spin precession angle χ with respect to the
direction of the proton momentum is given in the moving
frame by χ = γ (g/2 − 1)�D , where γ is the Lorentz factor
γ = (mpc2 + Ep)/mpc2, g is the spin g factor of the proton,

and �D is the bending angle of the spectrograph. The total
bending angle of the magnetic spectrograph is �D = 60◦. This
precession gives

py ′′ = P y ′
cos χ. (4)

The energy-dependent curve of AC
y was obtained by fitting

the effective analyzing powers calculated from the empirical
energy-dependent fit of the inclusive analyzing powers for the
p + C reaction by McNaughton et al. [54] and the angular
distributions of the differential cross section of Aprile-Giboni
et al. [55]. The obtained curve was scaled to adjust the
experimentally obtained AC

y . The uncertainty of the input
parameters for the p + C inclusive analyzing power [54] is
2%. The uncertainty of the fit for the energy-dependent curve
is 5%. Thus, the estimated overall systematic uncertainty of
the effective analyzing power AC

y of EPOL is 6% at most.

3. Extraction of analyzing powers and polarization transfer
coefficients

The deuteron analyzing powers and polarization transfer
coefficients for the coplanar configurations of the breakup
reaction �d + p → �p1 + p2 + n are expressed through the
unpolarized (σ0) and polarized (σ ) cross sections together with
the polarizations of the incoming deuteron (pij ) and the proton
p1(pk′) as

σ/σ0 = 1 + 3
2pyA

d
y + 2

3pxzAxz

+ 1
3 (pxxAxx + pyyAyy + pzzAzz), (5)

py ′σ/σ0 = P y ′ + 3
2pyK

y ′
y + 2

3pxzK
y ′
xz

+ 1
3

(
pxxK

y ′
xx + pyyK

y ′
yy + pzzK

y ′
zz

)
, (6)

where x, y, and z and x ′, y ′, and z′ are the sets of coordinates
used to describe the polarization of the incident deuteron and
the proton p1, respectively [52]. We rotated the spin direction
to the y axis for the Ad

y,Ayy,K
y ′
y , and K

y ′
yy measurements,

and to the x axis for the Axx measurement. For the Axz

measurement, the spin symmetry axis was rotated into the
reaction plane and inclined at an angle β to the beam direction.
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FIG. 7. (Color online) Polarization transfer coefficients Ky′
yy and Ky′

y and the induced polarization P y′
for the kinematically complete

breakup reaction 1H( �d, �p1p2)n at 135 MeV/nucleon at the central positions of the detectors (θ1, θ2, φ12, as labeled at the top of each column)
in the laboratory system. The shown S values are obtained with the nonrelativistic frame, and the experimental S values obtained with the
relativistic frame are shifted by δS for each kinematical configuration (see text). The light shaded bands indicate the NN force predictions
obtained with the AV18, CD-Bonn, Nijmegen I, and Nijmegen II potentials, and the dark shaded bands indicate the predictions when they
are combined with the TM′(99) 3NF as described in the text. The solid curve is the AV18 + Urbana IX 3NF prediction. All the theoretical
predictions are point-geometry results averaged over the same energy bin �S as the data (see text).

Thus, the polarized cross sections were given as

py ′σ/σ0 = P y ′ + 3
2pyK

y ′
y + 1

2pyyK
y ′
yy for Ky ′

y and Ky ′
yy, (7)

σ/σ0 = 1 + 3
2pyA

d
y + 1

2pyy Ayy for Ad
y and Ayy, (8)

σ/σ0 = 1 + 1
2pxx Axx for Axx, (9)

σ/σ0 = 1 + 2
3pxz Axz + 1

3 (pxx − pzz) Axx

+ 1
3 (pyy − pzz) Ayy for Axz, (10)

with

Axx + Ayy + Azz = 0.

py ′ was obtained using Eqs. (1)–(4) as

py ′ = 1

AC
y cos χ

(
NU − ND

NU + ND

)
. (11)

The value of Axz was extracted by using the measured Axx and
Ayy values.

The experimental results for the polarization transfer
coefficients K

y ′
yy and K

y ′
y , the induced polarization P y ′

, and
the analyzing powers Ad

y,Ayy, Axx , and Axz in the three
configurations with the central angle sets (θ1, θ2, φ12) =
(28◦, 31◦, 180◦), (30◦, 31◦, 180◦), and (32◦, 31◦, 180◦) are
shown with open circles along the kinematical S curve in
Figs. 7 and 8. The statistical uncertainties are less than 0.03
for K

y ′
yy and P y ′

, less than 0.04 for K
y ′
y , less than 0.02 for
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FIG. 8. (Color online) Deuteron analyzing powers Ad
y, Axx, Ayy , and Axz for the complete breakup reaction 1H( �d, p1p2)n at

135 MeV/nucleon and at the central positions of the detectors (θ1, θ2, φ12), as labeled. For the descriptions of bands and curves see
Fig. 7. All the theoretical predictions are point-geometry results averaged over the same energy bin �S as the data (see text).

Ay,Ayy , and Axx , and less than 0.07 for Axz. As described
in the previous sections, the data have been obtained with
averaging over the finite angular range of the polar angle
�θ1 = ±1◦ and the azimuthal angle �φ1 = ±1.4◦ for the
proton p1 and over the finite hole aperture �θ2 = 0.8◦ for
the proton p2. The relative central azimuthal angle between
p1 and p2, defined as φ12, was 180◦. The data have been
averaged over �S = 8 MeV for Ad

y,Ayy, Axx , and Axz, over

�S = 18 MeV for K
y ′
yy at θ1 = 28◦, and over �S = 12 MeV

for K
y ′
yy at θ1 = 30◦ and 32◦.

The uncertainties of the kinetic energies of the two scattered
protons influence the position of the bin along the kinematical
arc length S and cause the measured observables to be
modified. The time-dependent fluctuations of the kinetic
energy E1, induced by time variation of the magnetic fields,
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were monitored by measuring the magnetic fields of the
spectrometer during the experiment. Their values were found
to be less than 1%. Those of the E2 detector were monitored by
the peak positions of the scattered deuterons from the elastic
dp scattering throughout the experiment, and found to be less
than 2%. The modifications of the polarization observables
due to the uncertainties of the kinetic energies E1 and E2 are
estimated to be 0.01 or less.

Uncertainties of the scattering angles originate from
the finite angular resolution, finite target thickness, and the
size of the beam spot on the target. The angular resolution of
the scattering angle θ1 is determined by ion optical analysis of
the SMART spectrograph and is estimated to be less than
0.2◦ [19]. The uncertainty of the setting angle θ2 originates
from the mechanical construction of the scattering chamber,
and it is estimated to be less than 0.2◦. The uncertainties
from the finite target thickness and the size of the beam
spot are estimated to be less than 0.3◦. The modifications
of observables caused by the uncertainties of the scattering
angles are estimated by theoretical predictions averaged over
the finite angles. Their values are far less than the statistical
uncertainties.

The uncertainty of the deuteron beam polarizations is less
than 3%. The variation of the polarization transfer coefficients
originating from the uncertainty of the bending angle of
the spectrometer is less than 1%. The uncertainty of the
effective analyzing power for the EPOL is 6%. Thus the overall
systematic uncertainties are estimated to be 7% at most for the
polarization transfer coefficients and the induced polarization
P y ′

, and about 3% for all the deuteron analyzing powers.

IV. THEORETICAL FORMALISM AND
DYNAMICAL INPUT

In this paper, we study the complete Nd breakup reaction
with an initial state φ composed of a deuteron and a nucleon
with specific spin projections and moving with relative
momentum q0. The outgoing state φ0 contains three free
nucleons with specific momenta and spin projections. The
transition matrix element for the breakup reaction 〈φ0|U0|φ〉
is given by an operator T which fulfills 3N Faddeev equations

〈φ0|U0|φ〉 = 〈φ0|(1 + P )T |φ〉. (12)

From the matrix elements, various breakup spin observables
and cross sections can be calculated [52,56].

The 3N Faddeev equation for the T operator sums up all
the rescatterings induced by the two- and three-nucleon forces
acting between nucleons into the integral equation [56,57]

T = tPφ + (1 + tG0)V (1)
4 (1 + P )φ

+ tPG0T + (1 + tG0)V (1)
4 (1 + P )G0T . (13)

The quantity G0 is the free 3N propagator and P takes into
account the identity of nucleons and is the sum of a cyclical and
an anticyclical permutation of three nucleons. V

(1)
4 represents

one of the terms of the 3N force V4

V4 = V
(1)

4 + V
(2)

4 + V
(3)

4 , (14)

where each V
(i)

4 is symmetric under the exchange of nucleons
jk with j 
= i 
= k. In the 2π -exchange 3NF, V

(1)
4 contributes

to the 3N potential from (off-shell) rescattering of a pion on
nucleon 1. The NN off-shell t matrix results from a given NN

potential through the Lippmann-Schwinger equation.
After projecting on a partial-wave momentum-space basis,

this equation leads to a system of coupled integral equations
which can be solved numerically exactly for any nuclear
force. In this study, we restrict our partial-wave basis so that
it includes only states with total angular momenta j in the
two-nucleon subsystem of less than six. This corresponds to a
maximum of 142 partial-wave states in the 3N system for each
total angular momentum. For the energies of the present paper,
this provides convergent results for the breakup observables.
We compared the convergence against the results obtained
when j = 6 states were included. This increased the number
of states to 194. This convergence check was done without the
3NF. The inclusion of the 3NF was carried out for all total
angular momenta of the 3N system up to J = 13/2, while the
longer ranged 2N interactions require states up to J = 25/2.
For details of the formalism and the numerical performance,
see Refs. [56–59].

In this study, we show the predictions of different nuclear
force models. They consist of realistic NN potentials: AV18
[1], CD-Bonn [3], Nijmegen I, and Nijmegen II [4], and two
3NF models: Tucson-Melbourne (TM) [7] and Urbana IX [8].
The standard parametrization of the TM 3NF was criticized in
Refs. [34,35,60] since it violates chiral symmetry. A form more
consistent with chiral symmetry was proposed by modifying
the c term of the TM force and incorporating the long-range
part of this term into the a term and rejecting the rest of the c

term [34,35]. This new form is called TM′99 [33]. Each NN

interaction was combined with the TM′99 3NF model, and the
cutoff parameter  in the strong form factor parametrization
was separately adjusted to the 3H binding energy [61]. The 

values for the AV18, CD-Bonn, Nijmegen I, and Nijmegen II
potentials were found to be  = 4.764, 4.469, 4.690, and
4.704 (in units of mπ ), respectively.

For the AV18 potential we used in addition the Urbana IX
3NF [8]. This force is based on an intermediate � excitation in
the 2π exchange [6], which is augmented by a phenomenolog-
ical spin-independent short-range part. Originally, Urbana IX
was formulated in configuration space [8]. We refer to Ref. [62]
for the partial-wave decomposition of the Urbana IX 3NF in
momentum space.

To estimate the relativistic effects on the studied breakup
spin observables, we solved Eq. (13) with pairwise forces only,
including relativistic kinematics, boost effects, and Wigner
rotation of spin states. We followed the approach presented in
Refs. [63,64]. For the convenience of the reader, we briefly
describe that approach in the following.

The formal structures of the nonrelativistic and relativistic
Faddeev equations are the same, and only the components
should be modified. The relativistic kinetic energy H0 of three
equal mass (m) nucleons in their 3N c.m. system can be written
as [63]

H0 =
√

(2ω(k))2 + q2 +
√

m2 + q2, (15)
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where 2ω(k) ≡ 2
√

m2 + k2 and q is the momentum of
the third nucleon, whereas −q is the total momentum of the
chosen two-body subsystem. In that two-body subsystem, the
two nucleons have momenta k and −k, respectively. Theyf
are connected to the individual nucleon momenta in an
arbitrary frame by a free Lorentz transformation.

The full 3N Hamiltonian besides H0 contains the sum of
the pair interactions V (q) between the nucleons, of the form

V (q) ≡
√

(2ω(k) + v)2 + q2 −
√

(2ω(k))2 + q2, (16)

where v is the relativistic potential defined in the 2N c.m.
system.

Equations (15) and (16) define new components that enter
Eq. (13): the boosted t operator, which satisfies the relativistic
2N Lippmann-Schwinger equation

t(k, k′; q) = V (k, k′; q) +
∫

d3k′′

× V (k, k′′; q) t(k′′, k′; q)√
(2ω(k′))2 + q2 −

√
(2ω(k′′))2 + q2 + iε

,

(17)

and the relativistic 3N propagator

G0 = 1

E + iε − H0
, (18)

where E is the total 3N c.m. energy.
For the technical performance, the momentum space

partial-wave decomposition, and the corresponding expression
of the permutation operator P matrix elements, we refer to
Refs. [63,64], which also detail the solution to the relativistic
Faddeev equations.

As dynamical input for our relativistic calculations, we used
the relativistic interaction V (q) generated from the nonrel-
ativistic NN potential CD-Bonn according to the iterative
procedure of Ref. [65]. This relativistic NN interaction is
exactly on-shell equivalent to the underlying nonrelativistic
potential. In our relativistic calculations, we also included
Wigner spin rotations as described in detail in Ref. [64].
To check the size of the effects on our spin observables,
we also performed relativistic calculations neglecting Wigner
rotations completely. As for nonrelativistic calculations, all the
relativistic calculations took into account all the partial-wave
states with total angular momenta j in the two-nucleon
subsystem less than six.

V. RESULTS AND DISCUSSION

A. Modifications of the point-geometry theory

In this study, we compare experimental data with theoretical
predictions based on Faddeev calculations with different NN

potentials either combined with or without various 3NFs.
For this, the point-geometry theoretical predictions should
be averaged over the finite angular resolutions of the proton
detectors and also integrated over the energy bin �S of the
kinematical S curve used in the data analysis. To estimate the
resulting effect, we integrated the point-geometry predictions
over the angular aperture of both detectors. For each pair of

FIG. 9. Theoretical prediction for Ad
y in the configuration at

(θ1, θ2, φ12) = (28◦, 31◦, 180◦) based on the AV18 potential com-
bined with the Urbana IX 3NF. The solid curve is a point-geometry
prediction and the dot-dot-dashed curve is a finite-geometry predic-
tion. The dashed and dotted curves are obtained with point and finite
geometries, respectively, and averaged over the energy bin �S =
8 MeV.

angles contributing to the integral, the cross section along
the corresponding S curve was projected on the central S

curve defined by the central positions of both detectors. In
addition, averaging over the energy bin �S was performed
with �S taken to be the same as for the data averaging.
In Fig. 9, an example for the resulting modifications of the
point-geometry theory based on the AV18 potential combined
with the Urbana IX 3NF is shown for the vector analyzing
power Ad

y at (θ1, θ2, φ12) = (28◦, 31◦, 180◦). The solid curve
is the point-geometry prediction, while the changes to the
point-geometry predictions by the finite angular resolutions
alone are shown by the dot-dot-dashed curve. The effects of
averaging over �S alone are shown by the dashed curve.
The dotted curve is obtained for the finite geometry with
additional averaging over the energy bin �S. We found that
the modifications due to the finite angular resolutions of the
detectors are small for all three configurations and for all
observables in the present measurement. The largest change
is due to averaging over the energy bin �S. Therefore, in
the following, we compare the data with the point-geometry
theoretical predictions averaged over the same energy bin �S

as used for the data averaging.
The kinematical S curve used in the data analysis was

calculated with relativistic kinematics, while the S curve for
the theoretical predictions is nonrelativistic. Those two curves
are different at the energy considered for all three config-
urations. Figure 10 demonstrates this for the configuration at
(θ1, θ2, φ12) = (30◦, 31◦, 180◦). The solid curve is a relativistic
S curve, and the dotted curve is a nonrelativistic curve. Starting
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FIG. 10. Kinematical S curve for the configuration at
(θ1, θ2, φ12) = (30◦, 31◦, 180◦). The solid curve is the S curve
calculated with relativistic kinematics, while the dotted curve is the
S curve calculated with nonrelativistic kinematics.

with S = 0 as shown in Fig. 10 (see also Sec. III A), the
difference δS ≡ S(nonrelativistic) − S(relativistic) becomes
7.5 MeV at the point on the S curve where FSI(p2n) occurs. To
see how the nonrelativistic theoretical predictions explain the
measured observables, we shifted the S value of the analyzed
data by δS, setting the experimental S value at the FSI(p2n)
to the nonrelativistic FSI(p2n) S value. This procedure was
applied also to the other two configurations. The δS values at
(θ1, θ2, φ12) = (28◦, 31◦, 180◦) and (32◦, 31◦, 180◦) are 7 and
8 MeV, respectively.

B. Comparison of the data with theoretical predictions

In Figs. 7 and 8 we compare measured polarization transfer
coefficients and deuteron analyzing powers with the point-
geometry theoretical predictions for the four different NN

potentials alone (light shaded bands) or combined with the
TM′99 3NF (dark shaded bands). The solid curves are the
theoretical predictions obtained using the AV18 potential
combined with the Urbana IX 3NF. The nonrelativistic
S values are expressed in the figures and the experimental S

values are shifted by δS for each configuration (see Sec. V A).
The deuteron to proton polarization transfer coefficient Ky ′

yy

exhibits strong dependence on the nuclear forces (see top
panels in Fig. 7). The pure NN force prediction has for all
three kinematical configurations a maximum in the region of
S values around the p2n FSI point. Including a 3NF, either
the TM′99 or the Urbana IX, drastically changes the shape
of the predictions. Instead of a maximum around the p2n

FSI point, a minimum is created when a 3NF is added. The
TM′99 and Urbana IX provide similar values for K

y ′
yy around

the p2n FSI. However, the predicted values are drastically
different and depend on the 3NF models in S regions away
from the p2n FSI. Our data clearly deviate from the NN force
predictions in all three kinematical configurations. For the two
at (θ1, θ2, φ12) = (28◦, 31◦, 180◦) and (30◦, 31◦, 180◦), the
Urbana IX 3NF predictions provide a much better description
of the data than the TM′99 3NF.

For the deuteron to proton polarization transfer coefficient
K

y ′
y , the 3NF effects are not as strongly pronounced as for

K
y ′
yy (see Fig. 7). Including the TM′99 or Urbana IX 3NF

leads to modifications to the NN force theory, and both 3NFs
provide similar values for K

y ′
y . In all three configurations,

the data seem to support the theoretical predictions with
a 3NF included, especially for the two configurations at
(θ1, θ2, φ12) = (28◦, 31◦, 180◦) and (30◦, 31◦, 180◦).

The induced polarization P y ′
of the outgoing proton p1

again shows large 3NF effects in some regions of the S curve
(see Fig. 7). Similar to the polarization transfer coefficient Ky ′

yy ,
there are strong differences between the effects of the TM′99
and Urbana IX 3NFs, localized in some regions of the S curve.
In contrast to K

y ′
yy and K

y ′
y , the data for the configuration at

(30◦, 31◦, 180◦) seem to support the theoretical predictions
obtained without 3NFs for the induced polarization.

Large 3NF effects are also seen for the tensor analyzing
powers (see Fig. 8). For Axz, the TM′99 and Urbana IX 3NFs
provide very different results. The effects of the TM′99 3NF
are about a factor of 3 larger than the effects of Urbana IX. The
Axz data nicely agree with the AV18 + Urbana IX predictions
for all measured configurations. Large 3NF effects are also
seen for the tensor analyzing powers Axx and Ayy . For Axx ,
they depend only slightly on the 3NF model and the data nicely
agree with the NN + 3NF predictions. The tensor analyzing
power Ayy is more sensitive to the 3NF model and the data are
well described by the NN + TM′99 combination.

The results for the vector analyzing power Ad
y contrast

with those for the tensor analyzing powers (see Fig. 8). The
pure NN force predictions provide quite a good description of
the data. Including the TM′99 or Urbana IX 3NF causes large
and model-independent effects; however, description of the
data is poorer than that for NN forces alone. It is interesting
to note that our results for the breakup analyzing powers are
different from those found for these observables in elastic
dp scattering. In this case, the vector analyzing power Ad

y

data can be explained by the theoretical predictions including
the 3NF, while the tensor analyzing powers Axx,Ayy , and
Axz cannot be explained by any of the theoretical predictions
[19,32].

At the energy of the present study, the S curve calcu-
lated with nonrelativistic kinematics already differs from the
corresponding relativistic S curve for our three geometries,
especially around the final state interaction point FSI (p2n)
(see Fig. 10 and Sec. V A). To show how large the effects
on our spin observables due to relativity are, we present
in Figs. 11 and 12 the theoretical predictions based on the
CD-Bonn potential alone in the nonrelativistic case (dotted
curves) and those in the relativistic case including relativistic
kinematics, boost effects, and Wigner spin rotations (solid
curves). Relativistic predictions obtained without Wigner spin
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FIG. 11. Polarization transfer coefficients Ky′
yy and Ky′

y , and the induced polarization P y′
for the complete breakup reaction 1H( �d, �p1p2)n

at 135 MeV/nucleon and at the central positions of the detectors (θ1, θ2, φ12) as labeled. The dotted curve is the CD-Bonn nonrelativistic
prediction. The solid and dashed curves are relativistic predictions based on the CD-Bonn potential with and without Wigner spin rotations,
respectively. The S values of the relativistic predictions (solid and dashed curves) are shifted by δS (see Sec. V A). All the theoretical predictions
are point-geometry results averaged over the same energy bin �S as the experimental data (see text).

rotations are also shown (dashed curves). The results shown in
Figs. 11 and 12 are point-geometry predictions averaged over
the same energy bin �S as used for the data averaging. Note
that to demonstrate the magnitude of the relativistic effects,
the S values of the relativistic predictions (solid and dashed
curves) are shifted by δS, as for Figs. 7 and 8 (see Sec. V A).

It can be seen that the relativistic effects modify the
values predicted nonrelativistically for our breakup spin
observables and are not negligible in the region around FSI
(p2n). Their magnitude depends on the observable, the central
positions of the proton detectors, and the position on the
S curve. The relativistic effects are largest for the tensor
analyzing power Axz (changes up to ≈25%), the polarization
transfer coefficients K

y ′
yy (changes up to ≈30%) and K

y ′
y

(changes up to ≈17%), and the induced polarization P y ′

(changes up to ≈16%). A relativistic treatment increases the

absolute magnitude of the polarization transfer coefficients
and induced polarizations, whereas it decreases Axz. Despite
these effects, assuming that the relativistic and 3NF effects
act incoherently, accounting for relativity does not change the
conclusions based on the nonrelativistic calculations for the
importance of the 3NF for explaining the data for polarization
transfer coefficients and induced polarizations, except for
K

y ′
yy .
For the analyzing powers Ad

y,Axx , and Ayy close to FSI
(p2n), the relativistic effects are practically negligible. For all
analyzing powers including Axz, the incoherent impact of the
relativistic and 3NF effects leads to a similar description of
our data as for the nonrelativistic 3NF calculations.

For all the studied breakup spin observables in all geome-
tries, the effects of Wigner spin rotations are negligible (see
Figs. 11 and 12).
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FIG. 12. Deuteron analyzing powers Ad
y, Axx, Ayy , and Axz for the complete breakup reaction 1H( �d, p1p2)n at 135 MeV/nucleon and at

the central positions of the detectors (θ1, θ2, φ12) as labeled. For the descriptions of the curves, see Fig. 11. All the theoretical predictions are
point-geometry results averaged over the same energy bin �S as the data (see text).

VI. SUMMARY AND CONCLUSIONS

The experiment on the kinematically complete dp breakup
reaction d + p → p1 + p2 + n was performed with polarized
deuteron beams of 135-MeV/nucleon energy. To discriminate
between the two 2π -exchange 3NF models—TM′99 and the
Urbana IX—we focused on the measurement of the deuteron
to proton polarization transfer coefficient Ky ′

yy in three coplanar
configurations, which give different theoretical predictions

for K
y ′
yy under these models. The measured kinematical

configurations correspond to the angle of the emerging proton
p1(θ1 = 28◦, 30◦, and 32◦) and to the angle of the second
outgoing proton p2(θ2 = 31◦). The configurations include the
final state interaction geometry between the proton p2 and
the undetected neutron, FSI(p2n). In our measurement, the
deuteron to proton polarization transfer coefficient K

y ′
y and

the induced polarization P y ′
of the outgoing proton p1 were
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also simultaneously obtained. In addition, we measured all
the deuteron analyzing powers Ad

y,Ayy, Axx , and Axz, for
which large 3NF effects have been predicted. The statistical
uncertainties of our data are smaller than 0.03 for K

y ′
yy and

P y ′
, and less than 0.04 for K

y ′
y . For the deuteron analyzing

powers, the statistical uncertainties are smaller than 0.02 for
Ad

y,Ayy , and Axx , and less than 0.07 for Axz. The overall
systematic uncertainties are estimated to be 7% at most for the
polarization transfer coefficients and the induced polarization
P y ′

, and they are about 3% for all the deuteron analyzing
powers.

We compared our data with the predictions based on
different modern NN potentials, both combined and not
combined with two 3NF models, the TM′99 and the Urbana IX.
The Urbana IX 3NF is found to be superior in describing the
polarization transfer coefficient K

y ′
yy and the tensor analyzing

power Axz in the three measured kinematical configurations.
For the tensor analyzing power Axx , both 3NF models
give satisfactory descriptions of the data. For Ayy , a better
description is provided by the TM′99 3NF. In contrast to the
tensor analyzing powers, the vector analyzing power Ad

y data
are described properly by the pure NN force predictions, while
including 3NFs leads to a deterioration of this agreement. It
was found that this behavior is opposite to that found in elastic
dp scattering.

The nonrelativistic predictions based on the CD-Bonn
potential were compared with the results of relativistic Faddeev
calculations in which relativistic kinematics, boost effects, and
Wigner spin rotations were incorporated. Large relativistic
effects were found in the region of FSI (p2n) for the tensor
analyzing power Axz, polarization transfer coefficients K

y ′
yy

and K
y ′
y , and the induced polarization P y ′

. In all cases,
the effects due to Wigner spin rotations were found to be
negligible. Assuming incoherent summation of the relativistic
and 3NF effects, the conclusions on the importance of 3NFs
in explaining our data, found with nonrelativistic results, are
not altered. However, further 3N Faddeev calculations should
be performed to incorporate relativity and 3NFs at the same
time.

In this work we have not considered effects due to the
Coulomb interaction between the protons. In Ref. [66], large
Coulomb interaction effects were found for the 1H(d, pp)n
breakup reactions at 65 MeV/nucleon in certain kinematical
configurations. Especially significant effects of the Coulomb
interaction were found for small relative azimuthal angles
between the two outgoing protons at their small polar angles.
Here, in contrast, we have focused on configurations around
FSI(p2n). These are not close to the ones where Coulomb

effects have been seen in Ref. [66], but are very similar to the
kinematical condition of dp elastic scattering at center-of-mass
angles θc.m. = 110◦–120◦, which corresponds to the minimum
region of the elastic cross section. Therefore the effects of
the Coulomb interactions are expected to be small for the
measured data.

While the presented results clearly demonstrate the sig-
nificance of our data in formulating a description of the
structure of 3NFs, the measured spin observables in our
coplanar configurations of the dp breakup reaction are not
always explained by the current 3NFs, similar to the dp

elastic scattering case. These results indicate that it is likely
that some significant components of the 3NF other than the
2π -exchange contributions are missing in our calculations.
Example candidate contributions in the traditional meson-
exchange picture are π -ρ and ρ-ρ exchanges. This has to
be expected since in χPT [15], in the order in which first-time
nonvanishing 3NFs appear, there are three topologies of forces:
the 2π -exchange, a one-pion exchange between one nucleon
and a two-nucleon contact interaction, and a pure 3N contact
interaction. They are of the same order and should be taken into
account together. The latter two topologies could be modeled
by π -ρ and ρ-ρ exchanges going back to the traditional
meson-exchange picture. Therefore it would be reasonable
to add the traditional meson-exchange picture as a further 3N

force. It would be interesting to see how well our data are
described by extended theoretical approaches, e.g., including
3NFs other than 2π -exchange types, a consistent relativistic
treatment with 3NFs included, and potentials based on chiral
effective field theory [15].
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[62] H. Witała, W. Glöckle, J. Golak, A. Nogga, H. Kamada,
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