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Rule Extraction by Successive Regularization

abstract

Knowledge acquisition is, needless to say, important, because it is a key to the solution to
one of the bottlenecks in artificial intelligence. Recently knowledge acquisition using neural
networks, called rule extraction, is attracting wide attention because of its computational
simplicity and ability to generalize. Proposed in this paper is a novel approach to rule extrac-
tion named successive regularization. It generates a small number of dominant rules at an
earlier stage and less dominant rules or exceptions at later stages. It has various advantages
such as robustness of computation, better understanding, and similarity to child develop-
ment. It is applied to the classification of mushrooms, the recognition of promoters in DNA
sequences and the classification of irises. Empirical results indicate superior performance of

rule extraction in terms of the number and the size of rules for explaining data.

keywords: rule extraction, successive regularization, rules and exceptions, structural

learning, forgetting, classification
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1 Introduction

Knowledge acquisition is, needless to say, important, because it is a key to the solution to one
of the bottlenecks in artificial intelligence. Numerous studies on knowledge acquisition have
been made in machine learning such as ID3 and C4.5[23]. Recently knowledge acquisition
using neural networks, called rule extraction, is attracting wide attention because of its
computational simplicity and ability to generalize.

The author has proposed a learning algorithm named a structural learning with forget-
ting(SLF), which generates a skeletal structured network reflecting regularities in data[12].
It was originally aimed at improving generalization performance by pruning unnecessary
connections due to forgetting. SLF is also effective in rule extraction and has demonstrated
its effectiveness using various databases as will be shown in section 3.

In the present paper the author proposes a novel approach to rule extraction named
successive regularization, which is a succession of learning with a decreasing value of regu-
larization parameter[11]. At an earlier stage, learning with a large value of regularization
parameter is carried out to obtain dominant rules. At later stages, the regularization pa-
rameter is decreased step by step to obtain less dominant rules or exceptions by freezing
connection weights corresponding to previously extracted rules. It, therefore, generates a
small number of dominant rules at an earlier stage and less dominant rules or exceptions at
later stages.

Rule extraction by successive regularization has the following advantages. Firstly, rules
can be obtained with higher reliability than by learning with conventional regularization. In
conventional regularization, it generates a whole set of rules by using a fixed small value of a
regularization parameter. Since the size of resulting networks is large, the resulting network
structure heavily depend on initial connection weights due to a local minima problem. In
learning with successive regularization, on the other hand, major rules are generated with
robustness because the resulting network size is small. Minor rules or exceptions are also

generated with higher reliability compared to conventional regularization using the same
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value of a regularization parameter, because previously extracted rules are frozen and only
the small number of connections are modified at each later stage in successive regularization.

Secondly, extracted rules in the form of dominant rules and their exceptions are expected
to be understood better than a large number of rules on a level. This hierarchical structure
of rules agrees with tendency of humans to interpret data as a combination of a small
number of dominant rules and their exceptions. This characteristic can be observed in
various cognitive domains. One example is that humans adopt two basic principles in the
formation of categories: cognitive economy combined with vertical and horizontal structure
in the perceived world[25]. Another example is that in language acquisition simpler rules
and forms are applied first before more complex ones[22].

Thirdly, hierarchical structure of rules seems to agree with developmental processes of
children. A first example is an overgeneralization of past tense of verbs at some stage.
However, hearing a lot of irregular past tense forms at later stages, they drive out the
overgeneralized forms[21]. A second example is an overextension in concept formation. For
children at some stage a “dog” means an “animal,” but they constrain extension of a dog
at later stages[4]. A third example is understanding of balance scale problems. Children of
different ages differ in the rules they use. Younger children use only the amount of weight
and ignore the amount of distance, and older children encode both weight and distance
dimensions correctly[27].

Lastly, empirical results presented in the paper suggest superior performance of rule
extraction in terms of the number and the size of rules for explaining data. This may be
attributed to the first advantage.

It should be emphasized that rule extraction by successive regularization proposed here
is unique in that it generates a set of rules in a hierarchical way. To my knowledge, there has
been no neural networks study on rule extraction generating a hierarchical structure of rules.
Another point which needs attention is that a major purpose of the present paper is to obtain
a compact set of rules which best explains the entire samples. Because of this, conventional

methods of model evaluation such as crossvalidation are not adopted here, which makes
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direct comparison of generalization performance with other methods difficult.

The following section presents a structural learning with forgetting[12] as an effective
method for learning with regularization. It is followed by brief overviews of rule extraction
methods. A detailed procedure for rule extraction by SLF and its extension to SLF with
successive regularization are described. Its applications to the classification of mushrooms,
the recognition of promoters in DNA sequences, and the classification of irises are also

provided.

2 Structural learning with forgetting

It is well known that back propagation(BP) learning suffers from such difficulties as prior
specification of network structure and interpretation of hidden units. To overcome mainly
the former difficulty, various structural learning methods have been proposed. They are
roughly classified into four categories: the addition of a regularizer to the criterion of mean
square error(MSE)[12][24], the deletion of hidden units with small contribution to MSE, the
deletion of connections with small contribution to MSE[17], and the incremental increase in
the number of hidden units until MSE becomes sufficiently small.

Empirical comparative studies suggest the superiority of SLF[12] in the first category over

other methods. The criterion function of SLF is,

i,j k 2
where w;; is the connection weight from unit j to unit 4, oy is the output of output unit £,
tr, is its target, and A is a regularization parameter. The weight change, Aw;j, is,

0.J;

8wi]~

Awy; = —e-L = Auf; — esgn(wy) 2)

where Aw;, (= —n%) is the weight change due to BP learning, 7 is a learning rate, (= n\)
is the amount of forgetting or decay, and sgn(w;;) is a sign function, i.e., 1 when wj; is
positive and —1 otherwise.

A key idea of SLF is constant decay of connection weights in contrast to frequently used

exponential decay[24]. Due to this constant weight decay in Eq.(2), unnecessary connections
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fade away and a skeletal network reflecting regularities in data emerges. This is a big
advantage of learning with forgetting.

The learning with forgetting, however, causes two difficulties. The first is the emergence
of distributed representations on hidden layers, which hinders interpretation of hidden units
and rule extraction. Empirically, a distributed representation is mostly a combination of
a major salient representation and minor representations. The learning with hidden units
clarification, which succeeds the learning with forgetting, frequently suppresses minor rep-
resentations, hence prevents the emergence of distributed representations.

The learning with hidden units clarification using the following criterion dissipates dis-

tributed representations by forcing each hidden unit to be fully active or inactive.
Jn=J+cY min{l — h;, h;} (3)
i

where h; is the output of hidden unit i satisfying h; € [0,1], and ¢ is a relative weight of the
penalty term. The minimization of the penalty term can easily be carried out by taking the
derivative of 1 — h(if h > 0.5) or h(if h < 0.5) with respect to the connection weight w;;.

The second difficulty is that MSE by the learning with forgetting is still larger than
that by BP learning. From the viewpoint of AIC[1], it deteriorates the goodness of fit of a
model. The learning with selective forgetting, which succeeds the learning with forgetting
and learning with hidden units clarification, solves this deficiency.

MSE by the learning with forgetting is larger than that by BP learning, because the former
minimizes the total criterion Jy instead of the quadratic criterion J. The following criterion

makes only the connection weights decay whose absolute values are below the threshold, 6.

Jy=J+¢ Z |w;;] (4)

lw;j|<0

The penalty term in Eq.(4) makes MSE much smaller than that by the learning with for-
getting, because the summation is restricted only to weak connections. It also prevents the
revival of deleted connections.

The above procedure of SLF is summarized in the following 3 steps.

1. Apply the learning with forgetting to obtain a rough skeletal network structure.
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2. Apply both the learning with forgetting and that with hidden units clarification to

dissipate distributed representations.

3. Apply both the learning with selective forgetting and that with hidden units clarification

to get better learning performance in terms of MSE.

A question might arise when to go to the next step in the above procedure. This is
not serious. When training is carried out in sufficient number of iterations, the connection
weights stabilize. This is the time to go to the next step.

Another question is how to determine various parameters for training. The determination
of the regularization parameter, A\, or the amount of forgetting, ¢, is crucial. If A or ¢ is too
large, even the necessary connections fade away, causing severe degradation of MSE. On the
other hand, if it is too small, unnecessary connections survive, resulting a network far from
skeletal. Mean prediction error (MPE), i.e., mean square error for test data, and various
information criteria such as AIC[1] and NIC[19] help determine the value of a regularization
parameter.

On the other hand, the determination of parameters ¢ in Eq.(3) and 6 in Eq.(4) are not
crucial. The value of ¢ can be arbitrary, provided it is large enough to render outputs of
hidden units binary. The value of # is set such that there is no significant connection weight

whose absolute value is smaller than 6.

3 Overview of rule extraction

Andrews et al. carried out an extensive survey of rule extraction using neural networks,
and reported performance evaluation using the MONKSs problems and the classification of
mushrooms|2][3].

Sestito and Dillon proposed BRAINNE(Building Representations for AI using Neural
NEtworks), which adopted an expanded 3-layer network architecture with additional inputs
representing target outputs[26]. BRAINNE can also be extended to data with continuous

valued inputs. In the classification of mushrooms and irises, BRAINNE generates more rules
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than SLF'; 46 rules for mushrooms and 11 rules for irises.

Towell and Shavlik proposed the following framework[28]: inserting knowledge into a
neural network using KBANN(Knowledge BAsed Neural Networks), training it with a set
of data, and extracting rules from a resulting network. The extraction phase is the most
difficult part. They proposed a Subset algorithm and a MofN algorithm for the extraction
phase. These algorithms are applied to the recognition of promoters in DNA sequences
and the MONKSs problems. Detailed analyses of the performance of rule extraction are also
presented|[29].

Fu proposed KBCNN(Knowledge-Based Conceptual Neural Network)[7] similar to the
framework by Towell and Shavlik[28]. During a training phase, it uses heuristic procedures
such as ignoring weak connections. During a rule extraction phase, a KT algorithm, which
is derived from Knowledgetron and similar to Subset, is proposed.

Fu proposed another method without prior rules[8]. During a rule extraction phase it
uses the KT method. Heuristic search is carried out using three kinds of thresholds, which
affect the rules extracted. The proposed method is applied to three kinds of tasks, i.e., the
classification of irises, hepatitis prognosis prediction and hypothyroid diagnosis. The first
task has continuous valued inputs, and the last two have both continuous and discrete valued
inputs.

Kasabov proposed REFuNN for extracting fuzzy rules from fuzzy neural networks[15].
In contrast to SLF, extracted rules by C4.5, BRAINNE, KT and REFuNN using data with
continuous valued inputs have only hyper-rectangle if-parts, i.e., each attribute has a lower
bound or an upper bound or both. In other words, linear combination of attributes is not
allowed in rule expression.

Historically, rule extraction and structural learning have developed almost independently.
Therefore, effective structural learning methods have not been implemented in most methods
for rule extraction. This has necessarily made rule extraction phase from trained neural
networks the most difficult part.

In the author’s opinion, structural learning methods which are capable of generating
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skeletal structured networks with easy interpretation of hidden units are effective in rule
extraction. Resulting network structure by SLF is skeletal and hidden units are binary owing
to learning with hidden units clarification. This makes the extraction phase by SLF quite
simple. This simplicity is a big advantage over other methods, because ad hoc procedures
such as ignoring weak connections are no longer necessary. SLF can also dispense with prior
information such as pre-selection of attributes and initial theories.

SLF has been applied to rule extraction and has demonstrated its effectiveness in var-
ious tasks such as the classification of mushrooms [9][11][12][14], the MONKSs problems
[9][10][14], the recognition of promoters in DNA sequences [9][10][14], the classification of
irises [10][13][14], and diagnosis of thyroid functioning [13][14]. The first 3 have discrete
valued inputs and the last 2 have continuous valued inputs.

Recently, special sessions and panel sessions on rule extraction have taken place at various
international conferences such as ICNN’96[10], ICONIP’97[13] and IJCNN’98 reflecting wide

interests in this area.

4 Rule extraction by successive regularization

A typical task considered here is to classify samples into predetermined number of classes.
Each sample has a set of attributes, and each attribute has an attribute value. Firstly, a
procedure for rule extraction by SLF from data with discrete valued inputs and outputs is
given[14]. A unit with a discrete value at an input or an output layer can be converted into
a set of binary units. Therefore, it is assumed here, without loss of generality, that all input
and output units are binary.

Given a regularization parameter, A, or the amount of forgetting, £, rule extraction is
carried out in the following 7 steps. Steps 2 through 4 correspond to 3 training steps in

section 2.

1. Consider a 3-layer or 4-layer network depending on the complexity of the task. Units in

an input layer represent attribute values. Each unit in the first hidden layer correspond
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to an attribute. Output units represent categories of classification. Connections between
adjacent layers are fully connected initially except between the input layer and the first
hidden layer; each unit in the first hidden layer is connected only to the input units

representing its attribute values.

2. Train a neural network by the learning with forgetting to obtain a rough skeletal network

structure.

3. Train it by both the learning with forgetting and that with hidden units clarification

to dissipate distributed representations.

4. Train it by both the learning with selective forgetting and that with hidden units clar-

ification to get smaller MSE. At this step, all the hidden units are binary.

5. Represent each hidden unit as a Boolean function of input units. Suppose some attribute
has m attribute values. Among m input units corresponding to this attribute, only one
of them is active at a time. It means that among 2™ cells in a Karnaugh map, only m
cells have values of 1 or 0, and other cells are labeled as don’t care. Introducing don’t
care is a basic standard procedure in mathematical logic for obtaining the simplest

Boolean function from a given Karnaugh map.

6. Represent each output unit as a Boolean function of hidden units. Suppose there are
n attributes. It can happen that among 2" cells in a Karnaugh map, some don’t have
corresponding samples. This absence of samples happens more frequently as n becomes
larger. Unless we treat those cells without samples as don’t care, the resulting rules are
not sufficiently general, i.e., resulting rules become unnecessarily complex. Although
the use of don’t care is a basic standard procedure in mathematical logic, their use has

been neglected in rule extraction.

7. By combining the above two Boolean functions, each output unit can be represented as

a Boolean function of input units. These are the rules we seek for.
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The above procedure is not applicable, as it is, to rule extraction from data with contin-
uous valued inputs because of inherent difficulty in dealing with continuous valued inputs.
To overcome this difficulty, this paper proposes to train neural networks with various de-
grees of complexity. The degree of complexity, here, is defined by the maximum number of
incoming connections into each hidden unit. From among them, the one with the smallest
AIC is selected as the most appropriate. Since outputs of hidden units are binary owing to
the learning with hidden units clarification, incoming connection weights into each hidden
unit determine the corresponding discriminating hyperplane. A logical combination of these
hyperplanes provides rules.

A newly proposed method of rule extraction by successive regularization is quite differ-
ent from the previous ones. It is a succession of learning with a decreasing regularization
parameter. At each stage the previous procedure composed of 7 steps including three stages
of learning is carried out. At an earlier stage, learning with a large value of a regularization
parameter is carried out to obtain dominant rules. At later stages, the value of a regular-
ization parameter is decreased step by step to obtain rules with finer details by freezing
connection weights corresponding to previously acquired rules. The total criterion function

can generally be written as,

M = J + \E, (5)

where F,, is a regularizer and is a function of connection weights, and X is a regularization
parameter. Rule extraction by successive regularization is carried out in the following 5
steps. In step 2 and step 4 below, the entire 7 steps for rule extraction described in the

beginning of this section are carried out.
1. Set 7 = 1.

2. Acquire rules by learning with a large value of a regularization parameter, ;. They are

dominant rules.

3.1=1+1
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4. Acquire rules with a smaller value of a regularization parameter, )\;, by freezing the

connection weights corresponding to previously acquired rules.
5. If all the training samples are learned satisfactorily, stop. Else go to step 3.

Although an idea of successive regularization is simple, it is quite effective and has various
advantages over conventional methods as shown in Introduction. Learning with successive
regularization seems to resemble the cascade-correlation learning[6] in that network grows
step by step by freezing previously learned connection weights. The latter is carried out
by simply adding hidden units using the same learning method. On the other hand, the
learning with successive regularization is carried out by using the same network architecture
with different regularization parameters at each step. Although the resulting network is
simple at an early stage, the whole network architecture is retrained all the time with most
connections having zero weights.

A question might arise on how to determine a regularization parameter at each step.
At the first step it suffices to select a regularization parameter generating a rough skeletal
structure, and its determination is not so difficult. At later steps it is necessary to select a
regularization parameter generating a different structure from that in the previous stage. Its
determination is not so difficult either, although it affects the resulting hierarchical structure

of rules.

5 Classification of mushrooms

A mushroom database contains 8124 samples, each with 22 attributes in Table 1[20]. As
shown in Table 1 each attribute has from 2 to 12 attribute values; in total there are 126
attribute values. In addition to these attribute values, each sample is given a categorical
value, i.e., edible or poisonous. The task here is to classify mushrooms into these two
categories. Table 2 presents major attributes and their attribute values. 812 out of 8124
samples are randomly chosen for training.

A 3-layer network is adopted here; 1 output unit indicates edible or poisonous, 22 hidden
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units correspond to 22 attributes, and 126 input units represent their attribute values. Each
hidden unit is connected only to the relevant input units. This special architecture corre-
sponds to an implicit assumption frequently adopted in machine learning, i.e., each sample
has attributes and each attribute has its attribute value.

Learning is carried out by SLF, which uses a regularizer of the sum of the absolute values
of connection weights in addition to an ordinary criterion function. Since the value of a
regularization parameter, A, is directly related to the amount of forgetting, ¢, i.e. € =), it
suffices to show either one of them.

In the first stage, SLF with the regularization parameter, A = 3 x 103, generates the
network in Figure 1 with 2 attributes: odor and spore-print-color. From Figure 1 it is
almost straightforward to represent these two attributes as a function of input variables by
taking into account the fact that only one of the attribute values is active in each attribute.
Since this is the first example, the Karnaugh map representing the relation between the
hidden variable, g4, and the corresponding 6 input variables is shown in Table 3 for better
understanding. It is to be noted that all but six cells are don’t care. The simplified Boolean

functions for 7, and 19 are,

ys = almond V anise V none
Y9 = green (6)

where 74 stands for the negation of y;.
Table 4 shows the Karnaugh map obtained from the network in Figure 1. A don’t care in
Table 4 indicates the absence of samples in this cell. The extracted rule for edible mushrooms,

therefore, is,
Us N §19 = (odor = almond V anise V none) A (spore-print-color # green) (7)

This rule misclassifies 5 poisonous mushrooms as edible out of 812 training samples and 48
poisonous mushrooms as edible out of 8124 samples.
In the second stage, SLF with the regularization parameter, A = 2 x 103, is applied while

freezing the connection weights in the first stage. It generates the network in Figure 2 with
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4 attributes: odor, gill-size, stalk-surface-below-ring and spore-print-color. It is fairly easy

to represent these attributes as a function of input variables.

ys = almond V anise V none
y; = broad
Y12 F# scaly
Y19 = green (8)

Table 5 shows the Karnaugh map obtained from the network in Figure 2. The extracted

rule for edible mushrooms is,

s Ao A (yr Vyia) = (odor = almond V anise V none)
A(spore-print-color # green)

N{(gill-size = broad) V (stalk-surface-below-ring # scaly)} (9)

The rule in Eq.(9) makes no classification error for 812 training samples and misclassifies 8
poisonous mushrooms as edible for the total samples. The bold face part corresponds to the
rule in Eq.(7). The additional term, (gill-size = broad) V (stalk-surface-below-ring # scaly),
makes the input space for edible mushrooms smaller to further decrease the number of
misclassifications.

In the third stage, the number of training samples is increased to 820 by merging the
misclassified 8 samples in the second stage. SLF with the regularization parameter, A\ =
0.2 x 1073, is applied while freezing the connection weights in the first and second stages.
It generates the network in Figure 3 with 6 attributes: odor, gill-size, stalk-shape, stalk-
surface-below-ring, spore-print-color and population. It is easy to represent these attributes

as a function of input variables.

s = almond V anise V none
y; = broad
Y9 = enlarging

Y12 # scaly
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Y9 = green

Y20 # clustered (10)

Table 6 shows the Karnaugh map obtained from the network in Figure 3. The extracted

rule for edible mushrooms is,

Ua Ao AMyr V (Y12 Ayao) } = (odor = almond V anise V none)
A (spore-print-color # green)
A {(gill-size = broad) V
(stalk-surface-below-ring # scaly) A

(population # clustered)} (11)

It is noteworthy that although 6 attributes are included in the resulting network in Figure
3, only 5 attributes appear in the final rule in Eq.(11). This is due to the existence of don’t
care cells in Table 6.

The resulting rule in Eq.(11) makes no classification error not only for 820 training
samples but also for the entire samples. The bold face part corresponds to the rule in
Eq.(9). The additional term, (population # clustered), makes the input space for edible
mushrooms smaller. In Eq.(9), 8 poisonous mushrooms are misclassified as edible. By
changing (gill-size = broad) V (stalk-surface-below-ring # scaly) into (gill-size = broad) Vv
(stalk-surface-below-ring # scaly) A (population # clustered) these 8 misclassified mush-
rooms are classified correctly. To my knowledge, a set of rules with 6 attributes, which
can explain all the mushroom samples, has been the best one[5], but Eq.(11) is even better
because the number of attributes is 5.

In the Karnaugh maps there is 1 don’t care cell in the first stage, and there are 8 don’t
care cells in the second stage. The resulting rules happen to be the same as when don’t care
cells are not properly treated. As the number of attributes increases, the number of don’t

care cells increases. In the third stage the number of don’t care cells is 49 out of 64 cells. If
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don’t care cells are not properly treated, the resulting rule is,

Ts N 1o A{yr Ayo A (Y12 V Y20) V Y12 A Yo} (12)

This is easily given by replacing all don’t care cells by 0. The resulting rule is different from
Eq.(11) and contains 6 instead of 5 attributes. This indicates the importance of treating
don’t care cells properly.

Table 7 summarizes the results by BP learning, SLF and ID3. It well indicates the
superiority of SLF with successive regularization over other methods; when the number of
attributes is 4, SLF is superior to ID3 in terms of the number of classification errors. It is
also to be noted that BP learning, in contrast to SLF and ID3, cannot extract rules and
requires all the attribute values for classifying test samples due to distributed representation
of the resulting networks.

When only the final rule in Eq.(11) is given, we still can understand it, but there’s no
way to know which part is dominant. On the other hand, the succession of three rules, i.e.,
Eqs.(7)(9)(11), is much easier to understand, because information on which part is dominant
and which part is less dominant is available. This is a major advantage of rule extraction by
successive regularization.

Another advantage of successive regularization is that it is computationally robust com-
pared to conventional regularization. In the first and second stages, the resulting networks
are almost the same for different initial connection weights. In the third stage the resulting
networks are slightly varying. On the other hand, when SLF with a constant regularization
parameter is applied, results are much varying. Even the number of attributes differ from 5
to 8 for different initial connection weights as shown in Table 8.

In a structural learning with forgetting(SLF) using a specified regularization parameter,
connections which do not contribute to mean square output error fade away. Therefore, from
an engineering point of view, the smaller a regularization parameter is, the more precise the
mapping from input to output of a network becomes. From the viewpoint of cognitive

science, it could be suggested that the smaller the value of a regularization parameter is, the
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deeper the understanding of data becomes.

When the values of connection weights reaches a steady state, we terminate learning of
that stage. A decrease of the value of a regularization parameter is done by hand. Exper-
imental results indicate that, empirically, the network structure does not change for some
range of a regularization parameter and at some value of a regularization parameter the
network structure suddenly changes. A new value of a regularization parameter, therefore,

is determined so as to generate a different network structure.

6 Recognition of promoters

The task here is the recognition of promoters in DNA sequences. A promoter is a site where
the protein RNA polymerase binds to DNA. The database has 53 promoters and 53 non-
promoters[20]. The input is 57 sequential DNA nucleotides. The location of each nucleotide
is numbered between —50 and +7 with respect to a fixed reference point. As is well known,
each location in a DNA sequence is represented by 4 input units, corresponding to 4 types
of nucleotides, {A, G, T, C}. In total there are 228(57 x 4) input units. Figure 4 indicates
the network architecture adopted here. The second hidden layer with two units corresponds
to two intermediate concepts, i.e., contact and conformation, found in the existing domain
theory[28]. Out of 106 samples, 95 samples are randomly chosen for training and 11 samples
are used for test.

In the first stage, SLF with the regularization parameter, A = 1.8 x 1072, generates the
network in Figure 5. There are 7 misclassifications for training samples. Three promoters
are misclassified as non-promoters and 4 non-promoters are misclassified as promoters. The

following rule for promoters is extracted from Figure 5.
(T_36 NT_35)V (T_36 N G_34) V (T35 N G_34) (13)

where T_3¢ is a simplified expression that the nucleotide T' is located at —36 in a DNA
sequence. Table 9 gives the alternative expression of this rule.

In the second stage, SLF with the regularization parameter, A\ = 1072, is carried out while
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freezing the connection weights in the first stage. The network in Figure 6 is generated. The

following rule and Table 10 are extracted from this network.
{(T 36 NT_35)V (T_36 NG_34) V (T_35 NG_34)} AN =G _15 (14)

where =G _1, stands for the negation of G_15, i.e., the nucleotide GG is not located at —12 in
a DNA sequence. The bold face part corresponds to the rule in Eq.(13). The addition of
the term, =(G_15, makes the input space for promoters smaller, which decreases the number
of misclassifications of promoters as non-promoters. In the modified rule, 4 promoters are
misclassified as non-promoters, and 1 non-promoter is misclassified as a promoter.

In the third stage, SLF with the regularization parameter, A\ = 0.6 x 1072, is applied
while freezing the connection weights in the first and second stages. The network in Figure

7 is generated. The following rule and Table 11 are extracted from this network.

{(K_36 NT—_35) V (K_36 A G_34) V (T—35 N G_34)} A G _12

V(T 38 N K_36 AN —C_31) (15)

The addition of the term, (T_3s A K_36 A—C_31), makes the input space for promoters larger.
Among the training samples, only 1 non-promoter is misclassified as a promoter.

In the 4th stage, SLF with the regularization parameter, A = 0.2 x 1072, is carried out
while freezing the connection weights in the previous stages. The network in Figure 8 is

generated. The following rule and Table 12 are extracted from this network.

{(K_36 NT _35 N=C_31) V (K _36 N G_34) } N G _12

V(T738 VAN K,gg VAN _‘0731) \ (T739 A T735) (16)

The addition of the term, =C'" 31, the deletion of the term, (7" 35 A G_34), and the addition
of the term, (T_39 A T_35), in Eq.(16) realize perfect classification.

Towell and Shavlik reported the results of comparative study on this task[28]. Initial
domain knowledge used is represented by 12 rules and the number of antecedents is 77.
They used a tenfold cross-validation method for evaluation. Average error rate is 2.4% for

training samples and 3.8% for test samples by MofN and is superior to other methods such
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as Subset and C4.5. Fidelity, which shows the ability of the extracted rules to mimic the
behavior of the network, is 99% and is also superior to Subset. The average number of
rules and the number of antecedents are about 12 and 102, and is much superior to Subset,
although symbolic methods such as C4.5 is superior.

Fu[7] applied KBCNN to the whole samples and extracted 14 rules with 3 recognition
errors, although the resulting network makes no error. The lack of the fidelity is often
observed when inappropriate learning methods are used.

Since the numbers of training samples used above are different from that in the proposed
method, classification rates of the above methods cannot directly be compared with ours.
However, the number of rules and rule complexity can still be compared with ours. They
show the superiority of successive regularization in terms of the number and the simplicity
of generated rules over other methods.

Table 13 summarizes the results of the recognition of promoters in DNA sequences. To be
stressed here is that the rules obtained by SLF with successive regularization can completely
recognize promoters by a simple set of rules. Its accuracy, however, cannot be directly
compared with other methods, because we don’t use tenfold cross-validation. Since all the
hidden units are binary in the learning with successive regularization, the fidelity is perfect.
The number of rules and the number antecedents are 4 and 15, respectively. They are much

smaller than those by MofN and other methods.

7 Classification of irises

The task here is to classify 150 irises into three categories each with 50 samples: setosa,
versicolor and virginica[20]. Each sample has 4 attributes with continuous attribute values
i.e., sepal length(z), sepal width(z,), petal length(z3) and petal width(x,). Networks of
various degrees of complexity are trained using all the samples; the maximum number of
incoming connections to each hidden unit is 1, 2, 3 or 4. Table 14 indicates that the network

with at most 3 incoming connections to each hidden unit and with the regularization param-
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eter A=0.0001 is the best from the viewpoint of AIC. Figure 9 illustrates the corresponding
network, which makes 2 classification errors. From this network, the following rules can be

extracted.

(x5 < 2.60) A (3 — 3.57x4 > 0.024) = setosa
(xe — 3.57x4 < 0.024) A (29 — 0.2823 — 3.32x4 > —4.34) = versicolor

(ry —3.9723 — 0.3324 < 16.26) = virginica (17)

Table 15 summarizes the performance of classification. Since the maximum number of
incoming connections to each hidden unit is three, the resulting rules in Eq.(17) are not easy
to understand. Furthermore, they make 2 classification errors out of 150 total samples. To
overcome this difficulty, SLF with successive regularization is applied.

In the first stage, a simple network with only one incoming connection to each hidden
unit is trained by SLF with the regularization parameter, A=0.005. Figure 10 illustrates the

resulting network. The extracted rules are,

(ry < 0.68) A (r3 < 4.78) = setosa
(x4 > 0.68) A (23 < 4.78) = versicolor
(x4 > 0.68) A (z3 > 4.78) = virginica (18)
The rules in Eq.(18) make 7 classification errors out of 150 samples.
In the second stage, hidden units are added to the above network with each new hidden

unit having at most two incoming connections. SLF with the regularization parameter,

A=0.0007 is carried out. Figure 11 delineates the resulting network. The extracted rules are,

(4 < 0.68) A (x5 < 4.78) = setosa
(4 > 0.68) A (zo — 3.30z4 > —2.82) = versicolor
(x4 > 0.68) A (x5 > 4.78) = virginica (19)

where the bold face part corresponds to the rules in the first stage. The rules in Eq.(19)

make only one classification error out of 150 samples. Compared to those in Eq.(17), they are
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simpler in term of the number of variables included, and superior in terms of classification
errors.

Fu[8] applied KT algorithm using twofold cross-validation. It generates 5 hyper-rectangle
if-part rules with 3.3% error rate. The number of conjunctive terms is 10. It is equivalent to
2 or 3 classification errors for test samples. Kasabov[15] applied REFuNN using 120 samples,
which generates a large number of rules using various thresholds, on which extracted rules

heavily depend.

8 Conclusions and discussions

In the present paper, a novel approach to rule extraction is proposed using structural learning
with successive regularization. It is a succession of learning with a decreasing regularization
parameter. Rules are obtained hierarchically, i.e., a combination of dominant rules and less
dominant rules or exceptions.

It has various advantages such as the robustness of computation, good understandability,
and similarity to human development. It is applied to the classification of mushrooms, the
recognition of promoters in DNA sequences and the classification of irises. Empirical results
indicates superior performance in rule extraction in terms of the number and the size of rules
for explaining data.

The first advantage, the robustness of computation, however, is substantiated by exper-
iments using only mushroom data, hence needs further verification. Concerning the second
and third advantages, i.e., good understandability and similarity to human development, we
have various observations supporting these, but detailed studies clarifying the relationship

between the process of rule extraction and these advantages are left for further study.
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Table 1: Attributes of mushrooms. No stands for an attribute number and Na stands for the number of

attribute values.

No | Na attributes No | Na attributes
0 6 cap-shape 11 4 | stalk-surface-above-ring
1 4 cap-surface 12 | 4 | stalk-surface-below-ring
2 10 cap-color 131 9 stalk-color-above-ring
3 2 burises 141 9 stalk-color-below-ring
4 9 odor 15 | 2 veil-type
) 4 | gill-attachment || 16 | 4 veil-color
6 3 gill-spacing 17 | 3 ring-number
7 2 gill-size 18 | 8 ring-type

8 12 gill-color 191 9 spore-print-color

9 2 stalk-shape 20| 6 population

10 | 7 stalk-root 21 | 7 habitat
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Table 2: Major attributes of mushrooms and their attribute values. Acronyms of attribute values are also

shown in parentheses.

No attributes attribute values

4 odor almond(a), anise(l), creosote(c), fishy(y), foul(f),

musty(m), none(n), pungent(p), spicy(s)

7 gill-size broad(b), narrow(n)

9 stalk-shape enlarging(e), tapering(t)

12 | stalk-surface-below-ring ibrous(}), scaly(y), silky(k), smooth(s)

19 spore-print-color black(k), brown(n), buff(b), chocolate(it h), green(r),

orange(o), purple(u), white(w), yellow(y)

20 population abundant(a), clustered(c), numerous(n),

scattered(s), several(v), solitary(y)
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Table 3: The Karnaugh map representing the relation between the hidden variable, y4, representing odor
and the corresponding input variables, {a, I, y, f, n, s}, in the first stage of the mushroom classification.

Acronyms for input variables are given in Table 2. X represents don’t care.

n=0, 5=0 n=0, s=1
y f1/00]01]|11] 10 y f1 00|01 |11 10
al al
00 x |1 ]| x| 1 00 1| x| x| x
01 0 | x| x| % 01 X | X | x| %
11 X | X | x| X 11 X | X | x| X%
10 0| x| x| X 10 X | X | x| %
n=1, 5=0 n=1, s5=1
y f1/00]01]|11] 10 y f1 00|01 |11 10
al al
00 0| x| x| X 00 X | X | x| %
01 X | X | x| X 01 X | X | x| X
11 X | X | x| X 11 X | X | x| X%
10 X | X | x| X 10 X | X | x| X

Y19 1
Y4
0 0
1 X

Table 4: The Karnaugh map representing the relation between the output variable, z, and the hidden

variables, {y4, y19}, in the first stage of the mushroom classification. X represents don’t care.
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Table 5: The Karnaugh map representing the relation between the output variable, z, and the hidden

variables, {y4, y7, Y12, Y19}, in the second stage of the mushroom classification. X represents don’t care.

Y12 Y19 || 00 | O1 | 11 | 10

Ya Yo
00 0| x| x]1
01 1 | x| 0|1
11 0| x| x]|0
10 X | x| x| 0

Table 6: The Karnaugh map representing the relation between the output variable, z, and the hidden
variables, {y4, y7, Y9, Y12, Y19, Y20}, in the third stage of the mushroom classification. X represents don’t

care.

y4=0, yr=0 ya=0, yr=1
Y19 Y20 || 00 | 01 | 11 | 10 Y19 Y20 || 00 | 01 | 11 | 10
Yo Y12 Y9 Y12
00 X | X | x| X 00 X | X | x| X
01 x | 1 | x| % 01 x | 1| x| %
11 0|1 ] x| x 11 1(1]0]| x
10 0] 0| x| x 10 x | 1| x| X
ys=1, y7=0 ya=1, yr=1
Y19 Y20 || 00 | 01 | 11 | 10 Y19 Y20 || 00 | 01 | 11 | 10
Yo Y12 Y9 Y12
00 X | X | x| X 00 X | X | x| X
01 x | 0] x| x 01 x | 0| x| x
11 x| 0| x| X% 11 x| 0| x| x
10 X | X | x| X 10 0| x| x| x
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Table 7: Summary of rule extraction from a mushroom database. The number of training samples is 812 and
that of total samples is 8124, 1 indicates that the number of training samples is 820 including 8 misclassified
samples in test data. MSEy,. and MSE;, stand for the mean square error for training data and that for the
total data, respectively. #E;. and #E;, stand for the number of classification errors for training data and
that for total data, respectively. The parameters of learning are: n = 0.05, « = 0.9, and § = 0.1. Attributes
used in ID3 are: {odor(4), spore-print-color(19)} in case of 2 attributes, {odor(4), spore-print-color(19),
cap-color(2)} in case of 3 attributes, and {odor(4), spore-print-color(19), cap-color(2), stalk-root(10)} in

case of 4 attributes.

learning | regularization | no. of
method parameter | attri- | MSE;. | MSE:, | #E¢ | #E+
A | butes
BP - 22 0.00006 | 0.00606 0 56
3x1073 2 0.00611 | 0.00587 5 48
SLF 2x 1073 4 0.00007 | 0.00101 0 8
0.2 x 1073 6 0.00008 | 0.00008 0 0
- 2 - - 5 48
ID3 - 3 - - 2 24
- 4 - - 0 24

Table 8: Resulting attributes by SLF with a constant regularization parameter, A = 0.2 x 103, starting

from 5 kinds of initial connection weights. The parameters of learning are: n = 0.05, = 0.9 and 6 = 0.1.

No. attributes

1 4,7, 11, 19, 20

2 | 2,4,6,7, 11, 19, 20, 21

3 4,7, 10, 11, 19, 20

4 4,7, 10, 11, 19, 20

5 2,4, 7,12, 19, 20
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Table 9: The extracted rule for the recognition of promoters in the first stage. Each row corresponds to a

conjunctive term and rows are interpreted as disjunctive.

-36 -35 -34
T T
T G
T G

Table 10: The extracted rule for the recognition of promoters in the second stage.

-36 -35 34 -12
T T -G
T G -G

T G -G

Table 11: The extracted rules for the recognition of promoters in the third stage.

-38 -36 -35 -34 -31 -12
K T -G
K G -G
T G -G
T K -C

Table 12: The extracted rule for the recognition of promoters in the 4th stage.

-39 -38 -36 -35 -34 -31 -12
K T -C -G
K G -G
T K -C
T T




Successive regularization 30

Table 13: Summary of performance of the recognition of promoters in DNA sequences. #E;. and #FE.

stand for the number of classification errors for training data and that for test data, respectively.

learning A MSE;, MSE;, #E;- | #E¢e
method
BP 0.0 0.000046 | 0.018660 0 2
1.8 x 1072 | 0.069080 | 0.085144 7 1
SLF 1072 0.043932 | 0.080684 5 1
0.6 x 1072 | 0.009040 | 0.000158 1 0
0.2 x 1072 | 0.000246 | 0.000080 0 0
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Table 14: Performance of the classification of irises by SLF with various regularization parameters, A. FI
stands for the maximum number of incoming connections to each hidden unit. K is the number of connections
and biases of a network. * signifies the minimum AIC. The parameters of learning are: n=0.1, a=0.2 and

6=0.1.

A FI MSE K AIC

0.0005 | 1 | 0.023300 | 13 | —1665

0.00002 | 2 | 0.004206 | 26 | —2410

0.00005 | 3 | 0.004606 | 25 | -2371

0.0001 | 3 | 0.004080 | 22 | —2432%*

0.0002 | 3 | 0.008480 | 20 | —2107

0.00005 | 4 | 0.004096 | 30 | —2413
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Table 15: Summary of performance of the classification of irises. SLFsr stands for SLF with successive
regularization. C4.5p means C4.5 with pruning. FI stands for the maximum number of incoming connections
to each hidden unit. #p is the number of independent parameters. #r and #a are the number of conjunctive

rules and the number of terms in antecedents, respectively. #e stands for the number of classification errors.

learning | FI | #p | #r | #a | #e | error rate

method

1 2 3 6 7 4.7%

SLF 2 7 6 | 16 | 1 0.7%

3 9 4 5 2 1.3%

4 |13 | 3 7 0 0.0%

SLFsr 2 7 3 6 1 0.7%

C4.5 - ) - - 2 1.3%

C45p | - | 3 | - | - | 4 2.7%

KT - ) 5 | 10| 5 3.3%
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Figure 1: The resulting network for classifying mushrooms by SLF in the first stage. Among 22 attributes
only two of them are shown here, because all the connections corresponding to other attributes fade away after
learning. The remaining attributes are odor(attribute number 4) and spore-print-color (attribute number 19).
An alphabet within an input unit circle is an acronym for the name of an attribute value. Width of each
connection is approximately proportional to the absolute value of its weight. A solid connection and a
dashed connection stand for positive and negative weights, respectively. The parameters of learning are: the
learning rate n = 0.05, the momentum « = 0.9, the amount of forgetting e = 1.5 x 10™#, the threshold of

selective forgetting # = 0.1, and the regularization parameter A = 3 x 1073.

C4-><7><—12—> 19

Figure 2: The resulting network for classifying mushrooms by SLF in the second stage. In addition to
odor(4) and spore-print-color(19), gill-size(7) and stalk-surface-below-ring(12) are added in the input layer.
Among the input units corresponding to attributes odor(4) and spore-print-color(19), only those actively
connected to hidden units are shown here for clarity. The parameters of learning are: n = 0.05, a = 0.9,

e=10"%6=0.1,and A =2 x 1072,
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< 4-><7>¢921219<—20

Figure 3: The resulting network for classifying mushrooms by SLF in the third stage. In addition to odor(4),
gill-size(7), stalk-surface-below-ring(12) and spore-print-color(19), stalk-shape(9) and population(20) are
added in the input layer. Among the input units corresponding to attributes {4, 7, 12 , 19}, only those
actively connected to the hidden units are illustrated here for clarity. Otherwise we have to draw 32 input
units corresponding to the above 6 attributes. The parameters of learning are: n = 0.05, a = 0.9, ¢ = 1072,

6§ =0.1,and A = 0.2 x 1073,

Figure 4: The network architecture for the recognition of promoters in DNA sequences. The input layer has
228(57 x 4) units and the first hidden layer has 57 units each corresponding to a nucleotide. The second

hidden layer has 2 units and the output layer has one unit.
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Figure 5: The resulting network for the recognition of promoters in the first stage. The parameters of

learning are: n = 0.05, 0 =0.9,e =9 x 1074, = 0.1, and A = 1.8 x 1072

T G

Figure 6: The resulting network for the recognition of promoters in the second stage. The parameters of

learning are: n = 0.05, a =0.9,e =5x 107, 6 = 0.1, and A = 1072,

OO

Figure 7: The resulting network for the recognition of promoters in the third stage. The parameters of

learning are: n = 0.05, a = 0.9, =3 x 107%, 8 = 0.1, and A = 0.6 x 1072
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Figure 8: The resulting network for the recognition of promoters in the 4th stage. The parameters of learning

are: 1 =0.05,a=09,A=10"%0=0.1,and A =0.2 x 1072,

Figure 9: The resulting network for the classification of irises by SLF with at most 3 incoming connections

to each hidden unit. The parameters of learning are: n = 0.1, « = 0.2, # = 0.1, and A = 10~%.

Figure 10: The resulting network for the classification of irises in the first stage by SLF with successive

regularization. The parameters of learning are: 7 = 0.1, « = 0.2, = 0.1, and A = 5 x 1073.
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Figure 11: The resulting network for the classification of irises in the second stage by SLF with successive

regularization. The parameters of learning are: n = 0.1, @ = 0.2, § = 0.1, and A = 0.7 x 1073,



